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Abstract  This study explored students’ approaches to mathematical statements with unknown truth values. Task-
based interviews utilizing the think-aloud method revealed students’ reasoning processes in depth. The students in 
this study used three distinct types of intuitive reasoning to decide the truth value of mathematical statements. The 
results of this study indicate that in each intuitive response there seems to be an underlying logical schema, or a 
mental model intuitively accepted by the students, which interacts with the specific restrictions of the presented 
mathematical statement. 
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1. Introduction 
Many educators believe that students' desire for proof 

will be stimulated by opportunities to explore the truth 
value of mathematical statements. A main challenge in 
teaching argumentation and proof is to motivate students 
to examine whether and why statements are true or false 
[5]. Unfortunately, in the standard process of mathematics 
teaching, students are seldom required to construct proofs 
of unknown statements or to determine the truth value of 
mathematical statements [4,5]. Because of the emphasis 
on syntactic reasoning and prove this statements in the 
undergraduate curriculum [15], little is known about how 
engineering students approach mathematical statements 
with unknown truth values. 

Intuition is particularly important for determining the 
truth value of a mathematical statement, because in the 
absence of proof, it provides possibilities that students can 
then test [2,9]. This study attempts to explore the use of 
intuitive reasoning and what types of systematic errors 
may inhibit success in the proving process during the 
processes of deciding on the truth value of mathematical 
statements by engineering students in an interview setting. 

2. Theoretical Framework 
The intuition proposed by Fischbein is a representation, 

an explanation or an interpretation directly accepted by us 
as something natural, self-evident, intrinsically meaningful, 
like a simple, given fact [7]. Intuition takes into 
consideration the target of reasoning in prior knowledge, 
experience, conviction, task characteristics, and the 
creation of task representation [6]. Furthermore, "intuition 
is able to organize information, to synthesize previously 

acquired experiences . . . to guess, by extrapolation, 
beyond the facts at hand" [7]. Organizing information 
intuitively provides a preliminary understanding of 
mathematical tasks which can provide a starting point and 
suggest a direction can be followed [2,7,8]. Intuitive 
representation in mathematics may be either a visual 
image or a perceptual representation of a concept or object 
[13]. 

Fischbein pointed out intuition is neither a source nor a 
method; it is a form of cognition [8]. Unlike analytical 
thinking, it is a holistic leap of cognition. In his view, 
experience plays a crucial role in developing intuition. On 
the basis of stable and consistent experience, a thinker 
may learn to rely upon intuition, and it is quite 
autonomous in special circumstances. It may also impact 
individual judgment. Fischbein's classification is designed 
to clarify the complicated areas of intuitive cognition into 
two main types [8]. The first type is classified according 
to the roles played by intuition (affirmatory, conjectural, 
anticipatory, and conclusive), and the second type by the 
origin of intuition (primary and secondary). Fischbein 
distinguished between affirmatory intuitions, which he 
described as direct and self-evident cognition without the 
need for checking or proving, and anticipatory intuitions, a 
sense of intrinsic conviction of one's ideas without any 
extrinsic encouragement [10]. 

Intuition is based on mental representations of tasks 
constructed from the clues given in a task and from the 
information retrieved from memory [11]. This production 
of representations makes intuition significant in decision-
making. Due to the inconsistency and incorrectness of 
previous learning experiences, the intuitive representation 
of individuals may not be able to authentically present the 
situation at hand. The reliability of intuition often depends 
on how intuition develops through related experiences 
[2,6]. Many intuitive errors can be categorized as 



1026 American Journal of Educational Research  

accessibility errors [11]. Accessibility is the ease with 
which certain knowledge is evoked or certain task features 
are perceived and is a crucial component of intuitive 
reasoning and decision-making. There are two main types 
of accessibility errors, namely (1) attribute substitution, 
and (2) knowledge and task feature relevance. 

3. Method 
This research has interpretive approaches. Case study is 

used as a research strategy to make an in-depth 
examination of students’ intuitive reasoning in this study 
[3]. The 23 first-year engineering students who 
participated in this study were enrolled at a university of 
technology and had learned the concepts of derivative and 
integration. This study explores the results of this process 
among engineering students rather than mathematicians, a 
choice more likely to produce values in teaching and 
"suggest learning trajectories that might be applicable for 
many other students as well" [14]. The mathematical task 
in this paper included two wrong statements regarding the 
concepts of differentiation and integration. For students, 
they were neither completely routine problems nor 
completely non-routine ones. The tasks refer to general 
objects and their properties and should be amenable to 
intuitive reaction. Participants completed the tasks in 
which they were asked to determine the truth value of the 
given mathematical statements and prove or disprove the 
statement accordingly. 

Statement 1: If ( ) ( ) ,
b b
a a

f x dx g x dx≥∫ ∫  then 

f (x) g(x).≥  True or false? Justify your answer. 
Statement 2: If ( )f x  and ( )g x  are both differentiable 

and ( ) ( )f x g x′ ′≥ , ( ), ,x a b∀ ∈  then ( ) ( )f x g x≥ , 

( ), .x a b∀ ∈  True or false? Justify your answer. 
The students were asked to determine the accuracy of 

the mathematical statements and justify their answers. Data 
were gathered concerning the examples (counterexamples) 
that were produced by the participants. Each student 
worked individually on each problem. 

The data generated from (a) transcripts from the 
participants’ task-based interviews using the think-aloud 
method, and (b) participants’ written work on the tasks in 
the interviews, and (c) my field notes from the interviews 
were categorized and coded [12]. As the process evolved, 
continuous comparisons were made between each 
category and the emerging new categories. Additionally, 
students’ decision-making and construction processes 
were analyzed to determine students’ decision-making and 
the connections between these processes. I will classify 
reasoning as intuitive if the student (a) stated that it was an 
intuition, instinct, gut feeling, or first thought; (b) used 
similarity to make an assessment of the task; or (c) easily 
made immediate transformations of signs within and 
between semiotic systems. 

The analysis process yielded a categorization of the 
data around two major themes: (a) characterizing the 
subjects' intuitive reasoning as reflected in their task 
performance; and (b) characterizing the subjects' visual 
reasoning as reflected in their task performance. Each of 
these two themes was subcategorized.  

Theme (a), subjects' intuitive reasoning, included the 
following: 

(a) 1. Logic-based intuitive reasoning. 
(a) 2. Property-based intuitive reasoning. 
(a) 3. Similarity-based intuitive reasoning 
Theme (b), subjects' intuitive representations, included 

the following: 
(b) 1. The graphs of function f and g are the two non-

intersect curves located above the x axis. 
(b) 2. The graphs of function f and g are the two non-

intersect curves located beneath the x axis. 
(b) 3. The graphs of function f and g intersect 
(b) 4. The graphs of function f and g are two 

intersecting straight lines with different slopes. 

4. Empirical Data and Analysis 
The students used three distinct types of intuitive 

reasoning to decide the truth value of mathematical 
statements. 

4.1. Logic-based Intuitive Reasoning 
Logic-based intuition was the first type of intuitive 

reasoning used by students. It occurred only when 
determining the truth value of Statement 1. Three students 
made a logical mistake when determining the truth value 
of Statement 1. They intuitively believed that the 
mathematical statement and its converse are equivalent. 
For instance, the converse that S4 made in judging 
Statement 1 was correct, and hence Statement 1 is correct. 

S4: A greater integral correspond to a larger function. 
For example, given f = x2+1 and g = x2, f is larger than g. 
The integral of f from 0 to 1 is 4/3, which is also greater 
than the integral of g, 1/3, over the same interval. 

I: Did you find out f(x) and g(x) in the first place and 
that f(x) is greater than g(x), and then figured out that 
the integral of f(x) is greater than that of g(x). 
S4: That's right! The greater the function is, the greater 
the integral will be. 
I: But Statement 1 says the integral is relatively greater, 
does this mean that the function is greater, too? The 
example that you provided just now indicates that the 
greater the function is, the greater the integral will be. 
S4: Indeed. They work in the same way. If the function 
becomes greater, the integral will be greater as well, 
and vice versa. 
According to Fischbein, we can confirm that the 

equivalence of a statement and its converse (error) is a 
kind of intuition. Is it true that these three students did not 
possess formal logical schemas? Apparently this was not 
the case. 

I: If f(x) is differentiable, will f(x) be continuous? 
S4: Yes, f(x) is differentiable, so f(x) is continuous. 
I: If f(x) is continuous, will f(x) be differentiable? 
S4: If f(x) is continuous, I am not sure whether f(x) is 
differentiable. It is certain that if f(x) is discontinuous, 
then it could not be differentiated. 
Apparently, a sufficient condition for determining the 

truth value of mathematics does not rely on whether the 
logical rules are well understood, and the student did not 
correctly apply logical rules to other scenarios. This 
supports the argument by Fischbein, that intuitions are not 
absolute, they depend on the context [10]. We can 
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interpret these phenomena by describing two convictions 
that may coexist [7]: The first one is intuitive conviction, 
which means that a statement and its converse are 
equivalent; the second one is non-intuitive conviction, 
which means a statement and its contrapositive are 
equivalent. These three students like S4 could write out 
the statement that contrapositive is equivalence when 
elaborating on the relationship between differentiation and 
continuity. However, when determining the truth value of 
mathematical statement 1, more of their intuitive 
conviction came into play; they also confirmed that a 
statement and its converse are equivalent. In Fischbein's 
words, the first one was an intuitive intrinsic type of 
conviction, and the second one was a formal extrinsic type 
of conviction. In our view, the latter seems to have no 
impact on the former, which continued to be an obstacle. 

4.2. Property-based Intuitive Reasoning 
The second type of intuitive reasoning students used 

was property-based intuition. Students in this subgroup 
drew quick conclusions about the truth value of 
mathematical statements by using diagrams to represent 
"prototypical" examples of such mathematical statements. 
When confronting Statement 1, the property that students 
immediately thought of was area, and subsequently they 
directly used region areas surrounded by functional graphs 
to decide on the truth value of mathematical statements. 
Generally speaking, the students produced two different 
types of intuitive representation according to their 
intuitive representations. The first type of intuitive 
representation is one in which the diagram of functions f 
and g is located on two non-intersecting curves above the 
x axis. However, such diagrams may lead to wrong 
conclusions. Taking S6 as an example: 

S6: This statement is apparently correct. This is because 
whenever I see integral, area comes to my mind. The 
integral value represents area, so the greater the integral 
value is, the greater the area will be, just like this figure I 
drew (Figure 1). If the graph of f is here, then the graph of 
g will have to be drawn in this way, so that area will be 
bigger, and the function value of f will also be greater than 
that of g. Therefore, this statement is correct. 

I: The functional graphs you have drawn are all above 
the x axis. If they are all under the x axis, or if one of them 
is above the x axis while the other is below the x axis, will 
the results be the same? 

S6: They will be the same, as long as the graph of f is 
above that of g. 

 

Figure 1. S6’ intuitive representation to Statement 1 

The second type of intuitive representation the students 
have developed is reflected in the graph of functions f and 
g, the two non-intersecting curves of which are under the 

x axis, but such graphs are unable to refute Statement 1. 
Take S9 as an example: 

S9: An integral is an area, so a larger integral means a 
greater area. The area bounded by f(x), x = a, x = b and 
the x-axis is larger than that bounded by f(x), x = a, x = 
b and the x-axis [Figure 2]. However, f(x) is smaller 
than g(x). 
I: The integral value may be negative, but the area is 
positive. 
S9: If the area is above the x-axis, then the integral 
equals to the area. If the area below the x-axis, then the 
absolute value of the integral equals the area. 

 

Figure 2. S9’ intuitive representation to statement 1 

When confronting Statement 2, students employing 
graphical representation would immediately think of the 
slope of tangent under the geometric property, and then 
perform intuitive reasoning by replacing the size of 
derivatives with that of slope of tangent. Take S2 as an 
example: 

This statement is certainly correct, because derivative 
is just the slope of tangent. The derivative of f(x) is 
greater than that of g(x), and hence f(x)'s slope of 
tangent is greater than that of g(x). The simplest graph 
of slope is a straight line, just like this figure (Figure 3). 
The slope of f(x) is greater than that of g(x), and f(x) is 
greater than g(x). This statement is correct. 
S2 only noticed that the graph above the x axis meets 

the conditions of Statement 2, but failed to notice that g(x) 
is greater than f(x) when x is less than 0. S2 had 
difficulties interpreting the dynamic relationship of the 
basic concepts of calculus. He relied on two kinds of 
interconnected schema (i.e., interval and property), but he 
was unable to integrate them.  

 

Figure 3. S2’ intuitive representation to Statement 1 

As suggested by Fischbein, these visualizations play an 
important role in anticipatory solutions [8], as they are 
established on the basis of how they can be constructed 
and manipulated. As a result, they are conducive to 
converting mathematical statements into graphs. 

Students' intuitive strategies can be categorized as 
accessibility errors [11]. It is irrelevant that relevance 
errors take place in intellectual and narrative features. 
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When students develop an intuitive representation of 
mathematical statements, the interval restrictions of 
narrative features that are less accessible are often 
neglected. This error is crucial for determining the truth 
value of two mathematical statements, because interval 
restriction is the key to determining if the two 
mathematical statements are wrong. Students intuitively 
believe that interval restrictions are irrelevant to determine 
the truth value of mathematical statements, so reach a 
wrong solution. 

4.3. Similarity-based Intuitive Reasoning 
The third type of intuitive reasoning used by students is 

Similarity-based Intuition. Students determined the truth 
value of a mathematical statement by replacing the 
relevant attributes of mathematical statements with similar 
attributes. Only one student used this type of intuitive 
reasoning when confronting Statement 1, whereas 12 
students used it when confronting Statement 2. This 
supports the argument of Fischbein that intuitions are not 
absolute, they depend on the context [10]. S7 thought 
Statement 1 is correct, because "I am sure this statement is 
correct as I met similar problems that the integral of f is 
bigger than or equal to that of g; by transposing and then 
subtracting, the integral of f will be larger than or equal to 
zero after subtracting that of g; so 'f minus g' is greater 
than or equal to zero, the proof is completed." She quoted 
the proving process of a theorem, "If f and g are integrable 
on [a, b] and if ( ) ( ) ,f x g x≥  [ ], ,x a b∀ ∈ then the 
definite integral of f from a to b is greater than or equal to 
the definite integral of g from a to b," which was proven 
by her teacher in class. The twelve students quoted similar 
attributes of various sizes of numbers, replacing the sizes 
of functions, to determine whether Statement 2 is correct. 
Take S10 as an example. 

S10: When I see that the derivative of f is greater than 
that of g, I think of the size of numbers, e.g., 2 is greater 
than 1. Therefore, f(x) = 2x and g(x) = x, and 2x is 
greater than x. 
I: Why is 2x greater than x? 
S10: 2x is the double of x, so it is greater. For example, 
when x is equal to 1, 2 is greater than 1. 
Their errors in intuitive strategies, called attribute 

substitution [11], occur when a more readily accessible 
attribute is substituted in a task for a less readily 
accessible attribute. For instance, similarity is a highly 
accessible attribute, because it is processed intuitively. S7 
intuitively noticed the similarity between Statement 1 and 
mathematical theorems he knew. S10 noticed the 
similarity in the size of coefficient and function. Both of 
them replaced less accessible attributes with more 
accessible attributes. Similar to the students using 
property-based intuition, most of the students who noticed 
the similarity in the sizes of coefficient and function made 
relevance errors and neglected interval restrictions. 

The interviewer subsequently asked students to draw 
graphs of algebraic function, in order to examine whether 
they could overcome intuitive relevance errors after 
visualizing mathematical statements. Results show that 
eight students overcame this error after drawing function 
graphs. Taking S10 as an example: 

These are the graphs of f(x) and g(x), and f(x) is greater 
than g(x)...... No, that's not right. The graph below 

(referring to the graph below x axis) is something I didn't 
take notice of just now. From the graph, it can be seen that 
when x is negative, f(x) is beneath g(x), indicating that f(x) 
is less than g(x), so..... I am wrong. In fact, this statement 
is wrong. Although the derivative of f(x) (2) is greater 
than that of g(x) (1), it is not certain that within the 
interval including 0, e.g., [ ]1,1−  or [ ]2,3− , f(x) may be 
greater than g(x). How come I did not notice it just now? I 
noticed it only after drawing. 

Therefore, graphical representation allowed S10 to 
understand the necessity of interval restrictions and 
overcome relevance errors. As for these students, the 
concreteness of visual images is an important factor for 
creating self-evidence and immediacy. A visual image not 
only organizes data at hand under a meaningful structure, 
but is also an important factor guiding the analytical 
development of a solution; visual representation serves as 
an important anticipatory device. The rest of the four 
students like S2 had difficulties in interpreting the 
dynamic relationship of the basic concepts of calculus. 
They relied on two types of interconnected schema (i.e., 
interval and property), but they were unable to integrate. 
Intuition exerts a coercive influence on the reasoning 
methods of individuals. An intuition subjectively 
generated by an individual is often a representation or 
interpretation that is absolute, while other representations 
or interpretations are excluded and unacceptable. 

5. Discussion and Conclusion 
The students in this study used three distinct types of 

intuitive reasoning to decide the truth value of 
mathematical statements. Each type of intuition provided 
students with a different starting point when approaching 
the tasks. With regard to logic-based intuition, we can 
conclude that for some students the equivalence between a 
statement and the converse is an intuition. With Fischbein 
[7], we can remark that the formal extrinsic type of 
conviction does not seem to have any effects on the 
intuitive intrinsic type of conviction, which can remain an 
obstacle. When using property-based intuition, the 
students based their decisions on vague ideas about 
properties in the task and always used graphical 
representations. Moreover, judging the truth value of 
mathematical statements and generating counterexamples 
by visualization is mediated by the intuition of the 
generality of the conclusions obtained by means of it. 
Similarity-based intuition was used when students 
identified a statement that was similar enough to the given 
statement to suggest the truth value of the given statement, 
but always used symbolic representations. Students' 
intuitive decision on the truth value of Statement 2 
supports Buchbinder and Zaslavsky’s claim, is deeply 
rooted in the clues in the mathematical statement [1]. 
From students' performance in this study, if the 
constructed intuitive representation accurately represents 
task structures, such related interpretations will have a 
positive effect on tasks, but if intuitive representations are 
distorted or deficient, they may lead to negative effects on 
reasoning. 

Logical schema and bodies of mathematical knowledge 
are expected to develop and strengthen with age and /or 
instruction. Consequently, intuitive reasoning may lose its 
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power in favor of other competing knowledge. However, 
in this study we could observe that some intuitive 
reasoning are resistant to age and experience evolution. 
These intuitive ways of reasoning may create difficulties 
in the acquisition and application of mathematical 
concepts.  

In the students’ responses to the mathematical 
statements, we could observe that, in each intuitive 
response there seems to be an underlying logical schema, 
or a mental model intuitively accepted by the students, 
which interacts with the specific restrictions of the 
presented mathematical statement. 
---The logical schemas of causality influenced the students 
reasoning strongly. 
---The responses were influenced by intuitive rules that 
might have been the result of a more general tendency to 
extrapolate given information to new situations. 

Mathematical statements like the ones posed in this 
study, which are known to elicit intuitive responses, 
should be presented to students in order to produce a 
cognitive conflict between their beliefs and the associated 
formal knowledge. The solution to this conflict, the 
analysis of the problem structure and the source of 
possible errors produced by intuition could help them 
overcome these difficulties and possibly generate more 
adequate intuitions. 
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