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Abstract

Many routing protocols for wireless ad hoc networks proposed in the literature use flooding to
discover paths between the source and the destination node. Despite various broadcast optimiza-
tion techniques, flooding remains expensive in terms of bandwidth and energy consumption. In
general, O(N) nodes are involved to discover a path.

In this thesis, we prove through a theoretical model that probabilistic path discovery is possi-
ble by involving O(

√
N) nodes only. The constant factor depends on the desired path discovery

probability.

Using a novel network primitive that we call snakes, we introduce practical and cheap proba-
bilistic path discovery algorithms. These algorithms rely on the same network model and assump-
tions as its flooding counterparts, i. e., that the network is unstructured and that nodes only know
their immediate (one-hop) neighbors. Numerical simulations in a static network show that these
algorithms achieve path discovery probabilities close to the theoretical optimum.

We further present a snake-based algorithm for mobile ad hoc networks and several techniques
to enhance the performance in some specific networks.

This master thesis was written during an internship from 2005-03-07 to 2005-09-01 at the
Institute for Infocomm Research (I2R) in Singapore.



Zusammenfassung auf Deutsch:
Probabilistische Pfadsuchalgorithmen mit Schlangen in Ad-Hoc-Netzwerken

Viele der vorgeschlagenen Routing-Protokolle für Ad-hoc-Netzwerke verwenden sogenanntes
Flooding (Überschwemmen des Netzwerkes) um einen Pfad zwischen einem Quell- und einem
Zielknoten zu finden. Obwohl in der wissenschaftlichen Literatur verschiedene Optimierungen er-
forscht wurden verschlingt Flooding viele Netzwerkressourcen (insbesondere Übertragungsband-
breite und Energie), da normalerweise O(N) Knoten kontaktiert werden müssen um einen Pfad zu
finden.

In dieser Arbeit zeigen wir anhand eines theoretischen Modells, dass Pfade probabilistisch
durch Kontaktieren von nur O(

√
N) Knoten gefunden werden können. Der konstante Faktor hängt

dabei von der gewünschten Wahrscheinlichkeit ab.

Mit Hilfe einer neuen Netzwerk-Funktion, die wir Snake (Schlange) nennen, stellen wir ein-
fach implementierbare, probabilistische Pfadsuchalgorithmen vor. Diese Algorithmen basieren auf
denselben Hypothesen, die auch für Flooding-Algorithmen notwendig sind. Insbesondere heisst
dies, dass das Netzwerk unstrukturiert ist und die Knoten nur mit ihren direkten Nachbarn kom-
munizieren können. Wie numerische Simulationen in einem statischen Netzwerk zeigen, finden
diese Algorithmen Pfade mit nahezu optimaler Wahrscheinlichkeit.

Im Weiteren präsentieren wir einen probabilistischen Pfadsuchalgorithmus für mobile Ad-hoc-
Netzwerke sowie mehrere Optimierungsvarianten.

Resumé en français:
Algorithmes ”serpents” de recherche de routes dans les réseaux ad hoc

De nombreux protocoles de routage des réseaux ad hoc utilisent le flooding (noyer le reseau)
pour découvrir des chemins entre deux noeuds. Malgré plusieurs optimisations existantes dans la
littérature, le flooding reste un moyen coûteux, notamment parce qu’il demande une grande bande
passante et beaucoup d’énergie. En général, O(N) noeuds doivent être contactés pour chercher
une route.

Dans cette thèse, nous prouvons que la recherche probabiliste de routes nécessite de contacter
O(
√

N) noeuds seulement. La constante dépend de la probabilité souhaitée.

En utilisant une nouvelle fonction de réseau que nous appelons snake (serpent), nous intro-
duisons des algorithmes peu coûteux pour découvrir des routes de manière probabiliste. Ces algo-
rithmes sont basés sur le même modèle que les algorithmes de flooding, c’est-à-dire, les réseaux
sont considŕś comme non structurés et chaque noeud connaı̂t uniquement ces voisins directs. Nos
simulations numériques dans un réseau statique montrent que ces algorithmes atteignent une prob-
abilité de découverte de routes proche de la limite théorique.

De plus, nous présentons des algorithmes pour des réseaux ad hoc mobiles ainsi que plusieurs
techniques d’optimisation.
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Chapter 1
Introduction

Wireless networks are an integral part of our daily life. Probably the most visible witness is
the mobile phone which has become popular almost everywhere in the world. But wireless net-
works have found far more applications: TV programs are broadcast wirelessly from satellites
or terrestrial antennas, modern PDAs are equipped with Bluetooth [1] and WLAN 802.11 [2] to
synchronize data or to be connected to the Internet, pilots communicate with the tower staff over
a wireless link and weather balloons transmit temperature recordings back to the earth. Wireless
networks are used in a vast variety of fields.

Most wireless networks nowadays are infrastructure networks. This means that some infras-
tructure (e. g. base station for mobile phones, WLAN access point) is required for the network be
operational. Less common, but also available, are so-called ad hoc networks [3] [4] that operate
without any infrastructure. In these networks, two devices start communicating as soon as they
are within each others reach. They are therefore also said to be self-organizing, since there is no
central device which organizes the network. The WLAN 802.11 protocol [2], for example, con-
tains an ad hoc mode which allows two laptops to directly exchange data without being connected
to a WLAN access point.

The most interesting, but also the most challenging type of ad hoc networks are multi-hop
ad hoc networks. In such networks, each device – called node – acts as a router and forwards
messages (packets) on behalf of other nodes. Figure 1.1 shows a sample network where node A
sends a packet to node D via the intermediate hops B and C. For this to work, all nodes must have
previously agreed upon a forwarding strategy, a so-called routing protocol.

Ad hoc networks gained interest because of their usefulness in disaster recovery (when the
infrastructure of other networks has been destroyed) or military operations (when no infrastructure
is available). The potential deployment range spans much wider, though. Beyond (ad hoc) sensor
networks which are widely used already, multi-hop ad hoc networks could in the future extend the
range of base stations for mobile telephony [5].

Over the past 10 years, there has been a lot of ongoing research in the field of ad hoc net-
working. Even though they were initially thought of as a simple enhancement of wired networks
or wireless infrastructure networks, ad hoc networks have shown to be much more challenging.

Figure 1.1: Communication in a multi-hop ad hoc network. The source node A send its message
for D to B. B forwards the message to C which forwards it to the intended destination node D.
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6 1.1 Routing Protocols and Path Discovery

Many related problems and questions are still not solved.
One of the problems in large scale ad hoc networks with thousands or millions of nodes is

the scalability of the routing protocol. Imagine you want to find one specific person in a crowd
of 10000 people. The only thing you know about this person is its (unique) name. And the only
thing you can do in this crowd is to talk to your neighbors. Transmitting a message to that specific
person without bothering too many people is indeed a challenge – a challenge that we face in this
master thesis.

1.1 Routing Protocols and Path Discovery

Routing protocols for multi-hop ad hoc networks have gained a lot of attention by researchers.
Many protocols and variants have been defined and analyzed. We do not intend to present or
classify them here, as there are good overview papers [6] [7] [8] and websites [9] [10] available.

Almost all routing protocols can be split up in 4 parts:

Path discovery consists of finding a path from any source node to any destination node. (In wire-
less sensor networks often: from any source node to one or several predefined destination
nodes.)

Path setup is required to make the path usable. This step is closely linked with the path discovery
phase and is sometimes performed in the same step. AODV [11], for example, sets up the
path when the route reply (RREP) packet is sent back to the source.

Routing of data packets. This describes how each node forwards data packets. In AODV, for
example, the packet is forwarded to the next hop found in the local routing table. In DSR
[12], the next hop is found in the data packet itself.

Path maintenance is the way a routing protocol deals with broken or suboptimal paths. Paths
may break or become suboptimal due to link failure (mobility, RF propagation changes, ...)
or node failure (run out of energy, power off, software/hardware failure, ...).

This master thesis focuses on the path discovery phase of routing protocols. Path discovery
consists of all necessary steps to find a path between two nodes. This includes the proactive
exchange of routing information (if any) as well as the algorithm (if any) that is applied reactively
when a path is needed.

The algorithm we present in this work may also be used for the path maintenance part, as this
part usually consists of rediscovering a path or a part of it. We however do not explicitly address
this issue in our work since the application of our algorithms in the path maintenance phase is
straightforward.

1.2 Related Work

Many routing protocols make use of broadcasting techniques (flooding) to discover and maintain
multi-hop paths between nodes. In the well studied AODV [11] routing protocol, for example, the
source node broadcasts a route request packet (RREQ) to all nodes in the network during the path
setup phase. Similarly, DSR [12] floods the network if no valid route to a desired destination is in
the route cache.

Flooding is expensive from two perspectives. First, it involves all or a substantial part of the
nodes in the network to receive, process and possibly send a packet. This consumes valuable
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Chapter 1: Introduction 7

energy. Second, the large number of transmitted packets eat up a lot of network capacity. This
reduces the data throughput.

Many attempts have been made to alleviate this problem.

. Several optimized broadcasting techniques [13] have been proposed. Most of them try
to reduce the number of packets transmitted to broadcast routing information to relevant
nodes in the network. The OLSR [14] routing protocol, for example, uses multi-point relays
(MPR) to lower the number of packets.

. Expanding Ring Search (ERS) [15] adds a TTL (time-to-live) value to the broadcast packet
to limit the flood to a certain number of hops. For path discovery, a node first broadcasts
a packet with a low TTL value, limiting the broadcast to the close neighborhood only. If
there is no reply from the destination node, a new packet with a slightly higher TTL value is
broadcast and the TTL is increased until the destination node is found or a maximum TTL
value is reached. ERS therefore only involves nodes that are closer (hop count) or not much
further away than the destination node. Although this scheme greatly reduces the spread of
the flood if the two nodes are close to each other, it is more expensive than simple flooding
for distant nodes.

. Multi-step flooding [16] uses the fact that multiple small floods (restricted to a small area)
are cheaper than one big flood. ERS is used to look for a node that recently encountered the
destination node. Once such a node is found, it launches ERS again to look for a fresher en-
counter. This procedure is repeated until the destination node is found. Multi-step flooding
therefore guarantees a path to be found if the source and the destination node are connected,
even though the discovered path may be suboptimal. If the encounters are well distributed
over the network, this algorithm substantially reduces the number of nodes involved in path
discovery. In the worst case, however, this scheme is more expensive than simple flooding.

. LAR [17], a geographic routing protocol, reduces the flooding area by directing the broad-
cast towards the destination node. The amount of involved nodes and sent packets during
path discovery can be lowered significantly. However, the protocol relies on the assumption
that position information is available and shared among the nodes.

. In [18] and [19], the authors propose scalable geographic node location schemes. Each
node sends its position to a couple of well-chosen nodes (location servers) in the network.
To find a path, a node first contacts a location server of the destination node to obtain the
current position of the destination. Then, geographic forwarding is used to discover a path.
All proposed schemes require the node positions to be known.

. In proactive routing protocols such as DSDV [20], nodes send topology updates to their
direct neighbors only instead of flooding the whole network. Beyond the classical problem
that these routing protocols become very expensive in the presence of node mobility, they
require large routing tables to be stored on every node. Each node basically has one routing
entry for every other node, thus requiring memory in O(N), where N denotes the number of
nodes in the network.

. Finally, cluster or zone based methods have been proposed. In the Zone Routing Protocol
(ZRP) [21], for example, each node has a zone within which it uses an intrazone routing pro-
tocol (IARP). To route between zones, the interzone routing protocol (IERP) is employed.
Thus, only a subset of the nodes must be flooded for path discovery. Since the zones size
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8 1.3 Our Contribution

is almost constant, however, the number of involved nodes is only a constant factor smaller
than the total number of nodes. Other routing protocols that belong to this class are the
Core Extraction Distributed Ad Hoc Routing Protocol (CEDAR) [22] and the Zone-based
Hierarchical Link State Routing Protocol (ZHLS) [23].

Furthermore, there are strategies to reduce the number of times flooding is needed:

. Local repair. The authors of [24] propose to exploit path locality and node locality to repair
a route.

. Path caching. DSR [12] caches additional paths that are found during the path discovery
phase and tries these alternative paths when the main path breaks.

. AntHocNet [25], exploits stigmergic information in the network to find paths to destination
nodes that have recently been searched by other nodes in the network.

1.3 Our Contribution

In this report, we propose and analyze a class of probabilistic path discovery algorithms that do
not require flooding. These algorithms use snakes (Chapter 5) and are based on the RANDOM-
ENCOUNTER concept (Chapter 2). In contrast to most flooding-based algorithms, our algorithms
are probabilistic, i. e., path discovery may fail with some small (tuneable) probability. More-
over, the discovered paths are suboptimal. However, we show that our algorithms allow for much
cheaper path discovery and are therefore more scalable. In particular, we prove in Chapter 3 that
path discovery is possible by involving O(

√
N) nodes only.

1.4 Structure of this Thesis

This remainder of this thesis report is structured as follows: In Chapter 2, we introduce the
RANDOMENCOUNTER concept which forms the basis of our work. In Chapter 3, we present
a theoretical algorithm implementing this concept and analyze it analytically. Chapter 4 gives
an alternative analysis that is slightly more complicated, but comes up with the same results. In
Chapter 5, we introduce a network primitive called snakes. These snakes are the main building
blocks for the algorithms presented subsequently. In Chapter 6 and Chapter 7, we present and
discuss snake based algorithms for static and mobile networks. Chapter 8 gives an overview of
three possible enhancements for snake algorithms. In Chapter 9, we tackle the problem from an-
other point of view using a geometric approach. In Chapter 10, we finally discuss some possible
application scenarios where snake algorithms could be useful. Chapter 11 concludes the report.

Our main contribution is stated in Chapter 2, Chapter 3, Chapter 5 and Chapter 6. Chapter 7
and Chapter 8 remain at the level of a preliminary study and would require more work.

PROBABILISTIC PATH DISCOVERY WITH SNAKES IN AD HOC NETWORKS



Chapter 2
The RANDOMENCOUNTER Concept

All algorithms presented in this work are based upon one common concept which we refer to as
the RANDOMENCOUNTER concept. It may be expressed as follows: Each node in the network
randomly advertises itself at some other nodes. An advertisement contains enough information to
establish a path from the node that receives the advertisement to the advertising node. A node S
trying to establish a connection to another node D randomly contacts some nodes in the network
to look for an advertisement of D. Upon encounter, i. e., if an advertisement is found, a path has
been discovered.

Figure 2.1: The RANDOMENCOUNTER concept. In this example, 5 nodes were advertised by D
and 5 nodes were queried by S. The path discovery was successful since node V was both queried
and advertised.

This concept is very general. It does not specify how advertisements are placed, what infor-
mation they contain and how they are searched. Nevertheless, three properties can be stated:

. Probabilistic path discovery. Paths discovery fails with some probability even if a path
exists.

. Suboptimal paths. The discovered path may be longer than the optimal path. No guarantee
about path optimality is given.

. Fully distributed. All nodes have the same esteem and importance. Neither are there leader
nodes nor is a centralized infrastructure used.
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10 2.1 Minimum Information of an Advertisement

Furthermore, all algorithms based on the RANDOMENCOUNTER concept inherently have two
parts:

. The proactive part specifies how advertisements are placed (advertising algorithm) and
when they are placed.

. The reactive part specifies how advertisements are searched (search algorithm) and how
the path is discovered.

Hence, routing protocols using a path discovery algorithm based on this concept belong to the
class of hybrid protocols.

2.1 Minimum Information of an Advertisement

Depending on the scenario, an advertisement does not need to contain a path to the advertising
node. It could consist of a geographic position, for example, or just contain some hint which
allows to find the destination node. The following theorem states the sufficient and necessary
condition for the minimum information that an advertisement must contain:

Theorem 1. An advertisement must contain enough information to establish a path from the node
V holding the advertisement to the advertising node D.

Proof. Assume a node S wants to discover a path to D. If S finds an advertisement at node V,
there exists a path from S to V since these two nodes could communicate with each other. By
the definition, a path from V to D exists as well. Hence, the path S - V - D exists, which proves
sufficiency.

Necessity can be proven by contradiction: Assume that the advertisement does not enable a
path from V to D to be established. If S = V, S finds the advertisement in its own memory. By the
assumption taken, it is not able to establish a path to D - a contradiction.

PROBABILISTIC PATH DISCOVERY WITH SNAKES IN AD HOC NETWORKS



Chapter 3
The RANDOMQUERY Algorithm

In this chapter, we derive the mathematical foundations of the Random Encounter model. In
particular, we show how the path discovery probability relates to the number of advertisements in
the network and to the number of searched nodes. To do that, we introduce the RANDOMQUERY

algorithm.

3.1 Algorithm

Assume a network of N connected1 nodes and a function QueryNode(node, 〈query〉 ) which sends
the given query to the node. The algorithm works as follows:

Advertising algorithm (proactive): At network setup, each node advertises itself by randomly
placing advertisements at some other nodes. The probability that a node D places an ad-
vertisement at node W is denoted by pA. On average, each node therefore places ā = pAN
advertisements in the network where a follows a binominal distribution.

Search algorithm (reactive): A node S looking for another node D randomly queries some nodes
in the network. The probability that S searches at U is denoted by pS. Therefore, s̄ = pSN
nodes are searched on average. If S finds at least one advertisement of D, we define that the
path discovery was successful.

Figure 3.1 formally defines these two algorithm.
Note that the RANDOMQUERY algorithm is theoretical and very generic. We are neither in-

terested in how the QueryNode function could be implemented nor in what information the adver-
tisement should contain in order to make path establishment possible.

3.2 Path Discovery Probability

The probability that a node is advertised by D and searched by S is

pA pS =
ās̄
N2

Hence, the probability that no path is discovered, q = 1− p, is

q = (1− pA pS)N =

(
1− ās̄

N2

)N

(3.1)

This equation reveals that the model is symmetric. Advertising nodes with probability pA and
searching with probability pS yields the same path discovery probability as advertising with pS
and searching with pA. Hence pA and pS (or ā and s̄) are interchangeable.

1Two nodes are connected if there exists a multi-hop path between them.
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12 3.3 Asymptotic Path Discovery Probability

uses QueryNode(node, 〈Advertise(node)〉 )
uses bool = QueryNode(node, 〈Search(node)〉 )

function Advertise(pA)
for each node in the network

with probability pA
QueryNode(node, 〈Advertise(Me)〉 )

end with
end for

end function

function success = Search(pS , findnode)
for each node in the network

with probability pS
if QueryNode(node, 〈Search(findnode)〉 )

return true
end if

end with
end for
return false

end function

Figure 3.1: The advertisement and search functions in the RANDOMQUERY algorithm.

3.3 Asymptotic Path Discovery Probability

For large networks, we can derive the following asymptotic behavior of equation (3.1):

lim
N→∞

(
1− ās̄

N2

)N

= q

lim
N→∞

((
1− ās̄

N2

)N2) 1
N

= q

lim
N→∞

(
e−ās̄) 1

N = q

lim
N→∞

e−
ās̄
N = q

Hence,
ās̄
N

=− lnq for N→ ∞ (3.2)

This is the central equation describing the performance of the RANDOMENCOUNTER concept.
Let us discuss some properties and corollaries of this result:

. Numerical evaluation shows that equation (3.2) is a good approximation and an upper bound
for q if N ≥ 100 and q ≥ 10−6, i. e., for finite N, this equation gives a good lower perfor-
mance bound.
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Figure 3.2: Graphical representation of equation (3.2).

. The expression ās̄
N only depends on the path discovery probability p = 1− q. Hence, for

a fixed network size N, the path discovery probability is a function of the product ās̄. A
simple intuition for this is shown in Figure 3.2. If ā and s̄ are the dimensions of a rectangle,
its area is an indicator for the probability. The number of nodes involved in path discovery
is ā + s̄, which is half the circumference of the rectangle.

. The best performance, i. e., the least number of nodes to obtain a certain probability, is
obtained if ā = s̄. This is quite obvious, since a square minimizes the circumference with
respect to its area. To achieve a given path fail probability, q,

ā = s̄ = c
√

N where c =
√
− lnq (3.3)

Hence,

ā ∈ O(
√

N) and

s̄ ∈ O(
√

N) for N→ ∞

with the remaining constant depending on the desired path discovery probability only. Some
values for c are listed in Table 3.1.

This is a very promising result when compared to flooding which requires all N nodes to be
involved in path discovery. However, it is only valid if the advertisements and the searched nodes
are uniformly distributed over the whole network. This is difficult to achieve in an ad hoc network
unless each node knows a substantial part about the whole network. Hence, the major challenge is
to find practical and cheap algorithms that obtain distributions close to a uniform distribution. We
describe such algorithms in Chapter 6.

p q c2 =− lnq c =
√− lnq

90 % 0.1000 2.3026 1.5174
95 % 0.0500 2.9957 1.7308
98 % 0.0200 3.9120 1.9779
99 % 0.0100 4.6052 2.1460

99.9 % 0.0010 6.9078 2.6283
99.99 % 0.0001 9.2103 3.0349

Table 3.1: Path discovery probability constants to calculate ā and s̄.
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14 3.4 Heterogeneous Densities

(a) (b)

Figure 3.3: (a) Partitioning the network into homogeneous areas for equation (3.4). (b) The model
for equation (3.7).

3.4 Heterogeneous Densities

3.4.1 Discrete Case

Equation 3.1 can easily be generalized for discrete heterogeneous advertisement/search distribu-
tions. If we partition the network into m areas with constant pA and pS parameters (see Figure 3.3
(a)) the path discovery failure equation can be written as

q =
m

∏
i=1

(1− pA,i pS,i)
Ni (3.4)

3.4.2 Continuous Case

For continuous heterogeneous advertisement/search distributions, we can write equation (3.1) in
log notation:

lnq = N ln(1− pA pS) (3.5)

To integrate over an area, we need to replace the number of nodes N by the node density λ and the
area size A. Note that the number of nodes then becomes a Poisson distributed random variable
which we denote by Nr.v.. Hence, the path discovery probability can be expressed as

lnq =
∞

∑
n=0

P(Nr.v. = n) ·n ln(1− pA pS)

= N̄ ln(1− pA pS) where N̄ = E[Nr.v.] = Aλ
= Aλ ln(1− pA pS) (3.6)

This expression can now be integrated over the network area Ω. Formally,

lnq =

∫ ∫

Ω
λ (r) ln (1− pA(r)pS(r)) dr (3.7)

3.5 Example

To get a intuition for these equations and a feeling for the achievable gain, let us discuss some
numerical examples.
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Assume we have a network with N = 1398 nodes2 and we want to obtain a path discovery
probability of 99 %. Using equation (3.2), we obtain the following approximation for the ās̄ prod-
uct:

ās̄≈−N lnq = 1398 ·4.6052 = 6438 since q = 1− p = 0.01

In the optimal case,
ā = s̄≈

√
−N lnq = 80.24 nodes

Hence, if we place 81 advertisements on average in the network and search at 81 nodes on av-
erage, we expect to discover paths with more than 99 % probability. We can verify this using
equation (3.1):

q =

(
1− 81 ·81

13982

)1398

= 0.0091 =⇒ p = 99.09 %

In a network with 1398 nodes, contacting 162 nodes is therefore sufficient to discover path with
that high probability. This is less than 12 % of the network size. Since equation (3.2) is an upper
bound for the ās̄ product and because we rounded the exact values for ā and s̄ up to the next integer,
the performance is even slightly better than desired.

We could have chosen to advertise more nodes to reduce the number of nodes to search at. If
we choose ā = 111 nodes, for example, then we only need to query

s̄≈ 6438
111

= 58 nodes

on average to obtain a path discovery probability of 99.01 %. The total number of involved nodes
is slightly bigger (169 nodes) than before, but decreasing s̄ is an advantage if the search algorithm
is applied more frequently than the advertising algorithm.

Let us increase the path discovery probability to 99.99 % (q = 10−4) now. Hence, only one in
10000 path discovery attempts is expected to fail. The number of nodes required in the optimal
case are then

ā = s̄≈
√
−N lnq = 113.4727 nodes

Hence, only 228 nodes need to be involved, which is slightly more than 16 % of 1398.

2We use this average number of nodes in the simulations the we present in Section 6.3.
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Chapter 4
The FIXRANDOMQUERY Algorithm

In this chapter, we study an algorithm that is similar to the RANDOMQUERY algorithm introduced
in the previous chapter. Instead of advertising and searching each node with some probability, the
FIXRANDOMQUERY algorithm places advertisements and searches at a fixed number of nodes.

Although the analysis is different and more complicated for this scenario, the results are the
same.

4.1 Algorithm

In a network of N connected1 nodes, the advertising and search algorithms are defined as follows:

Advertising algorithm (proactive): At network setup, each node advertises itself by randomly
placing advertisements at exactly a distinct nodes.

Search algorithm (reactive): A node S looking for node D randomly queries exactly s nodes in
the network. If at least one advertisement of D is found, we define that the path discovery
was successful.

In the RANDOMQUERY algorithm, a and s were random variables with a binominal distribu-
tion and the analysis was based on their averages. Here, a and s are deterministic values.

For a formal description of the algorithm, refer to Figure 4.1. Just as for the RANDOM-
QUERY algorithm, each node is assumed to have a function QueryNode(Node, 〈Query〉 ) available
which sends the given query to the node. Furthermore, the algorithm requires a function GetRan-
domDistinctNodes(n) which returns exactly n distinct, random nodes, uniformly distributed over
all existing nodes in the network.

4.2 Path Discovery Probability

The path discovery probability is the probability that at least one of the nodes carrying an adver-
tisement for the node we are looking for is being queried. Conversely, the probability of being
unsuccessful is the probability of having no encounter, which can be written as

q =
N−a

N
· N−a−1

N−1
· · · N−a− s + 1

N− s + 1

=
s−1

∏
i=0

N−a− i
N− i

=
(N−a)!(N− s)!
(N−a− s)!N!

(4.1)

1Two nodes are connected if there exists a multi-hop path between them.
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uses QueryNode(node, 〈Advertise(node)〉 )
uses bool = QueryNode(node, 〈Search(node)〉 )
uses list = GetRandomDistinctNodes(n)

function Advertise(a)
nodelist = GetRandomDistinctNodes(a)
for each node in nodelist

QueryNode(node, 〈Advertise(Me)〉 )
end for

end function

function success = Search(s, findnode)
nodelist = GetRandomDistinctNodes(s)
for each node in nodelist

if QueryNode(node, 〈Search(findnode)〉 )
return true

end if
end for
return false

end function

Figure 4.1: The advertisement and search algorithms in the FIXRANDOMQUERY algorithm.

The path discovery probability is therefore

p = 1−q = 1− (N−a)!(N− s)!
(N−a− s)!N!

Figure 4.2 (a) shows how this probability increases with higher values for a and s.

4.3 Optimal Performance

Just as for the RANDOMQUERY algorithm, the optimal performance is obtained when a = s. Equa-
tion 4.1 then becomes

q =
a−1

∏
i=0

N−a− i
N− i

=
((N−a)!)2

(N−2a)!N!

This minimizes the value for q under the constraint that the sum a+s remains constant. Figure 4.2
(b) displays the curves of the optimal performance for some chosen network sizes.

4.4 Upper and Lower Bounds

Sometimes, we are interested in how many nodes, Nmax, a system can support when a, s and the
probability p (or q) are given. Since equation (4.1) is a product of a variable number of terms,
transforming it is difficult. To simplify the calculations, we can use the following lower and upper
bounds:

s−1

∏
i=0

N−a− s + 1
N− s + 1

≤
a−1

∏
i=0

N−a− i
N− i

≤
s−1

∏
i=0

N−a
N
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18 4.4 Upper and Lower Bounds
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Figure 4.2: (a) Path discovery probability as a function of a and s for N = 1000 nodes. (b)
Optimal path discovery probability (a = s) for different network sizes.

(
N−a− s + 1

N− s + 1

)s

≤ q≤
(

N−a
N

)s

Equality holds if and only if s = 0 or s = 1. The tightness of the bounds only depends on the N
s

ratio and is independent of a. If N >> s, the bounds are tight. If a < s, one might want to switch
the values for a and s to achieve tighter bounds.

The upper bound can be transformed as follows:

q =

(
N1−a

N1

)s

lnq = ln
(

N1−a
N1

)s

ln
(

N1−a
N1

)
=

lnq
s

N1−a
N1

= exp
(

lnq
s

)

N1 =
a

1− exp
(

lnq
s

)

Similarly, the lower bound is transformed into:

q =

(
N2−a− s + 1

N2− s + 1

)s

lnq = ln
(

N2−a− s + 1
N2− s + 1

)s

ln
(

N2−a− s + 1
N1− s + 1

)
=

lnq
s

N2−a− s + 1
N2− s + 1

= exp
(

lnq
s

)

N2 =
a + s−1 + (1− s)exp

(
lnq
s

)

1− exp
(

lnq
s

)
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The maximum number of supported nodes, Nmax, lies somewhere between the two bounds N1
and N2. Figure 4.3 shows these bounds for various values of a, s and p.
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Figure 4.3: (a) Upper and lower bounds for the number of nodes N as a function of a and s
(p = 0.99). (b) Upper and lower bounds for the number of nodes in the optimal case a = s.

4.5 Asymptotic Performance

With these bounds, we can analyze the asymptotic performance of the algorithm. Let us first have
a look at the optimal case when a = s and generalize this result afterwards for any a and s.

Theorem 2. For a given probability q, Nmax asymptotically grows with a2 if a = s. Formally,

Nmax =− a2

ln(q)
if a = s and a→ ∞

Proof. To prove this theorem, we calculate the asymptotic behavior of both bounds. For the upper
bound, we obtain

lim
a→∞

N1

a2 = lim
a→∞

a

a2
(

1− exp
(

lnq
a

))

= lim
a→∞

1
a

1− exp
(

lnq
a

)

= lim
a→∞

−1
a2

exp( lnq
a ) lnq

a2

(Bernoulli - de l’Hospital)

= lim
a→∞

−1

exp
(

lnq
a

)
lnq

=
−1
lnq

since
lnq
a
→ 0
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20 4.5 Asymptotic Performance

Similarly, the limit for the lower bound is

lim
a→∞

N2

a2 = lim
a→∞

2a−1 + (1−a)exp
(

lnq
a

)

1− exp
(

lnq
a

)

=
−1
lnq

Both limits can easily be calculated using Mathematica [26] or similar software packages.
From N1 ≤ Nmax ≤ N2, it follows that

lim
a→∞

Nmax

a2 =
−1
lnq

which concludes the proof.

This result can be generalized for the case when a and s are not necessarily equal, but still tend
towards infinity.

Theorem 3. For a given probability q, Nmax asymptotically grows with as if both a and s go to
infinity. Formally,

Nmax =− as
ln(q)

if a→ ∞ and s→ ∞

Proof. As before, we calculate the asymptotic behavior of both bounds. For the upper bound,

lim
s→∞

lim
a→∞

N1

as
= lim

s→∞
lim
a→∞

a

as
(

1− exp
(

lnq
s

))

=
−1
lnq

Similarly, the limit for the lower bound is

lim
s→∞

lim
a→∞

N2

as
= lim

s→∞
lim
a→∞

a + s−1 + (1− s)exp
(

lnq
s

)

1− exp
(

lnq
s

)

=
−1
lnq

Both limits were calculated using Mathematica [26].
From N1 ≤ Nmax ≤ N2, it follows that

lim
a→∞

Nmax

as
=
−1
lnq

which concludes the proof.

Hence, for large scale networks, the as product grows linearly with the number of nodes in the
network.
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4.6 Comparison with the RANDOMQUERY Algorithm

Although expressed differently, both the RANDOMQUERY and the FIXRANDOMQUERY algo-
rithm come up with the same asymptotic result. The result obtained for the RANDOMQUERY is
slightly more general. It only requires the as product to go to infinity whereas the proof for the
FIXRANDOMQUERY algorithm has been carried out with both a and s individually tending to-
wards infinity. Moreover, the equations for the RANDOMQUERY algorithm are simpler and easier
to handle.

For finite N, the FIXRANDOMQUERY algorithm yields a slightly better path discovery prob-
abilities than the RANDOMQUERY with the same average number of nodes being advertised and
searched. For a = s = 81 and N = 1398 nodes, for example, the path failure probability according
to equation (4.1) is

qFIXRANDOMQUERY =
s−1

∏
i=0

N−a− i
N− i

= 0.69 %

as opposed to 0.91 % obtained with equation (3.1) in Section 3.5. This difference arises from
the probabilistic distribution of the number of nodes in the RANDOMQUERY algorithm and the
convexity of the path discovery probability function. Mathematically, the two probabilities are
related by the following formula

qRANDOMQUERY(N, pA, pS) =
∞

∑
a=0

∞

∑
s=0

P(A = a)P(S = s)qFIXRANDOMQUERY(N,a,s)

where A and S are binominal random variables with probability pA and pS respectively, i. e.

P(A = a) =

(
N
a

)
pa

A(1− pA)N−a and P(S = s) =

(
N
s

)
ps

S(1− pS)N−s

Both the RANDOMQUERY and the FIXRANDOMQUERY algorithm cannot be implemented
in a straightforward and cheap manner. To our knowledge, distributing advertisements homoge-
neously requires either flooding or the knowledge of the network (nodes and links), both of which
are not viable for large scale ad hoc networks. These algorithms mainly serve the purpose of
mathematical analysis.
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Chapter 5
Snakes

In Chapter 3 and Chapter 4, we introduced the RANDOMQUERY algorithm and the FIXRANDOM-
QUERY algorithm to analyze the performance of the RANDOMENCOUNTER concept. We have
shown that path discovery is possible with O(

√
N) nodes. Both these algorithm achieve optimal

performance by distributing the advertisements and the searched nodes uniformly in the network.
However, they are theoretic and cannot be implemented in a straightforward and cheap manner.

Contacting random nodes in a network with a uniform distribution is not easy. In Chapter 6
and Chapter 7, we present algorithms that try to approximate a uniform distribution when placing
advertisements or searching for them. These algorithms use snakes, a novel network primitive that
we introduce in the following paragraphs.

(a) First hop (b) Fourth hop

Figure 5.1: Snake propagation. S is the snake head. The circles delimit the communication range.
The node after the third hop can forward the snake packet to one of the nodes in the grey area,
since these nodes are not yet in the neighborhood list of the snake packet.

5.1 Description

Snakes are built with unicast packets that travel in a random fashion through the network. Unlike
normal unicast packets, however, snake packets do not contain a destination address.

To start a snake, a node - called snake head - prepares a snake packet with a list of all its neigh-
bors (node IDs) and transmits this packet randomly to one of these neighbors. A node receiving a
snake packet randomly selects a neighbor whose ID is not in the snake packet. It then adds its own
neighbors to the snake packet and forwards the packet to the selected neighbor. This procedure is
repeated at each node until the snake reaches a certain length. Figure 5.1 illustrates this algorithm
schematically. Figure 5.3 gives a sample pseudo-code implementation of snakes.
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Figure 5.2: Qualitative comparison between (a) random paths (without neighborhood list) and
(b) snakes (with neighborhood list).

By using this neighborhood list, snake packets are preferably sent to areas where the snake
has not been seen yet. This increases the probability that the snake reaches areas far away from
the snake head. If snake packets were forwarded randomly to any neighbor (without considering
the neighborhood list), the snake would resemble Brownian motion. For a visual comparison of
random paths and snakes, refer to Figure 5.2.

5.2 Snake Packets

The basic snake packet contains the following information:

. TTL. A time-to-live field which defines the snake length l, measured in number of hops.

. Neighborhood list. A list of identifiers of all nodes that the snake packet passed and its
neighbors.

. Data. Additional data depending on the algorithm that uses the snake. This field may be
used by the above layer.

A snake causes exactly l transmissions in the network. These transmissions do not interfere
with each other, since they are performed consecutively. I. e., when a node forwards a snake
packet, it must have received the packet completely before starting the transmission. Transmis-
sions of two different snakes may collide, however.

5.3 Neighborhood List

The neighborhood list collects the IDs of all nodes along the snake and their neighbors. This list
grows with the length of the snake and can potentially become very long.
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uses MACSendPacket(toNode, 〈ttl, neighborhoodList, data〉 )
uses list = GetCurrentNeighbors()
uses element = RandomElement(list)
expects 〈continue, newData〉 = SnakeReceive(fromNode, 〈ttl, neighborhoodList, data〉 )

function SnakeSend(length, data)
neighborhoodList = GetCurrentNeighbors()
toNode = RandomElement(neighborhoodList)
MACSendPacket(tonode, 〈length, neighborhoodList, data〉 )

end function

upon MACReceivePacket(fromNode, 〈ttl, neighborhoodList, data〉 )
〈continue, newData〉 = SnakeReceive(fromNode, 〈ttl, neighborhoodList, data〉 );
return if (ttl == 0) or (continue == false)

currentNeighbors = GetCurrentNeighbors()
unknownNeighbors = /0
for each Node in currentNeighbors

if Node /∈ neighborhoodList
unknownNeighbors = unknownNeighbors ∪ {Node}
neighborhoodList = neighborhoodList ∪ {Node}

end if
end for

if unknownNeighbors = /0
toNode = RandomElement(currentNeighbors)

else
toNode = RandomElement(unknownNeighbors)

end if

MACSendPacket(toNode, 〈length, neighborhoodList, newData〉 )
end upon

Figure 5.3: Creating and forwarding snakes. The SnakeReceive function must be provided by the
algorithm using the snakes.
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In our simulations, we used a list of infinite size, i. e., we let the list grow to the full required
size. Despite being feasible, this strategy is not practical for real-world implementations. Large
snake packets generate unnecessary overhead, with regards to bandwidth and transmission time.

It is more appropriate to limit the number of carried node IDs and to carry an incomplete node
neighborhood list in the snake packet. Figure 5.1 reveals that the most recently added neighbors
are the most important ones. Hence, the neighborhood list can be restricted to the neighbors of
the last 3 to 5 snake nodes. Because of transmission range overlapping, the list of neighbors of 3
consecutive nodes along the snake contains only about twice the average number of neighbors. A
neighborhood list of about 30 entries should therefore be sufficient for most applications. This is
much more efficient and does not significantly affect the performance.

5.4 Analysis

The propagation of snakes is the crucial factor for the advertisement distribution of the algorithms
presented in Chapter 6. In this section, we therefore attempt to quantify the important measures of
snake propagation. We first derive the equations that describe the distribution of the hop distance
and show that, despite some simplifying assumptions, they are difficult to solve. In the second
part, we present a Monte Carlo simulation to estimate the important values statistically.

5.4.1 Formal Analysis

Assume an infinite network with uniformly distributed nodes of a certain density λ . Nodes have a
transmission range r and know all neighbors within this range.

Figure 5.4: Calculating the distance distribution of the first hop.

Calculating the hop distance distribution for the first hop, D1 is simple: the probability in-
creases linearly with the distance. With the notation introduced in Figure 5.4, the distribution can
be written as

P(D1 = d) =
2d
r2

where 2
r2 is used to normalize the pdf. Note that this equation assumes that the node has at least

one neighbor. Hence, we assume that the node density is high enough to neglect the probability
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that a node has no neighbor at all.
Because of the neighborhood list, the hop distance distribution for subsequent steps, Dn, is

more difficult to calculate. The distribution for one hop depends on the distribution of the previous
hop. In fact, this distribution depends on the whole snake build so far, but for simplicity, we only
consider the previous hop.

Figure 5.5: Calculating the distance distribution of all but the first hop.

Figure 5.5 schematically shows the setup used for the calculation. Assume the distance of the
previous hop was d. The next hop node must then lie somewhere in the grey shaded area. (Again,
we assume that the node density is high enough for a node to exist in this area.) The probability
linearly increases with the arc length u = eα , because a node at a distance of e must lie on the arc
of length 2u. To calculate u as a function of d, e and r, we first have to derive an expression for α .
The triangle with side lengths d, e and r gives us the relationship

r2 = d2 + e2−2decos(π−α) = d2 + e2 + 2decos(α)

which can be transformed into

α = arccos
(

r2−d2− e2

2de

)

If d + e = r, we obtain

α = arccos
(

(d + e)2−d2− e2

2de

)
= arccos(1) = 0

For e< r−d, the probability is 0. When the next hop distance, e, is maximal, i. e., e = r, the angle

α = arccos
(−d2

2de

)
= arccos

(−d
2r

)

is obtained. For e > r, the probability is again 0, since r is the maximum transmission range. The
probability therefore linearly depends on the function

u(r,d,e) =

{
e · arccos

(
r2−d2−e2

2de

)
for r−d ≤ e≤ r

0 otherwise
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Note that we have chosen a constant d so far. The input to this function, however, is the distribution
Dn−1. Hence, the hop distance distribution, Dn, can be expressed as

P(Dn = e) =
1
c

∫ r

0
P(Dn−1 = d)u(r,d,e) dd (5.1)

where c is the constant

c =

∫ r

0

∫ r

r−d
P(Dn−1 = d)u(r,d,e) de dd

to normalize the pdf.
In view of the function u(r,d,e) containing an arccos and being integrated at each hop, these

formulas unfortunately serve mathematical beauty more than practical usefulness. Even for simple
Dn−1 distributions, solving the integrals analytically is hardly possible. Note, furthermore, that
the simplifying assumptions taken are quite strong already. In particular, the assumption that there
exists a node in the grey shaded area may influence the result even for high node densities. Namely,
if d→ 0, the shaded area tends to zero as well and the probability to find a node in there vanishes.

Setting Dn−1 = Dn leads to a differential equation which implicitly expresses the steady-state
hop distance distribution. With todays equation solving tools, however, it is not possible to obtain
an explicit expression for Dn.

The hop distance is not the only parameter of interest, of course. The angular distribution be-
tween two hops as well as the total distance to the source node S are important, too. Unfortunately,
both these distributions depend on the hop distance distribution.

5.4.2 Numerical Analysis

Since the analytical means are exhausted, further analysis has to be carried out numerically. There
are basically two possibilities: First, one may try to solve the formal equations numerically. Sec-
ond, the problem can be tackled completely numerically using a Monte Carlo simulation. Due to
the numerous approximations made in Section 5.4.1, we have chosen the second way.

The following experiment was repeated 105 times: Nodes were distributed uniformly1 with a
density of λ = 4.45 ·10−4 nodes/m2 over a circular area of radius 2.1 km. The transmission range
was r = 100 m. The snake head S was randomly picked within a circle of 100 m radius around
the center of the area. (If no nodes were in this area, a new set of nodes was generated.) From this
snake head, a snake of length l = 20 hops was build and the positions of all nodes along the snake
were recorded. Since the radius of the circular area is greater than the maximum distance a snake
may ever depart from the snake head, the probability of a snake hitting the border is zero.

Figure 5.6 shows various diagrams of the gathered data. Let us first have a look at the hop
distance plotted in diagrams (c) and (d). As derived analytically in Section 5.4.1, the distribution
of the first hop grows linearly with the distance. The mean distance is about 66.8 m for the
first hop, which is close to the theoretical value of 66.67 m. Because this first hop is short as
compared to the steady-state hop distance of about 74 m, the second hop is much longer. This
can be explained intuitively by looking at Figure 5.5: If d is small, then e tends to be big, since
r−d ≤ e≤ r. Hop 3 is again a bit shorter and from hop 4 on, no difference is visible as compared
to the steady-state hop distance. From hop 9 onwards, the mean distance decreases slightly. This
can be explained with the possibility that snakes turn around and generate a geographical loop. In
these cases, they may end up at a node which has no neighbors that are not in the neighborhood

1For all simulations, we used the Mersenne Twister random number generator [27] with a period of 219937−1 and
an order of equidistribution of 623 dimensions.
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Figure 5.6: Propagation of snakes of length l = 20 hops in a network with 13.98 neighbors on
average. (a) Schematic explanation of the values. (b) Distribution of the change in direction
at each hop. (c) Hop link distance distribution and (d) mean hop link distance. (e) Increase in
distance from the source node and (f) mean increase in distance from the source node.
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list already. Such nodes forward the snake packet to any random neighbor. Note that the formal
analysis in Section 5.4.1 did not take this effect into account.

Figure 5.6 (b) shows a histogram of the change in direction at each hop. Most of the time,
snakes turn by less than 60 degrees to the left or to the right. The probability that snakes turn by
more than 90 degrees is very small. By looking carefully at the plot, one will discover a small
fraction of the samples at 180 degrees. These belong to nodes that did not have any other neighbor
than the one from which they received the snake packet. Therefore, they had to send it the same
hop back.

Since snakes can turn, the effective distance that they depart from the snake head is shorter
than the cumulative hop distance. We therefore represented the increase in distance from the snake
head at each hop in Figure 5.6 (e) and (f). For the first hop, the histogram as well as the mean
coincides, for obvious reasons, with the first hop of the hop distance plot. After the second hop,
there is a possibility that the distance to the snake head decreases. The probability that this happens
increases with each hop and the mean distance increase therefore drops.

Figure 5.7 (a) shows the density of nodes hit by snakes with respect to the distance to the
snake head. The density is maximal at the transmission range (r = 100 m) and decreases quickly
afterwards.

The density of the snake endpoints (the last node belonging to the snake) is drawn in Figure 5.7
(b). For short snakes (l = 5 and l = 10), this density has a clear peak at about half of the maximum
achievable distance. For long snakes, however, the distribution is almost uniform over a wide
range and then slowly decreases. This shape is advantageous to spread information uniformly
around a node and will be used for the BREEDINGSNAKE advertisement algorithm presented in
Section 6.2.3.
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Figure 5.7: (a) Density of nodes hit by snakes. (b) Density of snake endpoint nodes.
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Chapter 6
Snake Algorithms for Static Networks

In this chapter, we study three algorithms for static networks based on snakes. All algorithms are
based on the RANDOMENCOUNTER concept and therefore consist of two parts: an advertisement
phase for nodes to advertise their existence and a search algorithm that is executed whenever a
path is to be discovered.

6.1 Model

We assume a static network in which nodes neither move nor fail. In particular, we do not con-
sider a time axis. Furthermore, we assume a perfect MAC layer, i. e., nodes can transmit packets
of any size at any time to any neighboring node. Effects such as interference, contention and band-
width constraints are not considered. Although these assumptions are unrealistic, they allow us to
analyze the foundations of snake algorithms while minimizing the effects of hidden factors.

6.2 Algorithms

6.2.1 SNAKE-SNAKE Algorithm

The simplest algorithm is the SNAKE-SNAKE algorithm. At network setup, each node advertises
itself by sending mA advertisement snakes of length lA. The snake packet carries the node ID of
the snake head in its data section. Each node along such a snake stores a routing entry (unless
one exists already) to its predecessor before forwarding the snake packet. Hence, a node along the
snake can find the snake head by following these routing entries.

If a node S wants to establish a path to a node D, it launches mS snakes of length lS. The
corresponding snake packets contain the node IDs of S and node D in their data sections. If such a
snake intersects with a snake advertising for D, a route has been discovered. The encounter node
is denoted by V. Figure 6.1 schematically illustrates how the algorithm works.

Once a path has been discovered, it needs to be set up.

. To set up a distance vector path, each node along the search snakes stores a routing entry
for S to the previous node on the snake. Upon encountering with an advertisement snake,
the encounter node V sends a packet along the snake towards D to add the routing entries
for S to these nodes. As soon as this packet reaches D, a reply packet (similar to an AODV
RREP packet [11]) is sent back to S. It establishes the route to D at all intermediate nodes
and reports to S that a path has been found.

. To setup a source routing path, the search snake packet records the route in its data section.
Upon encountering an advertisement, the packet is sent to D along the advertisement snake
and then returned to S along the recorded route.
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32 6.2 Algorithms

Figure 6.1: The SNAKE-SNAKE algorithm. Advertised nodes are drawn as grey circles and
searched nodes as black circles. Each line represents one hop. V is the encounter node.

Note that several paths to the destination may be found. More precisely, each search snake
may report a path. If the routing protocol in use supports multiple paths (e. g. multipath protocols
like CHAMP [28] that cache additional paths), all of them may be used. Otherwise, the best path
according to some performance metric should be chosen. A performance criteria may be the path
length in number of hops.

The number of advertisements per node in the network is

a≤ 1 + mAlA

Equality holds if the snakes do not overlap at any node. Similarly, the number of searched nodes
is

s≤ 1 + mSlS
Since the advertised and searched nodes are not uniformly distributed in the network, these num-
bers cannot be plugged into equation (3.2); due to the correlation among the advertised and
searched nodes, the performance is expectedly lower. We discuss this in Section 6.3.

6.2.2 SNAKE-LONGSNAKE Algorithm

The SNAKE-LONGSNAKE algorithm is the same as the SNAKE-SNAKE algorithm except that
advertisements are only placed at every wAth node along the advertisement snake. To compensate
that, much longer snakes are chosen. If wA = 1, this algorithm coincides with the SNAKE-SNAKE

algorithm.
Each advertised node must store a routing entry that contains the path to the previous adver-

tisement on the snake. This path is wA hops long. Unless wA = 1, storing solely the ID of the
previous node on the snake is not enough, since this node does not store any information about the
snake head. It only relays the snake packet.

The number of advertisements per node in the network can be expressed as

a≤ 1 +

⌊
mAlA
wA

⌋

The disadvantage of this algorithm is that the advertisement snakes are much longer than the
number of advertised nodes. Hence, the ratio of sent packets over advertised nodes is much higher
than for the SNAKE-SNAKE algorithm.
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Figure 6.2: The SNAKE-BREEDINGSNAKE algorithm. Advertised nodes are drawn as grey circles
and searched nodes as black circles. Each line between two big circles represents one snake. The
small circles are nodes along the snake. V is the encounter node.

6.2.3 SNAKE-BREEDINGSNAKE Algorithm

The SNAKE-BREEDINGSNAKE algorithm overcomes this problem by reusing snakes of other
nodes. It is however a bit more complex. The advertisement procedure for a node D, depicted
in Figure 6.2, works as follows:

. D sends mA snakes of length lA. These snakes are called first-order snakes of D. Each node
along the snakes stores a routing entry for D to its predecessor node before forwarding the
snake packet.

. The endpoint nodes of these first-order snakes include D in their own advertisement snake
packets. The new snakes are therefore second-order snakes of D. The advertisement for D
is only placed at the endpoint of such snakes. It consists of the node ID of the snake head, as
this is enough to completely reconstruct the path back to D. (This avoids having too many
advertisements placed too close to each other.)

The endpoint nodes of second-order snakes breed again to create third-order snakes, and so
on, until the order w1 is reached. During this phase, the number of snakes advertising for D
grows exponentially.

. After w1 breeding steps, the endpoint nodes only forward the advertisement in one of their
snakes. This is repeated until order w2 is reached. In this last phase, the number of snakes
advertising for D remains constant.

To search a node D, S sends mS snakes of length lS. A path is discovered if an advertisement
(either along the first-order snake or at the endpoint of a higher-order snake) is found. The discov-
ered path consists of the snake from S to the encounter node V and the snakes from V to D. Path
setup is similar to that for the SNAKE-SNAKE algorithm.

The number of advertisements placed by the BREEDINGSNAKE procedure is

a≤ 1 + mAlA +

(
w1

∑
n=2

mn
A

)
+ mw1

A (w2−w1)
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The summed terms correspond to the advertising node, the first-order snakes, the endpoints of the
snakes until order w1 and the endpoints of the snakes between the orders w1 + 1 and w2.

Note that if w1 = w2 = 1, this algorithm coincides with the SNAKE-SNAKE algorithm.

6.3 Simulation Results

To measure the performance of the algorithms proposed in Section 6.2, we simulated them based
on the model described in Section 6.1.

The following experiment was repeated 1000 times: First, nodes were distributed uniformly
over a circular area with radius 1 km. We have chosen a node density of λ = 4.45 ·10−4 nodes/m2

and a communication range of r = 100 m. With these values, the expected number of neighbors
(theoretical, without border effects) is 13.98 and the expected number of nodes is E[N] = 1398.
We run the advertisement algorithm for an arbitrary node D. Among the remaining nodes, we then
randomly picked 40 nodes and applied the search algorithm on each of them.

By doing so, we generated 40000 samples in 1000 blocks. Samples of the same block are
slightly correlated since they all belong to the same network and the same destination node. The
gathered data allows us to study the path discovery probability as well as the path length.
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Figure 6.3: as-p plot for the SNAKE-SNAKE algorithm applied in a network with E[N] = 1398
nodes uniformly distributed with a density of 4.45 · 10−4 nodes/m2 on a circular area of 1 km
radius.

6.3.1 Path Discovery Probability

We compare the path discovery probability on as-p plots. That is, we count the number of adver-
tised nodes, ai, and searched nodes, si, of each sample and calculate their averages, â and ŝ. The
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estimated success probability, p̂, is calculated as the number of successes divided by the number
of samples (40000). The tuple (â · ŝ, p̂) can then be compared to the theoretical bound,

p = 1−
(

1− a · s
E2[N]

)E[N]

(6.1)

To ease the visual comparison, we indicated the curves

p = 1−
(

1− a · s
αE2[N]

)E[N]

(6.2)

for α ∈ {1.5,2,2.5,3} on the plots as well.
The α factor is a good quality measure. It expresses by what factor the as product must be

multiplied with to obtain the same probability for the optimal case. Since equation (6.1) is optimal,
α ≥ 1 with equality if and only if the algorithm is optimal.

6.3.1.1 Path Discovery Probability of the SNAKE-SNAKE Algorithm

The as-p plot for the SNAKE-SNAKE algorithm is shown in Figure 6.3. The first four configu-
rations listed in the legend all advertise and search the same number of nodes. The comparison
shows that fewer, but longer snakes give a significantly better performance. Many short snakes
tend to place many advertisements close to the advertising node, creating a very non-uniform
advertisement distribution. Longer snakes cover distant areas with higher probability.

It is possible to reach path discovery probabilities close to 1 with this simple algorithm. For
two snakes of length lA = lS = 150, a path was found in 99.88 % of the samples. The number
of nodes involved in path discovery is at most 602 (301 advertised and 301 searched) with this
configuration, which is less than half the total number of nodes.

6.3.1.2 Path Discovery Probability of the SNAKE-LONGSNAKE Algorithm

If we advertise at all nodes along the snakes, the advertisements are highly correlated. To distribute
the advertisements more evenly, the LONGSNAKE advertisement algorithm places advertisements
at every wA’s node only. This has a big impact on the performance, as shown in Figure 6.4 and
Table 6.1. The runs with wA = 3 and wA = 4 have a similar as product as the reference simulation
with wA = 5, but the probability increases from 91.94 % (wA = 3) to 96.30 % (wA = 5), causing the
α-factor to drop from 2.63 (wA = 3) to 2.02 (wA = 5). In our simulated network, the probability
increased only insignificantly for higher values of wA.

Simulation ā s̄ amax smax p [%] α
Reference 84.86 109.8 91 126 96.30 2.02
lA = 100 57.62 109.7 61 126 90.81 1.90
lA = 200 111.5 109.7 121 126 98.48 2.09
lS = 15 84.90 67.09 91 76 89.62 1.80
lS = 35 85.07 150.7 91 176 98.74 2.10
wA = 3, lA = 90 84.28 109.7 91 126 91.94 2.63
wA = 4, lA = 120 84.51 109.8 91 126 94.98 2.22
mA = 4 111.6 109.7 121 126 98.55 2.07
mA = 5 138.2 109.7 151 126 99.50 2.05

Table 6.1: Results for the SNAKE-LONGSNAKE algorithm (Figure 6.4).

PROBABILISTIC PATH DISCOVERY WITH SNAKES IN AD HOC NETWORKS



36 6.3 Simulation Results

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0.7

0.75

0.8

0.85

0.9

0.95

1
Snake−LongSnake Performance (E[N] = 1398.0087)

a ⋅ s

P
at

h 
di

sc
ov

er
y 

pr
ob

ab
ili

ty
 p

Reference simulation:
l
A
=150, m

A
=3, w

A
=5, l

S
=25, m

S
=5

← α=3
← α=2

← α=1

Theoretical bound
.

Reference simulation
.

l
A
=100

l
A
=200

l
S
=15

l
S
=35

w
A
=3, l

A
=90

w
A
=4, l

A
=120

m
A
=4

m
A
=5

Figure 6.4: as-p plot for the SNAKE-LONGSNAKE algorithm applied in a network with E[N] =
1398 nodes uniformly distributed with a density of 4.45 ·10−4 nodes/m2 on a circular area of 1 km
radius. The legend indicates the parameters that differ from the reference simulation.

The best results are beyond the theoretical curve for α = 2 (see equation (6.2)). This means
that as compared to the optimal RANDOMQUERY algorithm presented in Chapter 3, the as product
only needs to be about twice as high to reach the same probability.

6.3.1.3 Path Discovery Probability of the SNAKE-BREEDINGSNAKE Algorithm

Similar results can be obtained with the SNAKE-BREEDINGSNAKE algorithm (Figure 6.5, Ta-
ble 6.2).

The performance is in general better for longer advertisement snakes. For lA = 20, for example,
the path discovery probability is 98.80 %, which corresponds to α = 1.76.

A similarly low α value (α = 1.83) is obtained for lA = 20 and lS = 20. 99.63 % of the existing
paths are discovered with this configuration. To obtain this high path discovery probability, less
than one fifth of the nodes are involved in path discovery.

Increasing the length of the search snakes, lS, increases the path discovery probability. The
performance with regard to the α factor, however, decreases: the reference simulation with lS = 15
reaches α = 2.07 whereas for lS = 25, α = 2.24 is obtained. This behavior is due to the correlation
between the searched nodes which is much higher than the correlation between the advertised
nodes. Unfortunately, the BREEDINGSNAKE algorithm cannot be applied in the search phase.
Forwarding a search snake packet without checking for an advertisement would be unwise, as the
expensive operation (in terms of energy and bandwidth) is clearly the packet forwarding. Breeding
and searching at all nodes along the higher-order snakes would result in an even higher correlation
between the searched nodes.
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Figure 6.5: as-p plot for the SNAKE-BREEDINGSNAKE algorithm applied in a network with
E[N] = 1398 nodes uniformly distributed with a density of 4.45 ·10−4 nodes/m2 on a circular area
of 1 km radius. The legend indicates the parameters that differ from the reference simulation.

6.3.1.4 LONGSNAKE and BREEDINGSNAKE Comparison

Although the SNAKE-LONGSNAKE and the SNAKE-BREEDINGSNAKE algorithms both reach
similar α values, the way they spread the advertisements is quite different. Figure 6.6 qualita-
tively compares the two advertisement placing algorithms. We have chosen a typical sample for
each algorithm.

The snakes of the LONGSNAKE advertisement algorithm are far longer than the network diam-
eter. These snakes explore a large part of the network and place advertisements at regular intervals.
As Figure 6.6 (a) shows, quite substantial parts of the network may remain unadvertised, whereas
the advertisement density can become quite high in areas where the snakes get stuck for several
hops (e. g. at the borders).

The BREEDINGSNAKE algorithm spreads the advertisements by recursively sending short
snakes. Since these short snakes are sent from different snake heads, the advertisements are dis-
tributed without leaving big holes. The advertisement density decreases with increasing distance
from the advertising node. Around the advertising node, the density is particularly high because
of the first-order snakes.

For the LONGSNAKE algorithm, the primary parameter to adjust to the network size is the
snake length lA. It should be significantly larger than the network diameter. Since the number of
sent packets increases linearly with the length of a snake, this algorithm may become expensive.

The primary parameters to tune the BREEDINGSNAKE algorithm are w1 and w2. The snake
length lA can be modified for fine tuning. It mainly influences the distance between the advertise-
ments and has no significant impact on the number of advertised nodes except for small w1 and w2.
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Figure 6.6: Sample nodes advertised by the LONGSNAKE and the BREEDINGSNAKE adver-
tisement algorithm. Each dot represents one node. A single node, highlighted with a square,
advertises itself. The first-order snakes are drawn as lines. Advertised nodes are marked with a
circle.

BREEDINGSNAKE packets carry several node IDs to advertise (depending on w1 and w2). They
are therefore bigger than LONGSNAKE packets. Packet size is traded off against the number of
sent packets.

In most networks, moderately increasing the packet size is less costly than sending more pack-
ets. Hence, the BREEDINGSNAKE algorithm is preferred.

6.3.2 Path Length

We measured the path length in number of hops. Beyond the total path length, we counted the
number of hops from the source node S to the encounter node V as well as the hops from V to the
destination node D.

Recall that path discovery usually finds several encounter nodes. If search snakes stop as soon
as they find an encounter, each search snake may report up to one discovered path. If search snakes

Simulation ā s̄ amax smax p [%] α
Reference 147.9 67.09 163 76 96.79 2.07
lS = 25 148.3 109.7 163 126 99.45 2.24
lS = 20 148.1 88.67 163 101 98.82 2.12
mA = 2 63.94 67.09 67 76 77.71 2.05
mA = 4 280.9 67.13 333 76 99.82 2.14
lA = 10 132.9 67.13 148 76 90.22 2.75
lA = 20 161.9 67.12 178 76 98.80 1.76
lA = 20, lS = 20 161.6 88.60 178 101 99.63 1.83
lA = 20, mA = 2, lS = 20 73.11 88.65 77 101 89.95 2.02

Table 6.2: Results for the SNAKE-BREEDINGSNAKE algorithm (Figure 6.5).
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grow to their full length, each of them may report several paths. In our simulations, we stopped
the search snakes at the first encounter and chose the shortest reported path.

6.3.2.1 Path Lengths Using the SNAKE-BREEDINGSNAKE Algorithm
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Figure 6.7: Path length histogram (S - D) for the SNAKE-BREEDINGSNAKE algorithm.

Figure 6.7 shows a path length histogram for the reference simulation (see Figure 6.5) of the
SNAKE-BREEDINGSNAKE algorithm. In view of the network diameter being about 27, the paths
are highly suboptimal. The longest paths are 105 hops long, the maximum length with the used
parameters. The shortest path is one hop long, i. e., source and destination node were neighbors.
Note that we chose different source and destination nodes. Therefore, there is no path of zero
length.

The various peaks and holes are not statistical noise - they originate from the structure of the
advertising algorithm. To explain them, let us have a look at the path length between V and D
displayed in Figure 6.8 (b). For path lengths up to 15 hops, the encounter node V was found on a
first-order snake. Note that in about 500 cases, the search snake hit the destination node directly
(path length 0). This probability is smaller then hitting a node on the first-order snake because
there were 3 snakes but only a single destination node.

The bar for 15 hops belongs to the endpoint of the first-order snake. The number of samples
that hit this node is a bit higher. This is because endpoint nodes only have one advertised node
next to them. Informally speaking, they have less ”competition”.

The bars for 30 and 45 hops belong to the endpoints of the second-order and third-order snakes.
These snakes were sent out in the breeding steps of the BREEDINGSNAKE algorithm. The number
of samples therefore grows exponentially. Since nodes along these snakes were not advertised, the
values between the peaks are zero.
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Figure 6.8: Path length histograms for the SNAKE-BREEDINGSNAKE algorithm. (a) Source node
S - encounter node V. (b) Encounter node V - destination node D.

The bars for 60, 75 and 90 hops stem from the endpoints of the continuation snakes. Despite
the number of snakes (and therefore endpoints) remains constant, the probability of establishing
a path through these nodes decreases. This is simply due to our path selection strategy: if paths
were discovered, one of the other paths was likely to be shorter. The probability of not finding any
shorter paths decreases with increasing path length.

For the same reason, the number of samples are decreasing with increasing number of hops of
the search snake. This is shown in Figure 6.8 (a). The first sample on this plot belongs to the case
when the source node S itself carried an advertisement of D. Since this node is the same for all 5
search snakes, the probability for this event is much smaller.

Since the lengths of the sections S - V and V - D are almost independent, the path length plot
shown in Figure 6.7 is almost a correlation of the V - D histogram and a flipped version of the S -
V histogram.

6.4 Discussion

6.4.1 Probabilistic Path Discovery

Algorithms based on the RANDOMENCOUNTER concept discover paths probabilistically. Unless
both the advertised node density, pa, and the searched node density, ps, are both 1, the probability
of not discovering an existing path is non-zero.

This is actually not a main concern as long as the path discovery probability is high (e. g.
99 %). Wireless networks are – even in the absence of mobility – inherently probabilistic. Al-
though flooding discovers paths with unit probability1 if an ideal MAC layer is considered, path
discovery may fail with a non-ideal MAC layer.

At this stage, it is not possible to compare the path discovery probability of flooding to that of
snake protocols. This very much depends on the chosen MAC layer and its implementation, the
environmental conditions (interference, noise), the distribution of the nodes and the RF propaga-
tion. Nevertheless, it is safe to say that snake path discovery algorithms can reach probabilities
that are high enough to be useful in most applications.

1Some optimized broadcast techniques [13], e. g. gossip protocols [29], are probabilistic as well.

PROBABILISTIC PATH DISCOVERY WITH SNAKES IN AD HOC NETWORKS



Chapter 6: Snake Algorithms for Static Networks 41

6.4.2 Path Optimality

The path discovery algorithms presented in this paper find non-optimal paths. No guarantee about
optimality can be given.

For most routing algorithms, this may appear as a non-negligible disadvantage that reduces
the total network throughput and increases the average end-to-end delay. For short connections
with few data packets, this overhead may be small. For connections with a lot of data, however,
the overhead due to non-optimal paths exceeds the savings due to the cheaper path discovery
algorithm. One may therefore question whether snake algorithms (or other algorithms based on
the RANDOMENCOUNTER concept) are suitable for ad hoc networks.

We strongly believe that they are. Recently, the routing algorithm AntHocNet [25] has been
proposed. This algorithm continuously samples existing paths and improves them while data is
being transmitted (stochastic routing). For path discovery, AntHocNet uses a strategy similar to
flooding, but takes potentially available information about the destination node into account.

Snake algorithms are an ideal candidate for use with AntHocNet. For short connections with
few data packets, the utilized path may be highly suboptimal. For longer lasting connections, how-
ever, the initial suboptimal path is improved throughout the transmission and – in static networks
– converges towards the optimum. Assuming that the convergence speed is high enough, all but
the first few data packets will be sent along a fairly optimal path.
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Chapter 7
Snake Algorithms for Mobile Networks

In all algorithms presented in Chapter 6, we have not considered time. The network was static and
nodes as well as links were assumed to be perfect.

In this chapter, we generalize the SNAKE-BREEDINGSNAKE algorithm (see Section 6.2.3) for
mobile networks with node and link failures. We have chosen this algorithm because it exhibits
the best results (see Section 6.3). The SNAKE-SNAKE and the SNAKE-LONGSNAKE algorithms
can be generalized in a similar fashion.

Note that we have not implemented the algorithms introduced in this chapter. We only present
them as ideas and leave the evaluation of their performance to future work.

7.1 MOBILESNAKE-MOBILEBREEDINGSNAKE Algorithm

In a model with mobility and node failure, there are two new problems that need to be addressed:

. Advertisements age and become stale.

. Snakes may break.

The first problem is due to the mobility of a snake head whereas the second problem appears
when nodes along a snake move away or fail. Hence, advertisements cannot be spread once at
network setup only. Advertising is a continuous process that takes place as long as a node is
connected to the network. Moreover, when searching for a node, snakes can only be regarded as
hints. Encountering an advertisement no longer assures that a path has been discovered.

To cope with these issues, we propose the following advertising and search algorithms:

Advertising algorithm. To keep the advertisement structure up-to-date, each node D periodically
sends two types of snakes:

. Each tl seconds (long interval), the node sends one breeding snake of length lA. As
usual, all nodes along this first-order snake keep an advertisement for D. Such an
advertisement contains the address of D, the time at which the snake was sent (tb)
and the distance to D in number of hops. The endpoint node of the snake marks the
advertisement for breeding and includes D in its own snakes with probability b2(t−tb).
First-order snakes for this endpoint node are second-order snakes for D. Therefore, the
advertisement for D will only be placed at the endpoint of these snakes. Here again,
the advertisement is marked for breeding and will cause third-order snakes for D being
sent with probability b3(t− tb), and so on.

. Each ts seconds (short interval), the node sends one simple non-breeding snake to place
advertisements in its close neighborhood.
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Note that the parameters w1 and w2 of the original BREEDINGSNAKE algorithm (see Sec-
tion 6.2.3) have disappeared. Instead, we use more general breeding probability functions
bw(t− tb) for a wth-order snake. These functions define the probability of including an ad-
vertisement in a snake with respect to the age of the advertisement. bw(t − tb) should be
decreasing with time and eventually reach 0. Moreover, bw(t− tb)≡ 0 for w>wmax to limit
the number of breeding steps.

If a node receives an advertisement for D although it already has one, it keeps the new
advertisement if and only if it is more recent (tb bigger).

Advertisements are deleted if they get older than td seconds (i. e., t ≥ tb + td). Hence, if a
node does not advertise itself for td seconds, it is assumed to have left the network. To make
sure that a node is advertised at any time, ts < td .

We do not attempt to specify and evaluate concrete bw(t− tb) functions in this thesis. We
believe that good functions as well as optimal tl , ts and td intervals significantly depend on
the chosen mobility and node failure model. Determining suitable functions would therefore
require simulations in a chosen scenario.

Search algorithm. A node S looking for a node D sends mS snakes of length lS. Upon encounter,
the snake packet is sent along the advertising snakes in the hope to reach the destination
node. If the snake is broken, the last node on the snake fragment sends again mS snakes.
Such snakes may be shorter, however, since other advertisements are expected to be in the
proximity. To avoid loops, these snakes only consider advertisements for D (or the snake
head of the currently followed snake) that are either more recent (tb bigger) or closer to
the destination with the same age (tb equal). If no such advertisements are found, the path
discovery stops.

Through the infrequently sent breeding snakes, each node makes itself known in the network.
Because of mobility, however, these advertisements are not very accurate. The short snakes come
in to solve this problem: they frequently update their neighborhood with their current location.
Hence, search snakes will in most cases first encounter a node advertised by breeding snakes.

Loose time synchronization among all nodes in the network is necessary. A small shift be-
tween the node clocks can be tolerated because this does not affect loop-freedomness. To delete
an advertisement and to determine the breeding probability, however, a time duration using two
times from different clocks is calculated and the clock shift therefore adds to the duration.

The effective number of advertisements in the network is not only function of the snake length
and the breeding probability functions, but also of the time intervals t l , ts and td . Furthermore, the
path discovery probability depends on more factors than in the static case. In particular, we believe
that the frequency at which snakes break and the probability of finding another advertisement
nearby influence the success rate significantly. But for more precise statements on that, simulations
as well as analytical work would be necessary.

Without running simulation, we believe that snake-based path discovery algorithms work best
in networks with low or moderate mobility where snakes persist for some time. If snakes break
too quickly after setup, their advantage diminishes, causing the path discovery probability to drop.
Moreover, snake algorithms may show good results in networks where many nodes have low
mobility and only a few nodes move at higher speeds.
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Figure 7.1: The ERS-BREEDINGSNAKE algorithm. Instead of using snakes, the search phase
uses expanding ring search (ERS).

7.2 ERS-MOBILEBREEDINGSNAKE Algorithm

For very important or indispensable communication (e. g., for emergency calls), one may not want
to trade-off success probability against a cheaper path discovery algorithm. The goal is to establish
a call by all means.

In order to discover existing paths with unit probability, the search phase can be replaced by
an algorithm using expanding ring search (ERS) [15]. If a node S is looking for a path to D, it
floods the network using ERS until an advertisement for D is found. It then follows the snake to
the destination D. If the snake is incomplete (e. g. nodes have moved away or disappeared), ERS
is launched again to find a new advertisement that has not been seen yet by the current search.
The search snake packet must therefore carry a list of all seen nodes with an advertisement for D.
Figure 7.1 schematically shows a run of this algorithm.

It can be proven that this algorithm finds a path if there exists one.

Theorem 4. If an ideal MAC layer is assumed and if the ERS algorithm is not restricted to a
maximum hop radius, the ERS-MOBILEBREEDINGSNAKE algorithm discovers existing paths
with unit probability.

Proof. Consider a network of N connected nodes and let U be the set of all nodes visited by the
current search packet.

At each node, the algorithm performs one of the following steps:

1. Following a snake. If the next node along the snake can be reached, the search packet
follows the snake. The new node is added to U if it is not there yet.

2. ERS. Otherwise, ERS guarantees to find a next node that has not been seen yet. The found
node is added to U and U therefore grows by exactly one element.

Since snakes do not contain cycles (by construction), the algorithm eventually performs ERS steps.
As soon as |U | = N (or before), we have D ∈U because D is part of the network. Therefore, a
path has been discovered.

This algorithm is comparable to multi-step flooding [16] except that it follows the snakes as
long as possible. If the advertisements are well distributed in the network, the cost of this search
algorithm is reasonable. In the worst case, however, it is more expensive than simple flooding.
ERS especially reveals bad performance if the destination node is not known in the network. The
search will necessarily flood the whole network in that case. This also happens for temporarily
unavailable or disconnected nodes which still have some advertisements in the network.
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Since ERS is used in the search phase only, this scheme can easily be combined with other
snake algorithms as well. It can even coexist with another snake search algorithm. In a voice
communication network, for example, the usual snake search algorithm could be used for ordinary
calls whereas the ERS algorithm would be chosen for emergency calls.

7.3 Discussion

7.3.1 Snake Path Discovery vs. Proactive Routing Algorithms

Early research in ad hoc networks came up with proactive routing algorithms (e. g. DSDV [20]).
These algorithms update their routing tables in a proactive manner, i. e. when a link between two
nodes breaks, the two nodes would inform the network that this link is not available any more.
Because of the number of messages that such algorithms exchange to keep their routing tables
up to date, proactive algorithms have been shown to be expensive (with regard to bandwidth and
energy) in ad hoc networks.

Snake algorithms also require the nodes to periodically send information to other nodes in the
network. There are, however, important differences:

. No trigger. Advertising snakes are not triggered by broken links. Hence, a moving node
does not cause each old and new neighbor to take action.

. No flooding. Advertisements are sent to a small part of the nodes only.

. No path optimality. Snake path discovery does not give any guarantees about path opti-
mality. Proactive routing algorithms typically do so.

. Advertisements are hints. Advertisements are considered as hints that help discovering
a path. Proactive routing protocols typically rely on the information stored in the routing
tables.

This last point expresses a fundamental difference in the two approaches. Where proactive
protocols try to deterministically solve the problem, the snake algorithms provide a cheap heuristic
method. There is an interesting analogy in the field of algorithmics: NP-complete problems, such
as the traveling salesman problem or the graph coloring problem, are believed to be hard to solve
exactly (deterministically) [30]. Nevertheless, good and relatively cheap heuristics exist for many
of these problems.
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Optimizations

In the two previous chapters, we have presented a several algorithms based on the RANDOM-
ENCOUNTER concept and partly analyzed them. All algorithms so far were bounded by the theo-
retical optimum derived in Chapter 3.

In this chapter, we present three optimization strategies. While the first two strategies still stay
within the RANDOMENCOUNTER concept, the third breaks the borders of this concept to beat the
theoretical optimum.

8.1 Heterogeneous Advertisement Strategies

In the algorithms in Section 6.2 and Chapter 7, each node advertises itself to the network in the
same way as all other nodes. This is not necessary; nodes may use different advertisement strate-
gies according to their importance or role in the network.

To place more advertisements in the network, a node can send longer or more snakes than the
other nodes. When the BREEDINGSNAKE advertisement algorithm is employed, the number of
breeding or continuation steps can be increased as well. The more advertisement a node places,
the higher is the probability of discovering a path to this node.

Three exemplary situations where this could be useful are briefly discussed in the following
paragraphs. Note that this list is not exhaustive and many more examples could be given.

Wireless network connected with a gateway. An ad hoc network may be connected to other
networks (e. g. the Internet) through one or more gateways. Since most nodes will communicate
with the gateways, it makes sense to advertise them better than normal nodes.

Disaster recovery. In a disaster recovery mission, there are likely to be important nodes that
need to be available. (These nodes are not necessarily searched more often.)

Figure 8.1 depicts a mission with three teams and the headquarters in the center. The teams
need communication services within their area and although all three teams are connected to each
other, inter-team communication may be less important. The headquarters, however, need to be
reachable by the nodes of all teams. It therefore makes sense to advertise the nodes at the head-
quarters better.

Uneven energy supply. If a couple of nodes in the network provide the same service, but have
different energy supply, it makes sense to advertise the nodes with respect to their energy reserves.
Nodes looking for that specific service would then find nodes with a good energy supply with
higher probability.
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Figure 8.1: Possible disaster recovery situation. Communication between teams is less important
than communication inside a team. The headquarters need to communicate with all teams.

8.2 Overhearing Search Snakes

Many MAC layers for wireless networks allow a node to overhear messages sent to other nodes in
its vicinity. Hence, nodes hear search snake packets that their neighbors transmit to other nodes.
If a node happens to carry an advertisement of a desired destination node, it can opportunistically
[31] reply to report the encounter. A sample situation is drawn in Figure 8.2.

Figure 8.2: Overhearing a search snake packet. A forwards a snake packet to B and V overhears
this transmission. Since V carries an advertisement for the searched destination, it opportunisti-
cally replies.

While saving network bandwidth, the cost of this optimization is additional processing at each
node in the vicinity of a search snake. Bandwidth is therefore traded off against energy.

In some very specific situations, a similar strategy may be useful for advertisements snakes as
well. If a node overhears an advertisement snake packet of a node that it wants to contact soon (if
such knowledge is available), it can store the appropriate advertisement as well.
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8.3 The FRIENDNODESNAKE Algorithm

If one looks for someone and does not find him or her, it is a good strategy to ask a friend of that
person. Since most people have several good friends, the probability of reaching at least one of
them is high. Not all friends know where the person can be found, of course, but the chances of
finding the person in that way are good.

The same strategy can be applied in ad hoc networks. All we need is a friend function f (W)
mapping a node W to a set of friend nodes. This function should be easy to calculate from the
ID of a node, such that each node in the network can determine the friends of any other node in a
straightforward manner.

Such a function can be build using the XOR operator (⊕) and the Hamming weight, for ex-
ample. Assume a network of N nodes in which each node in the network can be identified by a
unique number from the set {0, ...,2m−1}. We define the friend function as

f (W) = {X | h(W⊕X) = 1} (8.1)

where h(·) the hamming weight. In words, two nodes are neighbors if their node IDs in binary
representation differ in one position only (Hamming distance). Each node therefore has a maxi-
mum of m friends and friendship is symmetric, i. e., if W2 is a friend of W1, then W1 is a friend
of W2.

Other suitable functions may arise from deterministic random number generators. The friend
node IDs would be the first m random numbers when the generator is seeded with the node ID.
Similar friendship sets can be constructed with hash functions, iteratively calculated from the node
ID. Since such friendship sets consist of random sequences that are independent of each other, the
friend relationship won’t be symmetric in these cases.

8.3.1 The FRIENDNODESNAKE search algorithm

The FRIENDNODESNAKE search algorithm works as follows: A node S looking for D sends out
a couple snakes. If one of the snakes finds an advertisement for D, the algorithm follows this
advertisement and proceeds in the same way as the simple SNAKE search algorithm. If no hint for
D but an advertisement for one of its friends, say F, is found, the path towards F is followed. Node
F then starts a search for D unless it already knows a path to D.

Subsequent searches for D will succeed with a higher probability, as F already knows a path
to D. And if the friendship function is symmetric, F benefits as well: since node D knows a path
to F, searches for F will succeed with an increased probability.

8.3.2 Analysis

If the path discovery probability to a single node is p, then the probability of finding at least one
out of m friends of D is

p1 = 1− (1− p)m

Assuming that the selected friend node F already knows a path to D with probability η , the prob-
ability of discovering a path through F is

p2 = η + p(1−η)

The path discovery probability using friend nodes is therefore

p f = 1− (1− p)(1− p1 p2) = 1− (1− p)(1− (1− (1− p)m)(η + p(1−η)))
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Figure 8.3: FRIENDNODESNAKE model. η is the probability that the contacted friend node
knows a path to D already.

Note that this equation assumes that the nodes and their advertisements are uncorrelated. Such
an assumption is reasonable because the friends are chosen using a mathematical function on the
node ID and these node IDs are randomly spread in the network. It would not be valid, however,
if the node neighbors were selected as friends, for example.

p f increases linearly with η between the minimum

p f = 1− (1− p)(1− p(1− (1− p)m)) if η = 0

and the maximum

p f = 1− (1− p)(1− (1− (1− p)m)) if η = 1

The graphs for some selected parameters are drawn in Figure 8.4 and Figure 8.5. They shows that
high path discovery probabilities can be reached with high values for η and many friend nodes,
even if the path discovery probability without friends, p, is small (e. g. 50 %).

For high values of p, the gains are less substantial. In particular, a few friend nodes are enough
to raise the probabilities.

8.3.3 Optimal Performance - a Contradiction?

In Chapter 3, we derived the theoretically optimal performance of the RANDOMQUERY algorithm.
Assume we use this algorithm in combination with the FRIENDNODESNAKE search algorithm. If
p is the theoretically achievable path discovery probability, then p f ≥ p beats this limit. This may
look astonishing at first sight, but there are three important differences:

Friend relationship. The RANDOMQUERY algorithm assumes that there is no structure what-
soever in the network. The derived optimal probability therefore applies to unstructured
networks only. Using a friend relationship introduces a structure in the network.

Several searches. The RANDOMQUERY algorithm performs a single search for a single node and
reports failure if the destination node was not found. The FRIENDNODESNAKE algorithm
searches for multiple nodes at the same time. If the destination node was not found, it
performs an additional search at one of the friend nodes.
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Figure 8.4: Path discovery probability of the FRIENDNODESNAKE algorithm in function of η .

Cached (known) paths. The RANDOMQUERY algorithm executes each search independently. It
does not take advantage of similar paths that were previously discovered. The FRIEND-
NODESNAKE algorithm caches routes between friend nodes.

8.3.4 Distributed versus Centralized

An interesting result is found if all nodes share the same friend node F. Formally,

f (W) = {F} ∀W in the network

F can then be regarded as a rendezvous point [18]. Since each node only needs to stay in touch with
this node, high path discovery probabilities could be achieved at relatively low cost. This, however,
is a centralized scheme rather than a distributed scheme and has two important disadvantages:

. Scalability. It does not scale since F’s traffic increases linearly with the number of nodes.

. Dependence. The network heavily depends on node F and possibly experiences a substan-
tial degradation when F fails or disconnects.

Both problems should be avoided in ad hoc networks. One of the goals of ad hoc networks (and
self-organization in general) is to avoid such dependence and to react smoothly to errors and
failure.

Nevertheless, this shows that the FRIENDNODESNAKE algorithm can be used to build fully
distributed as well as centralized or semi-centralized protocols.
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Figure 8.5: Path discovery probability of the FRIENDNODESNAKE algorithm as a function of the
path discovery probability without friend nodes. (a) The friend nodes do not know a path to the
destination node. (b) All friend nodes know a path to the destination node.

8.3.5 Variants

In large networks, the FRIENDNODESNAKE search algorithm could be extended to consider
second-order friends (friends of friends) or higher-order friends. If the transitive closure of the
friend relationship includes all nodes of the network, all nodes can be reached through friends.
With the friend relation based on equation (8.1), for example, all nodes can be reached within m
steps or less.

In addition, the paths between friends could be maintained proactively in order to have η ≈ 1.
Due to the cost of such an operation, this probably makes sense in large networks with very low
mobility only or if the proactive maintenance is restricted to some important nodes only.
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Chapter 9
A Geometric Approach

When analyzing and discussing the path discovery probability in Chapter 3 and Chapter 4, we
regarded the network as a set of nodes. With that approach, we could determine the expected
probability of discovering a path between two nodes independent of their relative or absolute
position in the network. These equations assumed that advertisements are uniformly distributed
and searched in the network.

This assumption, however, is difficult to fulfill. In the analysis of Chapter 5, we have seen that
algorithms based on snakes will advertise and search their neighborhood in a non-uniform way.
The density of advertised nodes is function of the distance to the destination node D. Similarly,
the density of queried nodes is function of the distance to the source node S.

In this chapter, we therefore analyze the path discovery probabilities using a model that re-
spects these properties. After stating the assumptions, we present two models: the overlapping
circles model (Section 9.2) and the more general overlapping rings model (Section 9.3).

9.1 Model and Assumptions

We assume an infinite network with homogeneously distributed nodes. The node density, λ , must
be high enough for the geometric approximation to be valid.

By the geometric approximation, we refer to the assumption that the physical distance between
two nodes increases approximately linearly with the number of hops of the shortest path connect-
ing them. Intuitively, this seems to hold for high node densities. Figure 9.1 shows two hop-limited
floods in networks with different node densities. In the dense network, the flood covers an almost
circular area whereas its shape is very irregular in the other network.

In a network with these properties, we select two nodes S and D and denote their physical
distance by d. The destination node D places advertisements at random nodes X with probability
pA(‖rD− rX‖), where ‖rD− rX‖ stands for the physical distance between D and X. Similarly, the
probability that S searches at a node Y depends on the distance of these two nodes and is denoted
pS(‖rS− rY‖).

9.2 Overlapping Circles Model

Let us first consider the case where the advertisements are put and searched in a circular area
around the destination node D and the source node S, respectively, with a constant probability. If
this constant probability is inversely proportional to the circle area, we assure that the expected
number of advertised and queried nodes remains constant for a any circle radius, rmax. Hence, we
define

pA(r) = pS(r) =

{
c2

r2
max

for r ≤ rmax

0 otherwise
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0

0

Geometric approximation (neighbors: 6.2832)

0

0

Geometric approximation (neighbors: 9.4248)

(a) E[neighbors] = 6.28 (b) E[neighbors] = 9.42

Figure 9.1: Random networks with a hop-limited flood. For high node densities, the reached area
is almost circular.

To assure that the density does not exceed 1, rmax ≥ c is required. The expected number of adver-
tised and queried nodes is

ā = s̄ = πrmax
c2

rmax
= πc2

and therefore independent of rmax, as desired. In this model, we are interested in the path discovery
probability in function of d and rmax.

Figure 9.2: Overlapping circles model. When increasing the circle radius, rmax, and decrease the
advertisement and search density to keep the number of advertised and queried nodes constant.

9.2.1 Path Discovery Probability

The path discovery probability depends on the overlapping area as well as on the density. Since the
nodes are homogeneously distributed, the number of nodes in a given area is Poisson distributed.
Applying equation (3.6) of the RANDOMQUERY algorithm on the overlapping area, we obtain

lnq = Ac(d,rmax,rmax)λ ln
(

1− c2

r2
max
· c2

r2
max

)

where Ac(d,rmax,rmax) refers to the the circle intersection area derived in Section B.1.
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9.2.2 Results and Discussion

Figure 9.3 shows the path discovery probability in function of d for several values of rmax. We
have chosen c = 1.
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Figure 9.3: Path discovery probability in the overlapping circles model with c = 1 for various
rmax. The optimal value for rmax depends on the desired probability.

Obviously, we can reach more nodes by increasing the circle area. Decreasing the advertise-
ment and search density, however, decreases the probability of path discovery. The optimal value
for rmax therefore depends on the desired probability. If we aim a path failure probability of at
most q = 10−2, for example, rmax should be chosen at around 5 (if c = 1), as this maximizes the
distance d.

But more interestingly, this model allows us to compare flooding to probabilistic path discov-
ery. If rmax = c = 1,

pA(r) = pS(r) =

{
1 for r ≤ c
0 otherwise

This corresponds to hop-restricted flooding, achievable using ERS [15] for example. Path discov-
ery is deterministic in this case, but the reachable area is minimal, obviously. On Figure 9.3, this
case is represented by the vertical line at d = 2c = 2.

If we increase rmax, we rotate this line (note that it is not a straight line any more) towards the
horizontal axis. For rmax = ∞, the line would end up being horizontal at q = 1 = 100. This case,
however, is not interesting because we would never discovery any paths.

From Figure 9.3, it is clear that restricted flooding is the optimal choice if and only if we re-
quire deterministic path discovery, i. e., q = 0. In all other cases, probabilistic path discovery is
advantageous. Although this may look like a simple play with numbers, it raises serious doubts
about whether flooding makes sense to discover paths in ad hoc networks. As mentioned in Sec-
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tion 6.4.1 already, wireless networks are inherently probabilistic. If time is limited – which is
always the case in real-world scenarios – flooding cannot (mathematically) guarantee discovering
a path if one exists. Therefore, q is always bigger than zero.

From a more pragmatic point of view, flooding can possibly achieve very high path discovery
probabilities. If q = 10−20, for example, the optimal value for rmax would be close to 1, making it
clearly not worth using a more complicated algorithm. Yet, probabilities as low as this are hardly
ever demanded in path discovery. The failure rate due to other effects in a wireless network is
much higher than that. And since the curves are steep at the beginning, we can hope for a quite
substantial gain by lowering our expectations.

9.3 Overlapping Rings Model

In the overlapping circles model, we have chosen a specific functions for pA(r) and pS(r). In
practical cases, such uniform densities and sharp cut-offs require expensive algorithms. We would
therefore like to generalize the calculations for any functions pA(r) and pS(r). Theoretically, this
can be done with the equation for continuous heterogeneous densities (equation (3.7)) derived for
the RANDOMQUERY algorithm. But because of the circular shape of the densities, the formulas
quickly become complicated even for simple density functions (e. g., linear functions). Finding
analytical solutions is hardly possible, if at all.

We therefore propose a numerical approximation using piece-wise constant density functions
over a finite domain. Formally, we define

pA(r) =

{
pA,i for rA,i−1 ≤ r < rA,i
0 otherwise

for i ∈ {1,2, ...,nA} and rA,0 = 0. Similarly,

pS(r) =

{
pS, j for rS, j−1 ≤ r < rS, j
0 otherwise

for j ∈ {1,2, ...,nS} and rS,0 = 0. Each constant piece of these functions generates one homoge-
neous ring. Hence, we end up with two series of rings, overlapping with each other.

9.3.1 Path Discovery Probability

Each pair of overlapping rings generates an area1 with homogeneous path discovery parameters. In
logarithmic notation, we can sum up these contributions. Using equation (3.6), the path discovery
failure probability can therefore be expressed as

log q =
nA

∑
i=1

nS

∑
j=1

Ar(d,rA,i−1,rA,i,rS,i−1,rS,i)λ ln (1− pA,i pS, j)

where Ar(d,u1,u2,v1,v2) denotes the intersection area of two rings distant by d with radii u1 and
u2, and v1 and v2, respectively. Section B.2 gives an analytical expression for this function.

1This area may consist of zero, one or two pieces, depending on how the rings are overlapping.
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9.3.2 Results and Discussion

The overlapping rings model allows us to compare the path discovery probability for various
density function shapes. In the following paragraphs, we present and discuss three cases. The
density functions were normalized to obtain the same ā · s̄ product. This allows us to compare the
shapes not only qualitatively, but quantitatively, too.

9.3.2.1 Two Equally-Sized Circles

To begin with, let us verify the the path discovery probability of two overlapping circles. As shown
in Figure 9.4, the shape matches with the one calculated using the circle overlapping model and
drawn in Figure 9.3. This shape is not very good, however. For short distances, the probability is
unnecessarily high whereas for long distances, it slowly fades out. There is no sharp cut-off. A
99 % probability (q< 10−2) is reached up to d = 14. At d = 24, the probability drops below 90 %.
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Figure 9.4: Path discovery probability of two overlapping equally-sized circles.

9.3.2.2 Two Equally-Sized Rings

The shape of the path failure probability generated by two overlapping rings looks more promising.
As seen on Figure 9.5, the probability is almost constant at about 99 % over a wide range and the
cut-off is much sharper than with circles. For very low distances, the path failure probability drops
to very low values. This is due to the fact that the rings overlap almost completely. The probability
drops below 99 % at d = 21 and below 90 % at d = 24.
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Figure 9.5: Path discovery probability of two overlapping equally-sized rings.

9.3.2.3 Big and Small Circle

Interesting shapes can also be obtained with circles of different sizes. Figure 9.6 shows the shape
for a big circle and a small circle with decaying density. When normalizing, we gave the big circle
16 times the weight of the small circle.

As long as the small circle is completely within the big circle, the probability remains constant.
When the small circle moves out of the big one, the path discovery probability quickly drops. In
the example on Figure 9.6 (a), a path discovery probability of 99 % can be maintained up to d = 22
and the 90 % bound is crossed at d = 25. On Figure 9.6 (b), the cut-off is less steep: 99 % is found
at d = 19 and 90 % at d = 25.

This case models the SNAKE-BREEDINGSNAKE algorithm in a very simplified way: adver-
tisements are placed far away from the destination node using breeding snakes whereas the search
is done with comparably short search snakes.

9.3.3 Discussion

The overlapping rings model offers an alternative way of studying path discovery probabilities.
Its assumptions are not very realistic, though. It us unlikely that large networks with uniformly
distributed nodes will be deployed. Moreover, we usually want to be able to discover path between
all nodes in a network, not only between nodes that within a certain distance of each other.

Nevertheless, it gives us a useful tool to study and compare – qualitatively and quantitatively
– different advertisement and search strategies in a top-down manner. And last but not least, it
allows us to develop some intuition for good and bad densities.
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Figure 9.6: Path discovery probability obtained with a big circle and a small circle with decaying
density.
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Chapter 10
Applications of Path Discovery Algorithms
Based on Snakes

So far, we have presented and analyzed various algorithms based on snakes and the RANDOM-
ENCOUNTER concept. In this chapter, we discuss selected real-world applications where snakes
could be useful.

In general, snake algorithms are more suitable for medium and large scale ad hoc networks.
Recall from Chapter 3 that the number of nodes to advertise and search can be approximated by
c
√

N where c is a constant depending on the path discovery probability. For small networks (up
to 20 nodes), c ≈

√
N and therefore c

√
N ≈ N. The gain as compared to simple flooding-based

algorithms (e. g. AODV [11], DSR [12]) is marginal. In bigger networks, however, c�
√

N,
making the snake algorithms much cheaper than flooding.

Furthermore, snake algorithms are suited for networks with moderate and low node mobil-
ity. In networks with no mobility at all, snake algorithms may be used as well. In case of high
node mobility, the snakes will be destroyed quickly after creating them. Purely reactive protocols
therefore work better in such scenarios.

Note that is is not required that all nodes travel at moderate speed. If a single node moves
fast, it mainly decreases its own probability of being found in the network. The probability of
discovering the other nodes won’t suffer a lot.

In the following, we first discuss two concrete applications: sensor networks and multi-hop
mobile phone networks. Our purpose is to give a short overview and to explain why snakes could
be useful in these networks. A complete study is left for future work.

Finally, we show how snakes can be combined with location based protocols.

10.1 Mobile Sensor Networks

Today’s probably largest deployments of ad hoc networks are sensor networks. Some of them are
static with occasional short link failures. Others, however, include mobility or frequent topology
changes due to environmental conditions. In a forest, for example, the RF propagation depends on
the humidity, which changes throughout the day and with the weather. Links may therefore break
or reappear just as if the nodes had moved around.

The goal of most sensor networks is to transmit the collected data to a sink. Therefore, only
nodes acting as sinks need to advertise themselves in the network. If it does not matter to which
sink to transmit the data, a node can simply search for any advertisement in the network and follow
the corresponding snake towards the sink. In that case, the total number of advertisement (placed
by all nodes) in the network defines the path discovery probability.

Snakes are particularly well-suited for sensor networks in which very few nodes need to trans-
mit data to a sink. This could be the detection of rare events in a big area, for example. In such
networks, it is expensive to maintain routes from all nodes to their sinks. Heuristic path discovery
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with snakes provides a much cheaper solution. Furthermore, path optimality is not a big concern
since the amount of data is usually small. In fact, instead of setting up a path, the data could
directly be included in the search snake packet.

We propose to use the MOBILESNAKE-MOBILEBREEDINGSNAKE algorithm for mobile net-
works (see Section 7.1). The parameters depend on the size and shape of the network. Since the
advertisement density decreases with increasing distance from the sinks, it is advantageous to have
the sinks in the center of the network rather than at the edge. If several nodes act as a sinks, these
nodes should be well distributed over the whole network in order to achieve optimal performance.

10.2 Multi-hop Mobile Phone Networks

In today’s mobile phone networks, a mobile device always communicates with a base station.
Mobile phones never transmit packets directly to each other. This implies that the desired service
area must be covered completely by base stations. To lower the amount of necessary base stations,
the deployment of multi-hop mobile phone networks has been proposed [5]. In such networks,
a mobile phone would use other mobile phones as relays to reach either a base station or the
destination mobile phone.

While stochastic routing would be a suitable routing strategy, snake algorithms could be used
for path discovery in such networks. We propose to use the MOBILEBREEDINGSNAKE advertise-
ment algorithm to advertise the mobile devices as well as the base stations. Since base stations
play an important role and have completely different energy constraints, it makes sense to advertise
them more heavily.

A slightly modified search algorithm must be used for such networks. A node S looking for
a D launches search snakes to find either an advertisement for D or an advertisement for a base
station. In the latter case, the base station routes the packet through the backbone network of
the provider to the base station closest to D, where another set of search snakes are sent to find
an advertisement for D. For this scheme to work, each node must register itself at a nearby base
station from time to time.

10.3 Location Based Protocols

The RANDOMENCOUNTER concept as well as the snake network primitive can be combined with
a number of other protocols. In this section, we briefly discuss how the snake algorithms can be
used in combination with location based routing strategies.

If all nodes know their own geographic position in the network (e. g. using GPS or a position
estimation method [32] [33]), a good path can be discovered by using a geographic or Cartesian
routing protocol (e. g. LAR [17]). Nevertheless, there are two problems with this approach:

. The position of the destination D node must be known when a path is build.

. In case of mobility, the exact position of the destination node cannot be known. At the
estimated position, a local search is necessary.

To solve both these points, snake algorithms can be used.
The first problem can be solved by using snake algorithms as a probabilistic distributed loca-

tion service. Each node uses the MOBILEBREEDINGSNAKE algorithm to periodically advertise
its current position to some other nodes. In contrast to the usual MOBILEBREEDINGSNAKE al-
gorithm, however, an advertisement only consists of the position of the advertising node together
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with a timestamp. A node S looking for a destination node D then searches an advertisement for D
using snakes. The position of the most recent advertisement found is used to construct a path to the
destination node. Note, however, that more sophisticated distributed location services have been
proposed. GLS [18], in particular, achieves higher performance by using the position information
for the location service part as well.

To solve the second problem, each node can periodically send out a couple of short snakes to
advertise itself in the surroundings. The length of these snakes can be chosen as a function of the
node’s speed. The local search at the end of geographic routing algorithms is then performed by
sending search snakes.
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Chapter 11
Conclusion

11.1 Summary

In this work, we studied probabilistic path discovery algorithms for ad hoc networks based on the
RANDOMENCOUNTER concept.

We first introduced two theoretical algorithms (the RANDOMQUERY and the FIXRANDOM-
QUERY algorithm) and could analytically prove that path discovery is possible using O(

√
N) nodes

only. This is substantially better than flooding techniques which typically contact O(N) nodes for
path discovery. The result is valid if and only if advertisements are placed and searched uniformly
among all nodes, which is not easy to implement in a cheap way.

To place and search advertisements in a random (although non-uniform) fashion, we intro-
duced a network primitive that we call snakes. Snakes are random paths built with unicast packets.
A neighborhood list allows them to reach distant areas.

We then presented three snake-based path discovery algorithms for static networks and an-
alyzed them through simulations. With regard to the path discovery probability, the SNAKE-
BREEDINGSNAKE algorithm showed the best performance. In the chosen simulation network, the
best results required only about

√
2 more nodes to be contacted as compared to the theoretical

optimum. The drawback of all snake algorithms is the length of the discovered paths. Since the al-
gorithms do not give any guarantee about path optimality, the discovered paths can be significantly
longer than the optimal path and even be much longer than the network diameter. Probabilistic
path discovery algorithms are therefore best suited in combination with (stochastic) routing algo-
rithms that continuously optimize paths. One such algorithm is AntHocNet [25].

For ad hoc networks with mobility and node failure, we presented the MOBILESNAKE-MO-
BILEBREEDINGSNAKE algorithm. Both the advertisement and the search phase are slightly more
complicated in order to deal with broken snakes and aging advertisements. We also proposed
a search algorithm based on ERS flooding to obtain a deterministic path discovery algorithm.
Furthermore, we introduced and analyzed the FRIENDNODESNAKE search algorithm as an opti-
mization technique. This algorithm is able to beat the theoretical maximum performance of the
RANDOMENCOUNTER concept by adding a lightweight probabilistic structure to the network.
The evaluation and verification of these algorithms in a network simulator is left to future work.

Finally, we approached probabilistic path discovery in large ad hoc networks from a geomet-
rical point of view. Within the overlapping circles model, we could show that flooding is optimal
if and only if deterministic path discovery is required.

11.2 Future Work

Figure 11.1 summarizes what we have shown in this thesis and proposes future research directions
in the area of probabilistic path discovery.
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Figure 11.1: Overview of achieved and future work.

As mentioned before, the snake algorithms remain to be simulated in a scenario with node
mobility and failure. Both the probability of path discovery and the resulting path length need to
be evaluated under different mobility models.

Furthermore, the snake algorithms should be plugged in into a routing protocol like AntHoc-
Net [25] to evaluate the path length convergence.

Finally, the optimization techniques were presented on the level of ideas with feasability argu-
ments. More work is required to evaluate them in different scenarios.

11.3 Main Contribution and Conclusion

Although non-deterministic path discovery algorithms have been proposed before [29] [34], the
probabilistic nature of these existing schemes is rather a side-effect than a design choice. To our
knowledge, this is the first attempt to cut the costs of path discovery by leveraging on the path
discovery probability.

Our attempts differ from many other proposals in that we try to minimize the number of nodes
involved in path discovery instead of minimizing the number of packets. To achieve that, we do
not require any additional knowledge (i. e., position) at the nodes. Hence, our algorithms can be
plugged in as a replacement (not an optimization) for flooding.

Most ad hoc networks can accept a small fraction of unsuccessful path discoveries. They must
so, since path discovery may fail due to simple packet loss as well. Therefore, we believe that
probabilistic path discovery is extremely viable in ad hoc networks.
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Appendix A
List of Symbols

Variables

a Number of advertisements placed (random variable)

ā Average number of advertisements placed

d Physical distance

lA Length of an advertisement snake (number of hops)

lS Length of a search snake (number of hops)

mA Number of advertisement snakes

mS Number of search snakes

N Number of nodes in the network

pA Probability of placing an advertisement at a specific node

pS Probability of searching a specific node

s Number of nodes searched for an advertisement (random variable)

s̄ Average number of nodes searched for an advertisement

t Time

tb Time at which an advertising snake is sent (MOBILEBREEDINGSNAKE advertise-
ment algorithm)

td Lifetime (time duration) of an advertisement (MOBILEBREEDINGSNAKE adver-
tisement algorithm)

tl Interval between sending breeding snakes (MOBILEBREEDINGSNAKE advertise-
ment algorithm)

ts Interval between sending short, non-breeding snakes (MOBILEBREEDINGSNAKE

advertisement algorithm)

w1 Number of breeding steps (BREEDINGSNAKE advertisement algorithm)

w2 Number of continuation steps (BREEDINGSNAKE advertisement algorithm)

wA Number of hops between advertisements (LONGSNAKE advertisement algorithm)
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α Quality measure for algorithms based on the RANDOMENCOUNTER concept

λ Node density (nodes/m2)

λA Advertised node density (nodes/m2)

λS Searched node density (nodes/m2)

Functions

Ac(d,u,v) Intersection area of two circles of radii u and v. The distance between the circle
centers is d.

Ar(d,u1,u2,v1,v2) Intersection area of two rings. The distance between the two ring centers is
d. The first ring has radii u1 and u2 and the second ring has radii v1 and v2.

b(∆t) Breeding probability (MOBILEBREEDINGSNAKE advertisement algorithm)

f (W) Friend relationship function (FRIENDNODESNAKE search algorithm)

h(x) Hamming weight (binary) of x

Nodes

D Destination node

F Friend node (FRIENDNODESNAKE search algorithm)

S Source node that wants to establish a path to D

V Encounter node
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Intersection Areas

In Chapter 9, we need the circle intersection area, C(d,u,v), as well as the ring intersection area,
R(d,u1,u2,v1,v2), to calculate the path discovery probability. In the following sections, we derive
the appropriate equations.

B.1 Circle Intersection Area

Assume two circles of radius a and b respectively. The distance between the circle centers is
denoted by d, as shown in Figure B.1 (a). The intersection area consists of two chords. One of
them is filled in dark grey in Figure B.1 (a). The area of the chord is the difference between the
corresponding segment and the triangle indicated in light grey.

(a) (b)

Figure B.1: (a) Schema to calculate the intersection area of two circles. (b) Schema to calculate
the intersection area of two rings.

Let us first calculate α using the equation

cos(α) =
d2 + a2−b2

2ad

Note that the expression on the right hand side is in the range [-1, 1] if and only if |a− b| ≤ d ≤
a + b. Indeed, if d > a + b, the two circles don’t intersect and the intersection area is zero. If
d < |a−b|, the smaller circle is completely within the bigger circle. The intersection area in that
case is the area of the smaller circle.

In the good range, the area of the section is

Asection = πa2 2α
2π

= a2α
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and the area of the light grey triangle can be written as

Atriangle =
2a2 sin(α)cos(α)

2sin π
2

= a2 sin(α)cos(α)

Hence, the area of the chord is

A1 = Asection−Atriangle = a2 (α− sin(α)cos(α))

For reasons of symmetry, the area of the second chord is

A2 = b2 (β − sin(β )cos(β ))

with

cos(β ) =
d2 + b2−a2

2bd
The intersection area between the two circles is therefore

Ac(d,a,b) =





0 if d > a + b
π min(a2,b2) if d < |a−b|
a2 (α− sin(α)cos(α)) + b2 (β − sin(β )cos(β )) otherwise

A slightly different, but equivalent expression can be found on MathWorld [35].

B.2 Ring Intersection Area

The intersection area of two rings can be calculated with four circle intersection areas, as shown in
Figure B.1 (b). If the ring radii are a1 and a2 (with 0≤ a2 ≤ a1), and b1 and b2 (with 0≤ b2 ≤ b1),
respectively, the intersection area in function of their distance d and radii is

Ar(d,a1,a2,b1,b2) = Ac(a1,b1)−Ac(a2,b1)−Ac(a1,b2) + Ac(a2,b2)

Note that this equation also holds for special cases, e. g. if one ring is within the other ring or
if the rings do not intersect.
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