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Abstract— Tamper-resistant cryptographic processors are
becoming the standard way to enforce data-usage policies.
Their history began with military cipher machines, and
hardware security modules used to encrypt the PINs that
bank customers use to authenticate themselves to ATMs.
In both cases, the designers wanted to prevent abuse of
data and key material should a device fall into the wrong
hands. From these specialist beginnings, cryptoprocessors
spread into devices such as prepayment electricity meters,
and the vending machines that sell credit for them. In
the 90s, tamper-resistant smartcards became integral to
GSM mobile phone identification and to key management
in pay-TV set-top boxes, while secure microcontrollers were
used in remote key entry devices for cars. In the last five
years, dedicated crypto chips have been embedded in devices
from games console accessories to printer ink cartridges, to
control product and accessory aftermarkets. The ‘Trusted
Computing’ initiative will soon embed cryptoprocessors in
PCs so that they can identify each other remotely.

This paper surveys the range of applications of tamper-
resistant hardware, and the array of attack and defence
mechanisms which have evolved in the tamper-resistance
arms race.
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fault analysis, power analysis, semi-invasive attack

I. Introduction

The combination of cryptography and tamper-resistance
first appeared in military applications such as securing
communications links. The spread of Automated Teller
Machine (ATM) networks brought the technology into the
commercial mainstream. The devices used for protecting
ATM networks were subsequently adapted for other appli-
cations such as prepayment electricity meter.

A typical high-end cryptoprocessor is a physically
tamper-resistant embedded processor which communicates
with a conventional PC or mainframe and performs a pre-
defined set of cryptographic operations using keys that are
protected within the device.

Such a cryptoprocessor typically enforces a policy on the
use of the keys it protects. For example, in an ATM net-
work, the network cryptoprocessor may allow verification of
incoming customer Personal Identification Numbers (PINs)
but not generation of PINs for new accounts. The Appli-
cation Programming Interface (API) which such a device
presents is called the security API and will implement the
device’s security policy. We discuss security APIs in sec-
tions V and VI.

During the 1990s, cryptoprocessors gained more uses:
protecting Secure Socket Layer (SSL) keys used by web-
servers, and defending proprietary software and algorithms
from theft by employees; low-cost cryptoprocessors such as
smartcards and secure microcontrollers also became com-
monplace.
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A whole host of embedded applications for cryptoproces-
sors now exist: smartcards for holding decryption keys for
pay-TV; lottery ticket vending machines; and mobile-phone
top-up systems. Modern electronic payment schemes such
as EMV use smartcards and readers at the front end, and
larger cryptoprocessors at the back end, to control the flow
of electronic money. Tamper-resistant hardware is even
deployed in an effort to secure electronic voting terminals
from attack.

The latest applications of tamper-resistant processors are
in Digital Rights Management (DRM) and Trusted Com-
puting (TC). Content owners are looking towards tamper-
resistant processors with security APIs that can enforce ar-
bitrary policies on the way that content is processed. The
range of possible applications is incredible, and – to some
observers – disturbing [10]. The entertainment industry
in particular seeks new revenue streams by using security
APIs to release media according to new rules, such as music
subscription services, and to enforce finer market segmen-
tation.

In section II we describe possible applications in more de-
tail, and in section III we provide a taxonomy of cryptopro-
cessors and attacks. Section IV considers attacks involving
physical access to the device, while sections V and VI
describe logical attacks on the security APIs of cryptopro-
cessors. Finally, sections VII and VIII look at issues of
policy and draw some conclusions.

II. Applications

A. Automated Teller Machine Security

ATMs were the ‘killer application’ that got cryptography
into wide use outside of military and diplomatic circles, and
remain today a high-volume use for tamper-resistant hard-
ware. In the 70s, IBM developed a system for authenticat-
ing customers to ATMs. Bank customers were issued with
PINs, computed from their account numbers using a secret
DES key, the PIN derivation key. References [3], [4] include
descriptions of the launch of the 3614 ATM series [36] and
its accompanying back-end processor, the 3848. This was
the first commercial hardware security module, or HSM, as
stand-alone cryptoprocessors have come to be known in the
financial sector. HSMs controlled access to the PIN deriva-
tion keys, and also kept PINs secret in transit through the
network. HSMs are still used during all stages of PIN man-
agement, including acquisition of PINs at the ATMs (the
keypad is often integrated into a low-cost HSM based on
the Dallas DS5002 microcontroller); verification at the card
issuing bank, and also during generation processes, e.g. at
PIN mailing sites.

The HSM’s API is designed to allow legitimate opera-
tions on PINs and PIN derivation keys, for instance veri-
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fying a PIN against an encrypted trial PIN from an ATM,
or sending a clear PIN to a special printer to be sent to
the customer. It must however prevent abuse by malicious
employees; for instance it must not allow the wholesale dis-
covery of a PIN for every bank account.

B. Electronic Payment Schemes

HSM-based cryptography is spreading from ATM net-
works to general debit and credit card processing. Elec-
tronic payment systems use it to secure communications
between banks and merchants, and to store verification
keys to authenticate cards presented at point of sale ter-
minals. Merchant devices may contain low-cost cryptopro-
cessors; supermarkets and chain stores may use full-blown
HSMs as concentrators for till networks. HSMs are also an
integral part of the back-end systems at banks which pro-
cess these transactions, preventing insiders from exploiting
their positions. The new EMV standard [33] for payment
adds a third location for a cryptoprocessor – on the cus-
tomer’s card. These cards may store customer PINs, and
allow end-to-end security for communication between the
smartcard and the issuing bank.

Internet banking and payment have brought a range of
concerns, many of which can be assuaged by using HSMs –
which may in turn help home banking become ubiquitous.
The challenge is to establish an island of trust in the user’s
home: some banks await generic “trusted computing” for
PCs (fitting every computer with a cryptoprocessor), while
others have issued stand-alone tamper-resistant authorisa-
tion devices (such as the RSA SecurID) that enable the use
to enter a time-dependent password, or answer a random
challenge, based on a key in the device. In effect, these
devices export a security API to the PC through the user.

Finally, futuristic online electronic payment schemes
such as “digital cash” have been tried out. Trusted third
parties mint electronic tokens of some form, which can cir-
culate from one user to another. The hard problem here is
to prevent a user spending the same electronic coin twice.
The issuers can use a combination of tamper-resistant
devices and clever cryptography to deal with this. So
long as the payment device remains tamper-proof, double-
spending is prevented; and should a customer ever manage
to defeat the tamper-resistance and spend a coin twice, the
act of double-spending will automatically reveal his iden-
tity to the issuer [25], [23].

C. Prepayment Electricity Meters

HSMs are a critical part of the prepayment electricity
meter systems used to sell electric power to students in
halls of residence, to the third-world poor, and to poor
customers in rich countries [6]. They are typical of the
many systems that once used coin-operated vending, but
have now switched to tokens such as magnetic cards or
smartcards. The principle of operation is simple: the meter
will supply a certain quantity of energy on receipt of an
encrypted instruction – a ‘credit token’, then interrupt the
supply. These credit tokens are created in a token vending
machine, which contains an HSM that knows the secret key

in each local meter. The HSM is designed to limit the loss
if a vending machine is stolen or misused; this enables the
supplier to entrust vending machines to marginal economic
players ranging from student unions to third-world village
stores.

The HSM inside the vending machine must be tamper-
resistant, to protect the meter keys and the value counter.
The value counter enforces a credit limit; after that much
electricity has been sold, the machine stops working until
it is reloaded. This requires an encrypted message from a
device one step higher up the chain of control – and would
typically be authorized by the distributor once they have
been paid by the machine operator. If an attempt is made
to tamper with the value counter, then the cryptographic
keys should be erased so that the vending machine will
no longer function at all. Without these controls, fraud
would be much easier, and the theft of a vending machine
might compel the distributor to re-key all the meters within
its vend area. There are other security processors all the
way up the value chain, and the one at the top – in the
headquarters of the power company – may be controlling
payments of billions of dollars a year.

D. Trusted Computing

Trusted Computing (TC) is an umbrella term for new
technologies designed to embed cryptoprocessors in current
computing platforms, including PCs and PDAs. An in-
dustry consortium, the Trusted Computing Group (TCG),
designed a special cryptoprocessor, the Trusted Platform
Module (TPM), to serve in a wide range of roles, and
in particular to build an island of trust within the desk-
top PC [70]. The first generation TPM was designed for
key storage and passive measurement of the machine state,
and has been mass-produced. Notably, it is deployed in
IBM Thinkpad Laptops. A new TPM is currently being
designed, which will serve as the base for more sophisti-
cated TC projects using desktop computers, for instance
to allow corporations to lock down employee workstations
to a particular OS configuration. It will also play a part
in Microsoft’s plans for a trusted Windows operating sys-
tem (formerly called Palladium/NGSCB) [53]. This TPM,
in combination with a software micro-kernel which it val-
idates, will form a virtual cryptoprocessor, which many
different applications can use.

The key idea is that a TC machine will be able to cer-
tify to other TC machines that it is faithfully executing
a particular program. This means that the TPM, in con-
junction with the microkernel, can certify both a program
and the platform on which it is executing. Together with
the trusted operating system, it can prevent one program
from interfering with another.

The major application of TC is Digital Rights Manage-
ment: the control of the distribution and use of data. In
this context, a TC machine can assure a content vendor
that it is sending a song or movie to a true copy of a media
player program, rather than to a hacked copy. The vendor
gets better assurance that the song or movie will remain
under its control, and is less likely to appear in an unpro-
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tected form on file-sharing networks. Present DRM mech-
anisms are based on software obfuscation, and eventually
get hacked; the promise of TC to the content industry is
that cryptoprocessors will slow down this process. Digital
media have made lossless copying possible, and some ven-
dors believe that more effective technical DRM mechanisms
are the best way to protect their revenue streams. They
may also enable alternative marketing strategies, such as
subscription services for listening to music. (IBM’s En-
hanced Media Management System has an optional secure
hardware component [42] based around its 4758 cryptopro-
cessor, but most existing DRM solutions do not yet offer
cryptoprocessor-based tamper-resistance.)

DRM is not just for entertainment media such as music
and video, but can also be applied to electronic documents
and email. TC technology could support control of in-
formation flow within organisations, preventing leaks and
making theft of intellectual property more difficult. Mi-
crosoft Office 2003 has built-in Information Rights Man-
agement facilities integrated into the applications. These
extend Microsoft’s rights management architecture to doc-
uments. For example, it becomes possible to restrict a doc-
ument to named machines, or to cause it to self-destruct
after a fixed period, or to prevent it being printed. Doc-
uments are encrypted together with a set of usage rules,
written in a rights expression language; these rules are at
present enforced by obfuscated software, but may in future
be enforced using TPM-based TC mechanisms.

The APIs of modern rights-management systems are be-
coming full-blown security APIs. A content provider may
use a third-party encapsulation of their content within an
obfuscated viewer application. The content provider writes
a policy governing access to the content, and this is com-
piled into the viewer. The user then interacts through this
API providing various ‘unlock codes’ or interacting with
online components of the system to gain access to the con-
tent. If the policy is poorly designed, the user may through
careful manipulation be able to gain better access than
was intended, for longer time-periods, or on additional ma-
chines.

E. Public Key Cryptoprocessors

The arrival of public-key technology spawned a range
of new secure communications protocols. Secure Sockets
Layer is widely used to secure traffic on the web. It protects
sensitive web services such as online payments and elec-
tronic banking. Public keys embedded in internet browsers
are used to authenticate a chain of certificates that attest
to a relationship between a particular domain name and
a public key used in the SSL protocol. The user relies on
this certificate chain to be sure that she is communicat-
ing directly with the webserver of the site in question – a
merchant or electronic banking service, for example.

Webservers supporting SSL perform a private-key ex-
ponentiation for every connection attempt, so are under
considerable load from the computations. This drove the
development of the latest generation of public key crypto-
processors. They are used for SSL acceleration, and well as

for the protection and management of keys and certificates
associated with providing secure web services.

Cryptoprocessors at server farms may enforce a simple
non-export policy on an SSL private key – it must never
leave the device. This mitigates the risks associated with
webserver compromise, whether via network hacking or
equipment theft. However, if the specific threats and chal-
lenges associated with the certificates can be identified, the
HSM can process policy components, and genuinely assist
in improving security. For instance, at Certification Au-
thorities (CAs), where certificates are managed, HSMs may
help enforce stringent policies on key usage: they can en-
force dual control policies on the most valuable keys in
a CA; they can help supervisors monitor the activities of
large numbers of human operators efficiently; and they can
keep signed audit trails of activities to allow retrospective
monitoring of access.

Such infrastructures of keys and certifications are used
for a range of other purposes: for login and for authenti-
cation in very large companies; for managing identity on
the internet for SSL-enabled websites; and for managing
software, by signing everything from web applets to com-
ponents of operating systems.

F. Military Applications

By World War 2, some military cipher machines had
been made capture-resistant with thermite charges that
destroyed them if they were opened by persons ignorant
of the disarming mechanism. During the Cold War, great
damage was caused by traitors, and in particular by the
Walker family, who sold US Navy keys and cipher machine
designs to the Soviets for over twenty years. This convinced
the NSA that cipher machines should, as far as possible,
also resist dishonest insiders. Modern military cipher ma-
chines not only use classified algorithms in tamper-resistant
chips; they also use such chips as crypto ignition keys to
transport initial key material. The goal is that the street
value of these keys should be zero, as most enemies have
no access to a machine in which to use them; and even for
the few who do have such access, stolen keys should not
be useful in deciphering any other traffic. Enforcing such
a policy requires that the tamper-resistance, the crypto
protocol design and the management procedures all work
together well.

Another influential military application has been nuclear
command and control. According to US military doctrine,
a nuclear weapon may not in general detonate without au-
thorization, environment and intent. ‘Intent’ means an un-
ambiguous arming signal from the officer in charge of the
weapon, typically carried over multiple wires with error-
control coding. ‘Environment’ means a condition that is
easy to measure yet hard to forge, such as the period of
zero gravity experienced by an air-drop bomb on release
and by an ICBM in its sub-orbital phase. ‘Authorization’
means a coded signal from the national command author-
ity – the President and his lawful successors in office. This
system was introduced following the Cuban missile crisis,
to minimize the probability of a nuclear war starting by



IEEE PROCEEDINGS 103

accident or mischance. The authorization codes in par-
ticular have some interesting and complex requirements,
described in [3]. Tamper-resistance mechanisms are em-
bedded in weapons in order to prevent a stolen weapon
being exploded, or being dismantled to reveal an autho-
rization code with which a second stolen weapon could be
armed.

G. Specialist Applications

Bills of Lading – the international trade and payments
system used documents called bills of lading to represent
cargoes in transit. Thus the owner of a shipment of oil in
transit across the Atlantic may sell it by endorsing the bill
of lading to the new owner. Implementing an electronic
version of bills of lading presented a number of interesting
challenges, including finding some way to prevent a crook
selling the same goods twice. Given that an oil cargo may
be worth $100m, and it may take weeks from sale until
delivery, it was vital to provide robust mechanisms to pre-
vent such a fraud. The Bolero system uses two independent
mechanisms. Electronic bills of lading can only be endorsed
from one owner to another using keys kept in hardware se-
curity modules that closely control their use; there is also
a central database of extant bills maintained on a server
operated by a trusted third party [43]. In order to sell an
oil cargo twice, a crook would have to subvert this third
party and also defeat the HSM.

Key-Loading Sites – Applications which deploy thou-
sands of cryptoprocessors, such as pay-TV smartcards and
prepayment token vending machines, require a trustworthy
means of initialising them before delivery. Generic man-
ufacturing processes are often followed by a key-loading
phase, which may happen at the premises of a bank or a
specialist security contractor. This operator may have a hi-
erarchy of HSMs, or in the case of smartcard-to-smartcard
protocols, a large rack of smartcards in readers, to super-
vise the initialisation and personalisation of new devices.
Some interesting failures have occurred where the system
operator has tried to save money on this operation. In one
case, a pay-TV operator used PC software to personalise
smartcards; this software entered the public domain when
one of the PCs from the control centre was sold second-
hand and its disk contents were undeleted by a curious
purchaser. In other cases, weak private keys have been
issued to bank smartcards by badly-designed card person-
alisation systems.

III. Taxonomy of Cryptoprocessors and Attacks

Early military cipher machines may be seen at the
NSA Museum, Fort George G. Meade, Maryland; the
tamper-resistance mechanisms extend to protective deto-
nation mechanisms that destroy the device if it is improp-
erly opened. The earliest civilian cryptoprocessor known to
us is the IBM 3848, an encryption device that functioned
as a mainframe peripheral. It was contained in a steel cab-
inet, with switches that zeroised the memory containing
cryptographic keys whenever the cabinet was opened.

Top-of-the-range cryptoprocessors nowadays have gener-
ally followed the second line of development. An example is
the IBM 4758 (figure 1), the 3848’s descendant, which has
a cryptographic engine surrounded by a multilayer tamper-
sensing mesh (figure 2). This is constantly monitored by
the engine, which erases its key material and renders itself
inoperable if a tampering attempt is detected. Rather than
occupying a whole cabinet in a machine room, the 4758
comes as a standard PCI card for mounting in a server.
A rich literature documents the design, development and
validation of the 4758 [31], [38], [63], [64], [66], [67], and its
security architecture [32].

Fig. 1. IBM 4758-001

At the low-cost end of the market, cryptoprocessors are
often implemented in microcontrollers. Many engineers
are familiar with these cheap, standard components. The
cheapest microcontrollers cannot perform public-key cryp-
tography in a reasonable time, but no matter: many ap-
plications such as remote key entry use shared-key cryp-
tographic algorithms such as triple-DES and AES, whose
computational cost is low. A more serious problem is that
the read-protect mechanisms in low-cost microcontrollers
are not really designed to withstand skilled and determined
attack.

A middle market has therefore emerged of single-chip
products that have been hardened in various ways against
attack. These products include smartcards, and the TPM
chips specified by the Trusted Computing Group for use
in PCs. Before deciding whether an application can use a
low-cost microcontroller, or needs a smartcard-grade com-
ponent or even a high-end tamper-responding device, it is
necessary to understand something about the technology
of attacks and defences. We will discuss the attacks on
microcontrollers, and the measures that can be adopted to
thwart them, in more detail in the next section.

When analyzing the security of a cryptoprocessor, it can
be useful to perform a systematic review of the attack sur-
face – the set of physical, electrical and logical interfaces
that are exposed to a potential opponent. This leads us to
divide attacks into four classes.
Invasive attacks involve direct electrical access to the in-
ternal components of the cryptoprocessor. For example,
the attacker may open a hole in the passivation layer of a
microcontroller chip and place a microprobing needle on a
bus line in order to capture a signal.
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Semi-invasive attacks involve access to the device, but
without damaging the passivation layer of the chip or mak-
ing electrical contact other than with the authorised inter-
face. For example, the attacker may use a laser beam to
ionise a transistor and thus change the state of the flip-flop
that holds the device’s protection state.
Local non-invasive attacks involve close observation or ma-
nipulation of the device’s operation. An example is power
analysis: measuring the current drawn by the processor
with high precision, and correlating this with the compu-
tations being performed by the device in order to deduce
the value of cryptographic keys.
Remote attacks involve observation or manipulation of the
device’s normal input and output. Examples include tim-
ing analysis, cryptanalysis, protocol analysis and attacks
on application programming interfaces.

Each of these types of attack may also be either active
or passive. In the latter the attacker works with the device
as it is operated normally, while in the former the attacker
may manipulate the device, its inputs or its environment
so as to induce abnormal operation. An active invasive at-
tack may involve injecting signals physically into the device
using probing needles; an active semi-invasive attack may
use a laser or strong electromagnetic pulse to cause aber-
rant behaviour of some internal component of the chip; an
active local noninvasive attack may manipulate power line
voltages or clock frequencies to cause partial failure of the
device under test; while an active remote noninvasive at-
tacker might feed a cryptoprocessor with carefully-chosen
sequences of transactions in order to cause behaviour that
was not anticipated by the device’s designer.

Fig. 2. An IBM 4758-001 part potted in urethane, showing membrane
and interior (courtesy F. Stajano)

The high-level summary of these attacks is that, by
spending more money on a better cryptoprocessor, you can
greatly diminish and perhaps even eliminate the first three
classes. All of these are local, in that the opponent needs to
obtain unsupervised access to the device; so in an applica-
tion where the cryptoprocessor can be physically guarded,
or perhaps where its owner’s incentive is to protect its se-
crets rather than try to extract them, you may be able
to use a cheaper cryptoprocessor or even ignore these at-
tacks completely. But many attacks in the fourth, remote,
class are independent of the quality of the cryptoproces-
sor hardware. It does not matter how much you spend
on device-level protection, if the transaction set which you

implement on it can be manipulated in such a way as to
break your security policy (Smith – a designer of the IBM
4758 – reflects upon the disparity between its state-of-the-
art hardware and firmware and the financial API it usually
implements, which has turned out to be the weakest link,
in [68]).

In the next section we will describe the local attacks to
which budget cryptoprocessors may be vulnerable – the
invasive, semi-invasive and local non-invasive attacks. The
following section will then focus on remote attacks, and in
particular on API attacks.

IV. Local Attacks

Fifteen years ago, devices such as microcontrollers and
smartcards offered little resistance to a capable motivated
opponent. Protection typically consisted of a read-only bit
that was set after programming; this bit could often be
reset by simple tricks such as glitching [46] – inserting a
transient into the power supply, perhaps by reducing the
supply voltage to zero for a few microseconds – or illumi-
nating it with UV light. Even so, microcontrollers gave
better protection than circuit boards with discrete compo-
nents, whose interconnects could be observed directly with
an oscilloscope. At that time, there were few valuable ap-
plications and thus few serious attackers. As late as 1994,
a senior industry figure explained at the Cardis conference
that there was simply no demand for better security.

That changed once smartcards started to host applica-
tions such as pay-TV. Various people set out to reverse-
engineer pay-TV smartcards: some were pirates who
wanted to forge cards, while others wanted to put key ma-
terial on the Internet so that people could watch for free.
(This sometimes involved idealism, but in at least one case
a pay-TV operator was sued for hacking a rival’s card and
anonymously publishing their key [24].) In addition, micro-
controllers were used in accessory-control applications such
as games cartridges, where the business model involved
subsidising consoles from sales of software, and the security
devices in the cartridges were there to ensure that acces-
sory vendors paid the manufacturer a royalty. This created
a strong business incentive for a vendor’s competitors and
aftermarket suppliers to reverse-engineer its security chips
– which was legal in most relevant jurisdictions.

This triggered an arms race between attack and defence.
In the mid-90s, attackers invested in invasive attack meth-
ods, using probing stations; then in the late 1990s there
was a wave of attacks using non-invasive techniques such
as power analysis; and in the early 2000s, a number of semi-
invasive attacks were developed, of which the best known
involve optical probing. Chipmakers have responded by
developing new families of microcontrollers and smartcards
with a number of defensive features.

A. Invasive attacks

The earliest tamper-resistant processors – the hardware
security modules used by banks from the 1980s – were very
vulnerable to physical attack. The protection mechanisms
relied on steel boxes with lid switches and, sometimes, fur-
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ther sensors such as photodiodes and seismometers. An at-
tacker familiar with these mechanisms could drill his way
in. A worse problem was that maintenance visits were
needed every year or two to replace the battery that pre-
served cryptographic keys while the machine was powered
off. It was trivial for a maintenance technician to disable
the tamper-responding circuit on one visit, and then ex-
tract the keys on his next visit. Modern HSMs therefore
use more complex designs. The IBM 4758, for example,
has its electronic components encased in a tamper-sensing
membrane that is itself potted in a compound that’s dif-
ficult to cut or drill cleanly, and the batteries are outside
this security perimeter (see figures 1 and 2).

As well as tamper-sensing membranes, a number of other
tricks are used: custom-pressure air gaps, stressed glass
components, and even shaped charges in military devices
which will destroy the memory chip yet are so small that
they do not result in gas release from the package. Wein-
gart surveys such anti-tamper technologies in [71]. Such
designs are by now fairly mature, and there is a certifica-
tion program (FIPS 140) which vendors can follow to as-
sure their customers of a certain level of tamper-proofness.
FIPS is discussed in section VII.

Of more interest are the technologies relating to making
single-chip devices resistant to invasive attack. Probing
chip internals directly had always been an option for semi-
conductor makers. By the mid-1990s, the availability of
second-hand semiconductor test equipment such as man-
ual probing stations made invasive attacks practical for a
much wider class of attackers.

A typical probing station consists of a microscope
with an objective working distance of several millimeters,
mounted on a low-vibration platform containing microma-
nipulators that can be used to place probes on to the de-
vice under test. The microscope will typically also be fitted
with a laser, with which small holes can be drilled in the
chip’s passivation layer. These holes allow electrical con-
tact by the probes, and indeed stabilise them in position.
The modus operandi is to probe the device’s internal bus,
so that both program and data can be read out. Many
neat tricks have been developed by practitioners; for ex-
ample, placing a grounded probe on the clock line to the
instruction latch, so that the same instruction is executed
repeatedly and the program counter is thus incremented
continuously, causing the entire memory contents to be-
come available in sequence on the bus. The standard ref-
erence on microprobing is [46].

Since the late 1990s, smartcard vendors have made in-
vasive attacks very much more difficult. First, high-grade
cards typically have a sensor mesh implemented in the top
metal layer (figure 3), consisting of a serpentine pattern of
sensor, ground and power lines: if the sensor line is broken,
or shorted to ground or power, the device self-destructs.

Second, technological progress is steadily increasing the
cost of an attack. Ten years ago it was possible to use a
laser cutter and a simple probing station to get access to
any point on the chip surface, and it was possible to nav-
igate the chip’s surface visually. Modern deep-submicron

Fig. 3. Top metal sensor mesh on ST16 smartcard

semiconductor chips call for more sophisticated and expen-
sive probing technologies, which exclude most potential at-
tackers.

For example, the structure of the Microchip PIC16F877
microcontroller can be easily observed and reverse engi-
neered under a microscope (figure 4). The second metal
layer and polysilicon layer can still be seen, although buried
under the top metal layer. This is possible because each
subsequent layer in the fabrication process follows the
shape of the previous layer. Under a microscope, the ob-
server sees not only the highest layer but also edges that
reveal the structure of the deeper layers.

In 0.5 µm and smaller technologies, as in the later Mi-
crochip PIC16F877A microcontroller (figure 5), each layer
but the last one is planarised using chemical-mechanical
polishing before applying the next layer. As a result, the
top metal layer does not show any trace of the deeper lay-
ers. The only way to reveal the structure of the deeper
layers is by removing the top metal layers either mechani-
cally or chemically.

Fig. 4. PIC16F877 built with old technology (0.9-micron)

Fig. 5. PIC16F877A built with new CMP technology (0.5-micron)
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Even once the chip is sufficiently well-understood that
the attacker knows where to tap, making a useful electrical
contact is not trivial. A Focussed Ion Beam (FIB) worksta-
tion may be needed to drill down to the appropriate com-
ponent and bring out a contact to a bonding pad. Even so,
the added capacitative load may be such that the modifi-
cation causes the chip to fail. There are also defences that
can be used – refractory passivation layers, for example,
that are slow to penetrate with the FIB or cause excessive
charge buildup, which can be used to trigger an alarm.

B. Local non-invasive attacks

In the mid-1990s, the cryptoprocessor industry received
a rude shock when Kocher revealed that many products
could be easily compromised by timing attacks. An opera-
tion such as the calculation of a digital signature involves
many modular multiplications, and the time taken by an
efficient implementation depends strongly on the input val-
ues. With suitable analysis, the time taken by a crypto-
processor to perform such operations leaks the value of its
private key [44].

The industry had hardly had time to digest this news and
devise countermeasures before Kocher delivered an even
nastier shock, with the publication of Differential Power
analysis (DPA) in 1998 [45]. DPA works by analysing the
current drawn by the processor, which varies depending on
the data being processed. In general, the field of emis-
sion security (EMSEC) is about ways in which electronic
devices and systems can be attacked by observing or in-
ducing information leakage by electromagnetic means, and
about defences against such attacks.

Emission security first came to the attention of the mil-
itary when crosstalk between telegraph circuits was dis-
covered during a British army expedition to the Nile and
Suakin in 1884–5. It became a serious issue during World
War 1, when it was found that the earth-return telephones
used at the front could be eavesdropped by the other side
at a distance of hundreds of yards. Nowadays, substantial
sums are spent on ‘tempest’ protection of military elec-
tronic equipment – that is, ensuring that it does not leak
useful information by means of stray RF, power-line, or
other emissions. A survey of emission security can be found
in [3].

Electromagnetic attacks can be either active or passive.
We already mentioned one active attack – the glitch attacks
whereby microcontrollers’ security bits could often be reset
by inserting a suitable transient into the power line. Clock
glitches were also effective with some processors: doubling
the clock frequency for a few microseconds would cause
some, but not all, instructions to fail. Thus it could be
possible to modify the device’s control flow – for example,
by stepping over the branch instruction following a failed
password check.

Differential power analysis is, by contrast, a passive at-
tack. The idea is to measure the power consumption of a
smartcard chip while it does a number of cryptographic
computations (typically several hundred) with different
data. We then guess the value of some bit in a crypto-

graphic computation – perhaps a bit of the key, or an inter-
mediate value in the encryption – and then sort our power
traces into two piles, depending on whether our target bit
combined with the input or output data in question would
have activated some circuit in the processor or not. For
example, we might suspect that the carry function used a
measurable amount of power, and sort our traces into two
piles depending on whether, after the first round of a ci-
pher, our guessed key value would, when combined with
the observed data, cause the carry bit to be set. We then
check our guess by looking to see whether the two piles are
statistically different.

This simple signal-processing trick turned out to be dev-
astatingly effective, in that key material could be rapidly
extracted from most of the smartcards then on the market,
and by attackers with no detailed knowledge of how the
cryptography was implemented. Previously, non-invasive
attacks had either been discovered by luck, as with glitch
attacks, or following expensive reverse engineering of the
chip, typically involving a full-scale invasive attack. How-
ever, DPA empowered a moderately clueful graduate stu-
dent to build a device to extract crypto keys from smart-
cards. The implications were grim. For example, if smart-
cards were widely deployed in point-of-sale applications,
one might expect the Mafia to build and deploy key-stealing
terminals. Now, false-terminal attacks have been a chronic
problem for the magnetic-strip bank-card industry since
the early 1990s, and one of the strong selling points of
smartcards had been the prospect of eliminating them.
Now, it seemed, smartcards were not all that much harder
to copy than the magnetic-strip cards they were intended
to replace.

A lot of effort was invested around the turn of the century
in devising defenses against power analysis. This is not
entirely straightforward, as a measure that makes power
analysis harder may make timing analysis easier: there are
several variants on the non-invasive attack theme that must
be dealt with simultaneously. The possible defenses include
the following.

Hardware measures: Noise generators have been tried but
tend to just force the attacker to collect more samples.
Randomisation is better: for example, insert a no op-
eration instruction (NOP) at random in the instruction
stream with probability 1 in 64. Another possibility is bal-
anced logic: we discuss this in the next section. The cur-
rent research frontier is design-time validation: developing
tools that enable a chip maker to simulate power analysis
and other emsec attacks early in the design stage, so that
changes can be made before the chip is fabricated.
Crypto library measures: Much effort has been put into de-
vising randomized ways of implementing crypto algorithms.
For example, if one is performing an RSA decryption,
m = cd (mod N) where d is the secret decryption expo-
nent, once can split d into two components, d1+d2 = d and
compute m = cd1cd2 (mod N). That at least is the theory;
in practice one would probably have to do a bit more than
this, and randomising ciphers that have less mathematical
structure than RSA can be hard work.
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Protocol measures: If one has the luxury of designing the
entire system, rather than having to build more secure com-
ponents for a system whose design is already fixed, then it
can be extremely effective to randomise all the encryption
operations and protocol messages, so that the opponent
never knows both the plaintext and the ciphertext of any
cipher operation. If keys can be constantly changed too,
then this makes any form of cryptanalysis – including power
analysis – harder.

However, just as these defences push up the bar, ad-
vances in attack technology let the opponent reach higher.
The use of randomised NOP instructions, for example,
may be countered if the attacker can write software to
align the traces he collects; correlation analysis can then
be performed as before. Perhaps the most radical ad-
vance, though, is Differential Electromagnetic Analysis, by
Samyde and Quisquater [58]. In this, a small coil or other
magnetic sensor is brought to the very surface of the chip
itself. The attacker sees not just the gross power signal,
which is a composite of the power drawn by all of the cir-
cuits in the chip, but a local signal correlated with the
power drawn by some target circuit. This can yield signif-
icantly more information. It also brings us to the topic of
semi-invasive attacks.

C. Semi-invasive attacks

Between the invasive and non-invasive attacks lies a third
class of local attacks, which we christened semi-invasive
attacks [60]. These are attacks that involve access to the
chip surface, but which do not require penetration of the
passivation layer or direct electrical contact to the chip
internals.

The earliest semi-invasive attacks involved the use of UV
light to reset the protection bit on microcontrollers, so that
memory contents could be read out [8]. Another early de-
velopment was the LIVA / LECIVA semiconductor-testing
technology developed by Sandia, in which illumination of
non-conducting CMOS transistors causes measurable cur-
rent leakage [1]. Boneh and others also speculated that re-
vealing faults might be induced by subjecting smartcards
to pulses of microwave radiation [22]. No-one appears to
have made this work, but together with the glitching at-
tacks reported in [7] it helped motivate researchers to spend
some time thinking about fault analysis – how suitably en-
gineered faults could cause interesting failures of crypto-
graphic mechanisms. For example, one can extract crypto
key material by successively setting key bits to 0 [14]; and in
concrete systems, one can often bypass crypto altogether,
for example by interfering with the processor’s control flow
so that cryptographic computations are not performed, or
their results ignored [7].

Practical semi-invasive attacks emerged a few years ago
when we pioneered optical probing techniques to inject se-
curity faults into digital circuits. The idea is that illumi-
nating a target transistor causes it to conduct, thereby in-
ducing a transient fault. Such an attack can be carried out
with simple, low-cost equipment: we demonstrated it by
mounting a photographer’s flash gun, bought second-hand

for $30, on the camera port of our microscope (figure 6).
Using this, we were able to set or reset any individual bit
of SRAM in a microcontroller [60].

Fig. 6. Low-cost probing workstation and photoflash

Much better results can be obtained using laser prob-
ing equipment. In addition to setting RAM contents to
desired values, laser probing can be adapted to read out
other memory technologies, such as Flash and EEPROM,
and to interfere with control logic directly. Detailed infor-
mation on semi-invasive attacks is presented in [62].

As well as performing fault analysis, laser probes can be
used for passive read-out of memory contents. Here, the
trick is to illuminate the memory cell transistors one at a
time. The resulting ionization causes a measurable increase
in leakage current if the transistor is switched off. Such
attacks do not necessarily require expensive gas lasers, but
may be carried out using adapted laser pointers [59].

Defense mechanisms include defensive programming
techniques to detect active attacks and perform some suit-
able alarm function, such as erasing key material. Opaque
top-metal grids and shields also raise the bar for attackers
in time and equipment cost – the attacker may now have to
go through the rear of the chip, which will typically involve
ion-etching equipment to thin the device and an infra-red
laser to penetrate the silicon substrate.

No single low-cost defence technology can protect a
smartcard against attack. Existing high-end techniques,
such as top-layer metal shielding, bus encryption and ran-
domised cryptography, make attacks more complicated;
but a sophisticated attacker can defeat metal shielding by
using infrared light from the rear side or X rays, while bus
encryption can be defeated by attacking registers directly.
The effective level of protection depends on how well the
defense mechanisms work together. Often they do not, as
the hardware, the operating system, the crypto library and
the application are created by different teams, who mini-
mize information sharing on the grounds of ‘security’.

D. How smartcards differ from commodity microcontrollers

So, with a growing demand for better protection, chip
manufacturers started to come up with smartcard prod-
ucts that are specifically designed to protect against most
of the known attacks. This has resulted in a sharp bifurca-
tion in the market, between the low-cost microcontrollers
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offering rudimentary protection and higher-cost smartcards
in which serious security effort has been invested.

Their protection features now typically include internal
voltage sensors to protect against under- and over-voltages
used in power glitch attacks; clock frequency sensors to
prevent attackers slowing down the clock frequency for
static analysis and also from raising it for clock-glitch at-
tacks; top-metal sensor meshes mentioned above; internal
bus hardware encryption to make data analysis more dif-
ficult; and light sensors to prevent an opened chip from
functioning. Software access to internal memory is often
restricted by passwords, so that simple hacks to read out
all the memory on the bus are no longer available.

Another improvement worth mentioning is a move in the
late 1990s from the standard building-block structures as
in figure 7, where one can identify under an optical micro-
scope the chip components such as the CPU instruction de-
coder, register file, ALU and I/O circuits, to a randomised
ASIC-like logic design. This is called ’glue logic’ and it
is now widely used in smartcards (figure 8). Glue logic
makes it virtually impossible to find signals manually for
physical probing. An attacker needs automated tools such
as the automated laser probe described above; in extremis,
she may have to reverse engineer the entire circuit from
micrographs.

Fig. 7. MC68HC705PA microcontroller with clearly distinguishable
blocks

Fig. 8. SX28 microcontroller with ‘glue logic’ design

Attacking smartcards, especially recently designed ones,
is now an expensive and time-consuming task. Only well-
equipped laboratories with highly-qualified engineers gen-
erally succeed. However, progress in attack technology
constantly forces chipmakers to improve their products.
For example, the recently discovered optical fault-injection

attacks [60] revealed many problems in some designs as
they let an attacker change the state of any transistor on
the chip. An attacker can thus set up a chip on a mo-
torised stage and use fault injection to perform an auto-
mated search for components such as the register file which
can then be studied in detail and attacked. Advances in
nanotechnology are bringing still more useful tools. An
example is scanning capacitance microscopy, which lets us
measure the threshold level of each individual transistor,
and thus determine the contents of memory technologies
previously believed to be secure against probing, such as
voltage threshold ROM.

An interesting possible future defense is the use of error-
detecting logic. In the EU-funded G3Card project, we built
prototype processors using self-timed dual-rail logic, with
an inbuilt alarm function. Each bit was signalled on two
wires, with (0,1) signaling zero, (1,0) signaling one and
(1,1) signaling ‘alarm’. Circuit components were designed
so that any single-transistor failure would result in alarm
propagation, thus making optical fault induction attacks
much harder, and also so that the power consumed by a
computation was independent of the logical values of the in-
put and output. In a collaboration involving three universi-
ties, two smartcard OEMs and a specialist crypto company,
we built three prototype processors and demonstrated the
feasibility of the technology. However it is expensive, tak-
ing about three times as many gates as conventional logic
designs [11], [12].

The full-size hardware security module still has several
critical advantages over the smartcard. First, it can contain
large capacitors to filter data-dependent signals thoroughly
from its external connections. Second, it is big enough for
a tamper-sensing barrier. Third, and perhaps most impor-
tant, it has an internal power supply. This enables it to
monitor the tamper-sensing barrier constantly and destroy
key material if a penetration attempt is detected. The
smartcard, by contrast, is unpowered most of the time, so
the attacker can work happily away on one location on the
chip without causing harm to key material stored at an-
other location. There have been some ingenious attempts
to solve this problem – for example, by coating the chip
in a chaotic matrix of magnetic fibres, whose emergent
characteristics store a master key with which the memory
contents are encrypted. However, as far as we are aware,
no-one has managed to bring such an idea to market as a
working product.

V. Remote attacks

The last type of attack is the remote attack. There are
several kinds of attack that are independent of the dis-
tance between the attacker and the cryptoprocessor; the
attacker can be on the other side of the world. She merely
needs access to the encrypted traffic. Again, these attacks
can be passive or active; in the former case, the encrypted
transaction stream is observed and analysed, while in the
latter the attacker can insert transactions and observe the
responses.

Two well-known types of remote attack are cryptanalysis
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and protocol analysis. In the former, the attacker exploits
design flaws in crypto primitives such as encryption algo-
rithms, hash functions and digital signature schemes; in
the latter, she uses flaws in the protocols in which these
primitives are used. There is a large literature on both
types of analysis; see for example [3]. They are not specific
to cryptographic processors and we will not consider them
further here.

There is however another kind of remote attack that is
specific to cryptographic processors. This is API analysis.
This attack technology was developed only in the last few
years, and most cryptographic processors have turned out
to have at least one API vulnerability. Although patches
are issued by manufacturers, API flaws continue to be
found.

We will illustrate API analysis with reference to the
HSMs used to protect PINs for bank ATMs. API vulner-
abilities are found in other HSM applications too, such as
token, vending, but PIN security provides a good example
of the ideas that underlie API attacks.

A. What is a Security API?

A security API is “an Application Programming Inter-
face that uses cryptography to enforce a security policy on
the interactions between two entities” – essentially the top-
level software component of a cryptoprocessor, which gov-
erns its interaction with the outside world. It differs from
a cryptographic API in that as well as providing crypto-
graphic services (such as DES, RSA, PKCS padding), it
also enforces policy on the interactions. The crypto API
designer relies on the attached host to make policy deci-
sions about key use, while the security API designer is more
pessimistic, and makes few assumptions about the outside
world. He would usually assume that the host with which
the cryptoprocessor interacts is under the control of the
opponent.

B. Early API Attacks

Longley and Rigby made early analyses of “key manage-
ment schemes” in the late 80s, [48], [57], [49], [50] working
with the HSM vendor Eracom. They described analysis
techniques and failures of the devices of their time, which
we would nowadays call cryptoprocessors. These devices
enforced very little policy on the usage of keys, save that
they should not leave the box. In particular, Longley and
Rigby identified the importance of separating different key
types. The products and APIs they analysed were not
specified.

Anderson later brought the design and use of cryptopro-
cessors in banking into the open in “Why Cryptosystems
Fail” [4]. He focused on the known failure modes of ATM
banking systems, including several procedural and techni-
cal failures in the use of HSMs. A cryptographic binding
error was typical of the failures described:

“One large UK bank even wrote the encrypted PIN to
the card strip. It took the criminal fraternity fifteen years
to figure out that you could change the account number on

your own card’s magnetic strip to that of your target, and
then use it with your own PIN to loot his account.”

That paper stopped short of describing what we would
nowadays call an API attack. Another paper, “Low Cost
Attacks on Tamper Resistant Devices” [7], describes the
deliberate addition of a dangerous transaction to a security
API.

Common banking practice was to calculate customer
PINs by encrypting the customer’s Primary Account Num-
ber (PAN) with a secret key, then converting the resulting
ciphertext into a four digit number. If a customer changed
her PIN, the bank stored an offset between old and new
PINs in their master database. For example, an original
PIN of 3566 changed to 3690, yielded an offset 0134, which
would be subtracted during verification.

One bank wished to restructure their customer PANs.
Unfortunately, changing the PAN would change the orig-
inal PIN issued to customers, and the bank did not wish
to force all its customers to accept new PINs. The bank
commissioned a transaction to adjust all the stored offsets
in the database, so that they could change PANs without
forcing PIN re-issue. The designers produced a transaction
of the following form, warning that it was dangerous and
should only be used to perform the batch conversion, then
removed from the API. U −→ C represents the user’s com-
mand to the cryptoprocessor, and C −→ U the response.

U −→ C : old PAN, new PAN, offset

C −→ U : new offset

The warnings were forgotten, and the transaction was
never disabled, and year or so later, a programmer spotted
how this transaction might be abused. If he fed in his own
account number as the new PAN, the command would duly
calculate and return the difference between any customer’s
issued PIN and his own original PIN! At the time, this was
characterised as a protocol failure.

In “The Correctness of Crypto Transaction Sets” [2]
(2000), Anderson remarked that while such failures per-
tained to a single bad transaction, they raised the harder
question: “So how can you be sure that there isn’t some
chain of 17 transactions which will leak a clear key?”. The
idea of an API attack was born as an unexpected se-
quence of transactions which would trick a security
module into revealing a secret in a manner contrary
to the device’s security policy.

C. The Visa Security Module

Shortly afterwards, an attack on the ‘VISA Security
Module’ (VSM) was discovered by Anderson. The VSM
was one of the earliest financial HSM designs, used to facil-
itate PIN processing in networks of bank ATMs. The VSM
had to inter-operate with offline ATMs (due to poor tele-
phone network reliability in some countries), so when banks
set up new ATMs, they needed a way to securely trans-
fer the PIN derivation keys from the VSM to the ATMs.
The VSM used a system of dual control: two service engi-
neers would each take one component of a master key to
the ATM, and enter it in. Once both components were
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entered, the ATM could combine the components using
the XOR function. The resulting ‘Terminal Master Key’
(TMK) would be shared with the VSM and could be used
for communicating all the other keys. A transaction was
first run twice at the VSM to generate the components:

(Generate Component) x2

C −→ Printer : TMK1
C −→ U : {TMK1}Km

C −→ Printer : TMK2
C −→ U : {TMK2}Km

The VSM only had very limited internal storage, yet
there might be many different ATMs it needed to hold keys
for. The paradigm of working with encrypted keys evolved:
instead of keeping keys internally, the VSM only held a few
master keys (Km1, ...,Kmn), and other keys were passed
in as arguments to each transaction encrypted under one
of these master keys (e.g. K1Km). So, in response to the
above transaction, the VSM returned an encrypted copy
of the component to the host computer, encrypted under
its master key, Km (and also printed a clear copy onto a
special sealed mailer for the service engineer). The VSM
recreated the same key as the ATM using a command to
combine two encrypted components together, shown in fig-
ure 9.

Normal operation
U −→ C : {TMK1}Km, {TMK2}Km
C −→ U : {TMK1⊕ TMK2}Km

The attack
U −→ C : {TMK1}Km, {TMK1}Km
C −→ U : {TMK1⊕ TMK1}Km

TMK1⊕ TMK1 = 0

Fig. 9. The XOR to Null Key Attack

The crucial observation is this: if the same component
is fed in twice, then thanks to the use of XOR, a known
key (of binary zeroes) will result. This known key could
then be used to export the PIN Derivation Key (PDK) in
the clear. Bond later examined the VSM transaction set
and found that there were even more vulnerabilities, due
to inadequate key separation. The Terminal Master Keys
used to send other keys to ATMs, and the PIN Derivation
Keys used to calculate customer PINs were considered by
the VSM to be keys of the same type (which it expressed
by storing them encrypted with the same master key, here
calledKm). Two example transactions using these keys are
shown below. PDK1 is a PIN derivation key, and TMK1
is a terminal master key.

The first transaction encrypts a customer PAN with the
PIN derivation key, but sends the PIN to a secure printer
(for subsequent mailing to the customer); the second en-
crypts the PDK under a TMK belonging to an ATM.

Though they perform quite different functions which are
not connected, their inputs arguments are encrypted with
the same master key.

(Print PIN Mailer)

U −→ C : PAN, {PDK1}Km
C −→ Printer : {PAN}PDK1

(Send PDK to ATM)

U −→ C : {PDK1}Km, {TMK1}Km
C −→ U : {PDK1}TMK1

However, the designers did recognise a clear difference
between ‘Terminal Communications’ keys (TCs) and PIN
derivation keys or TMKs. TC1 is a terminal communica-
tions key, and Km2 is a second master key that was used
to encrypt keys of this type, keeping them separate from
the rest. They were kept separate because terminal com-
munications keys were not considered to be as valuable as
PIN derivation keys – and there needed to be a transaction
to enter a chosen TC key.

(Enter clear TC Key)

U −→ C : TC1
C −→ U : {TC1}Km2

TCs needed to be communicated to ATMs in the same
way as PIN derivation keys, so there was a command that
worked in a very similar way, encrypting the chosen TC
under a chosen TMK corresponding to a particular ATM.

(Send TC Key to ATM)

U −→ C : {TC1}Km2, {TMK1}Km
C −→ U : {TC1}TMK1

However, Bond spotted that when these two transactions
were used together, given the lack of separation between
PIN derivation keys and TMKs, there was a simple attack.
It was to enter in a customer PAN, claiming it to be a TC
key, and substitute a PIN derivation key for a TMK in the
“send to ATM” transaction.

(Enter clear TC Key)

U −→ C : PAN
C −→ U : {PAN}Km2

(Send TC Key to ATM)

U −→ C : {PAN}Km2, {PDK1}Km
C −→ U : {PAN}PDK1

Of course, {PAN}PDK1 is simply the customer’s PIN.
Just like the ‘XOR to Null Key Attack’, this vulnerability
had gone unnoticed for over a decade. How many more
attacks were waiting to be found?

D. Cryptographic Attacks

Further systematic exploration of the VSM API, and
IBM’s Common Cryptographic Architecture (CCA) for the
IBM 4758 yielded new attack techniques (an overview of
the CCA is in [51], [52]; the detailed reference is [37]). Bond
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observed that both the CCA and the VSM had transactions
to generate ‘check values’ for keys – a key identifier calcu-
lated by encrypting a fixed string under the key. These
check values were used to detect typing mistakes during
key entry and for debugging purposes. The typical check
value implementation was to encrypt a block of binary ze-
roes.

(Generate Check Value)

U −→ C : {TMK1}Km
C −→ U : {0000000000000000}TMK1

Due to the commonly prevailing external storage design,
a user could generate an almost unlimited number of con-
ventional keys of a particular type. The designers were
aware check values could be used as known plaintext for a
brute force search to find a key, but considered search of
the 56-bit DES key space too expensive. Many estimates
have been made of the cost of DES cracking [54]. However,
due to the HSM architecture, any one of a large set of keys
would suffice to use as a stepping stone to extract valuable
keys. A parallel search for keys was thus possible. The
algorithm was as follows:
1. Generate a large number of terminal master keys, and
collect the check value of each.
2. Store all the check values in a hash table
3. Repeatedly guess a key, encrypt the test pattern with
it, and compare the resulting check value against all the
stored check values by looking it up in the hash table.

With a 256 keyspace, and 216 target keys, a target key
should be found with roughly 256/216 = 240 guesses. This
is called the ‘meet-in-the-middle’ attack, with reference to
the meeting of effort spent by the HSM generating keys and
effort spent by the brute force search checking keys. Time-
memory trade-offs such as this had already been described
several decades ago, for example in an attack against 2DES
proposed by Diffie and Hellman [30]; the idea of parallel
search for multiple keys was also not new (Desmedt de-
scribes parallel keysearch in [29]). However, this was the
first application to HSMs, and it was a practical use of
a technique previously considered rather theoretical. We
compromised many older HSM architectures with this tech-
nique; [20] and [2] have more details.

E. 3DES Key Binding Attack

In the late 90s, once DES became too vulnerable to
brute force, financial APIs started replacing it with triple-
DES (3DES). IBM’s CCA was extended to support two-key
3DES keys, but stored each half separately, encrypted un-
der the master key. A different variant of the master key
was used for the left and right halves – achieved by XOR-
ing constants representing the types left and right with the
master key Km.

(Encrypt)

U −→ C : {KL}Km⊕left, {KR}Km⊕right, data
C −→ U : {data}KL|KR

The CCA supported single DES in a special legacy mode:
a ‘replicate’ 3DES key could be generated, with both halves

the same. 3DES is encryption with K1, followed by decryp-
tion with K2, then encryption with K1, so if K1 = K2
then E(K1, D(K1, E(K1, data))) = E(K1, data), and a
replicate key performs exactly as a single DES key.

(Generate Replicate)

C −→ U : {X}Km⊕left, {X}Km⊕right

The flaw was that the two halves of 3DES keys were
not bound together with each other properly, only sepa-
rated into left and right. A large set of replicate keys could
be generated and two cracked using a parallel key search.
Swapping the halves of two replicate keys would then yield
a known true 3DES key, which could be used to export
other intrinsically valuable keys.

(Generate Replicate) x2

C −→ U : {X}Km⊕left, {X}Km⊕right
C −→ U : {Y }Km⊕left, {Y }Km⊕right

Known key : {X}Km⊕left, {Y }Km⊕right

This key binding attack reduced the CCA’s 3DES from
2112 to 257 (only twice as good as single DES). We de-
scribe multiple completions of an attack using this tech-
nique in [15], [20], [26].

F. Implementation Faults

Implentation level faults also have a part to play in the
vulnerability of security APIs. Reference [20] describes a
serious failure in IBM’s CCA check value generation com-
mand, which does not properly check the type associated
with keys, permitting creation of a check value, for in-
stance, over a sub-component of a key. Further imple-
mentation errors in checking of rules for exporting more
secure keys encrypted under less secure keys, and in inter-
nal caching algorithms are reported in IBMs version history
and update pages [39], [40], [41].

VI. Security APIs – Information Leakage
Attacks

The previous collection of API attacks is well sum-
marised in [15], but relate to weaknesses in the key manage-
ment architecture of financial HSMs rather than the specific
PIN processing command set. Clulow examined the spe-
cific financial functionality closely, discovering information
leakage attacks at API level. These are detailed further in
his MSc thesis “The Design and Analysis of Cryptographic
APIs for Security Devices” [27].

A. PIN Format Attack

Reference [27] describes a classic attack against the ISO-
0 PIN block encryption standard. ISO-0 formats a PIN as
sixteen hexadecimal digits containing PIN, control infor-
mation and padding. This buffer is then XORed with the
customer’s account number before encryption under the
appropriate key. We represent this as {P ⊕ A}PEK where
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PEK is the key, P the formatted PIN buffer and A the
account number.

U −→ C : X, {P ⊕A}PEK
C −→ U : ((P ⊕A)⊕X) < 10

Fig. 10. The PIN Integrity Check Protocol

Whenever the encrypted PIN is verified or re-encrypted
under a different key, it must be decrypted, so the format-
ting process is reversed, which requires the user to submit
the customer’s account number, denoted X. The PIN is ex-
tracted and an integrity check is applied. Since each digit
of the PIN is meant to be a decimal digit in the range 0 to
9, the check simply tests that each hexadecimal PIN digit
extracted from the decrypted buffer is less than ten (Atalla
call this a “PIN Sanity Check” [13]). Should this test fail,
it means that either the account number, key or encrypted
PIN is incorrect or corrupted.

P ⊕A
0,1 2, 3 4, 5 6, 7 8, 9

0,1 Pass Pass Pass Pass Pass
2,3 Pass Pass Pass Pass Fail
4,5 Pass Pass Pass Pass Fail

X 6,7 Pass Pass Pass Pass Fail
8,9 Pass Fail Fail Fail Pass
A,B Fail Pass Fail Fail Pass
C,D Fail Fail Pass Fail Pass
E,F Fail Fail Fail Pass Pass

Fig. 11. Identifying a PIN using the PIN Integrity Check

At first glance, the integrity check seems to have enough,
and does indeed detect unintended errors. However re-
peated execution of this protocol with different values of
the claimed account number, X, quickly leads to the iden-
tification of the PIN. This can clearly be seen from figure
11. A given value of P ⊕ A results in a unique pattern of
passes and fails, indentifying each PIN digit down to the
set {P, P ⊕ 1}.

In practice, the attack is slightly more sophisticated, re-
quiring extra tricks to reveal all the digits of the PIN, and
to determine the exact value from the set of {P, P ⊕ 1}.
Details can be found in [27].

B. The Differential Protocol Attack

The decimalisation table attack is the subject of [17] and
is also described in [27], [20], [5]. It concerns the way that
PINs are generated and verified. The customer account
number is encrypted with a PIN derivation key (PDK),
yielding an essentially random string of 16 hexadecimal dig-
its (one 64-bit DES block). The first four are selected, and
are converted to decimal digits for use as the PIN. This
mapping is done from a user-supplied function: a decimali-
sation table (dec1), usually having the specific value shown
in figure 12. In this example, the hex character 0 is mapped
onto 0, while A is also mapped onto 0. This dectab is writ-
ten as 0123456789012345.

Hexadecimal Digit 0123 4567 89AB CDEF

Mapped Decimal Digit 0123 4567 8901 2345

Fig. 12. An Example Decimalisation Table

A PIN derived in such a method is never returned to
the host in the clear but either sent to a secure printer, or
returned encrypted under a PIN Encryption Key (PEK)
for the purposes of later printing at a different site.

U −→ C : A, dec1
C −→ U : {P ⊕A}PEK where P = dec1({A}PDK)

Fig. 13. Account Number Based PIN Generation

The problem is that the decimalisation table is open to
malicious manipulation. If we set the table to all zeros (i.e.,
0000000000000000) then a PIN of ’0000’ must be gener-
ated and it is returned in encrypted form. We then repeat
the call using a slightly modified table 1000000000000000.
If the result of the encryption of the account number (i.e.,
{A}PDK) does not contain a zero hexadecimal digit in the
first four hexadecimal digits, then PIN will be unchanged
and the same encrypted PIN block will be returned. The
technique can be similarly repeated with different tables
to determine the constituent digits of the PIN. Since the
method exploits comparison of repeated (slightly modified)
runs of the same protocol, the term “Differential Protocol
Analysis” was coined in [5] for this type of attack.

The precise PIN can be discovered by exploiting the
HSM support for customer-chosen PINs. As already de-
scribed, chosen PINs are stored as the offset between
the generated PIN and the new chosen PIN (offset =
customerPIN − generatedPIN(mod10)). This offset is
stored in the bank’s master database. Verification with
offsets proceeds according to figure 14.

U −→ C : {P ⊕A}PEK , A , dec1 , offset
C −→ U : true if P = dec1({A}PDK)+ offset

Fig. 14. The PIN Verification Protocol

The function shown in figure 14 remains vulnerable to
the previous attack. Given an valid encrypted PIN block
and its corresponding account, we can again manipulate
the decimalisation table to learn the PIN. Suppose we mod-
ify the usual decimalisation table from 0123456789012345

to 1123456789012345, while keeping the other inputs A,
{P⊕A}PEK and offset constant. If the PINs do not match
and the verification fails, we learn that {A}PDK contains at
least one instance of the modified digit. Owing to the sim-
ple arithmetic relationship between customer PINs, gener-
ated PINs and offsets, we determine which particular dig-
its are affected by repeating the call with suitably selected
values of offset. We thus learn both the value of the con-
stituent digits of the PIN and their positions.
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C. Statistical Attacks on Encrypted Data

An unfortunate consequence of the decimalisation pro-
cess is that it skews the otherwise uniform distribution of
generated PINs, leading to the statistical attacks described
in [18]. Kuhn uses this fact to imrove the quality of an
outsider attack on a German banking scheme in [47]. We
consider the risks of an insider exploiting such a weakness:
suppose the PIN generation command in figure 15 is repeat-
edly executed, choosing many random PDKs (key conjur-
ing enables this [15]), keeping A and the offset constant.
PINs will be created according to frequency distribution
of digits in the decimalisation table, and this distribution
will be visible in the corresponding frequency of encrypted
PIN blocks returned. This in itself is not yet sufficient to
uniquely identify a PIN as many will have the same ex-
pected frequency.

U −→ C : A,D, offset
C −→ U : {P ⊕A}PEK ,

where P = D({A}PDK)+offset

Fig. 15. Protocol for PIN Generation with Offsets

However, manipulating the offset parameter allows the
encrypted PINs to be assembled into order. We gener-
ate an encrypted PIN for fixed input values of A and D,
and PDK, but vary the offset starting from 0000. We
increment the offset by 1 (mod 10) and repeat the call,
thus obtaining the encrypted PIN block corresponding to
an adjacent PIN in the space of possible PINs. Once the
relationships between all encrypted PIN blocks is known,
coupled with the knowledge of the frequency of occurence
of each block, we can identify a particular block (and thus
all blocks) uniquely.

D. ISO-0 Collision Attack

In fact, the ISO-0 format described in VI A above leaks
information regardless of the algorithm used to generate
PINs, or the uniformity of PINs. Consider a fixed ac-
count number A and decimalistaion table D: all possible
encrypted PIN blocks – {P⊕A}PEK – can be generated by
manipulating offsets as described before. Since both PIN
digits P and account digits A are decimal, we will observe
an imcomplete set of possible hexadecimal values P ⊕ A.
Duplicating this process with a second account number A′,
we obtain second incomplete set of encrypted PIN blocks.

The attacker can now compare the sets of encrypted PIN
blocks resulting from the two runs. Both runs contain all
the PINs. However, the two runs used different account
numbers which affects how the set of PINs are encrypted
and stored. Now the XOR of many PINs with the account
number A from the first run will match the XOR of other
PINs and the different account number A′ from the second
run. Whenever this occurs, the encrypted blocks will match
as well (that is, have the same value). Conversely, each
encrypted PIN block that exists in only one of the lists
(without loss of generality, assume the list from the first
run), corresponds to a value of P ⊕A that is not achievable

in the second run. This allows the attacker to determine a
set of possible values for P ⊕A, and hence for PIN .

We illustrate this technique with a toy example using
single digit PINs. The attacker has constructed the two
lists of all the possible encrypted blocks for the accounts
with PANs 7 and 0, as shown in figure 16.

A P (P⊕A) encblock A’ P (P⊕A’) encblock
7 0 7 2F2C 0 0 0 21A0

7 1 6 345A 0 1 1 73D2

7 2 5 0321 0 2 2 536A

7 3 4 FF3A 0 3 3 FA2A

7 4 3 FA2A 0 4 4 FF3A

7 5 2 536A 0 5 5 0321

7 6 1 73D2 0 6 6 345A

7 7 0 21A0 0 7 7 2F2C

7 8 F AC42 0 8 8 4D0D

7 9 E 9A91 0 9 9 21CC

Fig. 16. Sets of encrypted all PIN blocks for accounts with PANs 7
and 0

The encrypted block AC42 from the left hand list does not
occur in the right hand list, and likewise for encblock 9A91.
Therefore, these blocks must have hexadecimal values that
cannot result from XOR of the account number 0 with a
decimal PIN digit: the two possibilities are 8 and 9. This
deduction has the same associated restrictions as that in
section VI-A.

E. PVV Clash Attack

VISA introduced a Pin Verification Value (PVV)
method for PIN generation and verification which avoids
attacks associated with decimalisation tables as it uses
an unbiased random number source to generate the PINs
themselves. However, the verification procedure has an in-
teresting shortcoming.

To generate a PVV a Transaction Security Parameter
(TSP) is first constructed, containing the account number,
the generate PIN itself (and a generation key identifier).
This TSP is then encrypted with the “PVV master key”,
and simplified to a four digit PIN Verification Value which
can be stored in the clear at the bank’s convenience, in
a database or on an ATM card. The weakness is this:
due to the short length of the PVV, and considering the
encryption function as a random oracle, multiple TSPs will
produce the same PVV as a result. 60% of accounts will
have two or more correct PINs, while 0.5% of accounts
have five or more correct PINs. With moderate effort, an
attacker could observe and identify accounts with severe
PIN space clashes.

While in practice the attack is not the easiest way to
compromise PINs, the existence of an unknown number of
correct PINs for each bank account may have interesting
legal implications [55].

VII. Assurance and policy issues

The above section should have convinced the reader that
the design of security APIs is an extremely hard problem.
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If, on the one hand, we implement a simple crypto API
that allows the server to call any cryptographic functions it
pleases, then we have in effect put our keys at the disposal
of the server. If the server gets hacked, then the physical
protection that the cryptoprocessor offers to our keys may
not buy us very much. Even although the keys remain in
our custody, the opponent can use them as she pleases – so
they are not in our effective custody.

If, on the other hand, we design an API that follows our
application requirements closely – as the PIN-management
API does – then we are in effect implementing a multi-
party computation, many of whose inputs must be assumed
to be under the control of a malicious adversary. We do
not know how, in general, to devise such a computation so
that it will use a secret safely, and not leak it in response
to carefully chosen inputs. Things are made worse by the
business pressures that cause ever more ‘features’ to be
added. (The original designer of the VSM assured us that
the device was secure when he sold it to VISA; it was the
extra transactions added since then that made it insecure.)

Given this dilemma, how is a system designer to go about
selecting a cryptoprocessor product, and designing a secu-
rity API that does useful work?

A. Evaluation and Certification

One response is to look for evaluations by third parties.
There are two schemes under which cryptoprocessors are
certified – FIPS 140 [34], run by the US National Insti-
tute of Standards and Technology, and the Common Cri-
teria [28], operated by a number of member countries.

Both have drawbacks. FIPS looks only at the tamper-
resistance of the hardware; the 4758 was certified to level 4,
the highest available level, for hardware tamper-proofness
while the CCA software supplied with it to almost all cus-
tomers contained the fatal vulnerabilities described above.
A FIPS evaluation, especially at level 4, is nonetheless of
value to the discerning customer. Smith et al. describe the
processes and modelling entailed in validating the 4758’s
firmware in [63], [64], [65].

The Common Criteria are used to evaluate products ac-
cording to ‘protection profiles’ – formalised statements of
the protection properties that the device is supposed to
deliver. Often, inappropriate protection profiles are used
that protect the wrong things. The associated politics, and
some of the problems that can arise, are described in [3].
We have yet to see a convincing protection profile for a
security API.

B. Formal Analysis of Security APIs

The formal analysis of security APIs is in its infancy
compared with the well-developed evaluation and assur-
ance procedures for hardware and firmware. Longley and
Rigby had some success during the late 80s automating the
analysis of “key management systems” (essentially the se-
curity APIs of the day) initially using expert systems and
later PROLOG [48], [57], [49], [50], working from protocol
analysis experiments as a starting point.

Their tools searched for sequences of commands which
could violate a security property, and focused on the use
of heuristics to direct and restrict the search. If no attacks
were found, a measure of assurance about API correctness
could be obtained.

Bond, Clulow and colleagues have gone on to re-examine
this approach exploiting the vastly increased computing
power available a decade later, using more sophisticated
modern protocol analysis tools, and generic tools such as
theorem provers [72], [69], [56]. This is the subject of on-
going research in a Cambridge-MIT Institute research pro-
gram. Meanwhile, recent work by Ganapathy et al. [35]
on automated discovery of API-Level vulnerabilities has
modelled type-casting attacks [21] on the IBM CCA. The
authors describe some of the challenges facing the prot-
col analysis community in extending their tools to analyse
security APIs in [19].

C. Other policy issues

The use of cryptoprocessors is not free of controversy.
For example, if TC/IRM mechanisms enable a company
to cause all internal emails to become unreadable after 60
days, this may help the company weather the discovery pro-
cess in litigation – but what if the company is the subject of
a criminal investigation? Crypto policy was controversial
in the mid-1990s; the widespread deployment of hardware-
assisted strong cryptography that the Trusted Computing
Group envisages may make it so once more.

A second bundle of issues has to do with competition and
trade policy [9]. The fastest-growing applications of cryp-
toprocessors are in support of restrictive business models
– as with the tiny cryptoprocessors embedded in ink car-
tridges to authenticate them to the printer as coming from
the same company. This enables printer vendors to sub-
sidise the sales of printers by charging more for ink, but is
controversial – the European Union has responded with an
environmental directive requiring all ink cartridges to be
refillable by 2007.

The spread of ‘trusted computing’ mechanisms is likely
to exacerbate these issues. Platforms containing virtual
cryptoprocessors, which any developer can invoke, will
tempt application writers to lock their customers in more
tightly, to tie products together, to enforce incompatibility,
and to experiment with all sorts of new business models.
Many of these models may evoke consumer resistance, or
litigation from competitors.

VIII. Conclusions

We have surveyed cryptoprocessors and their applica-
tions. Low-cost and mid-cost cryptoprocessors are the most
rapidly developing area, with ‘trusted computing’ likely to
bring them into many mass-market platforms. The enforce-
ment of novel business models is the most rapidly develop-
ing new application.

Possible attack technologies range from the use of semi-
conductor test equipment to access secret signals directly,
through sophisticated statistical techniques building on the
general principles of power and emissions analysis, and low-
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cost versions of optical probing attacks once considered be-
yond the range of a moderately funded adversary. Logical
attacks – on the security API of a cryptoprocessor – have
seen very rapid development in recent years, and are likely
to remain the weak spot of most high-end systems.

There are many interesting topics for the academic re-
searcher. In particular, security API attacks are still poorly
understood, and there may be considerable scope for ap-
plying formal techniques to their analysis.

Finally, it must not be forgotten that many cryptopro-
cessor applications can be controversial, and particularly
those applications that seek to establish or enforce restric-
tive business models. Designers must therefore bear in
mind one final kind of attack. This is the legal attack –
in which a judge tells you to hand over the keys to your
competitor, or go to jail.
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