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Abstract

In this paper we present how to estimate a continuous
space Language Model with a Neural Network to be used
in a Statistical Machine Translation system. We report re-
sults for an Italian-English translation task obtained on a
small corpus (about 150 K tokens), that can be considered
a task with a lack of training data. Different word his-
tory length included in the connectionist language model
(n-gram order) and distinct continuous space representa-
tion (i.e. words appearing in the training corpus more than
k times) are considered in the study. The experimental re-
sults are evaluated by means of automatic evaluation met-
rics correlated with fluency and adequacy of the generated
translations.

1. Introduction

Language modeling is an essential step in many Natural
Language Processing applications, and particularly in the
Statistical Machine Translation (SMT) task. Techniques for
language modeling can be classically decomposed into two
main approaches. The first type of models comprises tra-
ditional grammars, for example, synchronous context-free
grammars. The second approach includes purely statisti-
cal corpus-based probabilistic models, which is a powerful
and simple method for language modeling. The so-called
n-gram models, which assign high probability to frequent
sequences of words by considering the history of only n−1
preceding words in the utterance, has become a “de facto”
standard for language modeling in the state-of-the-art SMT
systems.

The approach presented in this paper can be considered
as a coherent and natural evolution of the probabilistic Lan-
guage Models (LMs): we propose to use a continuous LM

trained in the form of a Neural Network (NN).
The use of continuous space representation of language

has successfully applied in recent NN approaches to lan-
guage modeling [32, 3, 8]. However, the use of Neural Net-
work Language Models (NN LMs) in state-of-the-art SMT
systems is not so popular. The only comprehensive work
refers to [28], where the target LM is presented in the form
of a fully-connected Multilayer Perceptron.

The Basic Travel Expression corpus [30] from the tourist
domain has been used in our experiments. This corpus is
characterized by extremely limited amount of training data
(about 150 K of tokens in the English part of the training
corpus), as compared to other translation tasks (for exam-
ple, Europarl corpus of parliament speeches contains 35 M
words). We decided to consider the translation between two
European languages with distinct inflection, but a similar
word order, i.e. Italian to English translation.

The lack of vast bilingual resources requires special tech-
niques for the integration into a machine translation sys-
tem. With regard to language modeling, the recently pre-
sented specific algorithms include: (a) techniques dealing
with class-based n-gram LMs [22, 31]: some promising
works include factored LM representation allowing for dif-
ferent lexical and syntactical text clusterization [19]; (b)
LM adaptation to the particular translation task [17, 18] and
(c) other techniques which include synchronous context-
free grammar LMs, as shown in [9], continuous space LMs,
and other non-trivial language modeling algorithms, such as
NN LMs.

The article is structured as follows: in Section 2 we de-
scribe the novel feature presented in the paper, i.e. NN LMs
and its training algorithm. In Section 3 we give some back-
ground of the SMT and briefly outline the n-gram-based
SMT system. Section 4 presents our experimental setup and
Section 5 concludes the article with the results and the lead-
ing discussions.



2. Neural Network Language Models

A different approach to the widely-used statistical lan-
guage models based on n-grams consists on using Neural
Networks. A NN LM is a statistical LM which follows the
same equation as n-grams:

p(w1 . . . w|W |) ≈
|W |∏
i=1

p(wi|wi−n+1 . . . wi−1) (1)

and where the probabilities that appear in that expression
are estimated with a NN. The model naturally fits under the
probabilistic interpretation of the outputs of the NNs: if a
NN is trained as a classifier, the outputs associated to each
class are estimations of the posterior probabilities of the de-
fined classes. The demonstration of this assertion can be
found in a number of places, for example in [5].

The training set for a LM is a sequence w1w2 . . . w|W |
of words from a vocabulary Ω. In order to train a NN to
predict the next word given a history of length n − 1, each
input word must be encoded. A natural representation is a
local encoding following a “1-of-|Ω|” scheme. The prob-
lem of this encoding for tasks with large vocabularies (as
is the case) is the huge size of the resulting NN. We have
solved this problem following the ideas of [3], learning a
distributed representation for each word.

Figure 1 illustrates the architecture of the feed-forward
NN used to estimate the NN LM. The input is composed
of words wi−n+1, . . . , wi−1 of Equation (1). Each word
is represented using a local encoding. P is the projection
layer of the input words, formed by Pi−n+1, . . . , Pi−1 sub-
sets of projection units. The subset of projection units Pj

represents the distributed encoding of input word wj . The
weights of this projection layer were linked, that is, the
weights from each local encoding of input word wj to the
corresponding subset of projection units Pj are the same for
all input words j.

H denotes the hidden layer and the output layer O has
|Ω| units, one for each word of the vocabulary. Trained
as a classifier, this NN predicts the posterior probabil-
ity of each word of the vocabulary given the history, i.e.,
p(wi|wi−n+1 . . . wi−1).

In order to achieve a good configuration (topology and
parameters) for each NN LM in the translation task, ex-
haustive scanning using a tuning set was performed. The
activation function for the hidden layers was the hyperbolic
tangent function and the softmax function was chosen for
the output units. Best configurations used a projection layer
of 32 units for each word.

To illustrate the huge sizes of the NNs used, Table 1
shows the topology and number of weights of the selected
NN LMs for a vocabulary of 2 148 words (words with less

Figure 1. Architecture of the continuous
space NN LM. The input words are
wi−n+1, . . . , wi−1 (in this example, the input
words are wi−3, wi−2, and wi−1 for a 4-gram).
I, P , H and O are the input, projection, hid-
den and output layer, respectively, of the Mul-
tilayer Perceptron.

than k=5 occurrences were discarded from the Basic Travel
Expression corpus) and a vocabulary of 3 093 (correspond-
ing to k=3). The third columns shows the topology of the
used NNs (number of input, projection, hidden and output
units) and the last column shows the number of weights
(first, the weights replicated n − 1 times at the projection
layer and, secondly, the weights at the hidden and output
layers).

3. SMT system

SMT is based on the principle of translating a source sen-
tence s into a sentence in the target language t. The problem
is formulated in terms of source and target languages and
is defined according to the following Equation (2) and can
be reformulated as selecting a translation with the highest
probability from a set of target sentences (3):

t̂ = arg max
t

{ p(t | s)} = (2)

= arg max
t

{ p(s | t) · p(t)} . (3)

This decomposition made according to the Bayes rule is
called noisy channel approach, and the first systems fol-
lowing this approach performed translation on the word
level [6]. However, modern state-of-the-art SMT systems



Table 1. Sizes of the selected NN LMs configurations.

NN LM NN Topology
Vocabulary n-gram Input–Projection–Hidden–Output # Weights

k=5 3-gram 2×2 148–2×32–64–2 148 2×68 768 + 143 788
2 148 4-gram 3×2 148–3×32–64–2 148 3×68 768 + 145 828
k=3 3-gram 2×3 093–2×32–64–3 093 2×99 008 + 205 205

3 093 4-gram 3×3 093–3×32–64–3 093 3×99 008 + 207 253

operate with bilingual units extracted from the parallel cor-
pus based on the word-to-word alignment. An enhance-
ment of the SMT systems consists of calculating the pos-
terior probability as a log-linear combination of a set of fea-
ture functions [4, 25]. Using this technique, it is possible
to combine M feature models in the determination of the
translation hypothesis, as shown below in Equation (4):

t̂ = arg max
t

{
M∑

m=1

λmhm(t, s)

}
, (4)

where the feature functions hm refer to the system mod-
els, namely bilingual translation model, target LM and addi-
tional feature models; and the set of λm refers to the weights
corresponding to these models which are estimated accord-
ing to a log-linear model, so that the recombined weights
are optimized to maximize the translation scores on the de-
velopment set (see Sections 4.1 and 4.2).

3.1. Translation model

Most of modern state-of-the-art SMT follow the phrase-
based translation approach. The basic idea is to seg-
ment the given source word sequence into monolingual
phrases, afterwards translate them and compose the target
sentence [21, 25].

Another approach to SMT is the n-gram-based ap-
proach, which we follow in the framework of the study. It
regards translation as a stochastic process maximizing the
joint probability p(s, t), leading to a decomposition based
on bilingual n-grams, typically implemented by means of a
Finite-State Transducer [7]. It operates with tuples that are
extracted from a word-to-word alignment according to cer-
tain constraints, explained in details in [15]. The translation
model is represented in the form of a 4-gram LM estimated
using Kneser-Ney discounting, where the language is com-
posed by tuples. The tuples induce a unique segmentation
of the pairs of sentences, as shown in [12]. In this way the
context used in the translation model is bilingual, it not only
takes the target sentence into account, but both languages
linked in tuples.

3.2. Other features

Besides the bilingual translation model, the baseline
translation system implements a log-linear combination of
several other features:

• An statistical n-gram target LM. 4-gram word-based
model is used in the system that accounts for the target
language statistical dependencies.

• A connectionist target LM. Different word history
length included in the connectionist language model
(n-gram order) and distinct continuous space represen-
tation (i.e. words appearing in the training corpus more
than k times) are considered in this study.

• A word penalty model. A word penalty model is used
to compensate the systems preference for short out-
put sentences. Technically, the penalization depends
on the total number of words in the partial translation
hypothesis.

• A source-to-target and a target-to-source lexicon mod-
els. This model uses word-to-word IBM Model 1
probabilities [24] to estimate the lexical weights of
each tuple. The target-to-source lexicon model is the
same as the source-to-target lexicon model for the op-
posite translation direction. We used Giza++ [1] word-
to-word direct and backward alignments respectively.

• Extended word reordering. An extended monotone
distortion model based on the automatically learned
reordering rules was used in the experiments for the
Italian-English translation task. Reordering patterns
are extracted in training from the crossed links found
in the word alignment, on the next step, the monotone
search graph is extended with reorderings following
the patterns found in training. Once the search graph
is built, the decoder traverses the graph looking for
the best translation. The above mentioned distortion
model is presented in [14].



3.3. Decoding and optimization

The MARIE decoder was used as a search engine for the
translation system. The details can be found in [13]. The
decoder implements a beam-search algorithm with pruning
capabilities. The feature functions described above were
taken into account in the decoding process. Given the de-
velopment set and references, the log-linear combination
of weights can be adjusted using the simplex optimization
method [23] to maximize the score function according to
a combination of automatic evaluation metrics (see Sec-
tion 4.2) [26]. Detailed explanation of the standard auto-
matic metrics to evaluate the translation quality, along with
the optimization criteria that was used to tune the translation
system, are presented in Sections 4.1 and 4.2.

4. Experiments

The experiment results were obtained on the Basic
Travel Expression corpus, which includes data from a
tourist domain. This corpus models a real situation when an
Italian tourist appears in an English-speaking country and
demands for simple explanations and other information use-
ful for travellers. Along with regular senteces, like “Questo
traghetto si sta dirigendo verso un’isola’.’ (“This ferry is
heading for an island.”), it contains many colloquial or sim-
ple expressions, like “Hm! non mi sento bene.” (“Hm! I am
not feeling well.”).

Automatic evaluation conditions were case-sensitive
with tokenized punctuation marks. The development and
test sets were provided with 7 reference translations. Basic
Travel Expression corpus statistics can be found in Table 2.
The number of words and the size of the vocabulary for the
development and test reference English sets are calculated
by average of the 7 references.

4.1. Translation scores

The BLEU score accounts for evaluation of the trans-
lation quality, by measuring the distance between a given
translation and the set of reference translations using an
n-gram LM (a 4-gram in the framework of this study) [26].
The NIST score is a sensitive metric of machine translation
quality, based on the BLEU score, but weighting n-grams
in order to provide less informative n-grams with higher
weigths [16]. The METEOR score is an underestimated
metric for the evaluation of machine translation output,
which is calculated as an averaged mean of precision and
benefited recall, considering stemms and synonyms match-
ing (more details can be found in [2]).

Table 2. Statistics of the Basic Travel Expres-
sion corpus.

Italian English
Train

Sentences 24.5 K 24.5
Words 166.3 K 155.4 K
Vocabulary 10.2 K 7.3 K

Development
Sentences 489 489
Words 5.2 K 5.6 K
Vocabulary 1.2 K 1.7 K

Test
Sentences 500 500
Words 6 K 7.3 K
Vocabulary 1.4 K 2.3 K

4.2. Baseline

The Italian part of the bilingual corpus was preprocessed.
This step included tagging, lemmatization and separation of
contractions as described in [11]. The optimization crite-
ria to estimate the weights of the log-lineal model of Equa-
tion (4) was 100 BLEU + 4 NIST in the development set,
following the point from [10].

A 4-gram target LM with unmodified Kneser-Ney back-
off discounting and counts post-modification after discount
estimation were generated using the SRI Language Model-
ing Toolkit [29]. The 4-gram was implicitly integrated into
the SMT system and considered as the reference baseline,
without taking into account the NN LM.

Tables 3 and 4 show BLEU, NIST and METEOR scores
for the baseline system for the development and the test sets.
Automatic evaluation was case insensitive and punctuation
marks were not considered.

4.3. NN LMs experiments

Target NN LMs were trained on exactly the same train-
ing data as the 4-gram target LM. We considered two key
parameters of the continuous NN LM: (a) word frequency
threshold k: words with less than k occurrences were dis-
carded; (b) order of n-gram: 3-gram and 4-gram were
tested.

When reestimating the weights coefficients for the new
log-lineal model with the NN LM, different start points
were tried and the best set of weights due to the 100 BLEU
+ 4 NIST criteria was chosen. Table 3 and Table 4 show
BLEU, NIST and METEOR scores when the NN LMs were



Table 3. Evaluation scores on the develop-
ment dataset.

BLEU NIST METEOR
Baseline 29.22 6.37 69.26

NN LM 3-gram 30.02 6.31 69.44
k=5 4-gram 30.07 6.17 69.19

NN LM 3-gram 30.54 6.44 69.61
k=3 4-gram 30.01 6.10 69.45

Table 4. Evaluation scores on the test dataset.

BLEU NIST METEOR
Baseline 24.93 5.83 64.01

NN LM 3-gram 25.17 5.86 63.70
k=5 4-gram 25.07 5.79 63.99

NN LM 3-gram 25.23 6.02 64.10
k=3 4-gram 25.29 5.81 63.63

integrated as a part of the combined SMT system, for the
development and the test sets.

As can be observed, considerable improvements were
obtained by using a NN LM. The best system configura-
tion is highlighted in both Tables.

For the development dataset, the BLEU score for the
NN LM experiments is always higher than for the base-
line system. The METEOR score for the NN LM system
is slightly higher than the reference one for most of the con-
figurations.

Our previous experience shows that, for small translation
tasks with a lack of training material, poor correlation of de-
velopment and test results is frequent, although this has not
been the case in these experiments. Considering develop-
ment and test data results, the 3-gram k=3 NN LM system
allows gaining up to 1.3 BLEU point for the development
set and about 0.3 BLEU point for the test set. This differ-
ence is statistically significant for a 95% confidence inter-
val and 1 000 resamples), using the bootstrap resampling
method as described in [20].

Considering the NIST score, the baseline test results
were exceeded for both 3-gram systems. Concerning ME-
TEOR score, only the 3-gram, k=3 system provides better
LM generalization.

5. Discussion and error analysis

The architecure of a SMT system implies that the smaller
the available training data, the worse the performance of
a translation system. Obviously, new or specially adapted
methods of limited information using in more efficient way
are needed. The technique presented in this paper allows
improving the performance of a SMT system having access
to a small amount of training material by incorporating the
NN LM.

The correlation of automatic and subjective human eval-
uation metrics (fluency and adequacy) is one of the main
topics in the area of machine translation evaluation. As it
was reported in [27] for small translation tasks fluency cor-
relates best with BLEU and adequacy correlates best with
METEOR, while the NIST metric has only moderate cor-
relation to both subjective human evaluation metrics. Our
work demonstrates the potential for NN LMs application in
the SMT to improve translation fluency, while adequacy re-
mains the same. The positive impact of higher n-gram is
not clear, this is possibly due to the relatively short sen-
tences provided within the Basic Travel Expression cor-
pus; probably for a corpus with longer sentences this in-
fluence will be more considerable. Another possible issue
is that higher n-gram order only slightly decreases trans-
lation quality, but, by other hand, it introduces more noisy
translation hypotheses.

An example of a typical sentence from the Basic Travel
Expression corpus is shown in Figure 2. The Italian ex-
pression “Oggi abbiamo a scelta” is translated by the base-
line system as “Today we have selection at”, whereas three
of four NN LMs systems provide a more fluent translation
“Today we have to choose from”.

The contribution of this paper is to show the robust-
ness of the NN LM even for highly limited training corpus.
The in-domain NN LM provides a significantly better gen-
eralization of the target language, smoothed SMT output
and improvement in the automatically evaluated translation
scores.
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Source Oggi abbiamo a scelta insalata ai frutti di
mare insalata di patate e insalata mista.

References Today we have a choice of seafood salad
potato salad and wild vegetables salad.
We are serving seafood salad potato salad
and wild vegetables salad today.
As for today’s salad you can enjoy seafood
potato and wild vegetables.
For salad we have seafood potato and wild
vegetables today.
Today’s selections are the seafood salad
potato salad and wild vegetables salad.
For today we have the seafood salad potato
salad and wild vegetables salad.
For today you can choose to have the
seafood salad the potato salad or the wild
vegetables salad.

Baseline Today we have selection at the seafood
salad potato salad and mixed salad.

3-gram k=5 Today we have to choose from the seafood
salad potato salad and mixed salad.

4-gram k=5 Today we have selection at the seafood
salad potato salad and mixed salad.

3-gram k=3 Today we have to choose from the seafood
salad potato salad and mixed salad.

4-gram k=3 Today we have to choose from the seafood
salad potato salad and mixed salad.

Figure 2. An example of translation.
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