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Summary 

Drug development is expensive and prone to failure. It is potentially much less risky and 

expensive to reuse a drug developed for one condition for treating a second disease, than 

it is to develop an entirely new compound. Systematic approaches to drug repositioning 

are needed to increase throughput and find candidates more reliably. Here we address this 

need with an integrated systems biology dataset, developed using the Ondex data 

integration platform, for the in silico discovery of new drug repositioning candidates. We 

demonstrate that the information in this dataset allows known repositioning examples to 

be discovered. We also propose a means of automating the search for new treatment 

indications of existing compounds. 

1 Introduction 

The drug development process is increasing in cost and becoming less productive. In order to 

arrest the decline in the productivity curve, pharmaceutical companies, biotechnology 

companies and academic researchers are turning to systems biology approaches to discover 

new uses for existing pharmacotherapies, and in some cases, reviving abandoned ones [1]. 

Here, we describe the use of the Ondex data integration platform for this purpose.  

1.1 Drug Repositioning 

There is recognition in the pharmaceutical industry that the current paradigm of research and 

development needs to change. Drugs based on novel chemistry still take 10-15 years to reach 

the market, and development costs are usually between $500 million and $2 billion [2][3].  

Most novel drug candidates fail in or before the clinic, and the costs of these failures must be 

borne by the companies concerned. These costs make it difficult even for large 

pharmaceutical companies to bring truly new drugs to market, and are completely prohibitive 
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for publicly-funded researchers.  An alternative means of discovering new treatments is to 

find new uses for existing drugs or for drug candidates for which there is substantial safety 

data.  This repositioning approach bypasses the need for many of the pre-approval tests 

required of completely new therapeutic compounds, since the agent has already been 

documented as safe for its original purpose [4].   

There are a number of examples where a new use for a drug has been discovered by a chance 

observation. New uses have been discovered for drugs from the observation of interesting 

side-effects during clinical trials, or by drug administration for one condition having 

unintended effects on a second. Sildenafil is probably the best-known example of the former; 

this drug was developed by Pfizer as a treatment for pulmonary arterial hypertension; during 

clinical trials, the serendipitous discovery was made that the drug was a potential treatment of 

erectile dysfunction in men. The direction of research was changed and sildenafil was 

renamed “Viagra” [5]. 

In order that a systematic approach may be taken to repositioning, a methodology that is less 

dependent on chance observation is required for the identification of compounds for 

alternative use.  For instance, duloxetine (Cymbalta) was originally developed as an anti-

depressant, and was postulated to be a more effective alternative to selective serotonin 

reuptake inhibitors (SSRIs) such as fluoxetine (Prozac). However, a secondary indication, as a 

treatment for stress urinary incontinence was found by examining its mode of action [6].   

Performing such an analysis on a drug-by-drug basis is impractical, time consuming and 

inappropriate for systematic screens. Nevertheless, such a re-screening approach, in which 

alternative single targets for existing drugs or drug candidates are sought by simple screening, 

has been attempted by Ore Pharmaceuticals [33]. Systems biology provides a complementary 

method to manual reductionist approaches, by taking an integrated view of cellular and 

molecular processes. Combining data integration technology with systems approaches 

facilitates the analysis of an entire knowledgebase at once, and is therefore more likely to 

identify promising leads. This general approach, of using Systems approaches to search for 

repositionable candidates, is also being developed by e-Therapeutics plc and others exploring 

Network Pharmacology [34][35]. However, network pharmacology differs from the approach 

we set out here, by examining the broadest range of the interventions in the proteome caused 

by a molecule, and using complex network analysis to interpret these in terms of efficacy in 

multiple clinical indications [36].  

1.2 The Ondex data integration and visualisation platform 

Biological data exhibit a wide variety of technical, syntactic and semantic heterogeneity. To 

use these data in a common analysis regime, the differences between datasets need to be 

tackled by assigning a common semantics. Different data integration platforms tackle this 

complicated problem in a variety of ways. BioMart [7], for instance, relies on transforming 

disparate database schema into a unified Mart format, which can then be accessed through a 

standard query interface. On the other hand, systems such as the Distributed Annotation 

System (DAS) take a federated approach to data integration; leaving data on multiple, 

distributed servers and drawing it together on a client application to provide an integrated 

view [8]. 

Ondex is a data integration platform for Systems Biology [9], which addresses the problem of 

data integration by representing many types of data as a network of interconnected nodes.  By 

allowing the nodes (or concepts) and edges (or relations) of the graph to be annotated with 
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semantically rich metadata, multiple sources of information can be brought together 

meaningfully in the same graph. So, each concept has a Concept Class, and each relation a 

Relation Type. In this way it is possible to encode complex biological relationships within the 

graph structure; for example, two concepts of class Protein may be joined by an 

interacts_with relation, or a Transcription Factor may be joined to a Gene by a regulates 

relation. The Ondex data structure also allows both concepts and relations to have attributes, 

accessions and names. This feature means that almost any information can be attached to the 

graph in a systematic way. The parsing mechanism also records the provenance of the data in 

the graph. Ondex data is stored in the OXL data format [10], a custom XML format designed 

for the exchange of integrated datasets, and closely coupled with the design of the data 

structure of Ondex. 

The Ondex framework therefore combines large-scale database integration with sequence 

analysis, text mining and graph-based analysis. The system is not only useful for integrating 

disparate data, but can also be used as a novel analysis platform.  

Using Ondex, we have built an integrated dataset of around 120,000 concepts and 570,000 

relations to visualise the links between drugs, proteins and diseases. We have included 

information from a wide variety of publicly available databases, allowing analysis on the 

basis of: drug molecule similarity; protein similarity; tissue specific gene expression; 

metabolic pathways and protein family analysis.  We analysed this integrated dataset to 

highlight known examples of repositioned drugs, and their connectivity across multiple data 

sources. We also suggest methods of automated analysis for discovery of new repositioning 

opportunities on the basis of indicative semantic motifs. 

2 Methods 

The general methods used are typical of any Ondex workflow.  Parsers import data into the 

OXL data format [10], using the Ondex integration backend; mappers and transformers are 

then used to join different data sets, remove unconnected nodes and add additional 

information to the network.  As a final step, the network is analysed for interesting examples 

of repositioning by manually traversing the data using Ondex. 

2.1 The Data Sources 

The data included in the drug repositioning dataset were limited to publicly available sources, 

to enable their wide redistribution. The databases and analysis methods used to generate the 

dataset were: DrugBank [11], UniProt [12], HPRD [13], KEGG [14], PFam [15], SymAtlas 

[16], G-Sesame [17], OpenBabel [18] and BLAST [19]. The cross references from UniProt 

are used to include accession numbers from many other linked datasets (e.g. OMIM, 

ENSEMBL, GO, PRINTS and more).  

2.2 The Integration Workflow 

Figure 1 summarises the Ondex workflow used to produce the dataset for this study. The 

Concepts and Relations are italicised.  

Considering first the Concepts: 

- From DrugBank, we take Compounds (called “Drugs” in DrugBank) and Target. 

- From UniProt, we take Protein. 
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- From SymAtlas, we take Affymetrix Probes and their associated expression values. 

- From KEGG, we take Pathways and other associated information.  

Next, the Relations: 

- Targets and Proteins are linked by UniProt accession mapping. 

- From HPRD, we take interactions between Proteins. 

- Affymetrix Probes are linked to Proteins using UniProt accession mapping. 

- From PFAM, we take family relations between Proteins 

Finally, relationships that are annotated with a numerical value: 

- G-Sesame semantic similarity scores were added to Protein interactions. 

- Sequence similarity scores were added between Proteins, using BLAST. 

- Structural similarity scores were added between Compounds, using OpenBabel.  

HPRD protein-protein interaction relations were scored using G-Sesame, a semantic 

similarity measure for the Gene Ontology [17].  Partners of a protein interaction were 

assessed based on the semantic distance of their Cell Compartment GO terms (parsed from 

HPRD), proteins with a low score are likely to be in different parts of the cell, and therefore 

unlikely to be able to physically interact in vivo.  

BLAST mapping was used to draw similarity relations between Proteins in the dataset (using 

an e-value cutoff of 0.0001), and OpenBabel was used to run 2D-Tanimoto over the 

compounds in DrugBank and draw similarity relations between them (using a similarity 

cutoff of 0.85 [20]). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1: The Ondex data integration workflow used to generate the data for this study.  

Heterogeneous data sources are parsed into Ondex OXL format, and mappers and transformers 

applied to create new relations between them. 
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2.3 The Metagraph 

The Ondex metagraph shows the connections between the ConceptClasses and RelationTypes 

in the main network. Figure 2 shows a subset of the metagraph for the repositioning dataset. It 

provides an overview of the overall structure of the data. A total of 29 RelationTypes and 15 

ConceptClasses are present in the complete dataset.  

 

 

Figure 2: A subset of the metagraph of the Ondex drug repositioning dataset. Some 

ConceptClasses and RelationTypes have been removed for clarity. Drugs taken from DrugBank 

are actually of ConceptClass Compound but are called Drug here to avoid confusion with 

Compound concepts taken from KEGG.  

2.4 Data availability 

The data presented and analysed in this study are available in the supplementary materials.  

All of the code used to generate the graph can be found in the Ondex Subversion repository, 

which is freely available from http://www.ondex.org/. 

2.5 Exploring and filtering the data 

Ondex provides a visualisation platform, which enables browsing of graphs loaded from data 

in OXL format. This platform features many filters, annotators and layout algorithms for 

finding information efficiently in a large integrated dataset. We can examine the interactions 

of any drug in detail. A filter reduces the network to just that drug and its immediate 

neighbourhood. This small network can be expanded to include relations of interest using 

further neighbourhood filters (e.g. by examining the neighbours of proteins that the drug 

binds to). Concepts and Relations can be coloured based on data they are annotated with (such 

as BLAST e-value, or Tanimoto coefficient). 
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3 Results & Discussion 

3.1 Chlorpromazine 

The motivation for building this Ondex dataset for drug and protein interaction data is to find 

examples of molecules that might have a therapeutic purpose additional to those already 

known.  The first stage of this process is to look for examples of drugs that already have a 

known additional use to see if both indications can be found in the data. We consider, here, 

the example of chlorpromazine (Thorazine). The discovery of this drug resulted from a search 

for new and more effective antihistamines in the 1930s and 40s. It was one of a series of 

compounds shown, as well as being antihistaminic, to have greater sedative and antiemetic 

effects than previous drugs. On the basis of these effects, the original proposed use of 

chlorpromazine was as a post-surgical therapy [21].  However, treatment with chlorpromazine 

goes beyond simple sedation; patients also demonstrate improvements in emotional 

behaviour.  It was this observed activity that led to it being trialled as an anti-psychotic. 

Chlorpromazine was eventually approved, and is used, for both purposes [22].  

Chlorpromazine, in the Ondex drug repositioning network (DrugBank accession number 

DB00477), has seven immediate neighbours (Figure 3A). Three of these neighbours are 

targets – D(2) Dopamine Receptor, 5-hydroxytryptamine 2A Receptor and Serum Albumin – 

and four are similar drugs – trimeprazine, promazine, prochlorprezine and perphenazine.  

Expanding the network to include the first neighbours of the targets of chlorpromazine, 

results in a graph with two clusters. Chlorpromazine, being the central node, connects to both 

clusters (Figure 3C).  Two of the targets of chlorpromazine– D(2) Dopamine Receptor and 5-

hydroxytryptamine 2A receptor – are present in the largest cluster, while the other – Serum 

Albumin – forms the hub of the second cluster.  Binding to serum albumin is common 

amongst cationic drugs such as chlorpromazine and serves to reduce bioavailability. This 

binding is probably responsible for some side-effects, but is not clinically relevant [23].  The 

larger cluster contains the two targets mentioned above, several related proteins (other similar 

receptors) and a large number of other drugs, many of which bind both targets, and most of 

which are also anti-psychotics (e.g. clozapine, haloperidol and loxapine).  Also included in 

these drugs are three of the four compounds that are structurally similar to chlorpromazine 

(promazine, prochlorprezine and perphenazine).    It is known that the interaction of 

chlorpromazine with the D(2) dopamine receptor is central to its anti-psychotic activity [24].  

The interaction of chlorpromazine with the 5-hydroxytryptamine 2A receptor has anti-

aggressive and anti-depressive effects, and also attenuates the extra-pyramidal side-effects 

that are common, and undesirable, with anti-psychotic drugs [25]. 

These two clusters of drug-target interactions involve all of the first neighbours of 

chlorpromazine apart from one: trimeprazine (DrugBank accession DB01246).  Unlike the 

other three drugs similar to chlorpromazine, this drug does not seem to bind the same 

receptors; it therefore seems unlikely to have the same function. To examine the function of 

trimeprazine, a network of its first neighbours was drawn (Figure 3B).  Trimeprazine has just 

one recognised target in DrugBank, the histamine H1 receptor.  Drugs binding to this receptor 

generally have a vasodilatory and antiemetic effect (trimeprazine is primarily used as a travel 

sickness treatment), as well as an antihistaminic effect. 

This similarity between chlorpromazine and trimeprazine, a known antagonist of the 

histamine H1 receptor, might suggest a molecular mechanism for the antiemetic mode of 

action of chlorpromazine.  The similarity of the two drugs suggests that they both bind the 

Journal of Integrative Bioinformatics, 7(3):116, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-116 6



          

 

 

receptor with similar effects.  This interaction is not detailed directly in DrugBank because it 

is a fully curated database [26], and contains only interactions reported in the primary 

literature. 

 

 

Figure 3: Chlorpromazine is circled in red in all panels. A – First neighbours of chlorpromazine 

in the Ondex graph. B – First neighbours of trimeprazine and its protein target, histamine H1 

receptor. C – First neighbours of chlorpromazine and the protein targets to which it binds. D(2) 

Dopamine receptor (group 1), 5-hydroxytryptamine 2A receptor (group 2) and Serum Albumin 

(group 3). The red arrow indicates trimeprazine, which is not involved in the same groups of 

interactions as the other neighbours of chlorpromazine. Ondex colour scheme – drugs are 

represented by green stars, targets are pink circles and proteins are red circles. 

3.2 Other repositioning examples 

Other known examples of drugs that have been repositioned can be identified in the Ondex 

network. The original use of Celecoxib was as a treatment for arthritis, but more recently it 

has been shown to also be effective against colo-rectal cancer [4].  Celecoxib (DrugBank 

accession DB00482) binds two targets, COX2 and 3-phosphoinositide-dependent protein 

kinase 1. The binding with COX2 explains the drug’s original use, as a treatment for arthritis. 

In the Ondex network, 3-phosphoinositide-dependent protein kinase 1 (encoded by PDPK1) is 

shown by the information parsed from KEGG to be involved in a number of cancers. PDKP1 
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is also shown to possess sequence similarity with AKT1. KEGG information in the network 

indicates that AKT1 is involved specifically in colorectal cancer, which helps to explain the 

role of celecoxib in treating this disease. 

Mifepristone (DrugBank accession DB00834) found its first use as an abortifacient, a 

function which is explained by its binding to the progesterone receptor. The second use of the 

drug, as a treatment for psychotic major depression, is also directly explained by binding, of 

mifepristone to the glucocorticoid receptor [27]. 

 

3.3 Semantic Motifs 

Browsing the large Ondex network for known examples of repositioning is a simple matter. It 

demonstrates that the information is of real utility in highlighting potential new purposes for 

drugs.  It is not, however, a viable approach for analysing the whole graph for possible new 

drugs and targets of interest.  For such a search, methods are needed to uncover regions of 

interest in the graph.  To this end, we propose one method to exploit the semantically rich 

information of the Ondex graph model to extract semantic motifs: subgraphs, or motifs, that 

match a particular metadata, or semantic, structure. 

Chlorpromazine is structurally similar to trimeprazine; trimeprazine binds to a target 

(Histamine H1 Receptor); however, chlorpromazine itself is not known to interact with the 

H1 receptor (Figure 4A). We can represent this set of relationships as: 

drug (1) – similar to – drug (2) – binds to – target 

This is an abstract semantic motif; the syntax shows Concept (x) – Relation – Concept (y) [...] 

where x and y indicate different members of the same ConceptClass. This semantic motif may 

indicate that our knowledge of an interaction of drug (1) with target is missing. More 

complex semantic motifs are possible, as shown in figure 4C. For example: 

drug – binds to – target – is a – protein (1) – involved in – disease (1) – similar to – 

protein (2) – involved in – disease (2) 

The motif above suggests that the drug with a therapeutic impact on disease (1) may have an 

impact on disease (2). In both of these cases, the semantic motif identifies areas that may 

merit further investigation.  
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Figure 4: Semantic motifs of possible interest in the context of the Ondex drug repositioning 

network. A – An instance of the abstract motif shown in B, that is found in the Ondex 

subnetwork that explains the repositioning of Chlorpromazine (discussed in section 3.1). B – An 

abstract representation of the semantic motif, of which A is the archetype. C – An abstract 

semantic motif that implicates a drug as having an impact on a disease(2), due to the similarity 

between two proteins involved in separate disease processes. 

It is possible to apply these semantic motifs within Ondex, since they exploit the semantic 

richness of the Concepts and Relations, following particular paths through the network based 

on the Concept Classes and Relation Types of the entities encountered.  Other graph-based 

analysis systems lack the detailed metadata that is required for such an analysis. Cytoscape is 

a popular network browsing and analysis tool that facilitates the annotation of nodes and 

edges. However, these terms are not required to be drawn from a controlled vocabulary and 

the facilities to relate terms with an ontology are not part of the core functionality [28]. Tools 

such as Medusa [29] and BioLayout Express [30] lack the ability to handle graphs of the scale 

of the one reported here. Further software such as Osprey [31] and ProViz [32] do not have 

the rich Ondex Application Programming Interface (API) that allows custom graph 

algorithms to be implemented. 

3.4 Limitations of this approach 

The approval and administration of drugs is an evidence-based practice. Evidence is required 

that the drug in question is more effective than a referent, such as a placebo or existing drug, 

at treating the condition concerned, and does not have dangerous side effects.  An 

understanding of the molecular action of a drug is not required for approval.  Consequently, 

there is a great deal of missing information about the molecular targets of many drugs and the 

involvement of specific proteins in particular diseases.  These gaps in the knowledgebase 
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mean many potential repositioning opportunities will be missed, as the data that are required 

to identify them in this way do not exist. 

There is a possibility that in leveraging data such as that found in the Ondex network, 

information that is known is simply being recapitulated in a new form. Particularly when 

searching for examples of drugs that are known to have been repurposed. However, the 

chlorpromazine example shows that even when information is held to be true, it is not 

necessarily represented within the databases being integrated. Therefore it is possible to 

derive new knowledge from the network analysis for even well-studied examples. 

Searching for semantic motifs will return many hits.  For example, the simple motif 

abstraction in Figure 4B has 26,693 instances in the repositioning graph. It is likely that a 

large proportion of these results will not be true repositioning possibilities, and will not turn 

out to be useful.  This problem may be ameliorated somewhat by the implementation of a 

robust scoring function for semantic motifs.  There are a number of measures in the dataset 

that could assist in the construction of such an algorithm, such as the Tanimoto coefficient, 

BLAST e-values, G-Sesame scores for protein-protein interactions, and tissue-specific 

expression values.  By prioritising the consideration of high scoring motifs, and those drugs 

that appear in a number of different motifs, it is possible that many true positives could be 

prioritised. 

4 Conclusions 

Ondex is a data integration platform for systems biology. Critically, the datasets that it 

generates employ metadata that represents more of the semantic richness of the biological 

knowledge. In this paper, we have investigated drug repositioning using a custom-built 

dataset. We have shown that this integrated dataset can uncover knowledge suitable for 

discovery of additional therapeutic uses for drugs. We suggest a mechanism, semantic motifs, 

which can exploit both the dataset and its semantic richness.  

Ideally, a systems biology model would have complete knowledge of the biological system, 

however, the normal practice of biology and drug discovery means that this is always lacking. 

An integrated dataset may provide us with some of the information we need for these models; 

here we have also suggested that they can be used to highlight gaps in existing knowledge by 

searching for semantic motifs. 

In conclusion, we have shown that adding additional semantics into an integrative 

bioinformatics approach using Ondex can support repositioning and drug discovery, and 

could provide a rich underpinning for future systems biology. 
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