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Abstract.

We introduce a new statistical tool (the TP-statistic and TE-statistic) designed specifically to
compare the behavior of the sample tail of distributions with power-law and exponential tails as
a function of the lower threshold u. One important property of these statistics is that they
converge to zero for power laws or for exponentials correspondingly, regardless of the value of
the exponent or of the form parameter. This is particularly useful for testing the structure of a
distribution (power law or not, exponential or not) independently of the possibility of quantifying
the values of the parameters. We apply these statistics to the distribution of returns of one
century of daily data for the Dow Jones Industrial Average and over one year of 5-minutes data
of the Nasdaq Composite index. Our analysis confirms previous works showing the tendency for
the tails to resemble more and more a power law for the highest quantiles but we can detect clear
deviations that suggest that the structure of the tails of the distributions of returns is more
complex than usually assumed; it is clearly more complex that just a power law.
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1-Introduction

   The distribution of returns is one of the most basic characteristics of the stock markets and
many papers have been devoted to it. One could summarize the present situation by saying that a
large number of papers document tails of the probability distribution function (PDF) of returns
which are heavier than a Gaussian tail and heavier than an exponential tail and are rather well
approximated by a power law with exponent in the range 2.5-3.5, such that the existence of the
third (skewness) and the fourth (kurtosis) moments is questionable. The fat-tail nature of the
PDF is best observed for intra-day time scales (minutes) [1-4]. A few works including two recent
papers [5,6] of the present authors (with Y. Malevergne) propose an alternative parameterization
in terms of stretched exponentials, based on statistical tests suggesting that the exponent of the
power law tail does not seem stable in the tail of the PDFs of datasets of medium size (20000
values) which are typical of standard financial applications. We refer to [1-4] for evidence of
power law tails in high frequency data and [5,6] for a review and discussion of alternative
models of the PDFs of financial returns.

One important origin behind the controversy on the nature of the tail of PDFs of financial returns
stems from the use of different parts (u,∞) of the tails 1-F(x) (F(x) being the cumulative
distribution function). Usually, in the lower part of the quantile range, one observes a slow
decreasing tail whereas, at the extreme part of the quantile range, the decay rate of the tail
becomes considerably faster. Thus, the answer to the question “what is the tail of the observed
distribution?” depends to a large extent on the lower threshold u of the data used in fitting
procedures. For instance, works documenting the relevance of stable Levy laws use the full
sample range [7-9] while discrepancies appear when constraining the analyses to different tail
ranges. Malevergne et al. [5,6] show in particular that the apparent power law exponent of the
Pareto increases with the quantiles and its growth does not seem exhausted for the highest
quantiles of three out of the four tail distributions investigated. The Boston group [1,2]
circumvents this difficulty by combining high-frequency data for thousands of companies by
normalizing each data set by its standard deviation, thus introducing in this way an effect not
completely understood. Or they fit individually the high-frequency PDFs of thousands of
companies by a power law and find that most exponents lie in the range 2-4. It is clear that such
parametric fits can only address the question of what is the average representation of the tail of
PDF (in some range pre-defined rather arbitrarily) by a power law but do not test in details the
adequacy of this model, especially as a function of the depth (quantile) in the tail of the PDFs.

Here, we suggest a new statistical tool (that we call T-statistic) designed specifically to describe
the behavior of the sample tail as compared with power-like and exponential tails as a function
of the lower threshold u. Specifically, we propose two statistics:  TP(u) and TE(u). The former
(respectively latter) is asymptotically small (i.e. converges to zero as the sample size n tends to
infinity) for the power tail described by the Pareto distribution: 1-F(x) = (u/x)b ; x≥≥≥≥u with
arbitrary power index b (respectively for the exponential tail 1-F(x)=exp(-(x-u)/d); x≥≥≥≥u with
an arbitrary form parameter d). At the same time, TP(u) (respectively TE(u)) deviates from zero
for distributions differing from the target one, i.e. the Pareto distribution (respectively the
exponential distribution). Thus, we can use the TP-statistic in order to expose in a very clear,
visual and understandable way the deviations of a given sample from the Pareto distribution with
arbitrary power index b (respectively the exponential distribution with arbitrary form parameter
d). Of course, the statistical scatter of the TP and TE statistics should and will be taken into
account.



Thus, instead of answering the question “what does the sample tail look like: power-like or
exponential-like?” we answer with the help of TP- and TE-statistics to a rather different
question: “what part of the extreme tail looks power-like (or, exponential-like)?” Of course,
negative answers to both questions are possible.
   We illustrate our introduced TP- and TE-statistics on two datasets previously studied in [5,6]:
the Dow Jones Industrial Average (DJIA) daily log-returns over the twentieth century, and the
Nasdaq Composite index (ND) 5-minutes log-returns over one year from April 1997 to May
1998 obtained from Bloomberg (for positive and negative returns separately). Our T-statistics
shows that all 4 samples tails as functions of the lower threshold u behave similarly: in the bulk
of the samples, they are close to an exponential distribution while, at the extreme range, they
approach a power-like decay. TP- and TE-statistics provide the possibility of locating (of course
with some statistical uncertainty) the value of the “cross-over” or “change-of-regime” between
these two limiting behaviors for each corresponding sample. This shows that the risk measures
such as VaR (value-at-risk) and expected shortfall cannot be estimated in a standard way with
the same distributional model for all quantile or confidence levels. This has important
consequences for risk assessment and management. Our TP- and TE-statistics also show that,
while the power law model becomes better than the exponential model in the tails, there exists
detectable deviations as a function of the lower thresholds, even for the largest quantiles. Our
analysis seems to confirm that the power law tail is not fully sufficient to model in full the
asymptotic tails of the distributions of financial returns in datasets of about 20000 data points,
whose sizes are significant compared with those used routinely in investment and portfolio
analysis.

Section 2 introduces the TP-statistics and derives its properties. Section 3 introduces the TE-
statistics and derives its properties. Section 4 presents the application of the TP- and TE-statistics
to the DJIA and ND data sets. Section 5 concludes.

2- TP-statistic and its properties

Consider the Pareto distribution F(x), conditioned on the semi-axis x ≥ u :

(1) F(x) = 1 – (u/x)b , x ≥ u, b > 0,

where  u is a lower threshold, and b is the power index of the distribution. Let us consider a
finite sample x1,…, xn. In [15], the following statistic TP = TP(x1,…, xn) was suggested such
that, asymptotically for large n, TP would be close to zero and, at the same time, would
deviate from zero for samples whose distribution deviates from eq.(1). This statistic is based
on the first two normalized statistical log-moments of the distribution (1). Using the symbol E
for the mathematical expectation, we have

(2)     E1 ≡ E log(X/u) =   ∫
∞

u

 log(x/u) dF(x) = 1/b ;

(3)      E2 ≡  E log2(X/u) =   ∫
∞

u

 log2(x/u) dF(x) =  2/b2.

Thus, if we choose



TP = (1/n) ∑
=

n

k 1

 log(xk/u) )2 – (0.5/n)  ∑
=

n

k 1

 log2(xk/u),

then according to the Law of Large Numbers and equations (2)-(3), the statistic TP tends to
zero as n →∞ . In order to evaluate the standard deviation std(TP) of the statistic TP,  we
rewrite the expression for TP in the form:

(4) TP = (1/n) ∑
=

n

k 1

[log(xk/u) -E1] + E1)
2 – (0.5/n)  ∑

=

n

k 1

[log2(xk/u)- E2] - 0.5E2,

where E1, E2 are the expectations of log(xk/u) and log2(xk/u) respectively (for Pareto samples,
E1, = 1/b  and E2 =2/b2 as given in expressions (2) and (3)). Both sums in eq.(4) are of the
order n -0.5 :

                ε1 =1/n ∑
=

n

k 1
[log(xk/u) –E1] ∝  n -0.5 ; ε2 =1/n ∑

=

n

k 1
[log2(xk/u) -2/b2] ∝  n -0.5

Thus, if n is large enough, we can expand TP in eq.(4) into Taylor series up to terms of the
order n -0.5  in the neighborhood of E1 and E2 respectively:

(5)                                       TP ≅  (E2
1 -0.5E2)+2E1ε1 –0.5 ε2 .

This provides an estimation of std(TP) by the standard deviation of the sum:

(6) 2E1ε1 –0.5 ε2 = (2 E1 /n) ∑
=

n

k 1
[log(xk/u) -E1] – (0.5/n)∑

=

n

k 1
[log2(xk/u)- E2] =

                                    = (0.5 E2 - 2 E2
1) +(1/n) ∑

=

n

k 1
[2 E1 log(xk/u) – 0.5 log2(xk/u)].

The standard deviation of the last sum in (6) can be estimated by

 (7)                                     n -0.5 std[2 E1 log(xk/u) – 0.5 log2(xk/u)],

and the standard deviation std of the term in the bracket in eq.(7) is estimated through its
sampled value [2 E1 log(xk/u) – 0.5 log2(xk/u)]. Equation (6) then provides an estimate of
std(TP) if we replace E1 by its sample analog:

                                                      (1 /n) ∑
=

n

k 1
log(xk/u).



3- TE-statistic and its properties

Let us consider the exponential distribution, conditioned to the semi-axis x ≥ u :

(8)            F(x) = 1 – exp( -(x-u)/d ), x ≥ u,  d > 0,

where  u is a lower threshold, and d is the form parameter (scale parameter) of the distribution.
Let us consider a finite sample x1,…, xn. It is desirable to construct a statistic TE = TE(x1,…,
xn) such that, asymptotically for large n, TE would be close to zero and, at the same time,
would deviate from zero for samples whose distribution deviates from eq.(8). Let us construct
such statistic based on the first two normalized statistical (shifted) log-moments of the
distribution (8). Using again the symbol E for the mathematical expectation, we have

(9)     E log(X/u -1) =   ∫
∞

u

 log(x/u -1) dF(x) = log(d/u) -C ,

where C  is the Euler constant: C = 0.577215… .

(10)      E log2(X/u -1) =   ∫
∞

u

 log2(x/u -1) dF(x) =  (  log(d/u) -C  )2 +π2/6.

Thus, if we choose

(11)                TE = 1/n ∑
=

n

k 1
 log2(xk/u -1)  – (1/n  ∑

=

n

k 1
 log(xk/u -1) )2 - π2/6,

then according to the Law of Large Numbers and equations (9)-(10), the statistic TE tends to
zero as n →∞ . In order to evaluate the standard deviation std(TE) of the statistic TE,  w e
rewrite (11) in the form:

(12)      TE = π2/6  + 1/n∑
=

n

k 1
[ (  log(xk/u-1) –E log(X/u -1)]2 .

This provides an estimation of std(TE) by the standard deviation of the sum:

(13)                                               1/n∑
=

n

k 1
[ (  log(xk/u-1) –E log(X/u -1)]2 ,

which can be easily performed.



4- Application of the TP- and TE-statistics to the DJIA and ND data sets

This section presents a series of figures plotting the TP-statistic TP(u) and the TE-statistic
TE(u)  as a function of the lower threshold u for returns of the DJIA at the daily time-scale
and for the ND at the 5-minute time-scale.

In order to appreciate the information contained in these plots, it is useful to test the
corresponding statistics for a pure Pareto sample and for a pure exponential sample. Fig.1a
shows the TP-statistic TP(u)  as a function of the lower threshold u, applied to a simulated
Pareto sample of size n=20000 with power index b = 3 generated with u=1 as defined in
Eq.(1). Fig.1b shows the TE-statistic TE(u) for this pure power law.  Fig.2a shows the TP-
statistic TP(u) applied to a simulated exponential sample of size n=20000 with form
parameter d = 4 generated with u=1 as defined in Eq.(8). Fig.2b shows the TE-statistic TE(u)
for this pure exponential law.

Fig.3 shows the TP-statistic TP(u) and the TE-statistic TE(u)  as a function of the lower
threshold u for positive returns of the DJIA at the daily time-scale. The TP(u)  statistic shows
clearly a tendency for a convergence towards a power law behavior, but statistically
significant departures still remain up to the largest available thresholds. The TE(u)  statistic
can not exclude the exponential model for lower thresholds above 3% but its standard
deviations are very large and this statistic thus lacks power of discrimination.

Fig.4 shows the TP-statistic TP(u) (a) and the TE-statistic TE(u)  as a function of the lower
threshold u for negative returns of the DJIA at the daily time-scale.  The TP(u)  statistic shows
a convergence towards a power law behavior which is accepted only for the largest available
threshold u>4%. The TE(u) statistic can not exclude the exponential model for lower
thresholds above 3%  but its standard deviations are very large and this statistic thus lacks
power of discrimination.

Fig.5 shows the TP-statistic TP(u) (a) and the TE-statistic TE(u)  as a function of the lower
threshold u for positive returns of the ND at the 5-minutes time-scale.  The TP(u) statistic
shows a convergence towards a power law behavior over an intermediate range 1% < u < 3%
but shows a distinct departure for a power law further deep in the tail for u>3%. The TE(u)
statistic clearly excludes the exponential model for all lower thresholds and shows a non-
monotonous behavior of the tail, confirming the observation of the  TP(u)  statistic.

Fig.6 shows the TP-statistic TP(u) (a) and the TE-statistic TE(u)  as a function of the lower
threshold u for negative returns of the ND at the 5-minutes time-scale.  The TP(u) statistic
shows a clear convergence towards a power law behavior which becomes approximately
stable for 0.15% < u. A slight departure from the pure power law behavior can be observed
for the largest thresholds. The TE(u) statistic can not exclude the exponential model for
almost all lower thresholds  but its standard deviations are very large and this statistic thus
lacks power of discrimination.

5- Concluding remarks

These analyses complement those presented in [5,6]: they confirm the tendency for the tails to
resemble more and more a power law for the highest quantiles but we can detect clear
deviations that suggest that the structure of the tails of the distributions of returns is more
complex than usually assumed; it is clearly more complex that just a power law. The nature of
the real tail of the PDF of financial returns has not been settled here: our conservative
conclusion is that, while the power law may present an approximate model, it may be
inaccurate to extrapolate such a model beyond the range of observed returns.  Being



inaccurate, it may be inappropriate to use for risk assessment purposes because the
unobserved tail may be thinner or fatter than estimated in the finite available range.
Extrapolations are dangerous in view of the distinct deviations from the reference power law
or exponential models. We believe in particular that the existence of conditional dependencies
for the largest returns (see [10-14] and references therein) may impact significantly on the tail
structure for the highest quantiles which may thus take a different asymptotic form than
determined in the empirical range. Such intermittent dependences may perhaps be in part at
the origin of the complexity of the distribution of financial returns. Such a conclusion has
been clearly shown to describe the distributions of drawdowns, i.e., runs of returns from top to
bottom prices, which are characterized by two regimes [12,14]: an approximate exponential
body and tails much more heavy-tailed that the extrapolation of the exponential law (called
“outliers” or “kings”).
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Fig. 1b
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Fig. 1:  a) TP-statistic as a function of the lower threshold u, applied to a simulated Pareto
sample of size n=20000 with power index b = 3 generated with u=1 as defined in Eq.(1).
Increasing u decreases the number of data values used in the calculation of the statistic
TP, thus enhancing the fluctuations around 0. The two dashed lines show plus or minus
one standard deviation std estimated as exposed in the text. b)  TE-statistic of the same
synthetic data.



Fig. 2a

10
0

10
1

10
2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lower threshold, u

T
P

st
at

is
tic

 
±s

td



Fig. 2b
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Fig. 2: a) TP-statistic as a function of the lower threshold u, applied to a simulated
exponential sample of size n=20000 with form parameter d = 4 generated with u=1 as
defined in Eq.(8). The two dashed lines show plus or minus one standard deviation std
estimated as exposed in the text. b)  TE-statistic of the same synthetic data.
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Fig. 3b
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Fig. 3:  TP-statistic TP(u) (a) and the TE-statistic TE(u)  (b) as a function of the lower
threshold u for positive returns of the DJIA at the daily time-scale. The two dashed lines show
plus or minus one standard deviation std estimated as exposed in the text. The insets show the
same statistics over the extended range of u.



Fig. 4a
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Fig. 4b
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Fig. 4:  TP-statistic TP(u) (a) and the TE-statistic TE(u)  (b) as a function of the lower
threshold u for negative returns of the DJIA at the daily time-scale. The two dashed lines
show plus or minus one standard deviation std estimated as exposed in the text. The insets
show the same statistics over the extended range of u.
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Fig. 5b
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Fig. 5:  TP-statistic TP(u) (a) and the TE-statistic TE(u)  (b) as a function of the lower
threshold u for positive returns of the ND at the 5-minutes time-scale. The two dashed
lines show plus or minus one standard deviation std estimated as exposed in the text. The
insets show the same statistics over the extended range of u.



Fig. 6a
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Fig. 6b
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Fig. 6:  TP-statistic TP(u) (a) and the TE-statistic TE(u)  (b) as a function of the lower
threshold u for negative returns of the ND at the 5-minutes time-scale. The two dashed
lines show plus or minus one standard deviation std estimated as exposed in the text. The
insets show the same statistics over the extended range of u.


