
Markov chain Monte Carlo
Probabilistic Models of Cognition, 2011

http://www.ipam.ucla.edu/programs/gss2011/

Roadmap:
— Some practicalities

— What can we prove?

— Building better chains:

— Auxiliary variables

— Normalizing constants

— References

Iain Murray
http://homepages.inf.ed.ac.uk/imurray2/



tinyurl.com/murray-ipam



Quick review
Construct a biased random walk that explores a target dist.

Markov steps, x(s) ∼ T
(
x(s)←x(s−1)

)
MCMC gives approximate,

correlated samples

EP [f ] ≈ 1

S

S∑
s=1

f(x(s))

Example transitions:

Metropolis–Hastings: T (x′←x) = Q(x′;x) min

(
1,
P (x′)Q(x;x′)
P (x)Q(x′;x)

)
Gibbs sampling: Ti(x

′←x) = P (x′i |xj 6=i) δ(x′j 6=i − xj 6=i)



“Routine” Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

P (xi|xj 6=i) ∝ P (xi,xj 6=i)

=
P (xi,xj 6=i)∑
x′i
P (x′i,xj 6=i) ← this sum is small and easy

• Continuous conditionals only univariate

⇒ amenable to standard sampling methods.

WinBUGS, OpenBUGS, JAGS and others use these tricks



Diffusion time

Q

P

L

Generic proposals use

Q(x′;x) = N (x, σ2)

σ large → many rejections

σ small → slow diffusion:
∼(L/σ)2 iterations required

Adapted from MacKay (2003)



How should we run MCMC?

• The samples aren’t independent. Should we thin,

only keep every Kth sample?

• Arbitrary initialization means starting iterations are bad.

Should we discard a “burn-in” period?

• Maybe we should perform multiple runs?

• How do we know if we have run for long enough?



Forming estimates

Approximately independent samples can be obtained by thinning.

However, all the samples can be used.

Use the simple Monte Carlo estimator on MCMC samples. It is:

— consistent

— unbiased if the chain has “burned in”

The correct motivation to thin: if computing f(x(s)) is expensive

In some special circumstances strategic thinning can help.
Steven N. MacEachern and Mario Peruggia, Statistics & Probability Letters, 47(1):91–98, 2000.
http://dx.doi.org/10.1016/S0167-7152(99)00142-X — Thanks to Simon Lacoste-Julien for the reference.



Empirical diagnostics

Rasmussen (2000)

Recommendations

For diagnostics:
Standard software packages like R-CODA

For opinion on thinning, multiple runs, burn in, etc.

Practical Markov chain Monte Carlo
Charles J. Geyer, Statistical Science. 7(4):473–483, 1992.
http://www.jstor.org/stable/2246094



Consistency checks

Do I get the right answer on tiny versions

of my problem?

Can I make good inferences about synthetic data

drawn from my model?

Getting it right: joint distribution tests of posterior simulators,

John Geweke, JASA, 99(467):799–804, 2004.

Posterior Model checking: Gelman et al. Bayesian Data Analysis

textbook and papers.



Getting it right

θ

y

We write MCMC code to update θ |y

Idea: also write code to sample y |θ

Both codes leave P (θ, y) invariant

Run codes alternately. Check θ’s match prior



Doing some analytic math

Collapsed sampler: marginalize some variables

Is the standard estimator too noisy?

e.g. need many samples from a
distribution to estimate its tail

Maybe we can use samples better



Finding P (xi=1)
Method 1: fraction of time xi=1

P (xi=1) =
∑
xi

I(xi=1)P (xi) ≈
1

S

S∑
s=1

I(x(s)i ), x
(s)
i ∼ P (xi)

Method 2: average of P (xi=1|x\i)

P (xi=1) =
∑
x\i

P (xi=1|x\i)P (x\i)

≈ 1

S

S∑
s=1

P (xi = 1|x(s)
\i ), x

(s)
\i ∼ P (x\i)

Example of “Rao-Blackwellization”. See also “waste recycling”.



Processing samples

This is easy

I =
∑
x

f(xi)P (x) ≈ 1

S

S∑
s=1

f(x
(s)
i ), x(s) ∼ P (x)

But this might be better

I =
∑
x

f(xi)P (xi|x\i)P (x\i) =
∑
x\i

(∑
xi

f(xi)P (xi|x\i)
)
P (x\i)

≈ 1

S

S∑
s=1

(∑
xi

f(xi)P (xi|x(s)
\i )

)
, x

(s)
\i ∼ P (x\i)

A more general form of “Rao-Blackwellization”.



Summary so far

• MCMC is general and often easy to implement

• Running it is a bit messy. . .
. . . but there are some established procedures.

• There can be a choice of estimators



Can we prove anything?

It’s usually hard to have many guarantees.

Sometimes convergence theory can be practical:
Markov chain Monte Carlo algorithms: theory and practice
Jeffrey S. Rosenthal
http://probability.ca/jeff/ftpdir/mcqmcproc.pdf

Text with more math than I give:

Monte Carlo Statistical Methods
Christian P. Robert, George Casella

Exact sampling — amazing when it works



Exact sampling with MCMC

y

time−∞ 0

A chain that has run for ever



Exact sampling with MCMC

y

time−∞ 0−T1

Try to find final state with finite number of random numbers



Exact sampling with MCMC

y

time−∞ 0−T1−T1−T2

Takes a random amount of time.

See http://dbwilson.com/exact/

(Google: “exact sampling” or “perfect sampling”)



Building better chains

Come up with better proposals, Q?
Can be hard!

Many MCMC methods take a surprising approach. . .



Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:∫

f(x)P (x) dx =

∫
f(x)P (x, v) dx dv

≈ 1

S

S∑
s=1

f(x(s)), x, v ∼ P (x, v)

We might want to introduce v if:

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate



Swendsen–Wang (1987)

Seminal algorithm using auxiliary variables



Swendsen–Wang (1987)

Edwards and Sokal (1988) identified and generalized the

“Fortuin-Kasteleyn-Swendsen-Wang” auxiliary variable joint

distribution that underlies the algorithm.



Slice sampling idea

Sample point uniformly under curve P̃ (x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P̃ (x)]

p(x|u) ∝
{

1 P̃ (x) ≥ u
0 otherwise

= “Uniform on the slice”



Slice sampling

Unimodal conditionals

x

u

(x, u)

x

u

(x, u)

x

u

(x, u)

• bracket slice

• sample uniformly within bracket

• shrink bracket if P̃ (x) < u (off slice)

• accept first point on the slice



Slice sampling

Multimodal conditionals

x

u

(x, u)

P̃ (x)

• place bracket randomly around point

• linearly step out until bracket ends are off slice

• sample on bracket, shrinking as before

Satisfies detailed balance, leaves p(x|u) invariant



Slice sampling

Advantages of slice-sampling:

• Easy — only require P̃ (x) ∝ P (x) pointwise

• No rejections

• Tweak params less important than Metropolis

More advanced versions of slice sampling have been developed.

Neal (2003) contains many ideas.



Hamiltonian dynamics

Construct a landscape
Gravitational potential energy, E(x):

P (x) ∝ e−E(x), E(x) = − logP ∗(x)

Roll a ball with velocity v

P (x, v) = e−E(x)−v>v/2

Recommended reading:

MCMC using Hamiltonian dynamics
Radford M. Neal, 2011, To appear in the Handbook of Markov Chain Monte Carlo
http://www.cs.toronto.edu/ radford/ftp/ham-mcmc.pdf



Summary of auxiliary variables

— Swendsen–Wang
— Slice sampling
— Hamiltonian (Hybrid) Monte Carlo

Some of my auxiliary representation work:

Doubly-intractable distributions

Population methods for better mixing (on parallel hardware)

Being robust to bad random number generators

Recent slice-sampling work



Data



P (Data | f) = L(f)

f ∼ N (0,Σ)



P (Data | f) = L(f)

f ∼ N (0,Σ)

P (f |Data) ∝ N (f ; 0,Σ)L(f)



P (Data | f) = L(f)

f ∼ N (0,Σ)

P (f |Data) ∝ N (f ; 0,Σ)L(f)



An update for Gaussian priors

Target to leave invariant: P ?(f) ∝ N (0,Σ)L(f)

Propose:

f ′← α f +
√

1− α2 ν, ν ∼ N (0,Σ)

Accept/Reject:

Accept f ′ with probability min
(

1, L(f ′)
L(f)

)

Neal (1999 Valencia paper)



Update for GP functions

f
ν
f ′

f ′← α f +
√

1− α2 ν, ν ∼ N (0,Σ)



Ellipse of combinations

f

ν

f ′← α f ±
√

1− α2 ν, α ∈ [−1, 1]



Angular parameterization

Locus of points with correct marginal covariance:

f ′ = f cosβ + ν sinβ



ν1

ν0 f

Auxiliary variable model

Prior:

ν0 ∼ N (0,Σ)

ν1 ∼ N (0,Σ)

β ∼ Uniform[0, 2π]

f = ν0 sinβ + ν1 cosβ

Likelihood: L(f (ν0,ν1, β))

Posterior:P ?(ν0,ν1, β) ∝ N (ν0; 0,Σ)N (ν1; 0,Σ)L(f (ν0,ν1, β))



MCMC in Auxiliary model

Operator 1: resample ν0,ν1, β | f ∼ P (β | f)P (ν0,ν1 |β, f):

β ∼ Uniform[0, 2π]

ν ∼ N (0,Σ)

ν0 ← f sinβ + ν cosβ

ν1 ← f cosβ − ν sinβ

Operator 2: slice sample β for fixed ν0 and ν1.

Both operators leave the target distribution stationary:

P ?(ν0,ν1, β) ∝ N (ν0; 0,Σ)N (ν1; 0,Σ)L(f (ν0,ν1, β))



θ ∼ ph

P (Data | f) = L(f)

f ∼ N (0,Σθ)

P (f , θ |D)∝ p(θ)N (f ; 0,Σθ)L(f)



We’re not mode-searching
Start at Red values. Propose short scale θ=0.1.

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

 

 

θ = 0.1
θ = 2

Red values are >500× more probable than Black



#include
http://videolectures.net/nips2010 murray ssc/

(a talk on sampling hyper-parameters in Gaussian processes)



Summary

Please be careful running MCMC

Try Gibbs or simple Metropolis, then:

— Try to find a better Q, e.g., data-driven MCMC

— Try to find a better representation

— Auxiliary variables often useful

Remember operators can be concatenated
(Mix in simple updates with fancy ones)



Combining operators

A sequence of operators, each with P ? invariant:

x0 ∼ P ?(x)

x1 ∼ Ta(x1←x0)

x2 ∼ Tb(x2←x1)

x3 ∼ Tc(x3←x2)

· · ·

P (x1) =
∑
x0
Ta(x1←x0)P

?(x0) = P ?(x1)

P (x2) =
∑
x1
Tb(x2←x1)P

?(x1) = P ?(x2)

P (x3) =
∑
x1
Tc(x3←x2)P

?(x2) = P ?(x3)

· · ·

— Combination TcTbTa leaves P ? invariant

— If they can reach any x, TcTbTa is a valid MCMC operator

— Individually Tc, Tb and Ta need not be ergodic



Finding normalizers is hard

Prior sampling: like finding fraction of needles in a hay-stack

P (D|M) =

∫
P (D|θ,M)P (θ|M) dθ

=
1

S

S∑
s=1

P (D|θ(s),M), θ(s) ∼ P (θ|M)

. . . usually has huge variance

Similarly for undirected graphs:

P (x) =
P ∗(x)

Z , Z =
∑
x

P ∗(x)

I will use this as an easy-to-illustrate case-study



Benchmark experiment

Training set RBM samples MoB samples

RBM setup:
— 28× 28 = 784 binary visible variables

— 500 binary hidden variables

Goal: Compare P (x) on test set, (PRBM(x) = P ∗(x)/Z)



Simple Importance Sampling

Z =
∑
x

P ∗(x)

Q(x)
Q(x) ≈ 1

S

S∑
s=1

P ∗(x(s))

Q(x)
, x(s) ∼ Q(x)

x(1)= , x(2)= , x(3)= ,

x(4)= , x(5)= , x(6)= ,. . .

Z = 2D
∑
x

1

2D
P ∗(x) ≈ 2D

S

S∑
s=1

P ∗(x(s)), x(s) ∼ Uniform



“Posterior” Sampling

Sample from P (x) =
P ∗(x)

Z ,
[

or P (θ|D) =
P (D|θ)P (θ)

P (D)

]

x(1)= , x(2)= , x(3)= ,

x(4)= , x(5)= , x(6)= ,. . .

Z =
∑
x

P ∗(x) Z “≈”
1

S

S∑
s=1

P ∗(x)

P (x)
= Z



Finding a Volume

→ x↓
P ∗(x)

Lake analogy and figure from MacKay textbook (2003)



Annealing / Tempering

e.g. P (x;β) ∝ P ∗(x)β π(x)(1−β)

β = 0 β = 0.01 β = 0.1 β = 0.25 β = 0.5 β = 1

1/β = “temperature”



Using other distributions

Chain between posterior and prior:

e.g. P (θ;β) =
1

Z(β)
P (D|θ)βP (θ)

β = 0 β = 0.01 β = 0.1 β = 0.25 β = 0.5 β = 1

Advantages:

• mixing easier at low β, good initialization for higher β?

• Z(1)

Z(0)
=
Z(β1)

Z(0)
· Z(β2)

Z(β1)
· Z(β3)

Z(β2)
· Z(β4)

Z(β3)
· Z(1)

Z(β4)

Related to annealing or tempering, 1/β = “temperature”



Parallel tempering

Normal MCMC transitions + swap proposals on P (X) =
∏
β

P (X;β)

P (x)

Pβ1(x)

Pβ2(x)

Pβ3(x)

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

Problems / trade-offs:

• obvious space cost

• need to equilibriate larger system

• information from low β diffuses up by slow random walk



Tempered transitions

Drive temperature up. . .

x̂0 ∼ P (x)

P (X) :

x̂0

x̂1

x̂2

x̂K−1

x̄K

x̌K−1

x̌2

x̌1

x̌0

T̂β1

T̂β2

T̂βK
ŤβK

Ťβ2

Ťβ1

. . . and back down

Proposal: swap order of points so final point x̌0 putatively ∼ P (x)

Acceptance probability:

min

[
1,

Pβ1(x̂0)

P (x̂0)
· · · PβK(x̂K−1)

PβK−1(x̂0)

PβK−1(x̌K−1)

PβK(x̌K−1)
· · · P (x̌0)

Pβ1(x̌0)

]



Annealed Importance Sampling

x0 ∼ p0(x)

P (X) : x0 x1 x2 xK−1 xK
T̃1 T̃2 T̃K

xK ∼ pK+1(x)

Q(X) : x0 x1 x2 xK−1 xK
T1 T2 TK

P(X) =
P ∗(xK)

Z
K∏
k=1

T̃k(xk−1;xk), Q(X) = π(x0)

K∏
k=1

Tk(xk;xk−1)

Then standard importance sampling of P(X) = P∗(X)
Z with Q(X)



Annealed Importance Sampling

Z ≈ 1

S

S∑
s=1

P∗(X)

Q(X)

Q↓ ↑P
 10   100  500 1000 10000

252

253

254
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256

257

258

259

Number of AIS runs

lo
g

 Z

 

 

Large Variance

20 sec

3.3 min

17 min

33 min

5.5 hrs

Estimated logZ
True logZ



Summary on Z
Whirlwind tour of some estimators of Z

Methods must be good at exploring the
distribution

So watch these approaches for general use on
the hardest problems.

See the references for more.
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