
Super-efficient Aggregating History-independent
Persistent Authenticated Dictionaries?

Scott A. Crosby and Dan S. Wallach

Rice University, {scrosby,dwallach}@cs.rice.edu

Abstract. Authenticated dictionaries allow users to send lookup requests to an
untrusted server and get authenticated answers. Persistent authenticated dictio-
naries (PADs) add queries against historical versions. We consider a variety of
different trust models for PADs and we present several extensions, including sup-
port for aggregation and a rich query language, as well as hiding information
about the order in which PADs were constructed. We consider variations on tree-
like data structures as well as a design that improves efficiency by speculative
future predictions. We improve on prior constructions and feature two designs
that can authenticate historical queries with constant storage per update and sev-
eral designs that can return constant-sized authentication results.

1 Introduction
This paper considers data being stored in a cryptographic and tamper evident fashion.
The earliest example of such a data structure was the Merkle tree [26], where each
tree node contains a cryptographic hash of its childrens’ contents. Consequently, the
root node’s hash value fixes the values of the entire tree. Hash-based data structures
have been used in a variety of different systems, including smartcards [17], outsourced
databases [41], distributed filesystems [29, 24, 35, 16], graph and geometric search-
ing [19], tamper-evident logging [11, 12, 37], and many others. These systems are often
built around the authenticated dictionary [31, 23] abstraction, which supports ordinary
dictionary operations, with lookups returning the answer and a proof of its correctness.

In systems where data changes values over time, such as stock ticker data, revision
control systems [38], or public key infrastructure, participants will want to query histor-
ical versions or snapshots of the repository as well as the most recent version. Persistent
data structures were developed to support these features and have been extensively stud-
ied [8, 22], particularly with respect to functional programming [33, 4].

Persistent authenticated dictionaries (PADs) combine these features and were intro-
duced by Anagnostopoulos et al. [1], using applicative (i.e., functional or mutation-free)
red-black trees and skiplists, requiring O(log n) storage per update.

In Sect. 2 we discuss threat models and features that PADs may support. In Sect. 3,
we show how to adapt Sarnak and Tarjan’s construction [36] in order to build PADs

? The authors wish to thank the anonymous referees for their helpful comments and feedback.
We also thank the program chairs for allowing us to expand our paper beyond its original
length to better address the referees’ concerns. This research was funded, in part, by NSF
grants CNS-0524211 and CNS-0509297.

with lower storage overheads, including a design with constant storage per update. In
Sect. 4 we develop super-efficient PADs based around a different design principle, of-
fering constant-sized authentication results, as well as constant storage per update. In
Sect. 5 we summarize the expected running times of our algorithms. Finally, in Sect. 6
we describe future work and conclusions.

2 Definitions and models

In this paper, we focus on authenticating set-membership and non-membership queries
over a dynamic set, stored on an untrusted server. To prevent the server from lying about
the data being stored, the author includes authentication information permitting lookup
responses to be verified.

The authenticated dictionary [31] abstraction supports the ordinary dictionary oper-
ations, I(K,V) and D(K), which update the contents. Lookups,
L(K)→ (V, P) return both the answer or � if no such key exists, and a mem-
bership proof P of the correctness of their result. Ultimately, a server must prove that a
given query result is consistent with some external data, such as an author’s signature
on the tree’s root hash.

Authenticated dictionaries become persistent [1] when they allow the author to take
snapshots of the contents of the dictionary. Queries can be on the current version, or any
historical snapshot. PADs ideally have efficient storage of all the snapshots, presumably
sharing state from one snapshot to the next.

2.1 Threat model

We make typical assumptions for the security of cryptographic primitives. We assume
that we have idealized cryptographic one-way hash functions (i.e., collisions never oc-
cur and the input can never be derived from the output), and that public key cryptog-
raphy systems’ semantics are similarly idealized. We also assume the existence of a
trusted PKI or other means to identify the public key associated with an author.

In this paper, we consider a trust model with three parties: a trusted author with lim-
ited storage and possibly intermittent connectivity, an untrusted server with significant
storage and a consistent online connection, and multiple clients who perform queries
and have limited storage.

The author asks the server to insert or remove (key, value) pairs, providing any
necessary authentication information. When clients contact the server they will verify
the resulting proof which will include validating the consistency of the server’s data
structure as well as the author’s digital signature.

We also consider scenarios where the author of a PAD is not trusted, which can
be relevant to a variety of financial auditing and regulatory compliance scenarios. For
instance, the author may wish to maliciously change past values of the PAD, possibly
in collusion with the server. Or, the author may be responsible for collecting and aggre-
gating records, such as a list of bank accounts and balances and attempt to misbehave.
Fortunately, if the author ever signs inconsistent answers or it improperly aggregates
records, its misbehavior can be caught by clients and auditors.

2.2 Features

An authenticated dictionary (persistent or not) may support many features. In this sec-
tion, we describe features supported by the dictionaries we investigate.

Super-efficiency. The proof returned on a lookup request is constant-sized. Our tuple-
based PADs, described in Sect. 4 offer super-efficiency.

Partial persistence. The PADs we consider are actually partially persistent, mean-
ing that although any version of the authenticated dictionary may be queried, only the
latest version can be modified.1 Whenever we use the term “persistent” in this paper,
we really mean “partially persistent.” To this end, we offer two additional operations,
S() → V is used to take a snapshot of the current contents of the dictio-
nary and returns a version number. LV(K,V) → (V, P) looks up the
value, if any, associated with a key in a historical snapshot and returns a proof P of the
correctness of the result. Snapshots can be taken at any time. For simplicity when we
evaluate costs, we will assume a snapshot is taken after every update.

History independence. Some data structures can hide information as to the order in
which they were constructed. For instance, if data items are stored, sorted in an array,
no information would remain as to the insertion order. History independence can derive
from randomization; Micciancio [28] shows a 2-3 tree whose structure depends on coin
tosses, not the keys’ insertion order.

History independence can also derive from data structures that have a canonical or
unique representation [32]. To this end, our data structures are “set-unique” [2], mean-
ing that a given set of keys in the dictionary has a unique and canonical representation
(see Sect. 3.2). Our tree-based PAD designs and some of our tuple-based PADs are
history-independent.

In a persistent dictionary, history independence means that if multiple updates occur
between two adjacent snapshots, the client learns nothing as to the order in which the
updates occurred and the server learns nothing if it receives the updates as a batch. In
addition, it must not be possible for a client to learn anything about the keys in one
snapshot, given query responses from any other snapshots.

Aggregates. Any tree data structure may include aggregates that summarize the chil-
dren of a given node (e.g., capturing their minimum and maximum values or their sum).
These aggregates are valuable on their own and may be used for searching or other ap-
plications (see Sect. 3.1). Our tree-based PADs support aggregates.

Root authenticators. For each snapshot, it would be beneficial if there was a single
value that fixes or commits the entire dictionary at that particular time. This value can
then be stored and replicated efficiently by clients, stored in a time-stamping system [21,
9], or tamper-evident log [11, 12, 37]. Root authenticators simplify the process of dis-
covering when an untrusted author or server may be lying about the past. Mistrusting

1 In the persistency literature [13], the term “persistent” is reserved for data structures where
any version, present or past, may be updated, thus forming a tree of versions. Path copying
trees, described in Sect. 3.3, are an example of such a data structure. Confluently persistent
data structures permit merge operations between snapshots [15].

clients need only to discover that the author has signed different root authenticators for
the same snapshot. They need not look any deeper.

3 Tree-based PADs
In this section, we describe how we can build PADs with balanced search trees. Tree-
based PADs have membership proof sizes, update sizes and membership proof verifica-
tion times that are logarithmic in the number of keys in the dictionary. Tree-based PADs
offer a range of query time and storage-space tradeoffs. In this section, we first describe
the three components from which we build our tree-based PADs: Merkle trees, treaps,
and persistent binary search trees. We then show how to combine them.

3.1 Merkle trees

Given a search tree, where each node contains a key, value, and two child pointers,
we can build an authenticated dictionary by building a Merkle tree [26]. For each
node x, we assign a subtree authenticator x.H with the following recurrence: x.H =

H(x.key,H(x.val), x.left.H, x.right.H). H denotes a cryptographic hash function. The
root authenticator, root.H, authenticates the whole tree. It may then be published or
signed by the author. Merkle trees also support a feature called Merkle aggregation
where nodes in a search tree can be annotated with additional data that may be accumu-
lated up the tree. (More on aggregation below.)

A membership proof, seen in Fig. 1 and returned on a L request is a proof
that a key kq is in the tree. It consists of a pruned tree containing the search path to kq.
Subtree authenticators for the sibling nodes on the search path are included in the proof
as well as subtree authenticators of the children of the node containing kq, if kq is found.
From this pruned tree, the root authenticator is reconstructed and compared to the given
root authenticator. We can prove that a key is not in the tree by showing that the unique
in-order location where that key would otherwise be stored is empty.

For a balanced search tree, a membership proof has size O(log n), and can be gen-
erated in O(log n) time if the subtree authenticators are precomputed. Conventional im-
plementations of authenticated search trees implement a logical subtree authenticator
cache storing the subtree authenticator for each node in the node itself. Note that this
cache is optional, because the server could certainly recompute any hash on the fly from
the existing tree. Without a cache, generating a membership proof requires O(n) time
for recomputing subtree authenticators of elided subtrees. Of course, the cache has ob-
vious performance benefits. In Sect. 3.3, we will consider how, where, and when these
subtree authenticators are cached and investigate tradeoffs in caching strategies.

Merkle aggregation. Merkle aggregation [11] was originally applied to annotating
events in a Merkle tree storing a tamper-evident log. These annotations are then aggre-
gated up to the root of the tree where they may be directly queried or used to perform
authenticated searches. For example, in a log of bank transactions, annotations could
be flags for notable transactions, dollar values aggregated by sum, or time intervals
aggregated by min and max bounds. To prevent tampering, the annotations of a node
are included in the subtree authenticator of its parent. If the author is not trusted, these
annotations can be checked by auditors to verify the author’s proper behavior.

We extend Merkle aggregation to binary search trees that include keys and values
in interior nodes. We let the subtree aggregate of a node x be x.A, Γ be a function that

computes the annotation associated with a key and value pair, and ⊕ be a function that
aggregates. If we define x.∗ = H(x.H, x.A), then we can describe the Merkle aggrega-
tion over a search tree with the formulas: x.A = Γ(x.key, x.val)⊕ x.left.A⊕ x.right.A and
x.H = H(x.key,H(x.val), x.left.∗, x.right.∗). Wherever a host previously stored or in-
cluded the hash of a node in a proof, it will now include the node’s hash and aggregate,
which can be cached or recomputed as-needed.

3.2 Treap

Our tree-based dictionaries are based on treaps [3], a randomized search tree imple-
menting a dictionary. The expected cost of an insert, delete, or lookup is O(log n).
Treaps support efficient set union, difference, and intersection operations [6]. We could
have used any other balanced search tree that supports O(1) expected (not amortized)
node mutations per update, such as AVL or red-black trees [20], but we preferred treaps
for their set-uniqueness properties (discussed further below).

Each node in a treap is given a key, value, priority, and left and right child pointers.
Nodes in a treap obey the standard search-key order; a node’s key always compares
greater than all of the keys in its left subtree and less than all of the keys in its right
subtree. In addition, each node in a treap obeys the heap property on its priorities;
a node’s priority is always less than the priorities of its descendants. Operations that
mutate the tree will perform rotations to preserve the heap property on the priorities.
When the priorities are assigned at random, the resulting tree will be probabilistically
balanced. Furthermore, given an assignment of priorities to nodes, a treap on a given
set is unique.2 We exploit this uniqueness by creating deterministic treaps, assigning
priorities using a cryptographic digest of the key, creating a set-unique representation.

Assuming that the cryptographic digest is a random oracle, in expectation, each
insert and delete only mutates O(1) nodes, consisting of one node having a child pointer
modified and O(1) rotations. The expected path to a key in the treap is O(log n).

Benefits of a set-unique representation. Deterministic treaps are set-unique, which
means that all authenticated dictionaries with the same contents have identical tree
structures. If we build Merkle trees from these treaps, then any two authenticated dic-
tionaries with identical contents will have identical root hashes. Set-uniqueness makes
our treaps history independent. The root hash that authenticates a treap leaks no infor-
mation about the insertion order of the keys or the past contents of the treap, which may
be valuable, for example, with electronic vote storage or with zero-knowledge proofs.

History-independence is also useful if an dictionary is used to store or synchronize
replicated state in a distributed system. Updates may arrive to replicas out-of-order,
perhaps through multicast or gossip protocols. Also, by using a set-unique authenticated
data structure, we can efficiently determine if two replicas are inconsistent.

History independence makes it easier to recover from backups or create replicas. If
a host tries to recover the dictionary contents from a backup or another replica, history
independence assures that the recovered dictionary has the same root hash. Were a

2 Proof sketch: If all priorities are unique for a given set of keys, then there exists one unique
minimum-priority node, which becomes the root. This uniquely divides the set of keys in the
treap into two sets, those less than and greater than the key, stored in the left and right subtrees,
respectively. By induction, we can assume that the subtrees are also unique.

Fig. 1. Graphical notation for a membership
proof for M or a non-membership proof for
N. Circles denote the roots of elided subtrees
whose children, grayed out, need not be in-
cluded.

Fig. 2. Four snapshots in a Sarnak-Tarjan
versioned-node tree, starting with an empty
tree, then inserting R, then inserting S , then
deleting S . We show the archived children to
the left of a node and the current children to
the right. Note that R is modified in-place for
snapshot 2, but cloned for snapshot 3.

non-set-unique data structure, such as red-black trees used, the different insertion order
between the original dictionary and that used when recovering would likely lead to
different root hashes even though the recovered dictionary had the same contents.

3.3 Persistent binary search trees

Persistent search tree data structures extend ordinary search tree data structures to sup-
port lookups in past snapshots or versions. In this section we summarize the algorithms
proposed by Sarnak and Tarjan [36], who considered approaches for persistent red-
black search trees, and apply their techniques to treaps.

Logically, a persistent dictionary built with search trees is simply a forest of trees,
i.e., a separate tree for each snapshot. The root of each of these trees is stored in a snap-
shot array, indexed by snapshot version. Historical snapshots are frozen and immutable.
The most recent, or current snapshot can be updated in place to include inserted or re-
moved keys. Whenever a snapshot is taken, a new root is added to the snapshot array
and that snapshot is thereafter immutable.

Three strategies Sarnak and Tarjan proposed for representing the logical forest are
copy everything, path copying, and versioned nodes. They range from O(n) space to
O(1) space per update. Note that these different physical representations store the same
logical forest. The simplest, copy everything, copies the entire treap on every snapshot
and costs O(n) storage for a snapshot containing n keys.

Path copying uses a standard applicative treap, avoiding the redundant storage of sub-
trees that are identical across snapshots. Nodes in a path-copying treap are immutable.
Where the normal, mutating treap algorithm would modify a node’s children pointers,
an applicative treap instead makes a modified clone of the node with the new children
pointers. The parent node will also be cloned, with the clone pointing at the new child.
This propagates up to the root, creating a new root. Each update to the treap will cre-
ate O(1) new nodes and O(log n) cloned nodes. Storage per update is O(log n) when a
snapshot is taken after every update.

Versioned nodes are Sarnak and Tarjan’s final technique for implementing partially
persistent search trees and can represent the logical forest with O(1) storage per update.
We will first explain how versioned node trees work and then, in Sect. 3.4, we will show
how to build these techniques into treaps with Merkle hashes.

Rather than allocating new nodes, as with path copying, versioned nodes may con-
tain pointers to older children as well as the current children. While we could have an
infinite set of old children pointers, versioned nodes only track two sets of children
(archived and current) and a timestamp T . The archived pointers archive one prior ver-
sion, with T used to indicate the snapshot time at which the update occurred so that
LV’s know whether to use the archived or current children pointers. A versioned
node cannot have its children updated twice. If a node x’s children need to be updated
a second time, it will be cloned, as in path copying. The clone’s children will be set to
the new children. x’s parent must also be updated to point to the new clone, which may
recursively cause it to be cloned as well if its archived pointers were already in use. In
Fig. 2 we present an example of a versioned node tree.

Each update to a treap requires an expected O(1) rotations, each of which requires
updating the children of 2 versioned nodes, requiring a total of O(1) storage per update.
To support multiple updates within a single snapshot, we include a last-modified version
number in each versioned node. If the children pointers of a node are updated several
times within the same snapshot, we may update them in place. As with path copying
trees, saving a copy of the root node in the snapshot array is sufficient to find the data
for subsequent queries.

3.4 Making treaps persistent and authenticated

A persistent treap is just a forest of individual treaps, one for each snapshot, each of
which is an independent authenticated dictionary with the proscribed structure of a
treap. As each snapshot is an ordinary search tree, tree-based PADs naturally extend
to support queries of a given value’s successor, predecessor, and so forth. The choice
of how we represent the logical forest of treaps, described in Sect. 3.3 is completely
invisible to clients and has no effect on the algorithms to generate membership proofs
in historical snapshots or on the root authenticator for a snapshot. However, different
representations do have different performance and storage cost tradeoffs.

In order to generate membership proofs in a snapshot, the server has to be able
to generate subtree authenticators. If copy everything is used to represent the forest
of treaps, membership proofs can be computed in O(log n) time. Each node occurs in
exactly one snapshot and each node can cache its subtree authenticator. When path
copying is used to represent the forest of treaps, each node is immutable once created.
The subtree rooted at that node is fixed and the subtree authenticator is constant and can
be cached directly on that node. Membership proofs can be computed in O(log n) time
and updates cost O(log n) storage. PADs based on path-copying red-black trees were
proposed by Anagnostopoulos et al. [1].

Caching subtree authenticators in Sarnak-Tarjan versioned nodes adds extra
complexity. Unlike before, the descendants of a node are no longer immutable and
the subtree authenticator of a node is no longer constant for all snapshots in which it
occurs. For example, in Fig. 2, the node containing R in the version 1 and 2 trees has dif-

ferent authenticators in snapshots 1 and 2. In this section, we present novel techniques
for building authenticated data-structures out of persistent data structures based on ver-
sioned nodes by controlling when and how subtree authenticators are recomputed or
cached. In these designs, each update costs O(1) storage to create new versioned nodes
plus whatever overhead is used for caching subtree authenticators.

In our designs, we store subtree authenticators for the current snapshot, mutating it
in place on each update to the treap. This ephemeral subtree authenticator can be used
to generate membership proofs for the current snapshot in O(log n) time. For historical
snapshots, however, it cannot be used.

For historical snapshots, a simple solution is to not cache any subtree authenticators
at all. In this cache nothing case, the server can calculate the subtree authenticator
for a node on-the-fly from its descendants and generate a membership proofs in O(n)
time. Obviously, we want to generate proofs faster than that. By spending additional
space to cache the changing subtree authenticators, we can reduce the cost of generating
membership proofs.

Each versioned node can cache the changing authenticator for every version in a
versioned reference which can be stored as an append-only resizable vector of pairs con-
taining version number transition points vi and values ri, ((v1, r1), (v2, r2), . . . (vk, rk))).
The reference is undefined for v < v1. The reference is r1 for v1 ≤ v < v2, r2 for
v2 ≤ v < v3, and so forth. The reference is rk for versions ≥ vk. ri = � means that the
cache is invalid and the subtree authenticator must be recomputed by visiting the node’s
children. Lookups by version number use binary search over the vector in O(log k) time.

Note that in this cache design, the most recently cached subtree authenticator re-
mains valid forever. If a cached subtree authenticator is about to becomes stale, the
authenticator cache must be either updated with the new subtree authenticator, or ex-
plicitly invalidated for the next snapshot. Note that if the authenticator cache is inval-
idated for the next snapshot, it remains valid for prior snapshots. Similar updates will
also be necessary for the authenticator caches in the modified node’s ancestors.

Our first caching option, cache everything, ensures that the authenticator cache al-
ways hits. On each update to the treap, we update the cache for each node in the path
to the root. This means that we lose the O(1) benefit of using versioned nodes, be-
cause we must pay a O(log n) cost to maintain the cached authenticators. Generating
a membership proof will cost O(log v · log n) time for O(log n) binary searches in the
subtree authenticator cache. In the example presented in Fig. 2, the nodes containing R
in the version 1 and 3 trees have 2 and 1 cached authenticators respectively. The node
containing S has 1 cached subtree authenticator.

Although PADs implemented by versioned nodes implemented using the cache-
everything strategy have the same big-O space usage as PADs implemented by trees
that use path copying, the constant factors are smaller. Appending another hash and
timestamp threshold to O(log n) versioned references implemented by resizable arrays
is much more concise than cloning O(log n) nodes.

We are not required to cache every subtree authenticator. Authenticators may be
recomputed as needed, offering a diverse set of choices for caching strategies and time-
space tradeoffs. Caching strategies may be generic, or exploit spacial or temporal local-
ity, as long as a cached authenticator is updated or invalidated in any snapshot where

a descendant changes. Caching strategies may also purge authenticators at any time to
save space. Although many application-specific strategies are possible, we will only
present one generic caching strategy with provable bounds.

Our median layer cache offers O(1) storage per update while generating member-
ship proofs in historical snapshots in O(

√
n log v) time by permanently caching subtree

authenticators on exactly those nodes at depth D chosen to be close to the median layer
log2 n

2 in the tree. As nodes enter or leave the median layer, or the median layer itself
changes, we maintain the invariant that for each snapshot, the versioned nodes in the
median layer for that particular snapshot have cached authenticators.

When an update occurs, in the typical case where only leaves’ values change, we
update the subtree authenticator cache in the ancestor median layer node. In addition,
all other ancestors of the changed node potentially have stale authenticators, forcing
us to explicitly invalidate their caches for the upcoming snapshot. In the atypical case,
many nodes may enter or leave the median layer at a time, due to changes of the number
of keys in the tree or rotations among the first D layers of the tree. However, only O(1)
expected additional storage per-update is required to account for these effects.

Computing membership proofs for the median layer treap can be done in O(
√

n log v)
time. Generating a membership proof requires calculating O(log n) subtree authentica-
tors at depths d = 1, d = 2, and so forth. (Recall that D = log2

√
n.) There are three

cases for computing any one single subtree authenticator. The subtree authenticator for
a node at depth d = D is cached and can used directly.

Computing a subtree authenticator for a node x at depth d < D (i.e., x is higher
than the median layer, closer to the root), requires recursing down until hitting nodes at
the median layer, then using the cached authenticators. This recursion will visit at most

2D−d = O
(√

n
2d

)
nodes. Computing a subtree authenticator for a node x at depth d > D

(i.e., x is below the median layer, closer to the leaves) requires visiting every descendant

of x. In expectation, a node at depth d > D has O
(

n
2d

)
= O
(√

n
2d−D

)
descendants.

4 Tuple-based PADs
Previously, we described how to design PADs based on Merkle trees. In this section,
we develop a novel alternative foundation. These designs are super-efficient, yielding
constant-sized query response proofs instead of the O(log n) proofs from tree-based
PADs. In addition, these PADs offer different features, functionality, and efficiency
choices.

This class of techniques uses a tuple representation of a dictionary. If a dictionary
has keys k1 . . . kn, with ki < ki+1 and corresponding values c1 . . . cn, we subdivide the
entire key-ID space into disjoint intervals [k0, k1), [k1, k2), and so forth. Each interval
[k j, k j+1) contains a single dictionary key at k j with value c j and indicates that there is
no other key elsewhere in the interval. Let this be represented as the tuple ([k j, k j+1), c j),
which we can formally read as: “Key k j has value c j, and there are no keys in the
dictionary in the interval (k j, k j+1).” Keys could be integers, strings, hash values, or any
type that admits a total ordering. In order to cover the key-ID space before the first key
k1 and after the last key kn in the dictionary, we include two sentinels, ([kmin, k1),�) and
([kn, kmax), cn) where kmin and kmax denote the lowest and highest key-IDs respectively.

Fig. 3. We graphically show 2 keys and 3 tuples. Tuple ([k j, k j+1), c j) is represented as a rectangle
from k j to k j+1 containing c j.

Fig. 4. Example of a Tuple PAD containing 5
snapshots. From top to bottom, starting with
an empty PAD, inserting k1, c1, inserting k2, c2,
inserting k3, c3, and removing k2. Each rectan-
gle corresponds to a signed tuple.

Fig. 5. Example of tuple-superseding repre-
sentation of Fig. 4, showing the space sav-
ings when tuples can span many version num-
bers. As before, each rectangle corresponds to
a signed tuple.

An alternative would use a circular key-ID space rather than the sentinels. Figure 3
illustrates the tuples composing a dictionary.

If each tuple is individually signed by an author to form an authenticated dictionary,
then the server can prove the presence or absence of a key kq from the authenticated
dictionary by returning the one signed tuple T = ([k j, k j+1), c j) that matches kq by being
responsible for the section of the key-space containing kq, or, more formally, having
kq ∈ [k j, k j+1). The key kq is in the dictionary with value c j if kq = k j and c j , � (�
denotes no key). If kq , k j, the client may conclude kq is absent from the dictionary.
This representation offers super-efficient, O(1), membership proofs for its authenticated
dictionary. This representation also offers super-efficient proofs of non-membership.

Now that we have explained the tuple representation of a single authenticated dic-
tionary, the challenges are how to add persistence, how to efficiently store the tuples and
their signatures, how to reduce the number of tuples that need to be signed, and finally
how to authenticate tuples without individually signing each one.

4.1 PADs based on individually signed tuples

In a solitary PAD, each tuple is individually signed by the author. The author signs
n + 1 tuples for each snapshot. To support persistency, tuples include a version number
and have the form: (vα, [k j, k j+1), c j), which can be read as “In version vα, key k j has
contents c j, and there is no key in the dictionary with a key between k j and k j+1.”
Figure 4 graphically shows such a PAD. The server can prove the membership or non-
membership of any key kq in snapshot vq in the PAD by returning one signed tuple
T = (vq, [k j, k j+1), c j) that matches the lookup request by having kq ∈ [k j, k j+1). This
design is super-efficient, persistent and history independent, but does not have a root
authenticator or support Merkle aggregation.

Updates are clearly expensive. The author must sign each tuple individually on each
snapshot and send the signatures to the server, which must then store them. The per-
snapshot computation, storage, and communications costs are O(n).

Optimizing storage by coalescing tuples. We can reduce the tuple storage costs by
exploiting redundancy between snapshots. If we assume that a snapshot is generated
after every update, all but at most two of the signed tuples in snapshot vα will have the
same keys and values in snapshot vα+1. This is because an insert into the dictionary will
split the range of the prior tuple into two ranges. Removing a key will require deleting
a tuple and replacing its predecessor tuple with a new one with an expanded range.

Most tuples may remain unchanged across many snapshots. Instead of storing each
of the tuples, (vα, [k j, k j+1), c j), (vα + 1, [k j, k j+1), c j), . . . (vα + δ, [k j, k j+1), c j), and sig-
natures on each of these tuples, the server may store one coalesced tuple ([vα, vα + δ],
[k j, k j+1), c j, SIGS) that encodes that the key space from k j to k j+1 did not change from
snapshot vα to vα + δ. In each coalesced tuple, SIGS stores the δ + 1 signatures signing
each individual snapshot’s tuple. The coalesced tuple, itself, is never signed.

Upon a lookup query for kq at time vq, the server find the tuple T = ([vα, vα + δ],
[k j, k j+1), c j, SIGS) that matches kq and vq by having vq ∈ [vα, vα + δ] and kq ∈ [k j, k j+1),
from which it regenerates the tuple (vq, [k j, k j+1), c j), which the author signed earlier.

Storing tuples with a persistent search tree. Our next challenge is how to store
coalesced tuples and signatures so that they may be easily found during lookups. We
need a data structure that can store the varying set of coalesced tuples representing each
snapshot, and for any given snapshot version, we need to be able to find the tuple con-
taining a search key. This can be easily done with a persistent search tree that supports
predecessor queries, such as the O(1) persistent search tree data structure described in
Sect. 3.3.

Each snapshot in the PAD has a corresponding snapshot in the persistent search tree
PST for storing the tuples representing that snapshot. Whenever an update occurs, the
author will indicate which tuples are new (i.e., their key interval or value was not in the
prior snapshot), and which tuples are to be deleted (i.e., their key interval or value is
not in the new snapshot). The remaining tuples are refreshed. At most two tuples will
be deleted and one tuple will be new. The author transmits signatures on every new or
refreshed tuple.

When a tuple ([vα, vβ], [k j, k j+1), c j, SIGS) is to be deleted from snapshot vβ + 1, the
server removes that tuple from the next snapshot of PST. When a tuple is to be added
to snapshot vβ + 1, the server inserts ([vβ + 1, vβ + 1], [k j, k j+1), c j, SIG) into PST. If a
tuple T = ([vα, vβ], [k j, k j+1), c j) is refreshed, the server appends the author’s signature
to T and updates the ending snapshot version to vβ + 1.

This data-structure requires O(1) storage per update for managing the coalesced
tuples representing the PAD and can find the matching coalesced tuple and signature
for any key in any snapshot in logarithmic time. Unfortunately, the additional costs of
O(n) signatures for every snapshot must also be included in the communication and
storage costs. Reducing these costs is the challenge in building tuple-based PADs.

4.2 Optimizing storage: Tuple superseding

We now show how to reduce storage costs on the server from O(n) to O(1) signa-
tures per snapshot. Previously, authors signed tuples of the form (vα, [k j, k j+1), c j) for
each snapshot. With tuple superseding, the author signs a coalesced tuple of the form
([vα, vβ], [k j, k j+1), c j) attesting that for all snapshots in [vα, vβ], key k j has value c j and

there is no key in the interval (k j, k j+1). Figure 5 shows the benefits of tuple superseding,
when a signature can span many version numbers. Clients authenticating a response to
a query kq in snapshot vq will receive a tuple of the form ([vα, vβ], [k j, k j+1), c j). They
will verify that its signature is valid and that kq ∈ [k j, k j+1) and vq ∈ [vα, vβ].

For tuples that are refreshed, the server will receive a tuple ([vα, vβ+1], [k j, k j+1), c j),
signed by the author. This newly signed tuple supersedes the signed tuple ([vα, vβ],
[k j, k j+1), c j) already possessed by the server and can transparently replace it. Although
the author must sign O(n) tuples and send them to the server for each snapshot, all but
O(1) of them refresh existing tuples. Only the O(1) new tuples and their signatures add
to storage on the server. When tuple superseding is used, the PAD is no longer history
independent because the signed tuples describe keys in earlier snapshots.

Iterated hash functions. Public key signatures are notably slow to generate and ver-
ify. In contrast, cryptographic hash functions are very fast. With a light-weight sig-
nature [27] implemented by iterated hash functions, we can indicate that a tuple is re-
freshed. Rather than signing each superseded tuple, the author now only signs the tuple:
(vα,Hm(R), [k j, k j+1), c j) where Hm(R) represent the result of iterating a hash function m
times on a random nonce R. The author can indicate that a tuple is refreshed in succes-
sive snapshots by releasing successive preimages of Hm(R) which it can incrementally
generate in O(1) time and O(log m) space. A client will need to verify at most m hashes,
which will still be significantly cheaper than the cost of verifying the digital signature
for reasonable values of m.

4.3 Optimizing signatures via speculation

We now show how a novel application of speculation in authenticated data structures
can signifigantly reduce the number of signatures. In our original design, the author was
required to sign every tuple to refresh it for a new snapshot, at a cost proportional to the
number of keys in that snapshot. We can improve on this by dividing the PAD P into
two generations: a young generation G0 that contains keys that are recently modified,
and an old generation G1 that contains all other keys. Tuples in the old generation G1
are speculatively signed with version intervals that stretch into the future, but are only
considered when there is a proof that the key is not set in the younger generation.
(Sect. 4.1 noted that it’s trivial to prove the absence of a key by returning the signed
tuple for the interval containing that key.) Effectively, G0 contains “patch” tuples that
can correct erroneous speculations in G1. Tuples now include generation markers, g0 or
g1, to indicate which generation they’re in. In Fig. 6 we present such a speculative PAD
with an epoch of 3 snapshots.

A snapshot of G0 must be taken every time a snapshot is taken of P, which requires
signing every new or refreshed tuple in G0. To reduce these costs, we keep the size of
G0 small by dividing time into epochs. Every E1 times a snapshot is taken of P, we
migrate all of the entries from G0 into G1, take a snapshot of G1, and erase G0. With a
snapshot taken after every update, this ensures that G0 contains at most E1 + 1 tuples.

When an insert into P is requested, the author inserts the tuple representing the key
and value into G0. When a removal of k j from P is requested, G0 is updated to store the
tuple (g0, [vβ, vβ], [k j, k j+1),�), indicating that key k j is not in the PAD in version vβ.

Fig. 6. Example of a PAD using speculation with an epoch of 3 snapshots. Lookups examine the
young generation first. Because we did not use a circular ID-space the sentinal tuple in the young
generation uses a key of ? to indicate that the older generation must be examined for kq = kMIN .

Tuples in G0 have the form (g0, [vβ, vβ], [k j, k j+1),�), indicating the one version that
they are valid for, while tuples in G1 have the form, (g1, [vγ, vγ + E1 − 1], [k j, k′j+1), c′j),
indicating that they are valid for the duration of an epoch. At the start of every epoch, the
author enumerates every key-value pair in the current snapshot in G0, and inserts them
into G1. During this process, the author may find opportunities to merge tuples repre-
senting deleted keys. If a tuple (g0, [vβ − 1, vβ − 1], [k j, k j+1),�) representing a removed
key is migrated, it may force the deletion of a tuple, (g1, [vβ − E1, vβ − 1], [k j, k′j+1), c′j),
in G1 from the next epoch. After migrating keys into G1, the author speculatively signs
each tuple in G1 as valid for the entire duration of the future epoch.

On a lookup of key kq in snapshot vq, the server returns two signed tuples: (g0, vβ,
[k j, k j+1), c j) with vq = vβ and kq ∈ [k j, k j+1) and (g1, [vγ, vγ + E1 − 1], [k′j, k

′
j+1), c′j) with

vq ∈ [vγ, vγ + E1 − 1] and kq ∈ [k′j, k
′
j+1). There are two cases. If kq = k j, then the key

is in G0 with value c j, with c j = � denoting a deleted key. Otherwise, if kq ∈ (k j, k j+1),
we must examine G1. If kq = k′j, then the key is in G1 with value c′j. Otherwise, if
kq ∈ (k′j, k

′
j+1) then the lookup key is not in the snapshot.

Speculation can reduce the number of signatures required by the author from O(n)
to O(

√
n) for each update if a snapshot is taken after every update. The author must sign

E1 + 1 tuples in G0 each time P has a snapshot taken, and, once every E1 snapshots, the
author must sign all n + 1 tuples in G1. The amortized number of signatures per update
is O(E1 + n/E1), with a minimum when E1 =

√
n. If DSA signatures are used, latency

can be reduced at the start of an epoch by partially precomputing signatures [30]. This
creates a super-efficient, history-independent PAD with O(

√
n) signatures and O(

√
n)

storage per update. Note that speculation makes a PAD no longer history independent
because the tuples in G1 describe keys contained in the PAD at the start of the epoch.

More than two generations. Speculative PADs can be extended to more than two
generations. As before, generation G0 is definitive, and later generations are progres-
sively more speculative. Membership proofs will include one tuple per generation.

In the case of 3 generations, we have epochs every E1 snapshots, when keys are
migrated from G0 to G1, and every E2 snapshots, when keys are migrated from G1
to G2. If we assume a snapshot after every update, the author must sign an amortized
O
(

n
E2 + E2

E1
+ E1

)
tuples per update. This is minimized to O(3

√
n) when E2 = n

2
3 and

E1 = n
1
3 . More generally, if there are C generations, lookup proofs contain C signatures,

the author must sign a O(C C
√

n) tuples, and the storage per update is O(C C
√

n) if tuple
superseding is not used.

Speculation and tuple superseding. Speculation reduces the total number of sig-
natures by the author and thus reduces the space required on the server to store them.
It can be naturally combined with tuple-superseding (with our without using iterated
hashes) to reduce the number of tuples the server must save to O(C) per update.

4.4 Tuple PADs based on RSA accumulators

RSA accumulators [5] are a useful way to authenticate a set with a concise O(1) sum-
mary, which can be signed using digital signatures. Dynamic accumulators [10, 18, 34]
permit efficient incremental update of accumulator without requiring that it be regen-
erated. Membership of an element in the set is proved with witnesses, which may be
computed by the untrusted server. Recent developments include an accumulator sup-
porting efficient non-membership proofs [25] or batch update of witnesses [39, 40]. By
storing tuples in a signed accumulator, the update size for a snapshot can be reduced to
O(1) while supporting a root authenticator. We leave the complete design and evaluation
of such PADs to future work.

5 Evaluation
In this paper we have presented a variety of algorithms for implementing a PAD. In
Table 1 we compare our designs to the existing related work and present a comparison
of the space usage and amortized expected running time of each algorithm in terms of
the number of keys n and number of snapshots v. We assume that a snapshot is taken
after every update. For tree-based PADs, query times include the O(log v) cost to binary
search in the authenticator cache. For tuple-based PADs, query times include searching
the persistent tree for the tuple. We also note which designs support a root authenticator,
Merkle aggregation, and are canonical or history independent.

A modular exponentation, used in signatures, is much more expensive than many
cryptographic hashes. A standard big-O bound would not capture these effects. To en-
able a more accurate comparison, we account for exponentiations used in verifying
signatures by using β to denote its cost. Table 1 then describes:

1. Server storage (per-update). Storage, per update, on the server.
2. Membership proof size. Size of a membership proof sent to a client.
3. Query time (historical). Time to make a membership proof for old snapshots.
4. Query time (current). Time to make a membership proof for the current snapshot.
5. Verify time. Time to verify a membership proof by a client.
6. Update info. The size of an update, sent to the server.
7. Author update time. Time on the author required to generate an update.
8. Server update time. Time on the server required to process an update.

R
ef

er
en

ce
St

or
ag

e
Q

ue
ry

Q
ue

ry
Pr

oo
f

V
er

if
y

U
pd

at
e

U
pd

at
e

U
pd

at
e

Si
ze

Ti
m

e
Ti

m
e

Si
ze

Ti
m

e
Ti

m
e

Ti
m

e
Si

ze
N

ot
es

(h
is

to
ri

ca
l)

(c
ur

re
nt

)
(a

ut
ho

r)
(s

er
ve

r)
Pa

th
C

op
y

Sk
ip

lis
t[

1]
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
β

+
O

(l
og

n)
β

+
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
R

oo
t.

Pa
th

C
op

y
R

ed
-b

la
ck

[1
]

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)
β

+
O

(l
og

n)
β

+
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
R

oo
t.

Tr
ea

p
(P

at
h

C
op

y)
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
β

+
O

(l
og

n)
β

+
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
C

an
on

ic
al

.
R

oo
t.

A
gg

re
ga

te
s.

Tr
ea

p
(V

er
si

on
ed

N
od

e)
(N

o
C

ac
he

)
O

(1
)

O
(n

)
O

(l
og

n)
O

(l
og

n)
β

+
O

(l
og

n)
β

+
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
C

an
on

ic
al

.
R

oo
t.

A
gg

re
ga

te
s.

Tr
ea

p
(V

er
si

on
ed

N
od

e)
(C

ac
he

E
ve

ry
w

he
re

)
O

(l
og

n)
O

(l
og

v
·
lo

g
n)

O
(l

og
n)

O
(l

og
n)
β

+
O

(l
og

n)
β

+
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
C

an
on

ic
al

.
R

oo
t.

A
gg

re
ga

te
s.

Tr
ea

p
(V

er
si

on
ed

N
od

e)
(M

ed
ia

n
C

ac
he

)
O

(1
)

O
(√

n
lo

g
v)

O
(l

og
n)

O
(l

og
n)
β

+
O

(l
og

n)
β

+
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
C

an
on

ic
al

.
R

oo
t.

A
gg

re
ga

te
s.

So
lit

ar
y

Tu
pl

e
O

(n
)

O
(l

og
n)

O
(l

og
n)

O
(1

)
β

+
O

(1
)

O
(β

n)
O

(n
)

O
(n

)
So

lit
ar

y
Tu

pl
e

(S
pe

cu
la

tin
g)

O
(C

C√
n)

O
(C

lo
g

n)
O

(C
lo

g
n)

O
(C

)
βC

O
(β

C
·

C√
n)

O
(C

C√
n)

O
(C

C√
n)

So
lit

ar
y

Tu
pl

e
(S

pe
cu

la
tin

g)
(+

Su
pe

rs
ed

in
g)

O
(C

)
O

(C
lo

g
n)

O
(C

lo
g

n)
O

(C
)

βC
O

(β
C
·

C√
n)

O
(C

C√
n)

O
(C

C√
n)

So
lit

ar
y

Tu
pl

e
(S

pe
cu

la
tin

g)
(+

Su
pe

rs
ed

in
g+

It
er

H
as

h)
O

(C
)

O
(C

lo
g

n)
O

(C
lo

g
n)

O
(C

)
(β

+
D

)C
O

(C
C√

n(
β D

+
D

))
O

(C
C√

n)
O

(C
C√

n)

Ta
bl

e
1.

Pe
rs

is
te

nt
au

th
en

tic
at

ed
di

ct
io

na
ri

es
,c

om
pa

ri
ng

te
ch

ni
qu

es
as

su
m

in
g

a
sn

ap
sh

ot
is

ta
ke

n
af

te
r

ev
er

y
up

da
te

.S
to

ra
ge

si
ze

s
ar

e
m

ea
su

re
d

pe
r-

up
da

te
.
β

de
no

te
s

th
e

co
st

of
an

ex
po

ne
nt

ia
tio

n
us

ed
du

ri
ng

si
gn

at
ur

e
ge

ne
ra

tio
n.

C
de

no
te

s
th

e
nu

m
be

r
of

ge
ne

ra
tio

ns
in

a
sp

ec
ul

at
iv

e
PA

D
an

d
D

de
no

te
s

th
e

m
ax

im
um

ha
sh

-c
ha

in
le

ng
th

.I
n

th
is

ta
bl

e,
w

e
re

po
rt

th
e

am
or

tiz
ed

ex
pe

ct
ed

tim
e

or
sp

ac
e

us
ag

e.
“C

an
on

ic
al

”
re

fe
rs

to
de

si
gn

s
th

at
ar

e
hi

st
or

y-
in

de
pe

nd
en

t.

6 Future work and conclusions
PADs are suitable for a variety of problems, such as in a public key infrastructure where
they can efficiently store a constantly-changing set of valid certificates. If a PAD sup-
porting a root authenticator is used, the root authenticator may be stored in a tamper-
evident log [11, 12, 37]; the author cannot later modify it without detection. Similarly,
the root authenticator could be submitted to a time-stamping service [21, 9] every time
a snapshot is taken to prove its existence. PADs can be used to implement many forms
of outsourced databases. Using Merkle aggregation, PADs can be used to implement
flexible query languages, or in the case of Pari-mutuel gambling, as used in horse rac-
ing, to count wagers. With a canonical or history independent representation, PADs can
make distributed algorithms more robust.

In this work we developed several new ways of implementing PADs. We presented
designs offering constant-sized proofs and lower storage overheads. We also developed
speculation as a new technique for designing authenticated data structures. In future
work, we will perform an empirical evaluation of each of our algorithms and of their
respective costs for each operation in order to guide which algorithm is right for which
situation. We will also compare our designs to alternative PAD algorithms [1] and eval-
uate PADs based on RSA accumulators and other cryptographic techniques.

There are a number of properties we would like to formally prove, including big-O
bounds on the storage costs and tighter bounds on lookup time, as well as proving for
various threat models that our PAD designs always detect failure or return the correct
answer. We leave this to future work.

Future work also includes creating fully persistent authenticated dictionaries based
on fully persistent data structures [13] as well as extending our designs to support out-
sourced storage where a trusted device uses a small amount of trusted storage to detect
faults in a larger untrusted storage [7, 14].

If persistence is unnecessary, but authentication is, our techniques should be eas-
ily simplified to only preserve the data necessary to authenticate the latest snapshot.
We plan to adapting speculation and lightweight signatures to create a dynamic super-
efficient authenticated dictionary.

References
1. A, A., G, M. T., T, R. Persistent authenticated

dictionaries and their applications. In International Conference on Information Security
(ISC) (Seoul, Korea, Dec. 2001), pp. 379–393.

2. A, A., O, T. Faster uniquely represented dictionaries. In Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science (SFCS) (San Juan,
Puerto Rico, Oct. 1991), pp. 642–649.

3. A, C. R., S, R. G. Randomized search trees. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science (SFCS) (Oct. 1989), pp. 540–545.

4. B, P. Fast functional lists, hash-lists, deques and variable length arrays. In In
Implementation of Functional Languages, 14th International Workshop (Madrid, Spain,
Sept. 2002), p. 34.

5. B, J., M, M. One-way accumulators: a decentralized alternative to digital
signatures. In Workshop on the Theory and Application of Cryptographic Techniques on
Advances in Cryptology (EuroCrypt ’93) (Lofthus, Norway, May 1993), pp. 274–285.

6. B, G. E., R-M, M. Fast set operations using treaps. In Proceedings of
the Tenth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA)
(Puerto Vallarta, Mexico, June 1998), pp. 16–26.

7. B, M., E, W., G, P., K, S., N, M. Checking the correctness of
memories. In Proceedings of the 32nd annual symposium on Foundations of computer
science (SFCS) (San Juan, Puerto Rico, Oct. 1991), pp. 90–99.

8. B, G. S. Partially persistent data structures of bounded degree with constant update
time. Nordic Journal of Computing 3, 3 (1996), 238–255.

9. B, A., L, H., S, B. Optimally efficient accountable
time-stamping. In International Workshop on Practice and Theory in Public Key
Cryptography (PKC) (Melbourne, Victoria, Australia, Jan. 2000), pp. 293–305.

10. C, J., L, A. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In CRYPTO ’02 (Santa Barbara, CA, Aug. 2002),
pp. 61–76.

11. C, S. A., W, D. S. Efficient data structures for tamper-evident logging. In
Proceedings of the 18th USENIX Security Symposium (Montreal, Canada, Aug. 2009).
Preprint available at http://www.cs.rice.edu/~scrosby/pubs/preprints/paper-treehist.pdf.

12. D, D., M, F., R, M. K. Time-scoped searching of encrypted audit logs.
In Information and Communications Security Conference (Malaga, Spain, Oct. 2004),
pp. 532–545.

13. D, J. R., S, N., S, D. D., T, R. E. Making data structures
persistent. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing (STOC) (Berkeley, CA, May 1986), pp. 109–121.

14. D, C., N, M., R, G. N., V, V. How efficient can memory
checking be?. In Proceedings of the Theory of Cryptography Conference (TCC) (San
Francisco, CA, Mar. 2009), pp. 503–520.

15. F, A., K, H. Making data structures confluently persistent. Journal of
Algorithms 48, 1 (2003), 16–58.

16. F, K., K, M. F., M̀, D. Fast and secure distributed read-only file
system. ACM Transactions on Compututer Systems 20, 1 (2002), 1–24.

17. G, B., S, G., C, D., D, M., D, S. Caches and hash trees for
efficient memory integrity verification. In The 9th International Symposium on High
Performance Computer Architecture (HPCA) (Anaheim, CA, Feb. 2003).

18. G, M. T., T, R., H, J. An efficient dynamic and distributed
cryptographic accumulator. In Proceedings of the 5th International Conference on
Information Security (ISC) (Sao Paulo, Brazil, Sept. 2002), pp. 372–388.

19. G, M. T., T, R., T, N., C, R. F. Authenticated data
structures for graph and geometric searching. In Topics in Cryptology, The Cryptographers’
Track at the RSA Conference (CT-RSA) (San Francisco, CA, Apr. 2003), pp. 295–313.

20. G, L. J., S, R. A dichromatic framework for balanced trees. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science (SFCS)
(Oct. 1978), pp. 8–21.

21. H, S., S, W. S. How to time-stamp a digital document. In CRYPTO ’98
(Santa Barbara, CA, 1990), pp. 437–455.

22. K, H. Persistent data structures. In Handbook on Data Structures and Applications
(2001), D. Mehta and S. Sahni, Eds., CRC Press.

23. K, P. C. On certificate revocation and validation. In International Conference on
Financial Cryptography (FC ’98) (Anguilla, British West Indies, Feb. 1998), pp. 172–177.

24. L, J., K, M., M̀, D., S, D. Secure untrusted data repository (SUNDR).
In Operating Systems Design & Implementation (OSDI) (San Francisco, CA, Dec. 2004).

25. L, J., L, N., X, R. Universal accumulators with efficient nonmembership proofs. In
Proceedings of the 5th International Conference on Applied Cryptography and Network
Security (ACNS) (Zhuhai, China, June 2007), pp. 253–269.

26. M, R. C. A digital signature based on a conventional encryption function. In CRYPTO
’88 (1988), pp. 369–378.

27. M, S. Efficient certificate revocation. Tech. Rep. TM-542b, Massachusetts Institute of
Technology, Cambridge, MA, 1996.
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai%3Ancstrlh%
3Amitai%3AMIT-LCS%2F%2FMIT%2FLCS%2FTM-542b.

28. M, D. Oblivious data structures: Applications to cryptography. In Proceedings of
the 29th Annual ACM Symposium on Theory of Computing (STOC) (El Paso, Texas, May
1997), pp. 456–464.

29. M, A., M, R., G, T., C, B. Ivy: A read/write peer-to-peer file
system. In USENIX Symposium on Operating Systems Design and Implementation (OSDI
’02) (Boston, MA, Dec. 2002).

30. N, D., M’R, D., V, S., R, D. Can DSA be improved?
Complexity trade-offs with the digital signature standard. In EuroCrypt (Perugia, Italy, May
1994), pp. 77 – 85.

31. N, M., N, K. Certificate revocation and certificate update. In USENIX Security
Symposium (San Antonio, TX, Jan. 1998).

32. N, M., T, V. Anti-presistence: history independent data structures. In
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (STOC)
(Heraklion, Crete, Greece, July 2001), pp. 492–501.

33. O, C. Purely Functional Data Structures. Cambridge University Press, 1999.
34. P, C., T, R., T, N. Authenticated hash tables. In ACM

Conference on Computer and Communications Security (CCS ’08) (Alexandria, VA, Oct.
2008), pp. 437–448.

35. P, Z. N. J., B, R., A, G., B, S. Design and implementation of
verifiable audit trails for a versioning file system. In USENIX Conference on File and
Storage Technologies (San Jose, CA, Feb. 2007).

36. S, N., T, R. E. Planar point location using persistent search trees.
Communications of the ACM 29, 7 (1986), 669–679.

37. S, B., K, J. Secure audit logs to support computer forensics. ACM
Transactions on Information and System Security 1, 3 (1999).

38. S, J. S., V, J. Access and integrity control in a public-access,
high-assurance configuration management system. In USENIX Security Symposium (San
Francisco, CA, Aug. 2002), pp. 109–120.

39. W, P., W, H., P, J. A new dynamic accumulator for batch updates. In
Information and Communications Security, 9th International Conference (ICICS 2007)
(Zhengzhou, China, Dec. 2007), pp. 98–112.

40. W, P., W, H., P, J. Improvement of a dynamic accumulator at ICICS 07
and its application in multi-user keyword-based retrieval on encrypted data. In Asia-Pacific
Services Computing Conference (Yilan, Taiwan, Dec. 2008), pp. 1381–1386.

41. W, P., S, R., S, D. The blind stone tablet: Outsourcing durability. In
Sixteenth Annual Network and Distributed Systems Security Symposium (NDSS) (San
Diego, CA, Feb. 2009).

