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Chapter 1

Basic Concepts of Graphs

1.1 Graph and Graphical Representation

Graph: Mathematically, a graph is a mathematical structure on a set of

elements with a binary relation. Concretely speaking, a graph is an ordered triple

(V,E, ψ), where V and E are two disjoint sets, ψ is a mapping from E → V × V .

Vertex-set: The set V is nonempty and called the vertex-set of the graph,

an element in V called a vertex.

Edge-set: The set E is called the edge-set of the graph, an element in E

called an edge.

Incidence function: The mapping ψ is called an incidence function,

which maps an edge into a pair of vertices called end-vertices of the edge.

Digraph: If V × V is considered as a set of ordered pairs (x, y), then the

graph is called a directed graph, or digraph for short. For an edge e of a digraph,

sometimes, called a directed edge or arc, if ψ(e) = (x, y), then the end-vertices x

and y are called the tail and the head of the edge e, respectively; and the edge e is

sometimes called an out-going edge of x or an in-coming edge of y.

Undirected Graph: If V × V is considered as a set of unordered pairs

{x, y}, then the graph is called an undirected graph. Usually, it is customary to

henceforth denote an unordered pair of vertices by either xy or yx instead of {x, y}.

Edges of an undirected graph are sometimes called undirected edges.

Type of Edges: From definition, it is possible that two end-vertices of an

edge are identical, such an edge is called a loop. It is also possible that more

than one edges are mapped into the same element in V × V under the mapping

ψ, these edges are called parallel edges or multi-edges. For x, y ∈ V (G), set
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EG(x, y) = {e ∈ E(G) : ψ(e) = (x, y)} and µG(x, y) = |E(x, y)|. The parameter

µ(G) = max{µG(x, y) : ∀ x, y ∈ V (G)} is called the multiplicity of G.

Example 1.1.1 D = (V (D), E(D), ψD) is a digraph, where

V (D) = {x1, x2, x3, x4, x5},
E(D) = {a1, a2, a3, a4, a5, a6, a7, a8, a9}

and ψD is defined by

ψD(a1) = (x1, x2), ψD(a2) = (x3, x2), ψD(a3) = (x3, x3),
ψD(a4) = (x4, x3), ψD(a5) = (x4, x2), ψD(a6) = (x4, x2),
ψD(a7) = (x5, x2), ψD(a8) = (x2, x5), ψD(a9) = (x3, x5).

In such a digraph D, two edges a5 and a6 are parallel edges, but two edges a7

and a8 are not. The edge a3 is a loop.

Example 1.1.2 H = (V (H), E(H), ψH) is a digraph, where

V (H) = {y1, y2, y3, y4, y5}
E(H) = {b1, b2, b3, b4, b5, b6, b7, b8, b9}

and ψH is defined by

ψH(b1) = (y1, y2), ψH(b2) = (y3, y2), ψH(b3) = (y3, y3),
ψH(b4) = (y4, y3), ψH(b5) = (y4, y2), ψH(b6) = (y4, y2),
ψH(b7) = (y5, y2), ψH(b8) = (y2, y5), ψH(b9) = (y3, y5).

Example 1.1.3 G = (V (G), E(G), ψG) is an undirected graph, where

V (G) = {z1, z2, z3, z4, z5, z6}
E(G) = {e1, e2, e3, e4, e5, e6, e7, e8, e9}

and ψG is defined by

ψG(e1) = z1z2, ψD(e2) = z1z4, ψG(e3) = z1z6,
ψG(e4) = z2z3, ψG(e5) = z3z4, ψG(e6) = z3z6,
ψG(e7) = z2z5, ψG(e8) = z4z5, ψG(e9) = z5z6.

x1

x2

x3

x4

x5

a1 a2

a3

a4

a5

a6

a7

a8

a9

(a)

x1

x2

x3

x4

x5

a1

a2

a3

a4

a5

a6

a7

a8

a9

(b)

Figure 1.1: Two graphical representations of the digraph D

Graphical Representation A graph can be drawn on the plane. Each

vertex x of the graph is indicated by a point, each edge is indicated by a directed

line segment or an undirected line segment. Such a geometric diagram is called

a graphical representation of the graph. It depicts the incidence relationship

holding between its vertices and edges intuitively.
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Figure 1.2: Graphical representations of graphs H and G

Incident and Adjacent: The end-vertices of an edge are said to be inci-

dent with the edge, and vice versa. Two vertices which are incident with a common

edge are adjacent, as are two edges which are incident with a common vertex.

Simple Graphs: A graph is said to be loopless if it contains no loops.

A graph is said to be simple if it contains neither parallel edges nor loops. For a

graph without parallel edges, the mapping ψ is injective. In other words, for each

edge e there exists a unique pair of vertices corresponding to the edge. Thus it is

convenience to use a subset of V × V instead of the edge-set E directly. In this

case, we may simply write (V,E) for (V,E, ψ). For instance, the graph G defined

in Example 1.1.3 is simple, which can be written as G = (V (G), E(G)), where

E(G) = {z1z2, z1z4, z1z6, z2z3, z3z4, z3z6, z2z5, z4z5, z5z6}.
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Figure 1.3: The symmetric digraph and oriented graph of an undirected graph

Symmetric Digraphs: An undirected graph can be thought of as a par-

ticular digraph, a symmetric digraph, in which there are two directed edges called

symmetric edges, one in each direction, corresponding to each undirected edge.

Thus, to study structural properties of graphs for digraphs is more general than for

undirected graphs.

Underlying Graphs and Oriented Graph: There are many topics
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in graph theory that have no relations with direction of edges. The undirected

graph obtained from a digraph D by removing the orientation of all edges is called

an underlying graph of D. Conversely, the digraph obtained from an undirected

graph G by specifying an orientation of each edge of G is called an oriented graph

of G.

Figure 1.3 shows such graphs, where (a) is an undirected graph, (b) and (c) are

its symmetric digraph and an oriented graph, respectively.

Others: Let (V,E, ψ) be a graph. The number of vertices, υ = |V |, is called

order of the graph; the number of edges, ε = |E|, is called size of the graph. A

graph is called to be empty if ε = 0. An empty graph is called to be trivial if

υ = 1, and all other graphs non-trivial. A graph is finite if both υ and ε are finite.

Throughout this book all graphs are always considered to be finite.

The letter G always denotes a graph, which is directed or undirected according

to the context if it is not specially noted. Sometimes, to emphasize, we use the letter

D to denote a digraph. When just one graph is under discussion, the letters v and

ε always denote order and size of the graph, respectively.

The symbols ⌊r⌋ and ⌈r⌉ denote the greatest integer not exceeding the real num-

ber r and the smallest integer not less than r, respectively. The symbol

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k !

denotes the number of k-combinations of n distinct objects (k ≤ n).

As an application of a graph, we give an example.

Example 1.1.4 In any group of six people, there must be three people who

get to either know each other or not.

Proof: We use the points A,B,C,D,E, F on the plane to denote these six

people, respectively. We draw a red line joining two points if two people have known

each other, a blue line otherwise. Use G to denote the resulting diagram. We only

need to prove that G certainly contains either a red triangle or a blue triangle.

Consider a point, say F . There exist three lines of the same color which are incident

with a common point F . Without loss of generality, we can suppose that they are

three red lines FA,FB and FC. Consider the triangle ABC. If it has no red line,

then it is a blue triangle; if it has a red line, say AB, then the triangle FAB is red.
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1.2 Graph Isomorphism

Isomorphism: Two graphs often have the same structure, differing only in

the way their vertices and edges are labelled or the way they are drawn on the plane.

To make this idea more exact, we introduce the concept of isomorphism. A graph

G = (V (G), E(G), ψG) is isomorphic to a graph H = (V (H), E(H), ψH) if there

exist two bijective mappings

θ : V (G)→ V (H) and φ : E(G)→ E(H)

such that for any e ∈ E(G),

ψG(e) = (x, y)⇐⇒ ψH(φ(e)) = (θ(x), θ(y)) ∈ E(H). (1.1)

The pair (θ, φ) of mappings is called an isomorphic mapping from G to H .

Since such two mappings θ and φ are bijective, H also isomorphic to G. Thus we

often call that G and H are isomorphic, write G ∼= H , the pair (θ, φ) of mappings

is called an isomorphism between G and H .

To show that two graphs are isomorphic, one must indicate an isomorphism

between them. For instance, two digraphs D and H defined in Example 1.1.1 and

Example 1.1.2, respectively, are isomorphic since the pair of mappings (θ, ψ) is an

isomorphism between them, where θ : V (D) → V (H) and ψ : E(D) → E(H) are

defined by

θ(xi) = yi, for each i = 0, 1, 2, · · · , 5; and
ψ(aj) = bj , for each i = 0, 1, 2, · · · , 9.

The concept of isomorphism for simple graphs is simple. Two simple graphs G

and H are isomorphic if and only if there is a bijection θ : V (G)→ V (H) such that

(x, y) ∈ E(G) if and only if (θ(x), θ(y)) ∈ E(H). In this case, the condition (1.1) is

usually called the adjacency-preserving condition.

It is clear that if G and H are isomorphic, then υ(G) = υ(H) and ε(G) = ε(H).

But the converse is not always true. Generally speaking, to judge whether or not

two graphs are isomorphic is quite difficult.

It is easy to see that “to be isomorphic” is an equivalent relation on graphs;

hence, this relation divides the collection of all graphs into equivalence classes. Two

graphs in the same equivalence classes have the same structure, and differ only in

the labels of vertices and edges. Since we are primarily interested in structural

properties of graphs, we will identify two isomorphic graphs, and often write G = H
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for G ∼= H . We often omit labels when drawing them on the plane; an unlabelled

graph can be thought of as a representative of the equivalence class of isomorphic

graphs. We assign labels to vertices and edges in a graph mainly for the purpose of

referring to them.

Some Special Classes of Graphs: Next, we introduce some special

classes of graphs, which frequently occur in our discussion later on.

Figure 1.4: Petersen graph

The graph shown in Figure 1.4 is called Petersen graph, an interesting graph,

which often occurs in the literature and any textbook on graph theory as various

counterexamples.

(a) K5 (b) K3 (c) K3,3

Figure 1.5: (a) K5, (b) K3, (c) K3,3

A complete graph is one in which each ordered pair of distinct vertices is

linked by exactly one edge. Up to isomorphism, there is just one complete graph

on υ vertices, denoted by Kυ. The graphs shown in Figure 1.5 (a) and (b) are a

complete undirected graph K5 and a complete digraph K3, respectively. It is clear

that

ε(Kv) =

{
υ(υ − 1) if Kυ is directed;
1
2 υ(υ − 1) if Kυ is undirected.

An oriented graph of a complete undirected graph is called a tournament. The

reason why we call it the name is that it can be used to indicate the results of games

in a round-robin tournament between υ players. A directed edge (x, y) means that

the player x has won the player y. Up to isomorphism, the tournament of order one

is a trivial graph; there is just one tournament of order two; two tournaments of
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order three; four tournaments of order four. These not isomorphic tournaments are

shown in Figure 1.6.

Figure 1.6: Nonisomorphic tournaments of order υ for υ = 1, 2, 3, 4

A bipartite graph is one whose vertex-set can be partitioned into two subsets

X and Y , so that each edge has one end-vertex in X and another in Y , such a

partition {X,Y } is called a bipartition of the graph. We call a graph to be equally

bipartite if it is bipartite and has a bipartition with the same number of vertices in

each part. We often use the symbol G(X ∪ Y,E) to denote a bipartite simple graph

G = (V,E) with bipartition {X,Y }. Similarly, we can define a k-partite graph

and an equally k-partite graph.

A complete bipartite graph is a bipartite simple graph G(X ∪ Y,E) in which

each vertex of X is joined by exactly one edge to each vertex of Y ; if |X | = m and

|Y | = n, up to isomorphism, such a complete bipartite undirected graph is unique

and denoted by Km, n. The graph shown in Figure 1.5 (c) is K3, 3. It is customary

to call K1, n a star. Usually, write Kn(2) for Kn, n.

Similarly, we can define complete k-partite graph and Kn(k).

ε(Km, n) = mn and ε(Kn(k)) = 1
2 k(k − 1)n2.

It is also easy to verify that for any bipartite simple graph G of order n,

ε(G) ≤
{

1
4 n

2 if n is even;
1
4 (n2 − 1) if n is odd.

Bipartite graphs are an important class of graphs. In fact, every digraph corre-

sponds a bipartite undirected graph. Let D = (V,E, ψ) be a digraph, where

V (D) = {x1, x2, · · · , xv} and E(D) = {a1, a2, · · · , aε}.

Construct an equally bipartite undirected graph G = (X ∪ Y,E(G), ψG) with

X = {x′1, x′2, · · · , x′v}, Y = {x′′1 , x′′2 , · · · , x′′v},
E(G) = {e1, e2, · · · , eε}, where ψG(el) = x′ix

′′
j

⇐⇒ there is al ∈ E(D) such that ψD(al) = (xi, xj)
(l = 1, 2, · · · , ε).
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Such a constructed bipartite undirected graph G is called an associated bipartite

graph with the digraph D. For instance, the graph G shown in Figure 1.7 (b) is an

associated bipartite graph with the digraph D shown in (a). It is clear that

υ(G) = 2 υ(D) and ε(G) = ε(D). (1.2)
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Figure 1.7: A digraph D and its associated bipartite graph G

Example 1.2.1 We construct an equally bipartite simple graph, called n-

cube, or hypercube, denoted by Qn = (V (Qn), E(Qn)), where

V (Qn) = {x1x2 · · ·xn : xi ∈ {0, 1}, i = 1, 2, · · · , n},

and two vertices x = x1x2 · · ·xn and y = y1y2 · · · yn are linked by an undirected

edge if and only if they differ in exactly one coordinate, i.e.,

xy ∈ E(Qn)⇐⇒
n∑

i=1

|xi − yi| = 1.

The graphs shown in Figure 1.8 are Q1, Q2, Q3 and Q4.

By definition, Qn is a simple undirected graph, and has 2n vertices. We show

that Qn is bipartite. To the end, let

X = {x1x2 · · ·xn : x1 + x2 + · · ·+ xn ≡ 0 (mod 2)};
Y = {y1y2 · · · yn : y1 + y2 + · · ·+ yn ≡ 1 (mod 2)}.

Then, by definition, X ∪ Y = V (Qn), X ∩ Y = ∅. Therefore, {X,Y } is a

bipartition of V (Qn). We can claim that there is no edge between any two vertices

in X . Suppose to the contrary that there exist x = x1x2 · · ·xn, x
′ = x′1x

′
2 · · ·x′n ∈ X

such that xx′ ∈ E(Qn). Then
n∑

i=1

|xi − x′i| = 1, namely,

|(x1 + x2 + · · ·+ xn)− (x′1 + x′2 + · · ·+ x′n)| = 1.

This contradicts the fact that x and x′ are in X . There, therefore, is no edge between

any two vertices in X .

Similarly, there is no edge between any two vertices in Y . Therefore, Qn is a

bipartite graph with the bipartition {X,Y }.
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Figure 1.8: The n-cubes Qn for n = 1, 2, 3, 4

Arbitrarily choose x = x1x2 · · ·xn ∈ V (Qn). For a vertex y = y1y2 · · · yn of Qn,

it is adjacent to x if and only if they differ in exactly one coordinate. This means

that vertices adjacent to the vertex x have exactly n, that is, edges incident with

x have n since Qn is simple. Let us use EX (resp. EY ) to denote the set of edges

incident with vertices in X (resp. Y ). Then

n|X | = |EX | = ε(Qn) = |EY | = n|Y |,
|X | = |Y | = 1

2 υ(Qn) = 2n−1 and
ε(Qn) = n2n−1.

Example 1.2.2 The symbol Tk,υ denotes a complete k-partite graph of

order υ in which each part has either m =
⌊υ
k

⌋
or n =

⌈υ
k

⌉
vertices. Prove that

(a) ε(Tk,υ) =

(
υ −m

2

)
+ (k − 1)

(
m+ 1

2

)
;

(b) ε(G) ≤ ε(Tk,υ) for any complete k-partite graph G, and the equality holds if

and only if G ∼= Tk,υ.

Proof: (a) Let υ = km+ r, 0 ≤ r < k. Then r = υ − km. By the definition of

Tk,υ, we have that

ε(Tk,υ) =

(
υ

2

)
− r
(
m+ 1

2

)
− (k − r)

(
m

2

)

= 1
2 [υ(υ − 1)− rm(m+ 1)− (k − r)m(m − 1)]

= 1
2 [υ(υ − 1)− 2m(υ − km)− km(m− 1)]

= 1
2 (υ −m)(υ −m− 1) + 1

2 (k − 1)m(m+ 1)

=

(
υ −m

2

)
+ (k − 1)

(
m+ 1

2

)
.
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(b) Suppose that G = Kn1,···,nk
is a complete k-partite graph with the largest

number of edges. Then

ε(G) =

(
υ

2

)
−

k∑

l=1

(
nl

2

)
.

If G is not isomorphic to Tk,υ, then there must exist some i and j (i < j) such that

ni − nj > 1. Consider another complete k-partite graph G′, the number of vertices

in its k-partition are, respectively,

n1, n2, · · · , ni−1, (ni − 1), ni+1, · · · , nj−1, (nj + 1), nj+1, · · · , nk.

Then

ε(G′) =

(
υ

2

)
−

k∑

l=16=i,j

(
nl

2

)
−
(
ni − 1

2

)
−
(
nj + 1

2

)

=

(
υ

2

)
−

k∑

l=1

(
nl

2

)
+ (ni − nj)− 1

>

(
υ

2

)
−

k∑

l=1

(
nl

2

)
= ε(G),

which contradicts to the choice of G. Thus, G ∼= Tk,υ.

Exercises: 1.1.1, 1.2.4, 1.2.5, 1.2.6

xujmm
附注
（中文第三版：1.1.1；1.2.3， 1.2.6，1.27.）。




