
LOCALITY ENHANCEMENT OF

IMPERFECTLY�NESTED LOOP NESTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

by

Nawaaz Ahmed

August ����

c� Nawaaz Ahmed ����

ALL RIGHTS RESERVED

LOCALITY ENHANCEMENT OF IMPERFECTLY�NESTED LOOP NESTS

Nawaaz Ahmed� Ph�D�

Cornell University ����

Most numerical applications using arrays require extensive program transformation

in order to perform well on current machine architectures with deep memory hier�

archies� These transformations ensure that an execution of the application exploits

data�locality and uses the caches more e�ectively�

The problem of exploiting data�locality is well understood only for a small class

of applications � for programs in which all statements are present in the innermost

loop of a loop�nest �called perfectly�nested loops�� For such programs� statement

instances can be mapped to an integer lattice �called the iteration space�� and impor�

tant transformations can be modelled as unimodular transformations of the iteration

space� This framework has permitted the systematic application of transformations

like loop�permutation� skewing and tiling in order to enhance locality in perfectly�

nested loops�

In dealing with programs that do not fall into this category� current compilers

resort to ad�hoc techniques to 	nd the right sequence of transformations� For some

important benchmarks� no technique is known that will discover the right sequence of

transformations� In my thesis� I propose a technique that extends the framework for

perfectly�nested loops to general programs� The key idea is to embed the iteration

space of every statement in the program into a special iteration space called the

product space� The product space can be viewed as a perfectly�nested loop nest�

so this embedding generalizes techniques like code sinking and loop fusion that

are used in ad hoc ways in current compilers to produce perfectly�nested loops from

imperfectly�nested ones� In contrast to these ad hoc techniques however� embeddings

are chosen carefully to enhance locality� The product space is then transformed

further using unimodular transformations� after which fully permutable loops are

tiled� and code is generated� Code can also be generated to emulate block�recursive

versions of the original program� I demonstrate the e�ectiveness of this approach

for dense numerical linear algebra benchmarks� relaxation codes� and the tomcatv

code from the SPECfp
� benchmark suite�

Biographical Sketch

Nawaaz Ahmed was born on August �st� �

� in Tiruchirapalli� India� He graduated

from the Indian Institute of Technology� Madras �now Chennai� with a B� Tech� in

Computer Science� He joined the Ph�D program in the Department of Computer

Science at Cornell University in August �

�� He received an M�S� in Computer

Science from Cornell University in �

�

iii

To Ithaca

This Ithaca has done for me � set me

out upon my way� It cannot then

seem too lean �

my journeys start here� in this calm

destination� I�ve yet to face

irate Poseidon

and battle the Cyclops� These demons

I bear in my soul� and my soul

will surely

raise them up in front of me� I pray

though the course be long

I am touched

by fine sentiment and lofty thinking

so when old and I moor at last

I haven�t lost

the wealth that Ithaca has given me�

iv

Acknowledgements

To Prof� Keshav Pingali� many thanks and much gratitude�

For support and guidance� For keeping me grounded�

for teaching me how to �y�

To my committee members Prof� Bojanczyk and Prof� Zabih

for being available whenever I needed them� for listening

and helping out when they could�

To the Department of Computer Science� for being a haven�

for giving me the freedom to choose what I wanted to do�

for the six year incubation�

To Induprakas Kodukula� Vladimir Kotlyar and Paul Stodghill�

for letting me stand on their shoulders� To Helene Croft�

for smoothening the passage�

To Nikolay Mateev and Vijay Menon � friends� brothers�in�arms�

For toiling with me� For trading dreams and laughter�

nightmares and despair�

v

To Raghu� for being a wonderful house�mate� for fried eggs�

for pongal and vengaaya kaaram� For putting up with me

for six years� For companionship�

To Sotiris� for sharing and listening� for laughing and commiserating�

To Gihan and Swati� for fellowship and empathy�

For berry�picking and chicken soup�

To the Dance department� For being a second home� For concerts

and studios� For the Proscenium stage� For setting me free�

For friends and companions�

To Prof� Joyce Morgenroth� for helping add wings to my feet�

For support and encouragement� for being my minor advisor�

For Tracings and center stage�

To Jim� Jumay� Janice� Joyce and Byron� For holding my hand�

for patting my back� For plies and tendus� For helping me

	nd myself� For Dance�

To my parents� my brother and my sister for their love and support

steady across continents and oceans� For believing I could do it�

For letting me live my dreams�

vi

Table of Contents

� Introduction �

� A Framework for Locality Enhancement �

��� Modeling Program Execution �

����� Optimizing Programs ��
����� Legality of Execution Orders ��

��� Locality Enhancement ��
����� Representing Reuses ��
����� Examples of Reuse Distance Reduction � � � � � � � � � � � � � ��
����� Minimizing Reuse Distances ��

��� Product Space ��
����� Statement Iteration Spaces ��
����� Product Spaces and Embedding Functions � � � � � � � � � � � ��
����� Examples of Embeddings ��

��� Transformed Product Spaces and Valid Embeddings � � � � � � � � � � �

����� Determining Valid Embeddings � � � � � � � � � � � � � � � � � ��

� Using the Framework ��

��� Embeddings that permit Tiling ��
����� Determining Constraints on Embeddings and Transformations ��
����� Solving for Embeddings and Transformations � � � � � � � � � �

��� Embeddings that Enhance Reuse �

��� Algorithm ��

����� First Dimension ��
����� Remaining Dimensions ��
����� Putting it All Together ��
����� Algorithm �

��� Tile Size Determination ��
��� Experimental Results ��

����� Performance ��

vii

� Generating Block�recursive Codes ��

��� The Product Space ��
��� Code Generation ��
��� Examples ��

����� Cholesky Factorization ��
����� Matrix Multiplication ��

��� Experimental Results �
�
����� Overheads �
�
����� Memory Hierarchy Performance � � � � � � � � � � � � � � � � �
�
����� Discussion �

� Conclusions ��

��� Summary of Dissertation �

��� Future Work ���

Bibliography �	�

viii

List of Figures

��� Jacobi � Original Code �
��� Jacobi � Optimized for locality �
��� Optimizing Matrix Multiplication �
��� Locality Enhancement of Imperfectly�nested Loop Nests � � � � � � �

��� Code Fragments ��
��� Space and Embedding Functions for Example � � � � � � � � � � � � � ��
��� Space and Embedding Functions for Example � � � � � � � � � � � � � ��
��� Space and �D Embedding Functions for Example � � � � � � � � � � � ��
��� Space and �D Embedding Functions for Example � � � � � � � � � � � ��
��� Triangular Solve with Multiple Right�hand Sides � � � � � � � � � � � ��
��
 Fusion to reduce reuse distance ��
��� Permutation to reduce reuse distance � � � � � � � � � � � � � � � � � � ��
��
 Optimizing Matrix Multiplication ��
���� ��D Relaxation Code ��
���� Code Generation from Product Space and Embeddings � � � � � � � � �

���� Original Embeddings for �D relaxation � � � � � � � � � � � � � � � � � ��
���� Embeddings for Loop Fission ��
���� Embeddings for Loop Fusion ��
���� Embeddings for Skewed Loop Fusion � � � � � � � � � � � � � � � � � � ��
���� Algorithm to Determine Valid Embeddings � � � � � � � � � � � � � � ��

��� Imperfectly�nested MMM ��
��� Formulating Linear System for Legality � � � � � � � � � � � � � � � � �

��� Formulating Linear Systems for Promoting Reuse � � � � � � � � � � � ��
��� Algorithm to Enhance Locality �

��� Determining Dimension Ordering ��
��� Triangular Solve � Original Code ��
��
 Triangular Solve and its Performance � � � � � � � � � � � � � � � � � � ��
��� kij�Cholesky Factorization � Original Code � � � � � � � � � � � � � � � ��
��
 Cholesky Factorization and its Performance � � � � � � � � � � � � � � �

���� Jacobi � Original Code �
�
���� Jacobi and its Performance �
�
���� Red�Black Gauss Seidel � Original Code � � � � � � � � � � � � � � � �
�

ix

���� Red�Black Gauss�Seidel and its Performance � � � � � � � � � � � � � �
�
���� Tomcatv Kernel �
�
���� Tomcatv Kernel �continued�
�
���� Performance of Tomcatv �

��� Cholesky Factorization �

��� Matrix Multiplication ��
��� Block�recursive call order ��
��� Block Recursive Order ��
��� Gray�code call order ��
��� Space�Filling Order ��
��
 Lexicographic Order ��
��� Recursive code generation �

��
 Embeddings for Cholesky ��
���� Recursive code for Cholesky �

���� Recursive code for Matrix Multiplication � � � � � � � � � � � � � � � �
�
���� Embeddings for Matrix Multiplication � � � � � � � � � � � � � � � � �
�
���� MMM � Overheads �
�
���� CHOL � Overheads �
�
���� MMM � L� misses �
�
���� CHOL � L� misses �
�
���
 MMM � L� misses �
�
���� CHOL � L� misses �
�
���
 MMM � TLB misses �
�
���� CHOL � TLB misses �
�
���� Performance �

x

Chapter �

Introduction

The memory systems of computers are organized as a hierarchy in which the latency

of memory accesses increases by roughly an order of magnitude from one level of

the hierarchy to the next� In such architectures� a program will run well only if it

exhibits enough locality of reference so that most of its data accesses are satis	ed

by the faster levels of the memory hierarchy� Unfortunately� most programs pro�

duced by straight�forward coding of algorithms do not exhibit su�cient locality of

reference� The numerical linear algebra community has addressed this problem by

writing libraries of carefully hand�crafted programs such as the Basic Linear Alge�

bra Subroutines �BLAS� ��
� and LAPACK ��� for algorithms of interest to their

community� However� these libraries are useful only when linear systems solvers or

eigensolvers are needed� so they cannot be used when explicit methods are used to

solve partial di�erential equations �pde�s�� for example�

The restructuring compiler community has explored a more general�purpose ap�

proach in which program locality is enhanced through restructuring by a compiler

which does not have any knowledge of the algorithms being implemented by these

programs� In principle� such technology can be brought to bear on any program

�

�

for t � ��T

for i� � ��N��

for j� � ��N��

S�� L�i��j�	 � �A�i��j�
�	
 A�i��j���	

 A�i�
��j�	
 A�i����j�		 � �

end

end

for i� � ��N��

for j� � ��N��

S�� A�i��j�	 � L�i��j�	

end

end

end

Figure ���� Jacobi � Original Code

without restriction to problem domain� This technology transforms programs using

a set of loop transformations like interchange� reversal� skewing� 	ssion� fusion etc�

Consider the code fragment shown in Figure ���� It is typical of code in pde

solvers that use explicit methods� These are called relaxation codes in the compiler

literature� They contain an outer loop that counts time�steps� in each time�step�

a smoothing operation �stencil computation� is performed on arrays that represent

approximations to the solution to the pde� As can be seen� each statement walks over

both arrays A and L� This results in bringing these arrays twice through cache for

each iteration of the outer t loop� Clearly both the statements are touching the same

arrays locations and there is reuse between statements S� and S�� Furthermore� each

iteration of the t�loop itself touches the same data� and therefore the t�loop carries

reuse too� If the arrays do not 	t into cache� these reuses will not be exploited� It

is possible to exploit the reuse between statements for a given iteration of t if the

code is rewritten as in Figure ����a�� This code can be obtained by peeling away the

	rst iterations of the i��j� loops and the last iterations of the i��j� loops and then

fusing the remaining i� and i� loops as well as j� and j� loops� Reuse between

�

for t � ��T

for j� � �� N��

L��� j�	 � �A���j�
�	
 A���j���	

 A���j�	
 A���j�		 � �

end

for i �
�N��

L�i� �	 � �A�i�
	
 A�i��	

 A�i
���	
 A�i����		 � �

for j �
�N��

L�i�j	 � �A�i�j
�	
 A�i�j��	

 A�i
��j�	
 A�i���j�		 � �

A�i���j��	 � L�i���j��	

end

A�i���N��	 � L�i���N��	

end

for j� � ��N��

A�N���j�	 � L�N���j�	

end

end

Figure ���� Jacobi � Optimized for locality

di�erent iterations of the t�loop can be exploited by skewing the resulting i and j

loops by ��t and then tiling all three loops�

Though the technology for each of these steps is implemented in many com�

mercial compilers� each code may require a di�erent sequence of steps� and 	nding

the best sequence is non�trivial� Most techniques heuristically search for a good se�

quence of transformations ���� ��� �� ���� We do not know any commercial compiler

that 	nds the right sequence for the Jacobi example�

An alternative to searching for a good sequence of transformations has been

developed for perfectly�nested loop nests� A perfectly�nested loop nest is a set of

loops in which all assignment statements are contained in the innermost loop� the

matrix multiplication kernel shown in Figure ����a� is an example of such a loop

nest�

For perfectly�nested loop nests� polyhedral methods can be used to synthesize

�

for i � ��N

for j � ��N

for k � ��N

c�i�j	 � c�i�j	
 a�i�k	 � b�k�j	

end

end

end

�a� Matrix Multiplication Kernel

��tile counter loops

for t� � �� N� B

for t� � �� N� B

for t
 � �� N� B

��iterations within a tile

for j � t�� min�t�
B���N	

for k � t�� min�t�
B���N	

for i � t
� min�t

B���N	

c�i�j	 � c�i�j	
 a�i�k	 � b�k�j	

end

end

end

end

end

end

�b� Optimized Matrix Multiplication Kernel

Figure ���� Optimizing Matrix Multiplication

sequences of linear loop transformations �permutation� skewing� reversal and scal�

ing� for enhancing and locality ��� �� �� ��� ��� ��� ��� The key idea is to model

the iterations of the loop nest as points in an integer lattice� and to model linear

loop transformations as nonsingular matrices mapping one lattice to another� A se�

quence of loop transformations is modeled by the product of matrices representing

the individual transformations� since the set of nonsingular matrices is closed under

matrix multiplication� this means that a sequence of linear loop transformations

is also represented by a nonsingular matrix� The problem of 	nding an optimal

�

sequence of linear loop transformations is thus reduced to the problem of 	nding

an integer matrix that satis	es some desired property� This formulation has per�

mitted the full machinery of matrix methods and lattice theory to be applied to

the loop transformation synthesis problem for perfectly�nested loops� Highlights of

this technology are the following� On the matrix multiplication example in Fig�

ure ����a�� a compiler might permute the loops to obtain the j�k�i ordering �which

is good for the spatial locality of the loop nest assuming the matrices are stored

in Fortran order as the accesses to c�i�j� and a�i�k� will be unit�stride�� and then�

since all three loops exhibit temporal reuse� the compiler might tile the loops as

shown in Figure ����b�� Of course� these transformations are not always legal or

bene	cial� The legality and bene	t of these transformations have been extensively

studied ��� ��� ��� ��� ���� This technology has been incorporated into production

compilers such as the SGI MIPSPro compiler� enabling these compilers to produce

good code for perfectly�nested loop nests�

In real programs though� many loop nests are imperfectly�nested �that is� one

or more assignment statements are contained in some but not all of the loops of

the loop nest�� The Jacobi example in Figure ��� is imperfectly�nested as are other

relaxation codes� Cholesky� LU and QR factorizations ���� also contain imperfectly�

nested loop nests� An entire program or subroutine� which usually is a sequence of

perfectly� or imperfectly�nested loop nests� can itself be considered to be imperfectly

nested�

A number of approaches have been proposed for enhancing locality of reference

in imperfectly�nested code segments� The simplest approach is to transform each

maximal perfectly�nested loop nest separately� In the Jacobi example in Figure ����

the i� and j� loops� the i� and j� loops� and the t loop by itself together form three

�

maximal perfectly�nested loop nests� These can be transformed using techniques

for perfectly�nested loop nests but this will not result in the optimized code in

Figure ����b��

A more aggressive approach is to �i� convert an imperfectly�nested loop nest into

a perfectly�nested loop nest if possible by applying transformations like code sinking�

loop fusion and loop �ssion ����� and then �ii� use locality enhancement techniques

for the resulting maximal perfectly�nested loops� In general� there are many ways to

do this conversion� and the performance of the resulting code may depend critically

on how this conversion is done� For example� certain orders of applying code sinking�

	ssion and fusion might lead to code that cannot be tiled� while other orders could

result in tilable code ��
��

The above approach is further complicated by the fact that transformations like

loop 	ssion and fusion themselves are useful in improving data locality of loop nests�

Loop fusion has been shown to improve data locality by addressing inter�loop nest

reuse� Loop 	ssion� on the other hand� can decrease the number of cache misses in

some cases by allowing less data to pollute the cache�

To avoid these di�culties� we would like to generalize techniques developed for

perfectly�nested loops to imperfectly�nested loop nests� This requires us to solve

three problems� First� how do we represent imperfectly�nested loop nests and spec�

ify transformations for them� Second� how do we ensure legality of these transfor�

mations� And 	nally� how do we describe and 	nd transformations that enhance

locality�

One way to solve the 	rst problem is to use techniques developed by the systolic

array community for scheduling statements in loop nests on systolic arrays� These

schedules specify mappings from statement instances to processor�time axes� these

for c
 for r
 for k

 S2
 S1

Source code Statement
Iteration Spaces

for ...

Code

gen

r

k

c

r

c1

1

1

2

2 c

c
r

r

k1
1

1

2
T

S

1

2

Product Space Transformed
Product Space

Output code

F

F

2

1

S

2

Figure ���� Locality Enhancement of Imperfectly�nested Loop Nests

mappings are usually restricted to be a�ne functions of loop variables ����� It is

straight�forward to interpret these schedules or mappings as loop transformations

in which each assignment statement in a loop nest is mapped by a possibly di�erent

linear �or pseudo�linear� function to a target iteration space� These techniques were

extended by Feautrier in his theory of schedules in multi�dimensional time ���� ����

a related approach is Kelly and Pugh�s mappings ���� and Lim and Lam�s a�ne

transforms ����� The second problem�	nding legal transformations�can be be

solved by an application of Farkas� lemma �Section ������� Feautrier and Lim et

al address the third problem of describing and 	nding desirable transformations

for parallelism� Feautrier searches for parallel schedules of minimum length using

parametric integer programming and Lim et al identify all degrees of parallelism in

a program� Kelly and Pugh advocate searching the space of legal transformations

using external cost models that examine the mappings produced�

In this thesis� we propose an approach for locality enhancement of imperfectly�

nested loops that generalizes the approach used for perfectly�nested loops� Our

strategy is shown in Figure ���� The iteration space of each statement is embedded

�

by means of an a�ne mapping in a space we call the product space by means of

an a�ne mapping� The product space is chosen to be large enough so that there

is a legal way of embedding statements in it with a ��� mapping� These embed�

dings are chosen so as to maximize reuse in the program� Embeddings generalize

transformations like code�sinking� loop fusion� and loop distribution that convert

imperfectly�nested loop nests into perfectly�nested ones� and are speci	ed by a�ne

embedding functions Fi as shown in Figure ���� The resulting space can then be

further transformed for locality enhancement using the well understood techniques

for perfectly�nested loops like height�reduction ���� and tiling�

The rest of this thesis is organized as follows� In Chapter �� I describe the prob�

lem of locality enhancement and develop the product space framework to handle

it� Chapter � develops algorithms that use this framework to produce embeddings

that enable tiling and enhance reuse� The results of applying this technique to var�

ious important benchmarks is described in Chapter ���� Chapter � further extends

the framework to generate block�recursive versions of these codes automatically�

Experimental results from applying this extension is presented in Chapter ���� Fi�

nally� Chapter � summarizes the contributions of this dissertation and discusses

open problems�

Chapter �

A Framework for Locality

Enhancement

��� Modeling Program Execution

A program is assumed to consist of statements contained in perfectly� and imperfectly�

nested loop nests� All loop bounds and array access functions are assumed to be

a�ne functions of surrounding loop indices� We will use S�� S�� � � � � Sn to name the

statements in the program in syntactic order� A dynamic instance of a statement Sk

refers to a particular execution of the statement for a given value of index variables

ik of the loops surrounding it� and is represented by Sk�ik��

Executing a program imposes a total order on the dynamic statement instances

of the program � this is the order in which the statement instances are executed�

Consider for example the two programs shown in Figure ���� Both the programs

have the same set of dynamic statement instances �shown below for N � �� �

fS����� S����� SS����� S����� S����� S����� S����� S����� S����� S����g

��

for i� � �� N

S�� x�i�	 � a�i�	

end

for i� � �� N

S�� X�i�	 � x�i�	
 a�i�	

end

for i � �� N

S�� x�i	 � a�i	

S�� X�i	 � x�i	
 a�i	

end

�a� Example � �b� Example �

Figure ���� Code Fragments

Executing the two programs orders this set of statement instances di�erently� The

total order imposed by executing the 	rst program is

S����� S����� S����� S����� S����� S����� S����� S����� S����� S����

while the second program imposes the following total order �

S����� S����� S����� S����� S����� S����� S����� S����� S����� S����

In order to reason about the e�ect of executing a program we need only to know the

set of dynamic statement instances and the total order in which they are executed�

This allows us to abstract out the actual code written in terms of a sequence of

loops�

We can model the execution order of a set of dynamic statement instances by

de	ning a Program Iteration Space� as follows�

�� Let P be a p�dimensional Cartesian space for some p�

�� Embed all dynamic statement instances Sk�ik� into P using embedding func�

tions Fk which satisfy the following constraints�

�a� Each Fk must be one�to�one��

�Note that instances of di�erent statements may get mapped to a single point of the program

iteration space�

��

i1

i2

i2
1 N

N1

N1 i1

F��i�� �

�
�� i�

�

�
�� F��i�� �

�
�� N � �

i�

�
��

�a� Space �b� Embedding Functions

Figure ���� Space and Embedding Functions for Example �

i2
1 N

N1

N1 i1

S1

S2

i

i

F��i�� �

�
�� i�

i�

�
�� F��i�� �

�
�� i�

i�

�
��

�a� Space �b� Embedding Functions

Figure ���� Space and Embedding Functions for Example �

�b� If the points in space P are traversed in lexicographic order� and all state�

ment instances mapped to a point are executed in original program order

when that point is visited� the program execution order is reproduced�

An execution order can thus be modeled by the pair �P�F � F�� F�� � � � � Fng��

For example� the execution order of the code shown in Figure ����a� can be

represented by mapping the statements to a ��dimensional space as shown in Fig�

ure ����a�� The embedding functions for the two statements are shown in Fig�

ure ����b�� Similarly� the execution order of Example ��� can be modeled as shown

in Figure ����

Of course� these spaces and embedding functions are not the only way to model

the execution order of these code fragments� Models that use a ��dimensional space

instead of a ��dimensional space are shown in Figure ��� and Figure ����

��

i1

i2

1 N

N1 N N+11

i

2N
F��i�� �

�
i�

�
F��i�� �

�
N � i�

�

�a� Space �b� Embedding Functions

Figure ���� Space and �D Embedding Functions for Example �

i1

i2

1 N

N1 N1

i
F��i�� �

�
i�

�
F��i�� �

�
i�

�

�a� Space �b� Embedding Functions

Figure ���� Space and �D Embedding Functions for Example �

����� Optimizing Programs

Consider the two programs shown in Figure ���� Executing the two programs has

the same result on the data �

��i��
x�i� � � � a�i�

Hence the two total orders are e�ectively equivalent as far as the semantics of the

two programs is concerned� On the other hand� these two versions may perform very

di�erently� If the arrays x and a do not 	t in cache� the second version will incur

fewer cache misses and will have fewer load and store instructions and is therefore

likely to perform better�

One way of optimizing the 	rst program is to transform its execution order �which

we will call the original execution order shown in Figure ���� into the execution order

corresponding to the second program �Figure ���� and generating code that can

emulate that transformed execution order �in this case the program in Example ���

��

The problem of optimizing a program can thus be reduced to the problem of

searching for an execution order �P�F� that is somehow �better� than the original

execution order and still preserves the semantics of the original program�

����� Legality of Execution Orders

The original execution order of a program can be transformed legally into an order

�P� F� if the latter preserves the semantics of the program� Dependence analysis

states that semantics of a program will be preserved if all dependences are preserved

under the transformation�

Dependences

A dependence exists from instance is of statement Ss to instance id of statement Sd

if the following conditions are satis	ed�

�� Loop bounds� Both source and destination statement instances lie within the

corresponding iteration space bounds� Since the iteration space bounds are

a�ne expressions of index variables� we can represent these constraints as

Bs � is � bs � � and Bd � id � bd � � for suitable matrices Bs� Bd and vectors

bs� bd�

�� Same array location� Both statement instances reference the same array loca�

tion and at least one of them writes to that location� Since the array references

are assumed to be a�ne expressions of the loop variables� these references can

be written as As � is�as and Ad � id�ad� Hence the existence of a dependence

requires that As � is � as � Ad � id � ad�

��

for c � ��M

for r � ��N

for k � ��r��

S�� B�r�c	 � B�r�c	 � L�r�k	 � B�k�c	

end

S�� B�r�c	 � B�r�c	�L�r�r	

end

end

Figure ���� Triangular Solve with Multiple Right�hand Sides

�� Precedence order� Instance is of statement Ss occurs before instance id of

statement Sd in program execution order� If commonsd is a function that

returns the loop index variables of the loops common to both is and id� this

condition can be written as commonsd�id� � commonsd�is� if Sd follows Ss

syntactically or commonsd�id� � commonsd�id� if it does not� where � is the

lexicographic ordering relation�

This condition can be translated into a disjunction of matrix inequalities of

the form Xs � is �Xd � id � x � ��

If we express the dependence constraints as a disjunction of conjunctions� each

term in the resulting disjunction can be represented as a matrix inequality of the

following form�

D

�
�� is

id

�
��� d �

�
������������

Bs �

� Bd

As �Ad

�As Ad

Xs �Xd

�
������������

�
�� is

id

�
�� �

�
������������

bs

bd

as � ad

ad � as

x

�
������������

� �

Each such matrix inequality will be called a dependence class� and will be de�

noted by D with an appropriate subscript� For the code in Figure ���� it is easy to

��

show that there are two dependence classes�� The 	rst dependence class D� arises

because statement S� writes to a location B�r�c	 which is then read by statement

S�� similarly� the second dependence class D� arises because statement S� writes to

location B�r�c	 which is then read by reference B�k�c	 in statement S��

D� � M � c� � � M � c� � �

N � r� � � N � r� � �

r� � � � k� � �

r� � r�

c� � c�

D� � M � c� � � M � c� � �

N � r� � � N � r� � �

r� � � � k� � �

k� � r�

c� � c�

Legality

Let �P�F � fF�� F�� � � � Fng� be an execution order for a program� We will say that

these embedding functions are legal if for every �is� id� in every dependence class D�

the point that is is mapped to in the program iteration space is lexicographically less

than the point that id is mapped to� Since we are traversing the program iteration

space lexicographically� this ensures that the source of the dependence �the point

Fs�is�� is visited before the destination of the dependence �the point Fd�id��� If we

�There are other dependences� but they are redundant�

��

execute all statement instances mapped to the point when the point is visited �� this

will ensure that no dependence is violated�

For future reference� we de	ne this formally�

De
nition � Let F � fF�� F�� � � � Fng be embedding functions that embed the state�

ment iteration spaces of a program into a space P� These embedding functions are

said to be legal if for every dependence class D of the program�

��is� id� � D Fd�id� � Fs�is� �����

We will refer to the vector Fd�id��Fs�is� as the di�erence vector for �is� id� � D�

��� Locality Enhancement

In order to use the approach to optimization described in Section ������ there must be

a way of comparing execution orders� The most accurate measure of the �goodness�

of an execution order is� of course� the time it takes to execute it� Clearly we

want the execution order with the shortest execution time� While this metric �i�e�

execution time� can be used to select between a few choices of execution orders� it

is not practical to use it when the number of choices is large� Also� this metric is

machine dependent and as machine architectures grow more complex� it becomes

impossible to model it accurately�

One metric to measure the e�ectiveness of an execution order with respect to

its memory hierarchy performance is to count the number of cache misses caused

by that execution order� While this metric can be measured fairly accurately dur�

ing execution with the help of special�purpose hardware counters� it has proven

�If there are more than one statement instances mapped to a point� then execute them in

original program order�

�

to be hard to model cache misses accurately� The number of cache misses is a

function of the size of the cache� the cache�line size� the cache associativity� the

cache�replacement policy� the data allocation policy of the compiler or the runtime

system and is di�cult to model except in the simplest cases �which do not re�ect

current processor architectures�� This metric is further complicated by the fact that

modern processors have more than one level of cache and each level might incur a

di�erent number of cache misses� Further� the correlation between number of cache

misses and the time spent servicing them is not straight�forward � the e�ective time

spent in handling cache misses depends on the level of the cache� the number of

outstanding misses� whether the processor is required to block during a cache miss�

the number of simultaneous loads�stores that the processor can issue etc� and is too

complicated to model accurately�

Given the complexity inherent in these two metrics� we would like a metric that is

architecture independent and depends only on the execution order in consideration�

Caches are useful only if the program exhibits reuse � that is� the same memory

location is accessed by di�erent dynamic statement instances� Further even if the

program exhibits reuse� the reuse might not be exploited by an execution order� In

order for a reuse between two statement instances s��i���s��i�� to be exploited by

an execution order� the common data accessed by s��i�� must reside in the cache

when s��i�� is executed� This implies that the data touched by the intervening

statement instances must not evict the required data before s��i�� is executed� In

the general case� this cannot be guaranteed unless the required data can be placed in

a register for the duration between the two statement instances� Since this might not

always be possible� the alternate option is to reduce the likelihood of the common

data being evicted before it is reused� One way to achieve this is to reduce the

��

reuse distance between statement instances exhibiting reuse � reuse distance is the

number of intervening statement instances in the execution order�

Consider the data access patterns of the examples in Figure ���� Statement

instances S��i	 and S��i	 exhibit data reuse because they touch the same memory

location x�i	� The number of statement instances executed between them is the

reuse distance� In the 	rst example� the reuse distance is N � �� If N is larger than

the cache�size then the reuse will not be exploited since each statement instance

brings in additional data into the cache� On the other hand� the reuse distance

in the second example is � � there are no intervening statement instances between

S��i	 and S��i	 and hence this reuse is will be exploited�

If we represent the execution order by �P�F� � the reuse distance between S��i	

and S��i	 is proportional to the number of points in P with statements mapped

to them that lie lexicographically between the points to which S��i	 and S��i	

are mapped� This is because of the initial one�to�one mapping requirement�there

are utmost a constant number of statement instances �one from each statement�

mapped to each point in the space�

In light of the above discussion� our strategy for optimizing programs for e�cient

memory hierarchy performance is to search for execution orders �P�F� that reduce

reuse distances between statement instances while preserving the correctness of the

programs�

����� Representing Reuses

Formally� a reuse exists from instance is of statement Ss �the source of the reuse� to

instance id of statement Sd �the destination� if the following conditions are satis	ed�

�

�� Loop bounds� Both source and destination statement instances lie within the

corresponding iteration space bounds� Since the iteration space bounds are

a�ne expressions of index variables� we can represent these constraints as

Bs � is � bs � � and Bd � id � bd � � for suitable matrices Bs� Bd and vectors

bs� bd�

�� Same array location� Both statement instances reference the same memory

location� If we restrict memory references to array references� these references

can be written as As � is � as and Ad � id � ad� Hence the existence of a reuse

requires that As � is � as � Ad � id � ad�

�� Precedence order� Instance is of statement Ss occurs before instance id of

statement Sd in program execution order� If commonsd is a function that

returns the loop index variables of the loops common to both is and id� this

condition can be written as commonsd�id� � commonsd�is� if Sd follows Ss

syntactically or commonsd�id� � commonsd�id� if it does not� where � is

the lexicographic ordering relation� This condition can be translated into a

disjunction of matrix inequalities of the form Xs � is �Xd � id � x � ��

If we express the reuse constraints as a disjunction of conjunctions� each term in

the resulting disjunction can be represented as a matrix inequality of the following

form�

R

�
�� is

id

�
�� � r �

�
������������

Bs �

� Bd

As �Ad

�As Ad

Xs �Xd

�
������������

�
�� is

id

�
���

�
������������

bs

bd

as � ad

ad � as

x

�
������������

� �

��

Each such matrix inequality will be called a reuse class� and will be denoted by

R with an appropriate subscript�

The above de	nition applies to temporal reuses where the same array location is

accessed by the source and the destination� If the cache line contains more than one

array element� then we can also consider spatial reuse where the same cache line is

accessed by the source and the destination of the reuse� Spatial reuse depends on

the storage order of the array�

The conditions for spatial reuse are similar to the ones for temporal reuse� the

only di�erence being that instead of requiring both statement instances to touch

the same array location� we require that the two statement instances touch nearby

array locations that �t in the same cache line� We can represent this condition as

a matrix inequality by requiring the 	rst� row of Ad � id � ad � As � is � as to lie

between � and c� �� where c is the number of array elements that 	t into a single

cache line� instead of being equal to ��

For the example in Figure ����a�� the temporal reuse existing between S��i��

and S��i�� can be represented by the reuse class R� � f�i�� i�� � � � i�� i� �

N� i� � i�g� It is straightforward to represent these inequalities as matrix inequali�

ties� There also exists spatial reuse between these two statements� For a cache line

containing � array elements� the spatial reuse can be represented by the reuse class

R� � f�i�� i�� � � � i�� i� � N� � � i� � i� � �g�

����� Examples of Reuse Distance Reduction

The distance between statement instances that exhibit reuse can be reduced by a

number of loop transformations as shown in the following examples� These transfor�

�for Fortran storage order�

��

mations may not always be legal � the transformed code must preserve dependences�

Fusion

If reuse exists between statement instances of two loops� the reuse distance can

sometimes be reduced by fusing the two loops appropriately so that the instances

exhibiting reuse are executed in the same iteration�

for i� � ���n

S�� x�i�	 � b�i�	

end

for i� � ���n

S�� y�i�	 � b�i�
�	

end

S�� x��	 � b��	

for i � ���n

S�� x�i	 � b�i	

S�� y�i��	 � b�i	

end

S�� y�n	 � b�n
�	

�a� Original Code �b� Fused Code

Figure ��
� Fusion to reduce reuse distance

In the code in Figure ��
�a�� there is reuse from statement instance S��i	toS��i � ��

for � � i � n since these statement instances access the same array location b�i��

The reuse distance between these statement instances is n� �� This can be reduced

to � by mapping the statement instances to a ��dimensional space as follows �

F��i�� �

�
i�

�
F��i�� �

�
i� � ��

�

The resulting code� shown in Figure ��
�b�� exploits the reuse of array b�

Loop Permutations

Reuse distances can be reduced by loop�permutations as shown in the example in

Figure ����a�� The array location x�i� is accessed in each iteration of the outermost

t�loop� The reuse distance between the reuse statement instances is n� This distance

can be reduced to � by permuting the t�loop so that it is innermost � Figure ����b���

��

for t � ���m

for i � ���n

S�� x�i	 � x�i	
 i

end

end

for i � ���n

for t � ���m

S�� x�i	 � x�i	
 i

end

end

�a� Original Code �b� Permuted Code

Figure ���� Permutation to reduce reuse distance

This transformation corresponds to the following embedding �

F��

�
�� t

i

�
��� �

�
�� i

t

�
��

Tiling

As shown in the previous example� reuse distances corresponding to certain reuses

can be reduced by permuting the loop that contributes most to the reuse distance

to an innermost position� If more than one loop a�ects the reuse distance or if there

are multiple reuses in the code� this might not always be possible� In this case� it

might be possible to reduce the reuse distance to a small enough value so that the

data accessed still remains in the cache� This can be achieved by tiling�

In matrix multiplication �Figure ��
�a��� all three array references exhibit reuse�

The same array location c�i�j	 is accessed in every k�iteration �reuse distance is

n��� the array location a�i�k	 is accessed in every j�iteration �reuse distance is ��

and the array location b�k�j	 is accessed in every i�iteration �reuse distance is n��

Each of these reuses can be made to have a reuse distance of � by permuting the

appropriate loop innermost� But since all three loops cannot be move innermost�

the solution is to tile the three loops� This corresponds to embedding the code in a

��dimensional space as follows �

��

for i � ��N

for j � ��N

for k � ��N

c�i�j	 � c�i�j	
 a�i�k	 � b�k�j	

end

end

end

�a� Matrix Multiplication Kernel

��tile counter loops

for t� � ��N� B

for t� � �� N� B

for t
 � �� N� B

��iterations within a tile

for j � t�� min�t�
B���N	

for k � t�� min�t�
B���N	

for i � t
� min�t

B���N	

c�i�j	 � c�i�j	
 a�i�k	 � b�k�j	

end

end

end

end

end

end

�b� Optimized Matrix Multiplication Kernel

Figure ��
� Optimizing Matrix Multiplication

F��

�
�����
k

i

j

�
������ �

�
����������������

k�B

i�B

j�B

k!B

i!B

j!B

�
����������������

Under this embedding scheme � �Figure ��
�b��� by choosing an appropriate value

of B �called the tile size� we can limit the distance between the majority of accesses

��

to the same array location to be less than B� for all three references� This can result

in the data reused remaining in the cache between reuses�

����� Minimizing Reuse Distances

Let F � fF�� F�� � � � Fng be embedding functions that embed the statement iteration

spaces of a program into a space P� and let R be any reuse class for that program�

Consider any reuse pair �is� id� � R� Let Distance�is� id� be the number of points

in the space P with statements mapped to them that lie lexicographically between

Fs�is� and Fd�id�� As we saw in Section ���� the reuse distance between Ss�is� and

Sd�id� is proportional to Distance�is� id�� We de	ne ReuseDistances�P�F� to be

the vector of Distance�is� id� for all reuse pairs �is� id� in the program under the

execution order �P�F��

Our goal for locality enhancement is to 	nd legal execution orders �P�Fopt� that

minimize

kReuseDistances�P�F�kX

for some suitable norm k 	 kX �

��� Product Space

The search space for optimal execution orders as described in the previous section

is too huge to be practical� In this section� we de	ne a special space called the

product space and restrict the set of embedding functions we will consider� The

corresponding restricted execution orders are still powerful enough to capture most

of the transformations we are interested in� As our running example we will use the

code in Figure ���� which implements relaxation in one dimension�

��

for t � �� M

for j� � �� N��

S�� L�j�	 � A�j���	
 A�j�
�	

end

for j� � �� N��

S�� A�j�	 � L�j�	

end

end

Figure ����� ��D Relaxation Code

����� Statement Iteration Spaces

We associate a distinct iteration space with each statement in the loop nest� as

described in De	nition ��

De
nition � Each statement in a loop nest has a statement iteration space whose

dimension is equal to the number of loops that surround that statement�

We will use S�� S�� � � � � Sn to name the statements in the loop nest in syntactic

order� The corresponding statement iteration spaces will be named S�� S�� � � � � Sn�

In Figure ����� the iteration space S� of statement S� is the two�dimensional space

t�
 j�� while the iteration space S� of S� is a two�dimensional space t�
 j��

The bounds on statement iteration spaces can be speci	ed by integer linear

inequalities� For our running example� these bounds are the following�

S� � M � t� � � S� � M � t� � �

N� � � j� � � N� � � j� � �

An instance of a statement is a point within that statement�s iteration space�

��

����� Product Spaces and Embedding Functions

The product space for a loop nest is the Cartesian product of the individual statement

iteration spaces of the statements within that loop nest� The order in which this

product is formed is the syntactic order in which the statements appear in the loop

nest� For our running example� the product space is the four�dimensional space

t�
 j�
 t�
 j��

The relationship between statement iteration spaces and the product space is

speci	ed by projection and embedding functions� Suppose P � S�
 S����
 Sn�

Projection functions �i � P � Si extract the individual statement iteration space

components of a point in the product space� and are obviously linear functions� For

our running example� �� �

�
I��� �

�
and �� �

�
� I���

�
�

An embedding function Fi on the other hand maps a point in statement iteration

space Si to a point in the product space� Unlike projection functions� embedding

functions can be chosen in many ways� In our framework� we will consider only

those embedding functions Fi � Si � P that satisfy the following conditions�

De
nition � Let Si be a statement whose statement iteration space is Si� and let P

be the product space� An embedding function Fi � Si � P must satisfy the following

conditions�

�� Fi must be a�ne�

�� �i�Fi�q�� � q for all q � Si�

The 	rst condition is required by our use of integer linear programming tech�

niques� We will allow symbolic constants in the a�ne part of the embedding func�

tions� The second condition states that if point q � Si is mapped to a point p � P�

�

then the component in p corresponding to Si is q itself� Therefore� for our running

example� we will permit embedding functions like F� but not F��

F��

�
�� t

j�

�
��� �

�
���������

t

j�

t� �

t� j�

�
���������

F��

�
�� t

j�

�
��� �

�
���������

t

t� j�

t� �

j�

�
���������
�

Each Fi is therefore one�to�one� but points from two di�erent statement iter�

ation spaces may be mapped to a single point in the product space� A�ne em�

bedding functions can be decomposed into their linear and o�set parts as follows�

Fj�ij� � Gjij � gj�

Code Generation

Given an execution order �P�F� for a program� where P is the product space and

F is a set of embedding functions satisfying De	nition �� code for executing the

program in this new order can be generated as follows� We traverse the entire

product space lexicographically� and at each point of P we execute the original

program with all statements protected by guards� These guards ensure that only

statement instances mapped to the current point �by the embedding functions Fi�

are executed�

For example� consider the following embeddings for our running example �

F��

�
�� t

j�

�
��� �

�
���������

t

j�

t

j� � �

�
���������

F��

�
�� t

j�

�
��� �

�
���������

t

j� � �

t

j�

�
���������

��

Naive code that respects this execution order can be generated as shown in Fig�

ure �����a�� The outer four loops �t�� j��� t�� j��� traverse the entire product

space �explaining the �inf and
inf in their loop bounds�� At each point �t�� j���

t�� j��	� the entire original program is executed with the statements protected by

guards which ensure that only statement instances mapped to the current point are

executed� The condition in the guard for a particular statement implements the

embedding function for that statement� Of course� the code generated in this way

clearly cannot be executed directly� Standard polyhedral techniques ��
� must be

used to 	nd the loop�bounds and to remove redundant loops� A version of the code

with the bounds determined is shown in Figure �����b�� This code can be further

optimized by removing the conditionals in the innermost loop through index�set

splitting the outer loops and eliminating redundant loops�

Embedding the Original Code

For completeness� we show that there always exists a way of embedding the code in

the product space so that the original program execution order is preserved�

As an example� consider the code in Figure ����� It is easy to verify that this code

is equivalent to our running example� and has the same execution order� Intuitively�

the loops in Figure ���� correspond to the dimensions of the product space� the

embedding functions for di�erent statements can be read o� from the guards in the

loop nest�

F��

�
�� t�

j�

�
��� �

�
���������

t�

j�

t�

�

�
���������

F��

�
�� t�

j�

�
��� �

�
���������

t�

N � �

t�

j�

�
���������
�

�

for t� � �inf�
inf

for j�� � �inf�
inf

for t� � �inf�
inf

for j�� � �inf�
inf

for t � �� M

for j� � �� N��

if �t� �� t �� j�� �� j� �� t� �� t �� j�� �� j�
�	

S�� L�j�	 � A�j���	
 A�j�
�	

endif

end

for j� � �� N��

if �t� �� t �� j�� �� j��� �� t� �� t �� j�� �� j�	

S�� A�j�	 � L�j�	

endif

end

end

end

end

end

end

�a� Naive Code

for t� � �� M

for j� � �� N��

for t� � �� M

for j� � �� N

if �t� �� t� �� j� �� j�
� �� j� � �	

S�� L�j�	 � A�j���	
 A�j�
�	

endif

if �t� �� t� �� j� �� j��� �� j� � N	

S�� A�j�	 � L�j�	

endif

end

end

end

end

�b� Code with Bounds

Figure ����� Code Generation from Product Space and Embeddings

To preserve the original program execution order� the embedding functions in

this example are chosen to satisfy the following conditions� �i� the identity mapping

��

for t� � �� M

for j� � �� N��

for t� � �� M

for j� � �� N��

if �t� �� t� �� j� �� �	

S�� L�j�	 � A�j���	
 A�j�
�	

endif

if �t� �� t� �� j� �� N��	

S�� A�j�	 � L�j�	

endif

end

end

end

end

Figure ����� Original Embeddings for �D relaxation

is used for dimensions corresponding to common loops �t� in the original code�

and �ii� mappings for dimensions corresponding to non�common loops are chosen to

preserve the original execution order�

In general� we can embed any code into its product space as follows� Let

Fk � Sk � P be the a�ne function that maps the statement Sk to the product

space� The components of Fk that map into the dimensions of the product space

corresponding to statement Sj are denoted by Fk�j� Our initial requirement on em�

bedding functions can be summarized by Fk�k���k� � ��k� We will use ��k to represent

the vector of loop index values surrounding the point ik�

We de	ne common�k� l� to be a function that returns the loop index variables of

the loops common to both��k and��l� Similarly� we de	ne noncommon�k� l� to return

the loop index variables of the rest of the loops in ��l� For the example above� we

have common��� �� � �t��
T � common��� �� � �t��

T � noncommon��� �� � �j��
T and

noncommon��� �� � �j��
T �

Let min����� and max����� return the lexicographically smallest and largest values

of the indices of the loops ��� For our example� min��j�� � � and max��j�� � N � ��

��

For every statement Sl that occurs syntactically after Sk in the original program

�i�e� l � k� we de	ne

Fk�l���k� �

�
�� common�k� l�

min��noncommon�k� l��

�
�� �

and for every statement Sl that occurs syntactically before Sk in the original program

�i�e� l � k� we de	ne

Fk�l���k� �

�
�� common�k� l�

max��noncommon�k� l��

�
�� �

These embeddings represent the original execution order�

����� Examples of Embeddings

The pair �P�F� as restricted by Section ����� can only represent a restricted set

of execution orders� Under these restrictions� the following loop transformations

cannot be represented �

�� Index�Set�Splitting � Since all the instances of a particular statement are

mapped with the same a�ne embedding function� index�set�splitting is no

longer possible�

�� Tiling requires the introduction of additional dimensions and pseudo�linear

embeddings� and hence cannot be represented using the product space and

a�ne embeddings�

On the other hand� the product space and a�ne embeddings are su�cient to

capture most common loop transformations� like code�sinking� loop�	ssion and loop�

fusion that are used in current compilers such as the SGI MIPSPro to convert

��

for t� � �� M

for j� � �� N��

S�� L�j�	 � A�j���	
 A�j�
�	

end

end

for t� � �� M

for j� � �� N��

S�� A�j�	 � L�j�	

end

end

�a� Fissioned code

for t� � �� M

for j� � �� N��

for t� � �� M

for j� � �� N��

if �t� �� � �� j� �� �	

S�� L�j�	 � A�j���	
 A�j�
�	

endif

if �t� �� M �� j� �� N��	

S�� A�j�	 � L�j�	

endif

end

end

end

end

�b� Transformed code

F��

�
�� t�

j�

�
��� �

�
���������

t�

j�

�

�

�
���������

F��

�
�� t�

j�

�
��� �

�
���������

M

N � �

t�

j�

�
���������

�c� Embeddings

Figure ����� Embeddings for Loop Fission

��

for t� � �� M

for j � �� N��

S�� L�j	 � A�j��	
 A�j
�	

S�� A�j	 � L�j	

end

end

�a� Fused code

for t� � �� M

for j� � �� N��

for t� � �� M

for j� � �� N��

if �t� �� t� �� j� �� j�	

S�� L�j�	 � A�j���	
 A�j�
�	

endif

if �t� �� t� �� j� �� j�	

S�� A�j�	 � L�j�	

endif

end

end

end

end

�b� Transformed code

F��

�
�� t�

j�

�
��� �

�
���������

t�

j�

t�

j�

�
���������

F��

�
�� t�

j�

�
��� �

�
���������

t�

j�

t�

j�

�
���������

�c� Embeddings

Figure ����� Embeddings for Loop Fusion

��

for t� � �� M

for j � �� �

S�� L�j	 � A�j��	
 A�j
�	

end

for j �
� N��

S�� L�j	 � A�j��	
 A�j
�	

S�� A�j��	 � L�j��	

end

for j � N��� N��

S�� A�N��	 � L�N��	

end

end

�a� Fused code

for t� � �� M

for j� � �� N

for t� � �� M

for j� � �� N��

if �t� �� t� �� j� �� j��� �� j� �� N��	

S�� L�j�	 � A�j���	
 A�j�
�	

endif

if �t� �� t� �� j� �� j�
� �� j� �� �	

S�� A�j�	 � L�j�	

endif

end

end

end

end

�b� Transformed code

F��

�
�� t�

j�

�
��� �

�
���������

t�

j�

t�

j� � �

�
���������

F��

�
�� t�

j�

�
��� �

�
���������

t�

j� � �

t�

j�

�
���������

�c� Embeddings

Figure ����� Embeddings for Skewed Loop Fusion

��

imperfectly�nested loop nests into perfectly�nested ones� Tiling can later be used to

further transform the product space�

Figure ���� illustrates this for loop 	ssion� After loop 	ssion� all instances of

statement S� in Figure ���� are executed before all instances of statement S�� The

resulting code is shown in Figure �����a�� It is easy to verify that this e�ect is

achieved by the transformed code of Figure �����b�� Intuitively� the loop nest in

this code corresponds to the product space� the embedding functions for di�erent

statements can be read o� from the guards in this loop nest and are shown in

Figure �����c�� Note that this execution order is not legal for the original program�

In a similar manner� Figure ���� illustrates how the j� and j� loops can be fused

together� The resulting code is shown in Figure �����a�� The transformed code in

Figure �����b� has the same e�ect� The embeddings chosen �shown in Figure �����

map the statement instances S��t� j� and S��t� j� to the same point �t� j� t� j� in the

product space� These embeddings are shown in Figure �����c�� Note that fusing the

two loops is not legal � in order to fuse them legally� we need to peel away the 	rst

iteration of the j� loop� the last iteration of the j� loop� and then fuse the remaining

sections� This execution order and the corresponding embedding that achieves this

is shown in Figure ����� Such a transformation is known as skewed fusion�

The transformed code corresponding to the original execution order shown in

Figure ���� is an example of a generalized version of code�sinking�

Dimension of Product Space

The number of dimensions in the product space can be quite large� and one might

wonder if it is possible to embed statement iteration spaces into a smaller space

without restricting program transformations� For example� in Figure �����b�� state�

��

ments in the body of the transformed code are executed only when j� � j�� so it

is possible to eliminate the j� loop entirely� replacing all occurrences of j� in the

body by j�� Therefore� dimension j� of the product space is redundant� as is t��

More generally� we can state the following result�

Theorem � Let P � be any space and let fF�� F�� � � � � Fng be a set of a�ne embed�

ding functions Fj � Sj � P � satisfying the conditions in De�nition 	�

Let Fj�ij� � Gjij � gj� The number of independent dimensions of the space P � is

equal to the rank of the matrix G � �G�G� � � � Gn��

In Figure ����� the rank of this matrix

G �

�
���������

� � � �

� � � �

� � � �

� � � �

�
���������

is �� which is also the number of independent dimensions in the product space� The

remaining � dimensions are redundant�

Corollary � Let P be the product space�

�� Any space P � bigger than P has redundant dimensions under any set of a�ne

embedding functions�

�� There exist a�ne embedding functions fF�� F�� � � � � Fng for which no dimen�

sion of P is redundant�

Intuitively� Corollary � states that the product space is �big enough� to model

any a�ne transformation of the original code� Furthermore� there are a�ne trans�

formations that utilize all dimensions of the product space� For example� there

�

are no redundant dimensions in the product space of completely 	ssioned code� as

Figure ���� illustrates� The corresponding matrix G for this code is shown below �

G �

�
���������

� � � �

� � � �

� � � �

� � � �

�
���������

In general� therefore� it is the embeddings that determine whether there are

redundant dimensions in the product space�

��� Transformed Product Spaces and Valid Em�

beddings

Our de	nition of the product space �P� has 	xed the order of the dimensions�

Clearly this might not be the best order that reduces reuse distances� In order to

circumvent this restriction� we will need to also consider other program execution

orders obtained by traversing the product space in ways other than lexicographic

traversal�

If p is the dimension of the product space� let T p�p be a unimodular matrix� Any

such matrix de	nes an order in which the points of the product space are visited�

De
nition � The space resulting from transforming the product space P by a uni�

modular matrix T is called the transformed product space under transformation

T �

For a set of embedding functions F � fF�� F�� � � � Fng and a transformation

matrix T � we model execution of the transformed code by walking the transformed

��

product space lexicographically and executing all statement instances mapped to

each point as we visit it� For this to be legal� a lexicographic order of traversal

of the transformed product space must satisfy all dependencies� To formulate this

condition� it is convenient to de	ne the following concept�

De
nition � Let fF�� F�� � � � Fng be a set of embedding functions for a program�

and let T p�p be a unimodular matrix� Let

D � D

�
�� is

id

�
�� � d � �

be a dependence class for this program� The di�erence vector for a pair �is� id� � D

is the vector

VD�is� id� � �Fd�id�� Fs�is�� �

The set of di�erence vectors for all points in a dependence class D will be called

the di�erence vectors for D
 abusing notation� we will refer to this set as VD�

The set of all di�erence vectors for all dependence classes of a program will be

called the di�erence vectors of that program
 we will refer to this set as V �

With these de	nitions� it is easy to express the condition under which a lexi�

cographic order of traversal of the transformed product space respects all program

dependences�

De
nition � Let T p�p be a unimodular matrix� A set of embedding functions

fF�� F�� � � � � Fng is said to be valid for T if Tv � � for all v � V �

����� Determining Valid Embeddings

In this section� we show how to determine valid embedding functions for a given

unimodular matrix T � In the next chapter� we will show how to determine T �

�

As de	ned previously� a set of embedding functions F � fF�� F�� � � � � Fng is said

to be valid for a traversal order T if for every di�erence vector v� the vector Tv is

lexicographically positive�

We shall determine the embedding functions dimension by dimension�

For a given embedding F � a dimension is said to satisfy all the di�erence vectors

VD of a class D if the corresponding entry of the vector Tv is strictly positive and

there exists atleast one di�erence vector v in VD for which the entries of Tv corre�

sponding to the previous dimensions are all zero� Intuitively� once the embeddings

to this dimension have been determined� all the di�erence vectors corresponding to

the dependence class D will be lexicographically positive� The dependence class D

is said to be satis�ed�

In determining the embedding function for the jth dimension F j� we do not need

to consider any of the satis	ed dependence classes� For every dependence pair �is� id�

in every unsatis	ed dependence class D � D

�
�� is

id

�
��� d � �� we require that

T �F j
d�id��F

j
s �is�� � �

For a�ne embedding functions� the above condition can be written as follows�

T

�
�Gj

s Gj
d

���� is

id

�
��� T

�
gjd � gjs

	
� ��

We use Farkas� lemma in order to obtain the set of valid embedding functions

for the jth dimension�

��

Lemma � �Farkas� Any a�ne function f�x� which is non�negative everywhere over

a polyhedron de�ned by the inequalities Ax � b � � can be represented as follows

f�x� � �� � "TAx� "T b

�� � ��" � �

where " is a vector of length equal to the number of rows of A� �� and " are called

the Farkas multipliers�

Applying Farkas� Lemma to our dependence equations we obtain

T

�
�Gj

s Gj
d

���� is

id

�
��� T

�
gjd � gjs

	

� y � Y TD

�
�� is

id

�
��� Y Td

y � �� Y � ��

where the vector y and the matrix Y are the Farkas multipliers�

Equating coe�cients of is� id on both sides� we get

T

�
�Gj

s Gj
d

�
� Y TD

T �gd � gs� � y � Y Td �����

y � �� Y � ��

The Farkas multipliers in System ����� can be eliminated through Fourier�Motzkin

projection to give a system of inequalities constraining the unknown embedding co�

e�cients� This de	nes the set of possible embedding functions F j given embedding

functions to the previous j � � dimensions�

We will illustrate the above with the triangular solve example in Figure ���� The

embedding functions for this example are as shown below �

��

F��

�
�����
c�

r�

k�

�
������ �

�
������������

c�

r�

k�

f c�
�

f r�
�

�
������������

F��

�
�� c�

r�

�
��� �

�
������������

f c�
�

f r�
�

fk�
�

c�

r�

�
������������

where f c�
�

etc� are unknown a�ne functions that must be determined� Assume that

T is the identity matrix�

As discussed in Section ������ the code has two dependence classes �

D� � M � c� � � M � c� � �

N � r� � � N � r� � �

r� � � � k� � �

r� � r�

c� � c�

D� � M � c� � � M � c� � �

N � r� � � N � r� � �

r� � � � k� � �

k� � r�

c� � c�

Consider the 	rst dimension� None of the dependence classes are satis	ed yet�

and hence both of them must be considered� We� therefore� have to ensure two

conditions�

��

�� f c�
�
�c�� r��� c� � � for all points in D�� and

�� c� � f c�
�
�c�� r�� � � for all points in D��

Consider the 	rst condition� Let f c�
�
�c�� r�� � gc�c� � gr�r� � gMM � gNN � g��

Applying Farkas� Lemma� we get f c�
�
�c�� r��� c� � �� � ���M � c�� � ���c� � �� �

	 	 	 � ����c� � c�� � ����c� � c�� where ��� � � � � ��� are non�negative�� Projecting

the ��s out� we 	nd out that the coe�cients of f c�
�
�c�� r�� must satisfy the following

inequalities�

gM � �

gN � �

gc� � gM � �

gr� � gN � �

gc� � �gr� � gM � �gN � g� � �

Similarly� for the second condition� this procedure determines the following con�

straints�

gM � �

gN � �

gc� � gM � �

gr� � gN � �

gc� � gr� � gM � �gN � g� � �

The conjunction of these inequalities gives the solution f c�
�
�c�� r�� � c��

This choice of embedding function for the 	rst dimension does not satisfy either of

the two dependence classes � the 	rst dimension of of all di�erence vectors belonging

�There are �� inequalities that de�ne D� in � so there are �� Farkas multipliers �� � � � ����

��

to these two classes is �� Hence� both these classes must again be considered in

determining the set of valid embedding function for the second dimension�

T �� Transformation matrix

ALGORITHM DetermineValidEmbeddings �T	

DU �� Set of unsatisfied dependence classes

�initialized to all dependence classes of program	

DS �� Set of satisfied dependence classes for the current layer

�initialized to empty set	

for dimension j � ��p of the product space

Construct system S constraining the jth dimension

of every embedding function as follows�

for each unsatisfied dependence class u � DU
Add constraints so that each entry in dimension j of

all transformed difference vectors of u is non�negative�

endfor

if system has solutions

Pick a solution

Update DS and DU�
Continue j loop�

endif

�� if the previous system does not have a solution

goto no�solution

endfor

return embeddings

no�solution �

Error� No solution found�

Figure ����� Algorithm to Determine Valid Embeddings

The algorithm to determine valid embedding functions is shown in Figure �����

The main loop of the algorithm proceeds dimension by dimension constraining the

unknown coe�cients of the embedding functions so that no di�erence vector in an

��

unsatis	ed dependence class is violated� If the resulting linear system has solutions�

then one of the possible solutions is picked non�deterministically� Otherwise� no

solution is possible for the given transformation matrix T and the embeddings chosen

for the previous dimensions�

Chapter �

Using the Framework

��� Embeddings that permit Tiling

The framework described in the previous chapter can be used to 	nd embeddings

that allow the tiling of imperfectly�nested loop nests� The intuitive idea is to embed

all statement iteration spaces in the product space� and then tile the product space

after transforming it if necessary by a unimodular transformation� Tiling is legal if

the transformed product space is fully permutable�that is� if its dimensions can be

permuted arbitrarily without violating dependences� This approach is a generaliza�

tion of the approach used to tile perfectly�nested loop nests ���� ���� the embedding

step is not required for perfectly�nested loop nests because all statements have the

same iteration space to begin with�

��

��

����� Determining Constraints on Embeddings and Trans�

formations

The condition for full permutability of the transformed product space is the follow�

ing�

Lemma � Let fF�� F�� � � � � Fng be a set of embeddings� and let T be a unimodular

matrix� The transformed product space is fully permutable if v � � for all v � V �

The proof of this result is trivial� if every entry in every di�erence vector is

non�negative� the space is fully permutable� so it can be tiled� Thus our goal is to

	nd embeddings Fi and a product space transformation T that satisfy the condition

of Lemma ��

Let D � D

�
�� is

id

�
�� � d � � be any dependence class� For a�ne embedding

functions� the condition v � � in Lemma � can be written as follows�

T

�
�Gs Gd

���� is

id

�
��� T �gd � gs� � ��

The a�ne form of Farkas� Lemma lets us express the unknown matrices T �Gs�gs�Gd

and gd in terms of D�

Applying Farkas� Lemma to our dependence equations we obtain

T

�
�Gs Gd

���� is

id

�
�� � T �gd � gs�

� y � Y TD

�
�� is

id

�
�� � Y Td

y � �� Y � ��

�

where the vector y and the matrix Y are the Farkas multipliers�

Equating coe�cients of is� id on both sides� we get

T

�
�Gs Gd

�
� Y TD

T �gd � gs� � y � Y Td �����

y � �� Y � ��

The Farkas multipliers in System ����� can be eliminated through Fourier�Motzkin

projection to give a system of inequalities constraining the unknown embedding co�

e�cients and transformation matrix� Since we require that all di�erence vector

elements be non�negative� we can apply this procedure to each dimension of the

product space separately�

Applying the above procedure to all dependence classes results in a system of

inequalities constraining the embedding functions and transformation� A fully per�

mutable product space is possible if and only if that system has a solution� The

set of dimensions for which the equations have a solution will constitute a fully

permutable sub�space of the product space�

����� Solving for Embeddings and Transformations

In System ������ T is unknown while each Gi is partially speci	ed�� To solve such

systems� we will heuristically restrict T and solve the resulting linear system for

appropriate embeddings if they exist�

We will initially restrict T to be the identity matrix� In general� it may not be

possible to 	nd embeddings that make the product space fully permutable �that

is� with T restricted to the identity matrix�� For such programs� transforming the

�The embedding functions are partially �xed because of condition ��� in De�nition ��

��

product space by a non�trivial transformation T may result in a fully permutable

space that can be tiled� This is the case for the relaxation codes discussed in

Section ���� If we fail to 	nd embeddings with T restricted to the identity matrix�

we can try to 	nd combinations of loop permutation� reversal and skewing for which

it can 	nd valid embeddings�

Loop reversal for a given dimension of the product space is handled by requiring

the entry in that dimension of each di�erence vector to be non�positive� For a

dependence class D� the condition that the jth entry of all of its di�erence vectors

VD are non�positive can be written as follows�

�
�Gj

s Gj
d

���� is

id

�
��� gjd � gjs � � �����

which is equivalent to

�
Gj

s �Gj
d

���� is

id

�
�� � gjs � gjd � �� �����

Loop skewing is handled as follows� We replace the non�negativity constraints

on the jth entries of all di�erence vectors in V by linear constraints that guarantee

that these entries are bounded below by a negative constant� as follows�

�
�Gj

s Gj
d

���� is

id

�
��� gjd � gjs � 	 � �� 	 � � �����

where 	 is an additional variable introduced into the system� The smallest value

of 	 that satis	es this system can be found by projecting out the other variables

and picking the lower bound of 	� If the system has a solution� the negative entries

in the jth entry of all di�erence vectors are bounded by the value of 	� If every

di�erence vector that has a negative value in dimension j� has a strictly positive

entry in a dimension preceding j� loop skewing can be used to make all entries in

dimension j positive�

�

��� Embeddings that Enhance Reuse

Consider a reuse class R and a reuse pair �is� id� � R� We will make it explicit

that the points is and id can also be represented by vectors by refering to them

as ��s and ��d respectively� The locality enhancement model in Section ��� required

the minimization of Distance���s���d�� which is the number of points in the space P

with statements mapped to them between Fs���s� and Fd���d�� Unfortunately� it is

not possible to calculate Distance���s���d� e�ciently� since there may be points with

no statements mapped to them� Instead� we reduce reuse distances as follows�

Consider the reuse vector ��v� for the reuse pair ���s���d� for a given choice of

embedding functions F � fF�� F�� � � � � Fng� we will refer to the jth entry of this

vector as vj�

�
���������

v�

v�

���

vp

�
���������
� Fd���d�� Fs���s� �

�
�����������������������

Fd�����d�� Fs�����s�

Fd�����d�� Fs�����s�

���

Fd�s���d����s

���

��d � Fs�d���s�

���

Fd�n���d�� Fs�n���s�

�
�����������������������

�

We say that dimension j carries reuse for the reuse pair ���s���d� if vj
� �� If a

dimension carries reuse for some reuse pair in a reuse class R� that dimension is said

to carry reuse for that reuse class�

For all reuse pairs ���s���d� � R� entries corresponding to Fd�k���d��Fs�k���s� �for k
�

s� d� can be made zero simultaneously �e�g� by choosing Fd�k���d� � Fs�k���s� � const��

This may not always be possible for the elements Fd�s���d����s and ��d�Fs�d���s� since

��

the appropriate functions Fd�s and Fs�d may not exist� We try to make these entries

zero� if this does not succeed� we can permute these dimensions of the product space

so that they are innermost and tile them� This results in the following strategy�

�� We attempt to make all entries vj of the reuse vector zero by choosing embed�

ding functions appropriately� Since the dimensions of the embedding functions

are independent� we can process each dimension separately� If we succeed in

making all entries vj � �� then the reuse distance is also zero�

�� We reorder the dimensions of the product space so that dimensions for which

vj � � come 	rst� and dimensions with larger entries come later�

�� We reduce reuse distances further by tiling all dimensions j for which the entry

vj of the reuse vector is non�zero�

��� Algorithm

for i � �� N

for j � �� N

S�� c�i�j	 � �

for k � �� N

S�� c�i�j	 � c�i�j	
 a�i�k	 � b�k�j	

end

end

end

Figure ���� Imperfectly�nested MMM

Before presenting the general locality enhancement algorithm� we illustrate our

approach on the program of Figure ���� The iteration space S� of statement S�

is a two�dimensional space i�
 j�� while the iteration space S� of S� is a three�

dimensional space i�
 j�
 k�� The product space is the 	ve dimensional space

i�
 j�
 i�
 j�
 k��

��

There are two dependence classes in this example�

�� Dependence class D� � f�i�� j�� i�� j�� k�� � � � i�� j�� i�� j�� k� � N� i� � i�� j� �

j�g is a �ow�dependence that arises because statement S� writes to a location

c�i�j	 which is then read by statement S��

�� Dependence class D� � f�i�� j�� k�� i
�
�
� j �

�
� k�

�
� � � � i�� j�� k�� i

�
�
� j �

�
� k�

�
� N� i� �

i�
�
� j� � j �

�
� k� � k�

�
g is a �ow�dependence that arises because statement S�

writes to location c�i�j	 which is then read by this statement in a later k

iteration� This dependence also captures the anti� and output�dependences of

statement S� on itself�

These two classes also represent reuse classes� The program has other reuse

classes arising from spatial locality and input dependences� but these are not shown

here for simplicity�

Our locality enhancement algorithm will

�� determine a�ne embedding functions�

�� transform the product space�

�� eliminate redundant dimensions� and

�� decide which dimensions to tile�

The most di�cult steps are ��� and ���� and these are interleaved in the algorithm

described in Section ������ To simplify the presentation� let us assume for now that

an oracle determines the transformation of the product space in Step ��� �we show

in Section ����� that interleaving eliminates the need for such an oracle�� Therefore�

we are left with the problem of determining a�ne embedding functions� These are

determined one dimension at a time by solving a system of linear constraints on the

��

coe�cients of the embedding functions for that dimension� These linear constraints

describe the requirements that embeddings should �i� result in a legal program� and

�ii� minimize reuse distances�

For the running example� we will assume that the oracle tells us that the transfor�

mation is the identity transformation� so the product space is left unchanged� Since

the product space for this program is the 	ve dimensional space i�
 j�
 i�
 j�
 k��

De	nition � of embedding functions requires that the embedding functions for this

program look like the following�

F��

�
�� i�

j�

�
��� �

�
������������

i�

j�

G�

i�
i� �G�

j�
j� � g�NN � g�

�

G�

i�
i� �G�

j�
j� � g�NN � g�

�

G�

i�
i� �G�

j�
j� � g�NN � g�

�

�
������������

F��

�
�����
i�

j�

k�

�
������ �

�
������������

G�

i�
i� �G�

j�
j� �G�

k�
k� � g�NN � g�

�

G�

i�
i� �G�

j�
j� �G�

k�
k� � g�NN � g�

�

i�

j�

k�

�
������������

The unknowns G and g will be referred to as the unknown embedding coe�cients�

����� First Dimension

We 	rst 	nd embedding coe�cients for the 	rst dimension i��

��

Legality

At the very least� these embeddings must not violate legality� Therefore� as discussed

in Section ���� the embedding coe�cients must satisfy the following constraints�

�� G�

i�
i� �G�

j�
j� �G�

k�
k� � g�NN � g�

�
� i� � � for all points in D�� and

�� G�

i�
i�
�
�G�

j�
j �
�
�G�

k�
k�
�
� g�NN � g�

�
� �G�

i�
i� �G�

j�
j� �G�

k�
k� � g�NN � g�

�
� � �

for points in D��

Standard integer linear programming techniques can be used to convert these

constraints into the following system of linear inequalities on the unknown embed�

ding coe�cients� by applying Farkas� lemma as described in the previous chapter�

�
����������������

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

�
����������������

�
������������

G�

i�

G�

j�

G�

k�

g�N

g�
�

�
������������

�

�
����������������

�

�

�

�

�

�

�
����������������

�����

Minimizing Reuse Distance

System ����� clearly has many solutions� We need to choose the solution that max�

imizes reuse� For our running example� consider locality optimization for the reuse

that arises because of dependence D�� To ensure that dimension i� does not carry

reuse for D�� we require that

G�

i�
i� �G�

j�
j� �G�

k�
k� � g�NN � g�

�
� i� � �

��

for all points �i�� j�� i�� j�� k�� � D�� This condition too can obviously be converted

into a system of inequalities on the unknown coe�cients of the embeddings� The

conjunction of this system and System ����� results in the following solution�

G�

i�
� �� G�

j�
� �� G�

k�
� �� g�N � �� g�

�
� �

Therefore� the 	rst dimensions of the two embedding functions are F �

�
�i�� j�� � i�

and F �

�
�i�� j�� k�� � i�� Intuitively� this solution fuses dimensions i� and i� of the

product space�

Even in our simple example� there are other reuse classes such as D�� To optimize

locality for more than one reuse class� we prioritize the reuse classes heuristically and

try to 	nd embedding functions that make entries of the reuse vectors of the highest�

priority reuse class equal to zero� Reuse classes are considered in order of priority

until all embedding coe�cients for that dimension are completely determined� If we

assume that reuse class D� has highest priority� we see that it completely determines

the 	rst dimension of the embedding functions� so no other reuse classes can be

considered�

����� Remaining Dimensions

The remaining dimensions of the embedding functions are determined successively in

a manner similar to the 	rst one� The only di�erence is that some of the dependence

classes may already be satis	ed by preceding dimensions� these do not have to be

considered for legality but only for reducing reuse distances by tiling�

Let us assume that the 	rst j � � dimensions of the embedding functions F��j��

have been determined and that we are currently processing the jth dimension of the

product space�

��

Legality

Generalizing the corresponding notion in perfectly�nested loops� we say that a de�

pendence class D � D

�
�� is

id

�
�� � d � � is satis�ed by the 	rst j � � dimensions of

the embedding functions F��j�� if the di�erence vector F ��j��
d ���d��F ��j��

s ���s� is lex�

icographically positive for all ���s���d� � D� This means that this dependence will be

respected regardless of how the remaining dimensions of the embedding functions

are chosen� Therefore it is su�cient to require that for every pair ���s���d� in an

unsatis�ed dependence class D�

F j
d ���d�� F j

s ���s� �

�
�Gj

s Gj
d

���� ��s

��d

�
�� � gjd � gjs � � �����

In our running example� it can be shown that none of the dependence classes

D�� D� are satis	ed by the 	rst dimension of the embedding functions determined

above� so both dependence classes must be considered when processing the second

dimension�

Minimizing Reuse Distance

Constraining embedding coe�cients to minimize reuse distances can be done in an

identical manner to the 	rst dimension�

An additional concern in picking coe�cients for a dimension other than the 	rst

is that we may want to tile that dimension with outer dimensions� Tiling requires

that these dimensions be fully permutable� We can ensure this by requiring that the

constraint � ���� holds even for satis	ed dependence classes� If the resulting system

has solutions� we can pick one that minimizes reuse distances as discussed for the 	rst

dimension �note that minimizing reuse distances before we add the tiling constraints

��

might produce embeddings that do not allow tiling�� If the resulting system has no

solutions� the current dimension cannot be made permutable with outer dimensions�

so constraint ����� is dropped for satis	ed dependence classes�

Our algorithm produces the following embeddings for the running example�

F��

�
�� i�

j�

�
��� �

�
������������

i�

j�

i�

j�

�

�
������������

F��

�
�����
i�

j�

k�

�
������ �

�
������������

i�

j�

i�

j�

k�

�
������������

This embedding allows all 	ve dimensions to be tiled� The code generation algo�

rithm determines that i� and j� are redundant� and tiles the remaining dimensions�

����� Putting it All Together

If the transformation on the product space is given� we can obtain embedding coef�

	cients for each dimension successively by constraining them based on �i� legality�

�ii� tiling considerations� and �iii� minimizing reuse distances�

The algorithm for formulating legality and tiling constraints for a given dimen�

sion q is shown in Figure ���� This algorithm takes the dimension being processed�

and the sets of unsatis	ed and satis	ed dependence classes as input� and returns a

linear system L expressing constraints on embedding coe�cients� Figure ��� shows

how such a linear system is further constrained to determine coe�cients for good

locality� This algorithm assumes that reuse classes have been sorted in decreasing

order of priority using some heuristic� In our implementation� we rank reuse classes

by estimating the number of reuse pairs in each class�

�

ALGORITHM LegalityConstraints�q� DU� DS 	

��

q is dimension being processed�

DU is set of unsatisfied dependence classes�

DS is set of satisfied dependence classes�

��

Construct system Temp constraining the qth dimension

of every embedding function as follows�

for each unsatisfied dependence class u � DU
Add constraints so that each entry in dimension q
of all difference vectors of u is non�negative�

endfor

for each satisfied dependence class s � DS
Add constraints so that each entry in dimension q
of all difference vectors of s � positive 	
is non�negative�

endfor

Use Farkas� lemma to convert system Temp into

a system L constraining unknown embedding

coefficients�

Return L�

Figure ���� Formulating Linear System for Legality

����� Algorithm

Figure ��� shows the complete locality enhancement algorithm�

Our algorithm interleaves the determination of the transformation for the prod�

uct space with the determination of embedding coe�cients for each dimension� and

	nds bands of fully permutable dimensions�

Each iteration of the inner for each q�loop tries to 	nd a dimension q of the

product space which can be permuted into position j of the transformed prod�

uct space� The legality of this permutation is determined by a call to procedure

LegalityConstraints in Figure ��� which attempts to 	nd legal embeddings for

dimension j which permit this dimension to be permuted with dimensions in the

��

ALGORITHM PromoteReuse�q�L�RS	
��

q is dimension being processed�

L is a system constraining unknown embedding coefficients�

RS is set of prioritized reuse classes�

��

pL�� L
for every reuse class R in RS in priority order

Z �� System constraining unknown embedding function

coefficients so qth dimension entries of

all reuse vectors of class R is zero

if �pL � Z
� �	
pL �� pL � Z

endif

endfor

return any set of coefficients satisfying pL�

Figure ���� Formulating Linear Systems for Promoting Reuse

same band� If this procedure succeeds� we call procedure PromoteReuse in Figure ���

to choose embeddings with good locality� We drop out of the for loop when no more

dimensions of the product space can be added to the current fully permutable band�

All satis	ed dependences are then dropped from further consideration� and a new

fully permutable band is started� The algorithm terminates when all dimensions of

the product space have been mapped into the transformed space�

Reordering of Dimensions

When constructing bands� the algorithm does not try to optimize the order of di�

mensions within a band since it adds dimensions to bands in arbitrary order� Since

arbitrary order may not be best for locality� we need to reorder dimensions after

all embedding coe�cients have been determined� This is similar to the problem

of choosing a good order for loops in a fully permutable loop nest� and any of the

�

ALGORITHM LocalityEnhancement

Q �� Set of dimensions of product space�

DU �� Set of unsatisfied dependence classes

�initialized to all dependence classes	�

DS �� Set of satisfied dependence classes

�initialized to empty set	�

RS �� Set of reuse classes of the program

�sorted by priority	�

j �� Current dimension in transformed product space

�initialized to �	�

while �Q is non�empty	

for each q in Q
L � LegalityConstraints�q� DU� DS	�
if system L has solutions

Embedding coefficients for dimension j �

PromoteReuse�q�L�RS	�
Update DS and DU�
Delete q from Q�
j � j
 ��

endif

endfor

�� No more dimensions q can be added to current band�

�� Start a new band of fully permutable loops�

DS �� empty set�

endwhile

Apply Algorithm DimensionOrdering to the dimensions�

Eliminate redundant dimensions�

Tile permutable dimensions with non�zero ReusePenalty�

Figure ���� Algorithm to Enhance Locality

techniques in the literature can be used� Here we present a simple heuristic simi�

lar to memory order ����� We reorder dimensions of the product space so that the

dimensions with most unsatis	ed reuses come last� For each dimension j of the

product space� we de	ne the reuse penalty of that dimension with respect to embed�

ding functions fF j
�
� F j

�
� � � � � F j

ng to be the number of reuse pairs in the classes for

��

ALGORITHM DimensionOrdering

RPO � i�� i�� � � � ip �� ReusePenalty order

NRPO � � �� nearby permutation

m � p �� number of dimensions left to process

k � � �� number of dimensions processed

while RPO
� �
for dimension j � ��m

l � ij � RPO
Let NRPO � fr�� r�� � � � rkg
if r�� r�� � � � rk� l is legal

NRPO � fr�� r�� � � � rk� lg
RPO � RPO � flg
m � m� �
k � k � �
continue while loop

endif

endfor

endwhile

Figure ���� Determining Dimension Ordering

which the dimension carries reuse�

ReusePenalty�j�F� �
X

R unsatis	ed

kRk

where kRk is the number of reuse pairs in reuse class R� Clearly sorting dimensions

in ReusePenalty order is not always legal� Figure ��� shows an algorithm that

	nds a nearby legal permutation� Intuitively� algorithm DimensionOrdering tries

to order dimensions greedily so that the dimension with the smallest ReusePenalty

is outermost if that is legal� Otherwise� it checks whether the dimension with next

smallest ReusePenalty can be placed outermost� Once it 	nds a dimension to place

outermost� it repeats the process with the remaining dimensions� It is easy to see

that the algorithm will always produce a legal ordering of the dimensions� and that

it will pick the ReusePenalty order if that is legal�

For the running example in Figure ���� our algorithm places all 	ve dimensions

��

of the product space in a single fully permutable band� It then picks the dimension

order j�
 j�
 k�
 i�
 i��

Tiling

If a set of dimensions belonging to the same fully permutable band all carry reuse�

then the reuse distance can be reduced further by tiling them� We can identify di�

mensions that carry reuse by testing the ReusePenalty associated with the dimension

� all dimensions with non�zero ReusePenalty carry reuse for some reuse class�

As discussed in Section ������ it might be legal to tile some dimensions only after

skewing by outer dimensions� In this case� the non�positive values in the dependence

matrix must be distances bounded by a constant �	�� The factors by which the outer

dimensions need to be skewed can be determined easily by standard techniques for

perfectly�nested loops �����

In the case of our running example� all 	ve dimensions of the product space have

non�zero ReusePenalty� Hence our algorithmwill decide to tile all of them� Note that

of the 	ve dimensions two are redundant and only the remaining three dimensions

need to be tiled� �The redundant dimensions are dropped from consideration�� None

of these dimensions need skewing in order to be legal�

��� Tile Size Determination

We determine tile sizes by estimating the data foot�print �the amount of data touched

by a tile�� and requiring that it 	t into the cache in consideration� We tile the

product space separately for each level of the memory hierarchy �we do not tile for a

particular level only if the data touched by the tile will not 	t into the corresponding

cache level��

��

Our procedure for determining tile sizes has the following steps �

�� For each point in the product space 	nd the data accessed by each statement

instance mapped to it� Since the mapping from a statement instance to the

product space is one�to�one and a�ne� the inverse mapping can easily be de�

termined� This� combined with the a�ne access functions of a data reference�

enables us to calculate the data accessed by each point in the product space�

In our running example� a point �x�� x�� x�� x�� x�� of our transformed prod�

uct space has the statement instances S��x�� x�� �whenever x� � x�� x� �

x�� x� � �� and S��x�� x�� x�� �whenever x� � x�� x� � x�� mapped to it�

Hence the data accessed by this point is c�x�� x�� from statement S� and

c�x�� x��� a�x�� x��� b�x�� x�� from statement S��

�� Group all the data accessed by a product space point into equivalence classes

as follows �

�a� References to di�erent arrays belong in di�erent equivalence classes�

�b� References are assigned to the same equivalence class if they can access

the same array locations �ie� if they have the same linear parts��

For our example� we have three equivalence classes fS� � c�x�� x��� S� � c�x�� x��g�

fS� � a�x�� x��g� fS� � b�x�� x��g�

�� From each reference class pick a random reference which will serve as our

representative reference�

In our example� our representative references are c�x�� x��� a�x�� x�� and b�x�� x���

�� Determine the data touched by each representative reference in a single tile of

the transformed product space parameterized by the tile size� We shall limit

��

ourselves to choosing a single tile size B for every dimension of the product

space� Determining the data touched by a single reference is straightforward�

A generalized version of this problem has been studied in ��
�� More accurate

solutions can be obtained by using Erhart Polynomials �
��

For our example� each representative reference accesses B� elements in one

tile of the transformed product space� The total data foot�print of all the

references is � � B� elements� The actual memory corresponding to this is

� �B� times the size in bytes of a single element of the array�

�� The data foot�print of all the references must be less than the cache size to

avoid capacity misses� This gives us an upper bound on the tile size for each

cache level� In order to generate code with fewer MIN�s and MAX�s� we ensure

that the tile size at each level is a multiple of the tile size at the previous level�

The above formulation makes the following simpli	cations �

�� All tiles of the transformed product space have the same data foot�print� This

is a conservative assumption� since it results in adding the references possible

from all statements to the data accessed at a single product space point�

�� Boundary e�ects are ignored� which is justi	able for large arrays and loop

bounds�

�� Con�ict misses are ignored� Various techniques have been developed to 	nd

tile sizes that avoid some forms of con�ict misses ���� ��� ���� but we do not

use them in our current implementation�

��

��� Experimental Results

In this section� we present results from our implementation for 	ve important

codes�Triangular Solve with multiple left�hand sides� Cholesky factorization� Ja�

cobi kernel� Red�Black Gauss�Seidel and the Tomcatv SPECfp
� benchmark� All

experiments were run on an SGI Octane workstation based on a R����� chip run�

ning at ���MHz with �� KB 	rst�level data cache and an uni	ed second�level cache

of size � MB �both caches are two�way set associative�� We present the following

performance numbers for each code�

�� Performance of code produced by the SGI MIPSPro compiler �Version
�����

with the ��O�� �ag turned on� At this level of optimization� the SGI com�

piler applies the following set of transformations to the code�it converts

imperfectly�nested loop nests to singly nested loops �SNLs� by means of 	s�

sion and fusion and then applies transformations like permutation� tiling and

software pipelining inner loops �����

�� Performance of code produced by an implementation of the techniques de�

scribed in this paper� and then compiled by the SGI MIPSPro compiler with

�ags ��O� �LNO�blocking�o�� to disable further tiling by the SGI compiler�

To study the e�cacy of our tile size selection algorithm we also show the

performance obtained by tiling with sizes ranging from �� to ����

The performance numbers presented show the bene	ts of synthesizing a sequence

of locality�optimizing transformations instead of searching for that sequence� Even

though the SGI MIPSPro compiler implements all the transformations necessary to

optimize our benchmarks� it does not 	nd the right sequence of transformations�

so the performance of the resulting code su�ers� For Cholesky factorization� the

��

for c � ��M

for r � ��N

for k � ��r��

S�� B�r�c	 � B�r�c	 � L�r�k	�B�k�c	

end

S�� B�r�c	 � B�r�c	�L�r�r	

end

end

Figure ���� Triangular Solve � Original Code

performance of our optimized code approaches the performance of hand�written

libraries� The numbers also show that our two�level tile size selection scheme chooses

close�to�optimal tile sizes�

����� Performance

Triangular Solve

For triangular solve with multiple right�hand sides �Figure ����� our algorithm de�

termines that the product space can be made fully permutable without reversal or

skewing� It chooses the following embeddings after reordering and removing redun�

dant dimensions ��

F��

�
�����
c

r

k

�
������ �

�
�����
c

k

r

�
����� F��

�
�� c

r

�
��� �

�
�����
c

r

r

�
�����

The algorithm decides that all three dimensions can be tiled� It chooses a tile

size of �� for the L� cache and ��� for the L� cache for all the dimensions�

Figure ��
�a� shows performance results for a constant number of right�hand

sides �M in Figure ��� is ����� The performance of code generated by our techniques

is upto a factor of �� better than the code produced by the SGI compiler� but it

is still ��! slower than the hand�tuned code in the BLAS library� The high�level

��

0

50

100

150

200

250

300

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Array Size

M
F

L
O

P
S

SGI Compiler Our Method BLAS

�a� Performance

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

Block Sizes

M
F

L
O

P
S

1-level 2-level

�b� Variation with tile size

Figure ��
� Triangular Solve and its Performance

�

structure of the code we generate is similar to that of the code in the BLAS library�

further improvements in the compiler�generated code must come from 	ne�tuning

of register tiling and instruction scheduling�

Figure ��
�b� compares the performance of our code� tiled for two levels of the

memory hierarchy� with code tiled for a single level with tile sizes ranging from ��

to ��� �for a ����
���� array and M � ����� As can be seen� our two level scheme

gives the best performance�

Cholesky Factorization

Cholesky factorization is used to solve symmetric positive�de	nite linear systems�

Figure ��� shows one version of Cholesky factorization called kij�Cholesky� there

are 	ve other versions of Cholesky factorization corresponding to the permutations

of the i� j� and k loops� Figure ��
�a� compares the performance of all six versions

compiled by the SGI compiler� the hand�optimized LAPACK library routine� and

the code produced by our algorithm starting from any of the six versions�

The performance of the compiled code varies widely for the six di�erent versions

of Cholesky factorization� The kij�Cholesky is SNL and the SGI compiler is able

to sink and tile two of the three loops �k and i�� resulting in good L� cache behavior

and best performance for large matrices �about �� MFLOPS� among the compiled

codes� In contrast� the compiler is not able to optimize the ijk�Cholesky at all�

resulting in the worst performance of about � MFLOPS for large matrices� The

LAPACK library code performs consistently best at about ��� MFLOPS�

Our algorithm produces the same locality optimized code independent on which of

the six versions we start with� That is expected as the abstraction that our algorithm

uses�statements� statement iteration spaces� dependencies� and reuses�is the same

��

for k � ��N

S�� a�k�k	 � sqrt�a�k�k		

for i � k
��N

S�� a�i�k	 � a�i�k	 � a�k�k	

for j � k
��i

S
� a�i�j	 �� a�i�k	 � a�j�k	

end

end

end

Figure ���� kij�Cholesky Factorization � Original Code

for all six versions of Cholesky factorization�

For the kij version shown here� the algorithm picks the following embeddings

�after reordering and removing redundant dimensions��

F��

�
k

�
� �

�
�����
k

k

k

�
����� F��

�
�� k

i

�
��� �

�
�����
k

k

i

�
����� F��

�
�����
k

i

j

�
������ �

�
�����
j

k

i

�
�����

All three dimensions are tiled without skewing� Our algorithm chooses a tile size

of �� for the L� cache and ��� for the L� cache for all the dimensions� The same

code is obtained starting from any of the six versions of Cholesky factorization� and

the line marked �Locality Optimized� in Figure ��
�c� shows the performance of

that code� The code produced by our approach is roughly � to �� times faster than

the code produced by the SGI compiler� and it is within �! of the hand�written

LAPACK library code for large matrices� The variation of performance with various

tile sizes is shown in Figure ��
�c� for an array of size ����
 �����

Jacobi

Our next benchmark is the Jacobi kernel in Figure ����� The Jacobi kernel is typical

of relaxation codes used to solve pde�s using explicit methods� They contain an outer

loop that counts time�steps� in each time�step� a stencil computation is performed

�

0

50

100

150

200

250

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

21
00

23
00

25
00

Matrix Size

M
F

L
O

P
S

LAPACK
Locality Optimized
kij-Cholesky
jki-Cholesky
jik-Cholesky
ikj-Cholesky
kji-Cholesky
ijk-Cholesky

�b� Performance

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

Block Sizes

M
F

L
O

P
S

1-level 2-level

�c� Variation with tile size

Figure ��
� Cholesky Factorization and its Performance

�

for t � ��T

for i � ��N��

for j � ��N��

S�� L�i�j	 � �A�i�j
�	
 A�i�j��	

 A�i
��j	
 A�i���j		 � �

end

end

for i � ��N��

for j � ��N��

S�� A�i�j	 � L�i�j	

end

end

end

Figure ����� Jacobi � Original Code

on certain arrays� We show the results of applying our technique to the Jacobi

kernel shown in Figure ���� which solves Laplace�s equation� Our algorithm picks

embeddings that perform all the optimization steps discussed in Section ��

F��

�
�����
t

i

j

�
������ �

�
�����
t

j

i

�
����� F��

�
�����
t

i

j

�
������ �

�
�����

t

j � �

i � �

�
�����

These embeddings correspond to shifting the iterations of the two statements

with respect to each other� fusing the resulting i and j loops respectively� and

	nally interchanging the i and j loops� This not only allows us to tile the loops but

also bene	ts the reuses between the two arrays in the two statements� as well as the

spatial locality in both statements�

The resulting space cannot be tiled directly� so our implementation chooses to

skew the second and the third dimensions by ��t before tiling� Our tile size selection

algorithm chooses tile sizes of �� for the L� cache and ��� for the L� cache�

Figure �����a� shows the execution times for the code produced by our technique

and by the SGI compiler for a 	xed number of time�steps ������ As can be seen�

�

0

5

10

15

20

25

30

35

40

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Array Size

T
im

e
(s

ec
s)

SGI Compiler Our Method

�a� Performance

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

Block Sizes

T
im

e
(s

ec
s)

1-level 2-level

�b� Variation with tile size

Figure ����� Jacobi and its Performance

there is signi	cant performance improvement as a result of the optimizations� The

e�ect of varying tile sizes is shown in Figure �����b��

�

Red�Black Gauss�Seidel Relaxation

for t � ��T

for j � ��N��

for i � ��N����

S�� U�i�j	 � ���� � �B�i�j	 � U�i���j	 � U�i
��j	

� U�i�j
�	 � U�i�j��		

end

end

for j � ��N��

for i �
�N����

S�� U�i�j	 � ���� � �B�i�j	 � U�i���j	 � U�i
��j	

� U�i�j
�	 � U�i�j��		

end

end

end

Figure ����� Red�Black Gauss Seidel � Original Code

A more complex relaxation code is the Red�Black Gauss�Seidel code used within

multi�grid methods to initialize the values for the next grid level� In Figure �����

the value of T is typically small �less than ��� The odd and even rows are processed

separately� The arrays are touched twice for each time step� Our implementation

	nds the following embeddings�

F��

�
�����

t

j

i

�
������ �

�
�����

t

j

i

�
����� F��

�
�����
t

j

i

�
������ �

�
�����

t

j

i � �

�
�����

These embeddings e�ectively fuse the odd and even loops together thereby cut�

ting down the memory tra�c by a factor of two� The last three dimensions are

redundant� The code can be tiled after skewing both the i and j loops by ��t�

Our tile size selection algorithm chooses �� for the L� cache and ��� for the L�

cache� Figure ���� shows the performance of the resulting code when the number of

time�steps is set to ��

�

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

101 201 301 401 501 601 701 801 901 1001

Array Size (NxN)

T
im

e
(s

ec
o

n
d

s)

SGI Compiler Our Method

�b� Performance

Figure ����� Red�Black Gauss�Seidel and its Performance

Tomcatv

As a 	nal example� we consider the tomcatv code from the SPECfp benchmark

suite� The code �Figure ����� consists of an outer time loop ITER containing a

sequence of doubly� and singly�nested loops which walk over both two�dimensional

and one�dimensional arrays� The results of applying our technique are shown in

Figure �����a� for a 	xed array size ���� from a reference input�� and a varying

number of time�steps� Tomcatv is not directly amenable to our technique because

it contains an exit test at the end of each time�step� The line marked �Locality

Optimized� represents the results of optimizing a single time�step �i�e� the code

inside the ITER loop� for locality� Treating every basic block as a single statement�

our algorithm produces an embedding which corresponds to fusing some of the J

loops and all the I loops� The exploitation of reuse between di�erent basic blocks

results in roughly �! improvement in performance compared to the code produced

�

by the SGI compiler� If we consider the tomcatv kernel without the exit condition��

our algorithm skews the fused I loop by ��ITER� and then tiles ITER and the skewed

I loops� Our algorithm decides to tile only for the L� cache �the data touched by a

tile does not 	t into L� cache� with a tile size of ���

The performance of the resulting code �line marked �Tiled�� is around ��!

better than the original code� Variation with tile size is shown in Figure �����b��

�The resulting kernel can be tiled speculatively as demonstrated by Song and Li 	��
�

�

DO ��� ITER � �� ITACT

C

C Residuals of ITER iteration

C

RXM�ITER	 � ��D�

RYM�ITER	 � ��D�

C

DO �� J � ��N��

C

DO �� I � ��N��

XX � X�I
��J	�X�I���J	

YX � Y�I
��J	�Y�I���J	

XY � X�I�J
�	�X�I�J��	

YY � Y�I�J
�	�Y�I�J��	

A � ����D� � �XY�XY
YY�YY	

B � ����D� � �XX�XX
YX�YX	

C � �����D� � �XX�XY
YX�YY	

AA�I�J	 � �B

DD�I�J	 � B
B
A�REL

PXX � X�I
��J	���D��X�I�J	
X�I���J	

QXX � Y�I
��J	���D��Y�I�J	
Y�I���J	

PYY � X�I�J
�	���D��X�I�J	
X�I�J��	

QYY � Y�I�J
�	���D��Y�I�J	
Y�I�J��	

PXY � X�I
��J
�	�X�I
��J��	�X�I���J
�	
X�I���J��	

QXY � Y�I
��J
�	�Y�I
��J��	�Y�I���J
�	
Y�I���J��	

C

C CALCULATE RESIDUALS � EQUAL TO RIGHT HAND SIDES OF EQUS�	

C

RX�I�J	 � A�PXX
B�PYY�C�PXY

RY�I�J	 � A�QXX
B�QYY�C�QXY

C

�� CONTINUE

�� CONTINUE

C

C DETERMINE MAXIMUM VALUES RXM� RYM OF RESIDUALS

C

DO �� J � ��N��

DO �� I � ��N��

RXM�ITER	 � MAX�RXM�ITER	� ABS�RX�I�J			

RYM�ITER	 � MAX�RYM�ITER	� ABS�RY�I�J			

�� CONTINUE

C

C CONTINUED ON NEXT PAGE���

C

Figure ����� Tomcatv Kernel

�

C

C SOLVE TRIDIAGONAL SYSTEMS �AA�DD�AA	 IN PARALLEL� LU DECOMPOSITION

C

DO �� I � ��N��

D�I��	 � ��D��DD�I��	

�� CONTINUE

DO ��� J �
�N��

DO ��� I � ��N��

R � AA�I�J	�D�I�J��	

D �I�J	 � ��D���DD�I�J	�AA�I�J��	�R	

RX�I�J	 � RX�I�J	 � RX�I�J��	�R

RY�I�J	 � RY�I�J	 � RY�I�J��	�R

��� CONTINUE

DO ��� I � ��N��

RX�I�N��	 � RX�I�N��	�D�I�N��	

RY�I�N��	 � RY�I�N��	�D�I�N��	

��� CONTINUE

DO ��� J � N�������

DO ��� I � ��N��

RX�I�J	 � �RX�I�J	�AA�I�J	�RX�I�J
�		�D�I�J	

RY�I�J	 � �RY�I�J	�AA�I�J	�RY�I�J
�		�D�I�J	

��� CONTINUE

C

C ADD CORRECTIONS OF ITER ITERATION

C

DO �
� J � ��N��

DO �
� I � ��N��

X�I�J	 � X�I�J	
RX�I�J	

Y�I�J	 � Y�I�J	
RY�I�J	

�
� CONTINUE

C

ABX � ABS�RXM�ITER		

ABY � ABS�RYM�ITER		

IF �ABX�LE�EPS�AND�ABY�LE�EPS	 GOTO ���

��� CONTINUE

C

C END OF ITERATION LOOP ��

��� CONTINUE

Figure ����� Tomcatv Kernel �continued�

0

5

10

15

20

25

30

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Time Steps

T
im

e
(s

ec
s)

SGI compiler Our Method Our Method (plus data transformation)

�a� Performance

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

Block Sizes

T
im

e
(s

ec
s)

1-level Our Method

�b� Variation with tile size

Figure ����� Performance of Tomcatv

Chapter �

Generating Block�recursive Codes

Modern processor architectures have multiple levels of memory hierarchy� For ex�

ample� current processors like Intel�s Merced have three levels of caches� Current

compilers optimize for these levels by tiling loop�nests separately for each level of

the hierarchy�

In the dense numerical linear algebra community� there is growing interest in

the use of block�recursive versions of numerical kernels like matrix multiply and

Cholesky factorization to address the same problem� These algorithms recursively

partition the original problem into ones with smaller working sets� This recursion

has the e�ect of blocking the data at many di�erent levels at the same time� so

the data access patterns of the resulting codes exploit locality at all levels of the

memory hierarchy� Experiments by Gustavson ���� and others have shown that these

algorithms achieve substantial performance improvement over the tiled versions of

the codes� In this chapter� we show how to use the product space framework to

automatically generate the block�recursive versions of these numerical kernels� We

will use as examples block�recursive codes for two algorithms� matrix multiplication

and Cholesky factorization�

�

for j � �� n

for k � �� j��

for i � j� n

S�� A�i�j	 �� A�i�k	 � A�j�k	

end

end

S�� A�j�j	 � dsqrt�A�j�j		

for i � j
�� n

S
� A�i�j	 � A�i�j	 � A�j�j	

end

end

Figure ���� Cholesky Factorization

Consider the code fragment shown in Figure ���� It is an iterative version of

Cholesky factorization that factories a symmetric positive de	nite matrix A such

that A � L 	 LT where L is a lower triangular matrix� In the code fragment shown

here� the matrix L overwrites A� A block�recursive version of the algorithm can be

obtained by sub�dividing the arrays A and L into �
 � blocks and equating terms

on both sides��
�� A�� AT

��

A�� A��

�
�� �

�
�� L�� �

L�� L��

�
��
�
�� LT

��
LT
��

� LT
��

�
�� �

�
�� L��L

T
��

L��L
T
��

L��L
T
��

L��L
T
��

� L��L
T
��

�
��

L�� � chol�A���

L�� � A��L
�T
��

L�� � chol�A�� � L��L
T
��
�

Here chol�X� computes the Cholesky factorization of array X� The recursive

version performs a Cholesky factorization of the A�� block� then a division on the

A�� block� and 	nally performs another Cholesky factorization on the updated A��

block� The termination condition for the recursion can either be a single element

of A �degenerating to square root operation� or to a b
 b block of A which can be

solved by the iterative code fragment�

��

for j � �� n

for k � �� n

for i � �� n

C�i�j	 �� A�i�k	 � B�k�j	

end

end

end

Figure ���� Matrix Multiplication

A recursive version of matrix multiplication C � AB can also be derived in a

similar manner� The iterative code is shown in Figure ���� Subdividing the arrays

into �
 � blocks results in the following ��

�
�� C�� C��

C�� C��

�
�� �

�
�� A�� A��

A�� A��

�
��
�
�� B�� B��

B�� B��

�
��

�

�
�� A��B�� � A��B�� A��B�� � A��B��

A��B�� � A��B�� A��B�� � A��B��

�
��

In the above formulation� each multiply results in eight recursive calls acting

on sub�blocks� with � recursive calls per sub�block� The � sub�blocks of C can

be traversed in any order� The natural order of traversing the blocks of C is the

lexicographic order� If this order is applied recursively� we obtain the block�recursive

order of traversing the two�dimensional space represented by the matrix C� This is

shown in Figure ���� This manner of walking would correspond to the ordering of

the recursive calls shown in Figure ���� Note that we can also consider traversing

the sub�blocks of matrix A or B in a similar manner�

The ordering shown in Figure ��� is not the only way of ordering the recursive

calls� In fact� unlike the Cholesky factorization case� the eight recursive calls in

matrix multiplication can be performed in any order as they are all independent�

One way of ordering these calls is to make sure that one of the operands is reused

��

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

1 2

3 4

Figure ���� Block�recursive call order Figure ���� Block Recursive Order

between adjacent calls�� The ordering corresponding to block�recursive traversals

does not have this property � for example� no blocks are reused between the second

and the third recursive calls in Figure ����

An ordering of the calls satisfying the reuse property is shown in Figure ����

This corresponds to traversing the sub�blocks of C in a gray�code order� A gray�

code order on the set of numbers �� � � �m� arranges the numbers so that adjacent

numbers di�er by exactly � bit in their binary representation�

A gray�code order of traversing a ��dimensional space is shown in Figure ����

Such an order is called space��lling� since the order traces a complete path through

all the points� always moving from one point to an adjacent point� There are other

space�	lling orders� and some of them are described in the references �
��

For comparison� the lexicographic order of traversing a two�dimensional space

is shown in Figure ��
� Note that neither the lexicographic order nor the block�

recursive order are space�	lling orders�

�Not more than one can be reused� in any case�

��

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

MMM�C��� A��� B���

1

3

9

11

1

3

2

4

4

2

16

15 14

13

8 7

65

12

10

Figure ���� Gray�code call order Figure ���� Space�Filling Order

This chapter describes compiler technology that can automatically convert iter�

ative versions of array programs into their recursive versions� In these programs�

arrays are referenced via a�ne functions of the loop�index variables� As a result�

partitioning the iterations of a loop will result in the partitioning of data as well�

We exploit this insight as follows� We use a�ne mapping functions to map all the

statement instances of the program to the product space� As we have seen already�

this mapping e�ectively converts the program into a perfectly�nested loop�nest� with

all statements nested in the innermost loop� We develop legality conditions under

which the loops �which correspond to the dimensions of the space� can be recur�

sively bisectioned� This corresponds to recursively bisectioning the dimensions of

the program iteration space� Code is then generated to traverse the space in a

block�recursive or space�	lling manner� and when each point in this space is visited�

the statements mapped to it are executed� This strategy e�ectively converts the

iterative versions of codes into their recursive ones� The mapping functions that

enable this conversion can be automatically derived when they exist�

��

1 2

7 8

9 10

15 16

5 6

13

1211

14

3 4

Figure ��
� Lexicographic Order

��� The Product Space

As in the previous chapters� we consider a program to consist of statements contained

within loops� All loop bounds and array access functions are assumed to be a�ne

functions of surrounding loop indices� We will use S�� S�� � � � � Sn to name the

statements of the program in syntactic order�

Consider a legal program execution order for the above program given by the

pair �P�F � fF�� F�� � � � � Fng�� Here P is the product space and F is the set of

functions that map dynamic statement instances to the product space� Since the

above execution order is legal� legal code can be generated by traversing the program

iteration space lexicographically and executing statement instances mapped to each

point when the point is visited� Note that the lexicographic traversal may not be

the only legal order of traversing the program iteration space� In particular� other

legal orders of traversing the space can be obtained in the following ways�

Consider the set of pairs �is� id� for the program such that a dependence exists

from statement instance Ss�is� to instance Sd�id�� The set v � Fd�id�� Fs�is� is the

set of di�erence vectors associated with the program�

��

�� Any order of walking the product space represented by a unimodular transfor�

mation matrix T is legal if T 	v is lexicographically positive for every di�erence

vector v associated with the code�

�� As discussed in Chapter ���� if the entries of all di�erence vectors corresponding

to a set of dimensions of the product space are non�negative� then those

dimensions can be blocked� This partitions the product space into blocks

with planes parallel to the axes of the dimensions� These blocks are visited

in lexicographic order� When a particular block is visited� all points within

that block are visited in lexicographic order as well� This order of traversal

for a two�dimensional product space divided into equal�sized blocks is shown

in Figure ��
�

Note that the points within each block do not need to be visited lexicograph�

ically� Any set of dimensions which can be blocked can also be recursively

blocked i�e� each block can itself be further blocked and these inner blocks

can either be traversed lexicographically or be further blocked recursively� If

we choose to block the program iteration space by recursively bisecting block�

dimensions then we obtain the block�recursive order shown in Figure ����

�� If the entries corresponding to a particular dimension of the product space

are zero for all di�erence vectors� then that dimension does not have to be

traversed lexicographically � it can be traversed in any order� If a set of di�

mensions exhibit this property� then not only can those dimensions be blocked�

but the blocks themselves do not have to be visited in a lexicographic order�

In particular� the blocks of these dimensions can be traversed in a space��lling

order� This principle can be applied recursively within each block� to obtain

��

space�	lling orders of traversing the entire sub�space �Figure �����

Given an execution order �P�F�� and the dependences in the program� it is easy

to check if the di�erence vectors exhibit the above properties using standard depen�

dence analysis ����� If we limit our embedding functions F to be a�ne functions of

the loop�index variables and symbolic constants� we can determine functions which

allow us to block dimensions �and hence also recursively block them� or to traverse

a set of dimensions in a space�	lling order� The condition that entries correspond�

ing to a particular dimension of all di�erence vectors must be non�negative �for

recursive�blocking� or zero �for space�	lling orders� can be converted into a system

of linear inequalities on the unknown coe�cients of F by an application of Farkas�

Lemma as discussed in Section ������ If this system has solutions� then any solution

satisfying the linear inequalities would give the required embedding functions�

��� Code Generation

Consider an execution order of a program represented by the pair �P�F�� Let p

represent the number of dimensions in the product�space� We wish to block the

program iteration space recursively� terminating when blocks of size B
 B � � �
 B

are reached�

For simplicity we will assume that redundant dimensions have been removed

and that all dimensions can be blocked� We will also assume that all points in the

program iteration space that have statement instances mapped to them are positive

and that they are all contained in the bounding box �� 	 	 	B
�k� � � � � � � 	 	 	B
�kp��

This can be ensured by choosing suitably large values of k�� � � � kp�

Code to recursively traverse the product�space is shown in Figure ���� The

��

procedure Recurse is parameterized with the current block to traverse given by

�lb����ub���� � � � � lb�p��ub�p�	� If the current block is not the base block �the

termination condition�� GenerateRecursiveCalls subdivides the block into �p sub�

blocks by bisecting each dimension and calls Recurse recursively in a lexicographic

order�� If the termination condition is reached� code for the block is executed in

BlockCode� The function HasPoints prevents the code from recursing into blocks

that have no statement instances mapped to them� The initial call to Recurse is

made with the lower and upper bounds set to the bounding box�

Naive code for BlockCode�lb�ub	 is very similar to the naive code for executing

the program� Instead of traversing the entire product space we only need to traverse

the points in the current block lexicographically� and execute statement instances

mapped to them� The redundant loops and conditionals can be hoisted out by

employing polyhedral techniques�

We can identify blocks �lb����ub���� � � � �lb�p��ub�p�	 that contain points

with statement instances mapped to them by creating a linear system of inequali�

ties with variables lbi� ubi corresponding to each entry of lb����p�� ub����p� and

variables xi corresponding to each dimension of the product�space� Constraints are

added to ensure that the point �x�� x�� � � � � xp� has a statement instance mapped to

it and that it lies within the block �lb� � ub�� � � � � lbp � ubp�� From the above system�

we obtain the condition to be tested in HasPoints�lb�ub	 by projecting out �in the

Fourier�Motzkin sense� the variables xi�

�This must be changed appropriately if space��lling orders are required

�

Recurse�lb����p�� ub����p�	

if �HasPoints�lb�ub		 then

if ��i ub�i� �� lb�i�
B��	 then

BlockCode�lb	

else

GenerateRecursiveCalls�lb�ub��	

endif

endif

end

GenerateRecursiveCalls�lb����p�� ub����p�� q	

if �q � p	

Recurse�lb� ub	

else

for i � ��p

lb��i� � lb�i�

ub��i� � �i �� q	 � �lb�i�
ub�i�	�� � ub�i�

endfor

GenerateRecursiveCalls�lb��ub��q
�	

for i � �� p

lb��i� � �i �� q	 � �lb�i�
ub�i�	��
 � � lb�i�

ub��i� � ub�i�

endfor

GenerateRecursiveCalls�lb��ub��q
�	

endif

end

Figure ���� Recursive code generation

��

F��

�
�����
j�

k�

i�

�
������ �

�
����������������

j�

k�

i�

j�

j�

i�

�
����������������

F��

�
j�

�
� �

�
����������������

j�

j�

j�

j�

j�

j�

�
����������������

F��

�
�� j�

i�

�
��� �

�
����������������

j�

j�

i�

j�

j�

i�

�
����������������

Figure ��
� Embeddings for Cholesky

��� Examples

����� Cholesky Factorization

For our Cholesky example� the embedding functions shown in Figure ��
 allow all di�

mensions to be blocked� Since there are di�erence vectors with non�zero entries� the

program iteration space cannot be walked in a space�	lling manner� though it can be

recursively blocked� The naive code for executing the code in each block is shown in

Figure ����� This code traverses the current block of the product space lexicographi�

cally and when a point is visited� all statement instances mapped to it are executed in

original program order� As mentioned earlier� the redundant loops must be removed

and the conditionals hoisted out for good performance� The part of the product�

space that has statement instances mapped to it is �j� k� i� � � � k � j � i � n� This

is used to obtain the condition in HasPoints�	�

����� Matrix Multiplication

For matrix multiplication� the embeddings shown in Figure ���� not only allow

recursive blocking but also allow the product space to be traversed in any space�

�

BlockCode�lb����
�	

for j� � lb���� lb���
B��

for k� � lb���� lb���
B��

for i� � lb�
�� lb�
�
B��

for j � �� n

for k � �� j��

for i � j� n

if �j���j �� k���k �� i���i	

S�� A�i�j	 �� A�i�k	 � A�j�k	

endif

end

end

if �j���j �� k���j �� i���j	

S�� A�j�j	 � dsqrt�A�j�j		

endif

for i � j
�� n

if �j���j �� k���j �� i���i	

S
� A�i�j	 � A�i�j	 � A�j�j	

endif

end

end

end

end

end

HasPoints�lb����
�� ub����
�	

if �lb�����n �� lb�����n �� lb�
���n

�� lb�����ub�
�

�� lb�����ub���

�� lb�����ub�
�	

return true

else

return false

endif

Figure ����� Recursive code for Cholesky

�

BlockCode�lb����
�	

for j� � lb���� lb���
B��

for k� � lb���� lb���
B��

for i� � lb�
�� lb�
�
B��

for j � �� n

for k � �� n

for i � �� n

if �j���j �� k���k �� i���i	

S�� C�i�j	
� A�i�k	 � B�k� j	

endif

end

end

end

end

end

end

HasPoints�lb����
�� ub����
�	

if �lb�����n �� lb�����n �� lb�
���n	

return true

else

return false

endif

Figure ����� Recursive code for Matrix Multiplication

	lling manner� The naive code to execute the statements mapped to a base block is

shown in ����� HasPoint�	 just ensures that there are statements mapped to the

base block�

��� Experimental Results

In this section� we discuss the performance of block�recursive and space�	lling codes

produced using the technology described in this paper� The legality conditions

discussed in Section ��� allow us to decide that the matrix multiply example �MMM�

Figure ���� can be blocked both recursively as well as in a space�	lling manner� The

�

F��

�
�����
j�

k�

i�

�
������ �

�
�����
j�

k�

i�

�
�����

Figure ����� Embeddings for Matrix Multiplication

Cholesky code in Figure ��� can only be blocked recursively� We generated recursive

code terminating in four di�erent base block sizes ���� ��� ��� ���� for both programs�

The codes for these base block sizes �BlockCode�lb	� were compiled with the ��O�

�LNO�blocking�o�� option of the SGI compiler� At this level of optimization� the

SGI compiler performs tiling for registers and software�pipelining�

For each program� we ran the recursive �and if legal� the space�	lling� versions of

the code for a variety of matrix sizes For lack of space� we will only present results

for a matrix size of ����
 ����� Results for other matrix sizes are similar� In

the graphs� the results marked Lexicographic correspond to executing the code

in BlockCode�lb	 by visiting the base blocks in a lexicographic manner� This has

the e�ect of blocking �tiling� the program iteration space� We also show results of

executing vendor�supplied hand�tuned implementations of matrix multiply �BLAS�

and Cholesky �LAPACK ����� for comparison� All experiments were run on an SGI

R��K machine running at ���Mhz with a ��Kb primary�data cache �L��� �Mb

second�level cache �L�� and �� TLB entries�

����� Overheads

Figures ���� and ���� show the overhead in the generated recursive versions of

matrix multiplication and Cholesky kernels� These experiments were run on arrays

of size ����
 ���� for various base block sizes ranging from � to ���� The size ����

�

Overheads - MMM (1000x1000)

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128

Base Block Size

T
im

e
(s

ec
s)

recursion
base block

Figure ����� MMM � Overheads

Overheads - Cholesky (1000x1000)

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128

Base Block Size

T
im

e
(s

ec
s)

recursion
base block

Figure ����� CHOL � Overheads

was chosen so that the arrays would 	t into the second level cache and therefore

not incur too many cache misses� The dark grey portions of the execution time

represent the time spent in the recursion control structure while the light grey

portions represent the actual time spent in the base block code� As can be seen

from the 	gures� overheads in these codes are from two di�erent sources �

�� Recursion Overheads � These overheads are strictly due to the recursion con�

�

trol �ow structure� They are represented by the dark gray portions of the

execution time in the 	gures� As can be seen� recursion overhead is huge for

very small base block sizes� As the base block size increase� the recursion

depth decreases resulting in a decrease in the recursion overhead� It accounts

for less than �! of the execution time for base block sizes greater than ���

�� Base block code Overheads � For very small base block sizes� the backend of the

compiler is not able to generate good low level code as it cannot take advantage

of software pipelining� and register allocation strategies� This results in the

di�erence in the time spent in the base block codes for various base block sizes�

As can be seen� base block sizes of upto �� do not provide enough instructions

for e�cient scheduling by the backend�

����� Memory Hierarchy Performance

Multiple Cache Levels

Figures ���� and ���� show the number of primary data cache misses for the two

programs� For the larger block sizes ���� ����� the data touched by a base block

does not 	t into cache ���K� and hence both the recursive and lexicographic versions

su�er the same penalty� For smaller block sizes ���� ���� the data 	ts into cache

resulting in much fewer misses� There is a small di�erence between the lexicographic

and recursive versions for a block size of ��� The lexicographic versions have slightly

more misses than the recursive versions since at this block size� the data touched by

a base block 	ts into less than ��! of the 	rst�level cache� The recursive doubling

e�ect aids the recursive�versions in using the cache more e�ectively� This e�ect is

more pronounced for the second�level cache misses shown in Figures ���
 and �����

�

0.0E+00

2.0E+09

4.0E+09

6.0E+09

8.0E+09

1.0E+10

1.2E+10

1.4E+10

Lexicographic Block-recursive Space-filling

L
1

m
is

se
s

16x16x16 32x32x32
64x64x64 128x128x128

BLAS

7.3E+09

Figure ����� MMM � L� misses

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

Lexicographic Block-recursive

L
1

M
is

se
s

16x16x16 32x32x32
64x64x64 128x128x128

LAPACK

8.7E+08

Figure ����� CHOL � L� misses

The lexicographic versions for block sizes of �� and �� exhibit much higher miss

numbers than the corresponding recursive versions since these block sizes are too

small to fully utilize the �M cache� In the recursive versions� however� even the

small block sizes succeed in full utilization of the cache� These recursive versions

will have a similar e�ect on any further levels of caches� Of the two recursive orders�

the space�	lling orders show slightly better cache performance for both programs�

�

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

Lexicographic Block-recursive Space-filling

L
2

m
is

se
s

16x16x16 32x32x32
64x64x64 128x128x128

BLAS

4.5E+07

Figure ���
� MMM � L� misses

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

Lexicographic Block-recursive

L
2

m
is

se
s

16x16x16 32x32x32
64x64x64 128x128x128

LAPACK

1.8E+07

Figure ����� CHOL � L� misses

TLB performance

Figures ���
 and ���� show the number of TLB misses for the two programs� The

R��K TLB has only �� entries� hence large block sizes �more than ��� will exhibit

high miss rates in both the lexicographic and recursive cases� Small block sizes could

work well in the lexicographic case if the loop�order is chosen well� In our case� the

jki�order is the best order for both the programs� and hence the case when block

size is �� has very few TLB misses as it uses less than �� entries at a time� In the

�

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

Lexicographic Block-recursive Space-filling

T
L

B
 m

is
se

s

16x16x16 32x32x32

64x64x64 128x128x128

BLAS

6E+06

Figure ���
� MMM � TLB misses

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

Lexicographic Block-recursive

T
L

B
 M

is
se

s

16x16x16 32x32x32
64x64x64 128x128x128

LAPACK

0.6E+07

Figure ����� CHOL � TLB misses

recursive case� the recursive doubling does cause signi	cantly more TLB misses for

small block sizes� although the recursive walks are largely immune to the e�ect of

reordering the loops� In comparison� in the jik�order �not shown here�� the code

with a base block size of �� su�ers a ����fold increase in the number of TLB misses

for the lexicographic case but remains roughly the same in the recursive cases�

����� Discussion

MMM (4000x4000)

0

50

100

150

200

250

300

350

16x16x16 32x32x32 64x64x64 128x128x128
Block Size

M
F

lo
p

s

Lexicographic Block-recursive
Space-filling

BLAS
Compiler

156

265

Cholesky (4000x4000)

0

50

100

150

200

16x16x16 32x32x32 64x64x64 128x128x128
Block Size

M
F

lo
p

s

Lexicographic Block-recursive

192

53

LAPACK Compiler

Figure ����� Performance

Figure ���� shows the performance of the two programs in MFlops� As a sanity

check� the lines marked Compiler show the performance obtained with compiling the

original code with the ��O�� �ag of the SGI compiler which attempts to tile for cache

and registers and then software�pipeline the resulting code� For both programs� the

recursive codes with block size of �� are the best among all the generated code� For

�

most block sizes� the recursive codes are better than their lexicographic counter�

parts by a small percentage ����!�� This is not the case when the block size is ��

because of the large number of TLB misses in the recursive cases for this block size�

For matrix multiply� the best recursive code generated by the compiler is still

substantially worse than the hand�tuned versions of the programs even though the

recursive overhead is less than �! in all cases� This di�erence could be due to the

high number of TLB misses su�ered by the recursive versions� Better interaction

with the TLB requires either �i� copying data from column�major order into recursive

data layouts as suggested by Chatterjee �
� or �ii� copying the data used by a base

block into contiguous locations as suggested by Gustavson ��
�� It is also interesting

to note that although the hand�tuned version su�ers higher primary cache miss

rates� the impact on performance is small� This is not surprising in an out�of�order

issue processor like the R��K where the latency of primary cache misses ��� cycles�

can be hidden by scheduling and software�pipelining� These misses will be more

important in an in�order issue processor like the Merced� For Cholesky factorization�

on the other hand� the best block�recursive version is comparable in performance to

LAPACK code�

Chapter �

Conclusions

This chapter summarizes the contributions of this thesis and discusses open issues

and potential avenues of future research�

��� Summary of Dissertation

As the di�erence in speed between processors and memory increases� it becomes

crucial to take advantage of the locality of reference present in a program and make

e�ective use of caches� Most programs are not written to take advantage of the

locality inherent in the algorithm� Discovering this locality and writing the code so

it takes advantage of it is not an easy task� These optimized programs are not easy

to write � they are very complicated� requiring a wide variety of program trans�

formations and the determination of important parameters that vary from machine

architecture to architecture�

One approach of tackling this problem is to develop e�cient libraries� Certain

core computations can be developed as a library for each architecture� This is

the case with libraries like BLAS �Basic Linear Algebra Subroutines�� This library

���

contains core subroutines like matrix multiplication and matrix vector products that

are present in linear algebra code� These routines are hand�written and well�tuned

for a particular architecture by the vendors of that architecture� Other applications

and libraries can then be written in terms of these routines� For example� the

LAPACK library is a portable library that provides a wide range of linear algebra

algorithms that have been restructured to take advantage of the BLAS subroutines�

The main disadvantage of this approach that it is limited in it�s applicability and

restructuring an algorithm to take advantage of the provided routines may not be

easy� Further� these libraries require an enormous amount of development e�ort

that must be repeated for every new architecture�

An alternate method has been advocated by compiler writers� Compiler writers

have proposed the automatic restructuring of programs so that the 	nal programs

are more cache�e�cient� A large number of program transformations have been

studied and much research has been undertaken to discover when these transfor�

mations can be legally applied and how to decide which transformations should be

used and in which sequence they should be applied� This approach has been very

successful for a certain class of codes in which all memory accesses are through scalar

variables or arrays and all statements are contained in the innermost loop� Such

programs are called perfectly�nested� Such codes can be optimized using a linear

loop transformation framework� Two key transformations � loop permutation and

tiling � are used to convert such codes into semantically equivalent versions that use

the caches more e�ectively�

Unfortunately� this technology cannot be applied to the majority of codes which

are imperfectly�nested� Various ad�hoc strategies have been used in practice to

convert imperfectly�nested loops into perfectly�nested via code transformations like

���

code�sinking� fusion and 	ssion� This introduces a phase ordering problem � no

known technique is known which chooses the correct sequence of transformation in

all cases� Special purpose techniques that rely on the structure of the code have

been suggested for matrix factorization codes and relaxation codes�

In my thesis� I propose an approach that tackles the issue of determining the

transformations that need to be applied in order to enhance locality in imperfectly�

nested codes� This technology generalizes the concepts introduced for the perfectly�

nested case� In particular� the iteration space of an imperfectly�nested loop nest is

modeled by an integer lattice called the product space as discussed in Chapter ������

The product space is the Cartesian product of the iteration spaces of the individual

statements in the loop nest� Dynamic statement instances are mapped to the prod�

uct space by means of embedding functions� These functions are a�ne expressions

of the loop indices that surround the statement and symbolic constants present in

the code� They generalize such code transformations like code�sinking� fusion and

	ssion�

As discussed in Chapter �� these embedding functions can be chosen so that the

resulting product space has certain desirable qualities� Section ��� describes how

to choose embedding functions that create a fully permutable product space� Such

a space can be used in order to apply further transformations like interchange and

tiling in order to improve locality� Section ����� discusses how to choose the right

embeddings that not only allow tiling and permutation of the product space but

also enhance locality by reducing the reuse distance between statement instances

that exhibit reuse� Chapter � shows how the product space formulation also enables

us to generate block�recursive versions of the codes which are portable and thus can

be used for writing libraries�

���

A prototype of the above technology has been implemented� Many important

kernels in numerical applications like Cholesky� Jacobi� Red�Black Gauss Seidel� Tri�

angular solve etc� show substantial performance improvement as a result of applying

this technology� The technology has also been shown to apply to substantially larger

codes like the Tomcatv benchmark from SpecFP
� suite�

��� Future Work

As this dissertation has demonstrated� the product space is a powerful formulation

that allows the transformation of imperfectly�nested loop nests for locality in a single

uni	ed framework� There are many interesting questions that are open at the end

of this dissertation� This section brie�y describes the possible avenues for future

research�

�� Application to large programs � A program can itself be considered to be

a huge imperfectly nested loop nest� So the technology developed in this

thesis can be applied to the entire program� A major concern in doing this

is the scalability of this framework� For large codes� the product space could

potentially be very huge and intractable� This presents two problems �

�a� The algorithm to determine embeddings a discussed in Section ����� is

in the worst case quadratic in the number of dimensions of the product

space�

�b� Fourier�Motzkin elimination which is at the heart of applying Farkas�s

lemma is theoretically exponential in the number of variables and con�

straints�

���

In practice� for small codes� the algorithms can be implemented e�ciently�

But� this may change when applied to larger problems�

There are many ways the above issue can be tackled� Firstly� in a setting

such as in a production compiler� the technology can be applied to smaller

segments of the code� In this case� the compiler must decide how the code is

to be segmented� Secondly� it may not be necessary to use the entire product

space� Heuristics can be used to limit the number of choices for an embedding

function�

�� When dependence analysis fails � Recent research such as Fractal Symbolic

Analysis ���� has demonstrated that dependence analysis is too strict to allow

transformations on certain applications even when the transformations are

legal� For example� in kernels like LU factorization with partial pivoting� there

exists a legal way of tiling the loops� But any technology that solely depends

on dependence analysis cannot show the legality of this transformation because

certain dependences are violated� Symbolic analysis is required to show that

these dependences can in fact be violated since the code after restructuring is

semantically equivalent to the original code�

It is an interesting problem to see how the results of Fractal Symbolic Analysis

can be summarized and used within the framework of the product space in

order to be able to synthesize the tiling transformation for codes such as LU

with partial pivoting�

�� Block size determination � In this thesis� we have described a straight�forward

algorithm that determines tile�sizes for the tiled dimensions of the transformed

product space� This algorithm ignores the e�ects of con�ict misses which could

���

make a huge di�erence to the performance� Additional research is required to

study these e�ects and develop an algorithm that can reduce or eliminate

cache con�icts�

�� Recursive code generation � An important parameter in the generation of

block�recursive versions of a code is the size of the base�block when the control

structure changes from recursive to iterative� As discussed in Section ������

the overhead due to recursion can be substantial for small base sizes� The base

size should thus be chosen so that

�a� the overhead due to recursion is small

�b� the compiler backend can schedule the base blocks e�ectively

This thesis does not address the issue of base block size selection� merely

observing that a block size of �� seems to work well for the two examples

discussed� This base size can either be determined empirically or a cost model

can be developed to choose an appropriate base�block size�

Another issue that has not been resolved by this thesis is the e�ect of block�

recursive codes on TLB misses� Experiments discussed in Section ����� show

that block�recursive version of codes interact badly with the TLB for large

array sizes� Research is required to further study this issue� One possibility

of counteracting this e�ect is to store the array in recursive data formats like

space�	lling or block�recursive formats �
��

�� Data transformations � This thesis does not address the issue of also trans�

forming the data in addition restructuring the program� Previous research ����

have shown that certain programs can bene	t from an approach that combines

data transformations and loop transformations�

Bibliography

��� C� Ancourt and F� Irigoin� Scanning polyhedra with DO loops� In Principle
and Practice of Parallel Programming� pages �
���� Apr� �

��

��� E� Anderson� Z� Bai� C� Bischof� J� Demmel� J� Dongarra� J� Du Croz� A� Green�
baum� S� Hammarling� A� McKenney� S� Ostrouchov� and D� Sorensen� editors�
LAPACK Users� Guide� Second Edition� SIAM� Philadelphia� �

��

��� E� Ayguad#e and J� Torres� Partitioning the statement per iteration space using
nonsingular matrices� In ���	 ACM International Conference on Supercomput�
ing� pages ��
����� Tokyo� July �

��

��� U� Banerjee� A theory of loop permutations� In Languages and compilers for
parallel computing� pages ���
�� �
�
�

��� U� Banerjee� Unimodular transformations of double loops� In Languages and
compilers for parallel computing� pages �
����
� �

��

��� S� Carr� K� S� McKinley� and C��W� Tseng� Compiler optimizations for improv�
ing data locality� ACM SIGPLAN Notices� �
������������� Nov� �

��

�
� S� Chaterjee� V� Jain� A� Lebeck� S� Mundhra� and M� Thottethodi� Nonlinear
array layouts for hierarchical memory systems� In International Conference on
Supercomputing �ICS����� June �

�

��� M� Cierniak and W� Li� Unifying data and control transformations for dis�
tributed shared memory machines� In SIGPLAN ���� conference on Program�
ming Languages Design and Implementation� June �

��

�
� P� Claus� Counting solutions to linear and nonlinear constraints through Erhart
polynomials� In �ACM International Conference on Supercomputing� ACM�
May �

��

���� S� Coleman and K� S� McKinley� Tile size selection using cache organization
and data layout� In ACM SIGPLAN ��� Conference on Programming Language
Design and Implementation �PLDI�� ACM Press� June �

��

���

���

���� P� Feautrier� Some e�cient solutions to the a�ne scheduling problem � part
�� one dimensional time� International Journal of Parallel Programming� Oct�
�

��

���� P� Feautrier� Some e�cient solutions to the a�ne scheduling problem � part ii�
multi�dimensional time� International Journal of Parallel Programming� Dec�
�

��

���� S� Ghosh� M� Martonosi� and S� Malik� Cache miss equations� An analytical
representation of cache misses� In Proceedings of the ��th International Confer�
ence on Supercomputing �ICS����� pages ��
����� New York� July
��� �

�
ACM Press�

���� G� Golub and C� V� Loan� Matrix Computations� The Johns Hopkins University
Press� �

��

���� F� G� Gustavson� Recursion leads to automatic variable blocking for
dense linear�algebra algorithms� IBM Journal of Research and Development�
������
�
�
��� Nov� �

�

���� W� Kelly and W� Pugh� Selecting a�ne mappings based on performance esti�
mation� Parallel Processing Letters� �����������
� Sept� �

��

��
� W� Kelly� W� Pugh� and E� Rosser� Code generation for multiple mappings�
In �th Symposium on the Frontiers of Massively Parallel Computation� pages
�������� Feb� �

��

���� K� Kennedy and K� S� McKinley� Optimizing for parallelism and data locality�
In ���� ACM International Conference on Supercomputing� pages ��������
Washington� D�C�� July �

�� ACM Press�

��
� I� Kodukula� N� Ahmed� and K� Pingali� Data�centric multi�level blocking� In
Programming Languages� Design and Implementation� ACM SIGPLAN� June
�

�

���� S� Kung� VLSI Array Processors� Prentice�Hall Inc� �
���

���� M� S� Lam� E� E� Rothberg� and M� E� Wolf� The cache performance and op�
timizations of blocked algorithms� In Fourth International Conference on Ar�
chitectural Support for Programming Languages and Operating Systems� pages
���
�� Apr� ����� �

��

���� W� Li and K� Pingali� Access Normalization� Loop restructuring for NUMA
compilers� ACM Transactions on Computer Systems� �

��

���� W� Li and K� Pingali� A singular loop transformation based on non�singular
matrices� International Journal of Parallel Programming� ������ Apr� �

��

��

���� A� Lim and M� Lam� Maximizing parallelism and minimizing synchronization
with a�ne partitions� Parallel Computing� ��������
�� �

��

���� V� Menon� Symbolic Computation Techniques for Array Computations� PhD
thesis� Cornell University� Computer Science� Aug� �����

���� W� Pugh� The Omega test� A fast and practical integer programming algorithm
for dependence analysis� In Communications of the ACM� pages �������� Aug�
�

��

��
� W� Pugh� Counting solutions to presburger formulas� How and why� Technical
report� University of Maryland� �

��

���� J� Ramanujam and P� Sadayappan� Tiling multidimensional iteration spaces for
multicomputers� Journal of Parallel and Distributed Computing� ��������������
Oct� �

��

��
� J� M� Ramesh C� Agarwal� Fred G� Gustavson and S� Schmidt� Engineering
and Scienti	c Subroutine Library Release � for IBM ES���
� Vector Multipro�
cessors� IBM Systems Journal� �������������� �
�
�

���� V� Sarkar� Automatic selection of high order transformations in the IBM ASTI
optimizer� Technical Report ADTI�
������ Application Development Technol�
ogy Institute� IBM Software Solutions Division� July �

��

���� Y� Song and Z� Li� New tiling techniques to improve cache temporal locality�
In SIGPLAN�� conference on Programming Languages� Design and Implemen�
tation� June �

�

���� M� Wolf and M� Lam� A data locality optimizing algorithm� In SIGPLAN ����
conference on Programming Languages Design and Implementation� June �

��

���� M� E� Wolf and M� S� Lam� An algorithmic approach to compound loop trans�
formations� In Languages and compilers for parallel computing� pages �����
��
�

��

���� M� E� Wolf� D� E� Maydan� and D��K� Chen� Combining loop transforma�
tions considering caches and scheduling� In MICRO ��� pages �
������ Silicon
Graphics� Mountain View� CA� �

��

���� M� Wolfe� Iteration space tiling for memory hierarchies� In Third SIAM Con�
ference on Parallel Processing for Scienti�c Computing� Dec� �
�
�

���� M� Wolfe� High Performance Compilers for Parallel Computing� Addison�
Wesley Publishing Company� �

��

