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Abstract

When an n × n permutation matrix is chosen at random, each of its n eigenvalues
will lie somewhere on the unit circle. We investigate the average number of these that
fall in an interval that shrinks as the size of the matrix increases, and compare the
results against the case where n points are chosen independently.

1 Introduction

A permutation matrix is any n× n matrix that has exactly one 1 in each row and column,

with all other entries being 0. Here is an example of a 6× 6 permutation matrix:

P =



0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0


All the eigenvalues of a permutation matrix lie on the (complex) unit circle, and one might

wonder how these eigenvalues are distributed when permutation matrices are chosen at

random (that is, uniformly from the set of all n × n permutation matrices). Some work

has already been done in studying the eigenvalues of permutation matrices. Diaconis and

Shahshahani [3] looked at the trace (sum of the eigenvalues), and Wieand [5],[4] investigated

the number of eigenvalues that lie in a fixed arc of the unit circle. In both cases, the

asymptotic behavior for large n was determined.

Roughly speaking, the number of eigenvalues that lie in a fixed interval on the unit circle

will be proportional to the size of the interval and to the dimension n of the matrix. In this
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paper, the goal will be to allow n to increase while decreasing the size of the interval, so that

the number of eigenvalues lying in it should remain fairly constant on average. In particular,

we look at the number of eigenvalues Xn,a lying in the interval In =
(
e2πia, e2πi(a+l/n)

]
when

an n × n permutation matrix is chosen at random, and we find the limit of the mean of

Xn,a as n →∞ in the case when a is rational.

The paper will be organized as follows. The next section provides some background

about permutations and gives some probabilistic results that will be used later. Section 3

discusses the eigenvalues of permutation matrices and provides a formula for Xn,a. Section

4 draws some comparisons between the distribution of eigenvalues and the distribution of

random points on the unit circle. Section 5 provides a technical result that will be used in

section 6 to find the limit of E[Xn,a]. The conclusion takes another look at the function

derived in section 6, and then presents some open questions about Xn,a.

2 Background About Permutations and Probability

For our purposes, a permutation can be thought of as a one-to-one mapping of the set of

integers {1, 2, . . . , n} onto itself. The group of all permutations of n numbers is known as

the symmetric group, Sn, and it is a simple matter to verify that there are n! permutations

in Sn. In standard notation, a permutation σ ∈ Sn is written as

σ =
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
,

where σ(1) is the image of 1 under σ, σ(2) is the image of 2, and so on.

2.1 Cycles and Cycle Structure

A permutation can also be written in a way that groups together the images of a given

number under repeated applications of σ. For example, the permutation

σ =
(

1 2 3 4 5 6 7 8 9
3 6 4 7 5 9 1 8 2

)
can be written

σ = (1 3 4 7)(2 6 9)(5)(8).

The first group of numbers in parentheses indicates that 1 gets mapped to 3, 3 gets

mapped to 4, 4 gets mapped to 7, and 7 gets mapped back to 1. Each of the other
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groupings is interpreted in a similar way. These groups of numbers are called cycles, and

this notation for permutations is referred to as cycle notation. Following are several facts

relating to cycles and cycle notation.

• A cycle of k numbers is referred to as a k-cycle; for example, (1 3 4 7) is a 4-cycle.

• A cycle of one number indicates that the number is mapped to itself, and 1-cycles are

often referred to as fixed points.

• If a permutation σ is applied k times, then the numbers in each k-cycle in σ will

return to their starting positions.

• The number of times that a permutation σ must be applied in order to return all

numbers to their starting positions is known as the order of σ, and will equal the

least common multiple of the lengths of all the cycles in σ.

• It does not matter which number is written first in a cycle, as long as the order of the

numbers is preserved. For example, (1 3 4 7) = (4 7 1 3), but (1 3 4 7) 6= (1 4 3 7).

• The cycles in a permutation can be written in any order. If desired, one can apply

any of a number of systematic approaches to keep the notation consistent.

It is useful to define a vector, (C1, C2, . . . , Cn), called the cycle structure of σ, where

each entry Ck gives the number of k-cycles in σ. Thus, our sample permutation above has

a cycle structure of (2, 0, 1, 1, 0, 0, 0, 0, 0). Two things to notice about cycle structure are

1. The sum of all the values of Ck gives the total number of cycles in σ, and

2. Since there are n numbers in σ, the lengths of all the cycles must add up to n. That

is, for σ ∈ Sn,
n∑

k=1

kCk = n. (1)

2.2 Probability and Cycle Structure

At this point, one could ask various questions about cycle structure, such as “How many

permutations are there with a given cycle structure?” or, “What is the cycle structure of a

‘typical’ random permutation σ?” That is, how many fixed points, how many 2-cycles, etc.

will σ have, on average?
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When the phrase “random permutation” is used in this paper, it means that each

permutation in Sn is equally likely to be chosen. Thus, the probability of picking any one

permutation is 1/n!. Using this, the mean, or expected value, of any random variable V

defined on Sn will be

E[V ] =
1
n!

∑
σ∈Sn

V (σ), (2)

and the variance of V will be

V ar[V ] =
1
n!

∑
σ∈Sn

(V (σ)− E[V ])2. (3)

Notice that the values C1, C2, . . . , Cn for a permutation picked from Sn are just random

variables, and the expectation of these values might provide some insight into the questions

posed above. Using standard group theory arguments, it can be shown that the probability

of picking a permutation with a particular cycle structure, say (ϑ1, ϑ2, . . . , ϑn), is

P (C1 = ϑ1, C2 = ϑ2, . . . , Cn = ϑn) =
{∏n

k=1
1

kϑkϑk!
if
∑n

k=1 kϑk = n

0 otherwise.
(4)

This formula can be used to prove a number of facts about the random variables Ck. The

results below are due to Goncharov [1]. (Also see Diaconis and Shahshahani [3].)

E[Ck] =


1
k if k ≤ n

0 otherwise,
(5)

E[CjCk] =


1
jk if j + k ≤ n

0 otherwise
(6)

if j 6= k, and

V ar[Ck] =



1
k if k ≤ n/2

1
k −

1
k2 if n/2 < k ≤ n

0 otherwise.

(7)

3 Permutation Matrices and Xn,a

For each σ ∈ Sn, let Mσ be the n× n matrix constructed by the following rule:

(Mσ)ij =
{

1 if j = σ(i)
0 otherwise.

(8)
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That is, the ith row of Mσ has a 1 in the column σ(i) and 0’s in all the others. It is easy

to verify that Mσ is a permutation matrix (as defined in the introduction), and that this

rule in fact defines a one-to-one correspondence between Sn and the n × n permutation

matrices. (With Mσ defined in this way, a matrix that is left-multiplied by Mσ will have

its rows permuted according to σ, and a matrix that is right-multiplied by Mσ will have its

columns permuted according to the inverse of σ.)

Using some elementary facts about Sn and the properties of determinants, it is not

difficult to show that, if σ has a cycle structure of (C1, C2, . . . , Cn), then the characteristic

polynomial of Mσ is

p(λ) = det(Mσ − λI) = (−1)n
n∏

k=1

(λk − 1)Ck , (9)

which results because every k-cycle in σ contributes a factor of (−1)k(λk − 1) to p(λ). The

zeros of ±(λk−1) are just the kth roots of unity, which are 1, e2πi/k, e4πi/k, . . . , e2(k−1)πi/k.

(These are just points on the unit circle that are spaced at an angle of 2π/k apart.) Since

each k-cycle generates this set of k eigenvalues, if σ has Ck k-cycles, then Mσ has Ck copies

of these eigenvalues.

Because of this relationship, the random variable Xn,a can be written in terms of the

cycle structure (C1, C2, . . . , Cn). In order to do this, the following notation will be needed.

These definitions also will be used in later sections for determining the limits on sums.

Definition 1 (Floor, Ceiling, and Fractional Part) For all real numbers x, the largest

integer less than or equal to x is denoted by bxc, read floor of x. Similarly, the smallest inte-

ger greater than or equal to x is denoted by dxe, read ceiling of x. In addition, the fractional

part of x, written {x}, is defined to be the difference x− bxc. (Notice that 0 ≤ {x} < 1 for

all x.)

Now, consider an arbitrary interval I =
(
e2πia, e2πib

]
on the unit circle, with 0 < b− a ≤ 1.

Of the k eigenvalues corresponding to a k-cycle, bkbc − bkac of them will lie in the interval.

Thus, for an arbitrary permutation σ, the number of eigenvalues of Mσ in I is given by∑n
k=1 Ck(σ)(bkbc − bkac). To determine the number of eigenvalues of Mσ in In, simply

replace b with a + l/n to obtain

Xn,a(σ) =
n∑

k=1

Ck(σ)
(⌊

k

(
a +

l

n

)⌋
− bkac

)
. (10)
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The mean of Xn,a is then

ESn [Xn,a] = ESn

[
n∑

k=1

Ck

(⌊
k

(
a +

l

n

)⌋
− bkac

)]

=
n∑

k=1

ESn [Ck]
(⌊

k

(
a +

l

n

)⌋
− bkac

)

=
n∑

k=1

1
k

(⌊
k

(
a +

l

n

)⌋
− bkac

)
. (11)

The restriction that b−a ≤ 1 is to ensure that none of the eigenvalues are counted more

than once. In the case of Xn,a, this is equivalent to requiring that n ≥ l. Thus, equations

(10) and (11) are valid for any value of l > 0, provided that n is large enough. Now, if

n ≤ l, then In is guaranteed to wrap around the unit circle at least once, and therefore will

contain all the eigenvalues of Mσ. That is, Xn,a = n when n ≤ l, and from now on, it will

be assumed that n > l. Also notice that because the interval lies on a circle, every value of

a corresponds to a value in the range [0, 1). Although this point is not essential, it can be

assumed that 0 ≤ a < 1 without losing generality.

4 Preliminary Observations

When a permutation is picked with uniform probability from Sn and the eigenvalues of Mσ

are plotted, the result is that n points on the unit circle have been chosen “at random”, in

the sense that the outcome of this experiment is not known beforehand. Obviously, though,

not every every point on the circle is equally likely to be picked. In fact, only a finite set of

points is possible, and the probability of picking a particular point depends on its location.

Plotting the eigenvalues of a random n× n permutation matrix can be compared with

plotting n independent points chosen uniformly from the set of all points on the unit circle.

The purpose of this section is to summarize what happens for independent uniform points,

and then to make a few quick observations about the eigenvalue distribution of permutation

matrices, providing a brief comparison of the two situations.

4.1 Random Independent Points on the Unit Circle

In order to provide a basis for comparison, we can define a random variable analogous to

Xn,a. Let Yn be the number of points that land in the interval In =
(
e2πia, e2πi(a+l/n)

]
when

n independent points are picked uniformly.
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When the points are picked in this way, there are two intuitive results that follow

immediately. First, the distribution of Yn should not depend on a. (Since the points are

equally likely to be chosen from anywhere on the circle, the location of the interval should

not matter.) Second, the fraction Yn/n of points that land in the interval will on average be

the same as the ratio of the length of the interval to the circumference of the circle. Thus,

by defining In to have a length of 2πl/n, the mean of Yn will have the constant value l,

regardless of the value of n.

These results also become apparent by noticing that Yn is a binomial random variable, as

follows. If a single point on the unit circle is chosen at random (uniformly), the probability

that it will lie in In is p = l/n. When n points are chosen independently, the number of

points Yn lying in In will, by definition, be binomial with parameters (n, l/n). Binomial

random variables are standard in probability, and the mean and variance in this case are

known to be

E[Yn] = n

(
l

n

)
= l, (12)

and

V ar[Yn] = n

(
l

n

)(
1− l

n

)
= l

(
1− l

n

)
. (13)

4.2 The Number of Eigenvalues at eiθ

When random points are chosen uniformly on the unit circle, the probability of picking any

particular point eiθ is 0. The eigenvalues of permutation matrices, however, occur only at

certain values of θ, so the probability of choosing one of these points is positive, while the

probability for any other point is 0.

In order to gain some insight into this problem, define a random variable Zn,θ to be the

number of eigenvalues of σ ∈ Sn equal to eiθ. The variable Zn,θ is already well understood;

see, for example, [1], [2]. Presented here is a brief explanation of what happens to the mean

of Zn,θ as n →∞.

First consider the case when θ = 0. Every cycle in a permutation σ produces the

eigenvalue 1, so the number of eigenvalues at θ = 0 will equal the total number of cycles

in σ. Recall that the number of cycles in σ is the sum of all the values of Ck in the cycle

structure. Thus,

Zn,0 =
n∑

k=1

Ck, (14)
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and the mean of Zn,0 is

E [Zn,0] =
n∑

k=1

E[Ck] =
n∑

k=1

1
k
. (15)

For large n, this sum can be approximated by lnn, resulting in

E [Zn,0] = lnn + O(1). (16)

Similar reasoning can be used to see that in general, if θ = 2πp/q with p and q relatively

prime, then

E [Zn,θ] =
1
q

lnn + O(1). (17)

If θ is an irrational multiple of 2π, then no eigenvalues can occur there, so Zn,θ = 0 for all

n in this case. This behavior is quite different from the uniform case.

4.3 Description of Xn,a when a = 0 and l ≤ 1

This is a special case for which very little calculation is involved in determining the behavior

of Xn,a. With a = 0, the interval starts at 0 and ends at 2πl/n, and equation (10) simplifies

to

Xn,0 =
n∑

k=1

Ck

⌊
kl

n

⌋
. (18)

Since the largest cycle that can occur in σ is an n-cycle, the first position on the unit

circle where an eigenvalue can occur is at θ = 2πl/n. If l < 1, then Xn,0 = 0 because the

interval ends before reaching the first possible eigenvalue. This can also be seen from (18)

by noting that bkl/nc = 0 if l < 1.

Now if l = 1, then the interval ends exactly where the first eigenvalue can occur, so we

have

Xn,0 =
{

1 if σ has an n-cycle
0 otherwise.

The probability that σ has an n-cycle is just 1/n, and it is easy to show that in this case,

E[Xn,0] =
1
n

(19)

and

V ar[Xn,0] =
1
n

(
1− 1

n

)
=

n− 1
n2

. (20)

Both the mean and the variance approach 0 as n →∞.
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Remark. A similar analysis shows that an analogous ‘gap’ occurs around each rational

point a. In particular, if a = p/q in lowest terms, then no eigenvalues can fall in the interval

In if l < 1/q. For irrational values of a, this sort of gap does not occur. No matter how

small l is, there always will be some values of n that produce eigenvalues in the interval In.

These results illuminate some of the differences between the distribution of eigenvalues

and that of independent points on the circle. Equations (19) and (20) describe a particularly

simple situation, and in this case, the results for random permutations are strikingly different

from the results for random independent points. When l > 1, the simple argument used

here no longer works, and it may not be possible to find explicit formulas for E[Xn,a] or

V ar[Xn,a] in terms of n. In that case, when n is small, it is easy to calculate the value of

Xn,a, and of E[Xn,a] or other quantities describing the distribution of eigenvalues. As n

increases, however, exact results require more and more computation, and it is more useful

to try to find general trends that will provide a picture of what is happening. The following

sections use a different approach to find the large n limit of E[Xn,a], and the goal will be

to see whether this limit might resemble the independent points case more closely when the

constant l is larger.

5 A Technical Lemma

The following lemma, which is an elementary analysis result, will be needed for calculating

the limit of E[Xn,a] in the next section.

Lemma 1 Suppose α > β ≥ 0. Let (Ln) and (Mn) be sequences of positive integers which

satisfy
Ln

n
→ L > 0

and
Mn

n
→ M > 0.

Then the sum
Mn∑

k=Ln

1
αk + β

=
1
α

ln(Mn)− 1
α

ln(Ln) + An,

where

|An| ≤
1

αLn
.
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In particular,

lim
n→∞

Mn∑
k=Ln

1
αk + β

=
1
α

ln
(

M

L

)
.

Proof. First, observe that for any integers 0 < x < y, the sum

y∑
k=x+1

1
k

= ln(y/x) + ε1(x, y), (21)

where
1
2y

− 1
2x

≤ ε1(x, y) ≤ 0. (22)

(This can be seen by comparing the sum with the integral
∫ y
x

1
t dt.)

Next, since α > β ≥ 0, note that

y+1∑
k=x+1

1
αk

<
y∑

k=x

1
αk + β

≤
y∑

k=x

1
αk

. (23)

Thus, using (21),
y∑

k=x

1
αk + β

=
1
α

ln(y/x) + ε2(x, y), (24)

where
1
α

(
1

y + 1
+ ε1(x, y)

)
< ε2(x, y) ≤ 1

α

(
1
x

+ ε1(x, y)
)

. (25)

Combining this with (22), the error can be bounded by

|ε2(x, y)| ≤ 1
αx

. (26)

Setting An = ε2(Ln,Mn),

Mn∑
k=Ln

1
αk + β

=
1
α

ln(Mn)− 1
α

ln(Ln) + An. (27)

Finally, note that since Ln/n → L > 0, the sequence 1/(αLn) → 0. Thus An → 0, and

lim
n→∞

Mn∑
k=Ln

1
αk + β

=
1
α

ln
(

M

L

)
.
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6 Calculation of the Mean

This section is devoted to finding the limit of the mean of Xn,a. The following theorem is

the main result of this paper, and will be proved in sections 6.1 and 6.2.

Theorem 1 If a = 0, then

lim
n→∞

E[Xn,a] = ln

(
lblc

blc!

)
,

and if a = p
q with p and q relatively prime, then

lim
n→∞

E[Xn,a] =
1
q

ln

(
(ql)bqlc

bqlc!

)
.

The proof is divided into two parts. The result is proved first for the case when a = 0,

and then is extended to include any rational a. Although the proof splits naturally in this

way, the formula for a = 0 actually corresponds to q = 1 in the more general case. The case

when a is irrational will be looked at in section 6.3.

6.1 The Mean When a = 0

In the case where a = 0 and In =
(
1, e2πil/n

]
, equations (10) and (11) have a particularly

simple form:

Xn,0 =
n∑

k=1

Ck

⌊
kl

n

⌋
, (28)

and

E[Xn,0] =
n∑

k=1

1
k

⌊
kl

n

⌋
. (29)

Observe that bkl/nc takes on only integer values, specifically all integers from 0 to blc.
Thus, it might be useful to group the terms in the sum according to this value. For this

purpose, denote the value of bkl/nc as j. Now, if bkl/nc = j, then j ≤ kl
n < j + 1, or

j n
l ≤ k < (j + 1)n

l . The first group of terms, when j = 0, does not contribute to the sum.

For the last group, when j = blc, the upper limit on k is n rather than (blc + 1)n
l , so this

group will be written separately from the others. Grouping the terms in this way results in

E[Xn,0] =
blc−1∑
j=1

d(j+1)n
l e−1∑

k=dj n
l e

j

k
+

n∑
k=dblcn

l e

blc
k

, (30)
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where the limits on k are a direct result of the above inequalities and the fact that k must

be an integer.

The sums in k are of the form in Lemma 1, with α = 1 and β = 0. In order to find the

limit of these sums using the lemma, the following results are needed:

lim
n→∞

⌈
j n

l

⌉
n

=
j

l
; (31)

lim
n→∞

⌈
(j + 1)n

l

⌉
− 1

n
=

j + 1
l

; (32)

lim
n→∞

⌈
blcn

l

⌉
n

=
blc
l

. (33)

These limits are easily attained by noting that, for all real x, dxe = x + ε, where 0 ≤ ε < 1.

Applying the lemma then gives

lim
n→∞

E[Xn,0] =
blc−1∑
j=1

j ln
(

j + 1
j

)
+ blc ln

(
l

blc

)
(34)

= ln

blc−1∏
j=1

(j + 1)j

jj

+ ln

(
lblc

blcblc

)
(35)

= ln

(
blc(blc−1)

(blc − 1)!

)
+ ln

(
lblc

blcblc

)
(36)

= ln

(
lblc

blc!

)
. (37)

6.2 The Mean When a Is Rational

Now we no longer assume a to be 0 and return to equation (10) for Xn,a:

Xn,a =
n∑

k=1

Ck

(⌊
ka +

kl

n

⌋
− bkac

)
. (38)

A little thought shows that in general,

bx + yc =
{
bxc+ byc if {x}+ {y} < 1
bxc+ byc+ 1 otherwise,

(39)

for any real numbers x and y. Applying (39) to the first term in (38) gives⌊
ka +

kl

n

⌋
=

{
bkac+ bkl/nc if {ka}+

{
kl
n

}
< 1

bkac+ bkl/nc+ 1 otherwise,
(40)
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and so

Xn,a =
n∑

k=1

Ck

(⌊
ka +

kl

n

⌋
− bkac

)
(41)

=
n∑

k=1

Ck

⌊
kl

n

⌋
+

∑
k: {ka}+{ kl

n }≥1,

1≤k≤n

Ck. (42)

Thus, the number of eigenvalues Xn,a in the interval
(
e2πia, e2πi(a+l/n)

]
equals the num-

ber of eigenvalues Xn,0 in the interval
(
1, e2πil/n

]
, plus

∑
Ck for values of k such that

{ka}+
{

kl
n

}
≥ 1. Taking the expected value gives

E[Xn,a] =
n∑

k=1

1
k

⌊
kl

n

⌋
+

∑
k: {ka}+{ kl

n }≥1,

1≤k≤n

1
k

(43)

=
n∑

k=1

1
k

⌊
kl

n

⌋
+ Vn, (44)

where Vn denotes the second sum in (43). Now the problem is to find the limit of Vn, which

will require determining the values of k for which {ka}+
{

kl
n

}
≥ 1.

Here, we turn our attention to the case when a is rational. Let a = p/q with p and q

relatively prime. Then
{

kp
q

}
takes on only a finite number of values, namely all fractions

of the form x/q, where x is an integer between 0 and q − 1 (inclusive). Although the order

of the x’s depends on p, observe that the sequence ({kp/q}) = (xk/q) repeats with a period

of q as k increases. This suggests that it may be helpful to group the terms in Vn according

to the value of
{

kp
q

}
.

Now, for each integer i = 1, 2, . . . , q, let wi be the number between 0 and q−1 such that{
wip
q

}
= 1 − i

q . Since the sequence ({kp/q}) repeats, whenever k ≡ wi (mod q), the value

of
{

kp
q

}
will be 1− i

q . Thus, for such k, the condition {ka}+
{

kl
n

}
≥ 1 becomes

{
kl
n

}
≥ i

q .

Notice that if i = q (corresponding to k ≡ 0 (mod q)), this condition becomes
{

kl
n

}
≥ 1.

Since the fractional part is always less than one, this can never be true, and these terms are

not counted in the sum. Now, for each value of i from 1 to q− 1, it needs to be determined

which k satisfy
{

kl
n

}
≥ i

q . Between each pair of consecutive integers from 0 to dle, there is

a (possibly empty) set of terms kl/n that satisfy this condition. In particular, the following

inequalities identify the groups of terms that will be counted in the sum:

i

q
≤ kl

n
< 1 , 1 +

i

q
≤ kl

n
< 2 , . . . , blc − 1 +

i

q
≤ kl

n
< blc , blc+

i

q
≤ kl

n
≤ l.
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Except for the last group, the general limits on k are (j + i
q )n

l ≤ k < (j + 1)n
l , where j

ranges from 0 to blc − 1.

Notice that the last group of terms is only present if blc+ i
q ≤ l, or i

q ≤ {l}. Because of

this, the limits on i as well as k are different for the last group. The value of i, instead of

ranging over all the integers from 1 to q−1, only reaches the largest integer that is less than

or equal to q{l}. That is, 1 ≤ i ≤ bq{l}c, which can be rewritten as 1 ≤ i ≤ bqlc − qblc.
Using these limits to group the terms in the sum, and keeping in mind that for each i

we only count values of k such that k ≡ wi (mod q), we arrive at the following form for Vn

when a is rational:

Vn =
q−1∑
i=1

blc−1∑
j=0

d(j+1)n
l e−1∑

k=d(j+ i
q )n

l e
k≡wi (mod q)

1
k

+
bqlc−qblc∑

i=1

n∑
k=d(blc+ i

q )n
l e

k≡wi (mod q)

1
k
. (45)

Now, every k for which k ≡ wi (mod q) can be written as k = qk′ + wi, for some integer

k′. Making this substitution, the sum becomes

Vn =
q−1∑
i=1

blc−1∑
j=0

Mn,ij∑
k′=Ln,ij

1
qk′ + wi

+
bqlc−qblc∑

i=1

M ′
n,i∑

k′=L′n,i

1
qk′ + wi

, (46)

where

Ln,ij =
⌈
1
q

(⌈(
j +

i

q

)
n

l

⌉
− wi

)⌉
, (47)

Mn,ij =
⌊
1
q

(⌈
(j + 1)

n

l

⌉
− 1− wi

)⌋
, (48)

L′n,i =
⌈
1
q

(⌈(
blc+

i

q

)
n

l

⌉
− wi

)⌉
, (49)

M ′
n,i =

⌊
1
q
(n− wi)

⌋
. (50)

Here, the sums in k′ have the form in Lemma 1, this time with α = q and β = wi. The

relevant limits in this case are

lim
n→∞

Ln,ij

n
=

1
ql

(
j +

i

q

)
, (51)

lim
n→∞

Mn,ij

n
=

1
ql

(j + 1), (52)

lim
n→∞

L′n,i

n
=

1
ql

(
blc+

i

q

)
, (53)

lim
n→∞

M ′
n,i

n
=

1
q
. (54)
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Notice that the values of Ln and Mn in Lemma 1 must be positive. It is possible that the

sequences given in (47) through (50) may start off with values of 0, but since they grow

without bound, they must eventually remain positive, and the lemma can still be used to

find the limit as n →∞. Doing so gives

lim
n→∞

Vn =
q−1∑
i=1

blc−1∑
j=0

1
q

ln

(
j + 1
j + i

q

)
+
bqlc−qblc∑

i=1

1
q

ln

(
l

blc+ i
q

)
(55)

=
1
q

ln

q−1∏
i=1

blc−1∏
j=0

q(j + 1)
qj + i

+
1
q

ln

bqlc−qblc∏
i=1

ql

qblc+ i

 (56)

=
1
q

ln

 (qblcblc!)(q−1)∏q−1
i=1

∏blc−1
j=0 (qj + i)

+
1
q

ln

(
(ql)(bqlc−qblc)∏bqlc−qblc

i=1 (qblc+ i)

)
(57)

=
1
q

ln

(
(qblcblc!)q

(qblc)!

)
+

1
q

ln

(
(ql)bqlc(qblc)!
(ql)(qblc)bqlc!

)
. (58)

The last step follows from expanding the two products in the denominators. This shows

that
∏q−1

i=1

∏blc−1
j=0 (qj + i) is just the product of all the integers from 1 to qblc, excluding

multiples of q. Thus
q−1∏
i=1

blc−1∏
j=0

(qj + i) =
∏qblc

i′=1 i′∏blc
j′=1 qj′

=
(qblc)!
qblcblc!

. (59)

In addition,
∏bqlc−qblc

i=1 (qblc+ i) is the product of all the integers from qblc+1 to bqlc, which

is just (bqlc!)/(qblc)!. When the arguments of the two logarithms are multiplied, some of

the terms cancel out, resulting in

lim
n→∞

Vn =
1
q

ln

[(blc!
lblc

)q
(

(ql)bqlc

bqlc!

)]
(60)

= ln
(blc!

lblc

)
+

1
q

ln

(
(ql)bqlc

bqlc!

)
. (61)

Adding equations (37) and (61) yields

lim
n→∞

E
[
Xn, p

q

]
=

1
q

ln

(
(ql)bqlc

bqlc!

)
. (62)

Equation (62) gives the limit of the mean of Xn,a for rational a. Notice that this equation

involves q, but not p or the numbers wi. Thus, only the denominator of a matters when the

limit is taken. In general, the limit of E[Xn,a] is a function of a and l, and will be referred

to as f(a, l) in the following sections.
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6.3 The Mean When a is Irrational

When a is irrational, {a} takes on an infinite number of values, making it difficult to

group the terms in Vn and arrive at a limit for the sum. However, notice that any irrational

number can be approximated as closely as desired by a sequence of rationals with increasing

denominators. That is, for every irrational number a, there exist sequences of integers (pm)

and (qm), with (qm) strictly increasing, such that pm and qm are relatively prime for all m

and

lim
m→∞

pm

qm
= a.

Thus, we could take the formula for f
(

p
q , l
)

given in Theorem 1 and let q →∞. The hope

is that this might provide an idea of what happens for irrational a.

Figure 1 shows the function f
(

p
q , l
)

for several values of q. Notice that as q gets larger,

the curves seem to be approaching the line f = l. Indeed, this limit can be shown by using

Stirling’s approximation for N ! when N is large. Stirling’s formula is

N ! ≈ NNe−N
√

2πN. (63)

Applying (63) to (62), with N = bqlc,

lim
n→∞

E
[
Xn, p

q

]
=

1
q

ln

(
(ql)bqlc

bqlc!

)
(64)

≈ 1
q

ln

(
(ql)bqlc

bqlcbqlce−bqlc
√

2πbqlc

)
(65)

=
1
q

ln
(

(ql)
bqlc

)bqlc
+
bqlc
q

− 1
q

ln
(√

2πbqlc
)

. (66)

Now, taking the limit for large q,

lim
m→∞

lim
n→∞

E
[
Xn, pm

qm

]
= lim

q→∞

[bqlc
q

ln
(

(ql)
bqlc

)
+
bqlc
q

− 1
q

ln
(√

2πbqlc
)]

(67)

= l · 0 + l − 0 (68)

= l. (69)

This result seems to suggest that the limit of the mean of Xn,a for irrational a is simply l.

Remark. Note that this is not a proof. The limit of E[Xn,a] will be l for every irrational

point a if and only if f(a, l) is continuous whenever a is irrational; however, it is not known
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Figure 1: limn→∞ E[Xn,a] as a function of l, for various values of q. The curves, from
bottom to top are for q = 1, q = 2, q = 3, q = 6, q = 10, q = 100, and q = 500.
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for certain that this is the case. One way to prove that (69) gives the correct limit would

be first to show that E[Xn,a] (with a given n) is continuous at an irrational a, so that

E[Xn,a] = lim
m→∞

E
[
Xn, pm

qm

]
.

Since f(a, l) = limn→∞ E[Xn,a], it would then need to be shown that

lim
n→∞

lim
m→∞

E
[
Xn, pm

qm

]
= lim

m→∞
lim

n→∞
E
[
Xn, pm

qm

]
.

It is not difficult to determine where E[Xn,a] is continuous when n is fixed, but so far, there

is no justification for switching the order of the limits.

There is, however, some evidence to support the result in (69). Computer simulations

indicated that E[Xn,a] tended toward l when a was irrational, although this may merely

reflect the limit in (69) since computers cannot process true irrational numbers. Another

indication that this limit might be correct comes from a comparison with some of the results

in [4] and [5] involving the number of eigenvalues in a fixed interval. Here, too, the limit

depended only on the denominators of the endpoints when they were rational, and in this

case, letting the denominators approach infinity did produce the correct result for irrational

endpoints under certain circumstances.

7 Conclusion

At this point we can ask how the result in Theorem 1 compares with the distribution of

random independent points. Recall that the mean in that case was just l. Figure 2 shows

another graph of f vs. l for different values of q, this time plotted over a wider range of l

values. Notice that each f appears more and more like a straight line as l increases.

Using Stirling’s formula as before, we can obtain an approximation of f
(

p
q , l
)

for large

l values. Expanding the first and third terms in (66) as Taylor series reveals that f can

be approximated by l − (ln l)/2q + O(1). Although it is not obvious that f should have

this form, the negative sign for the correction term does make sense. Even though the

eigenvalues become more evenly distributed as n increases, there are a large number of

them at the endpoint e2πip/q that are always excluded from the interval In. The correction

term may reflect the effect of this exclusion.
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Figure 2: limn→∞ E[Xn,a] as a function of l. The curves, from bottom to top are for q = 1,
q = 3, and q = 10.
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Remark. The results derived in this paper are for half-open intervals, rather than for more

standard open or closed intervals. This was done mainly to simplify notation as much as

possible. In fact, the limit for an open interval of the form
(
e2πia, e2πi(a+l/n)

)
is the same

as the limit for the half-open interval studied here. When a is irrational, the limit will be

the same for closed intervals as well. However, it is easy to see that for rational a, including

the lower endpoint will have a huge effect—the mean no longer would stay bounded because

the number of eigenvalues at the endpoint a grows as (ln n)/q.

There are still several questions about Xn,a that remain unanswered. One of these is

the problem of finding the limit of E[Xn,a] for irrational a. Another open question is the

variance of Xn,a. Using the results of section 2.2, a formula can be derived for V ar[Xn,a]

in a way similar to what was done for the mean, although the sum is more complicated.

Some work with this sum has shown that the variance is bounded for a = 0, and we suspect

that it will be bounded for other values of a as well. It would be interesting to try to

derive a formula for the limit of the variance, and more generally, to be able to describe the

distribution of Xn,a.
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