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Part I

Dual spaces

1 Norms and seminorms

Let V be a vector space over the real numbers R or the complex numbers C.
A nonnegative real-valued function N(v) on V is said to be a seminorm if

N(t v) = |t|N(v)(1.1)

for every v ∈ V and t ∈ R or C, as approriate, and

N(v + w) ≤ N(v) + N(w)(1.2)
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for every v, w ∈ V . Here |t| denotes the absolute value of t ∈ R in the real
case, and the modulus of t ∈ C in the complex case. Note that N(0) = 0, by
applying (1.1) with t = 0. If N(v) > 0 for each v ∈ V with v 6= 0, then N is
said to be a norm on V .

If N is a norm on V , then it is easy to see that

d(v, w) = N(v − w)(1.3)

defines a metric on V , which leads to a topology on V in the usual way. It is
well known and not difficult to check that addition and scalar multiplication on
V are continuous with respect to this topology. Observe that

N(v) − N(w) ≤ N(v − w)(1.4)

for every v, w ∈ V , by the triangle inequality (1.2), and similarly

N(w) − N(v) ≤ N(v − w).(1.5)

This implies that
|N(v) − N(w)| ≤ N(v − w)(1.6)

for every v, w ∈ V , and hence that N is a continuous function on V with respect
to the metric (1.3).

Suppose for the moment that V = Rn or Cn for some positive integer n,
and that N is a norm on V . In this case,

N(v) ≤ C |v|(1.7)

for some nonnegative real number C and every v ∈ V , where |v| denotes the
standard Euclidean norm on Rn or Cn, as appropriate. This can be verified by
expressing v as a finite linear combination of the standard basis vectors in Rn or
Cn, and then using (1.1) and (1.2) to estimate N(v) in terms of the coordinates
of v. Combining this with (1.6), we get that N is a continuous function with
respect to the standard topology on Rn or Cn.

It is well known that closed and bounded subsets of Rn and Cn are compact
with respect to the standard topology, and in particular that the unit sphere
is compact. It is also well known that a continuous real-valued function on
nonempty compact set attains its maximum and minimum on that set, so that
N attains its minimum on the unit sphere. If c is the minimum of N on the
unit sphere, then c > 0, because N(v) > 0 when v 6= 0. Thus N(v) ≥ c when
|v| = 1, which implies that

N(v) ≥ c |v|(1.8)

for every v ∈ Rn or Cn, as appropriate, because of the homogeneity property
of norms. Using this and (1.7), it follows that the topology on Rn or Cn

determined by N is the same as the standard topology.
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2 Completeness

Let V be a real or complex vector space with a norm ‖v‖, and let

d(v, w) = ‖v − w‖(2.1)

be the corresponding metric on V . Using this metric, one can define convergence
of sequences in V , Cauchy sequences in V , and so on, in the usual way. In
particular, V is complete if every Cauchy sequence of elements of V converges
to an element of V , in which case V is said to be a Banach space. It is well
known that Rn and Cn are complete with respect to their standard Euclidean
metrics, for instance. It follows that Rn and Cn are complete with respect to
the metrics associated to arbitrary norms on them, because of the equivalence
of an arbitrary norm with the standard Euclidean norm, as in the previous
section. Similarly, if V is a finite-dimensional real or complex vector space of
dimension n, then there is a one-to-one linear mapping T from Rn or Cn onto
V , as appropriate. If ‖v‖ is a norm on V , then

N(z) = ‖T (z)‖(2.2)

defines a norm on Rn or Cn. Because Rn, Cn are complete with respect to any
norm, it follows that V is complete with respect to ‖v‖.

Let V be a real or complex vector space with a norm ‖v‖ again, and let W
be a linear subspace of V . Thus the restriction of ‖v‖ to v ∈ W defines a norm
on W . Suppose that W is complete with respect to the restriction of ‖v‖ to
v ∈ W , and let us check that W is a closed set in V with respect to the metric
(2.1) on V associated to this norm. Equivalently, this means that if {wj}∞j=1 is
a sequence of elements of W that converges to some v ∈ V with respect to this
norm, then v ∈ W . Under these conditions, {wj}

∞
j=1 is a Cauchy sequence with

respect to this norm, and hence {wj}∞j=1 converges to some w ∈ W because
W is complete. Hence v = w ∈ W , as desired. In particular, it follows that
finite-dimensional linear subspaces of V are closed subsets of V , since they are
always complete.

Let V be a real or complex vector space with a norm ‖v‖, and let
∑∞

j=1 aj be

an infinite series with aj ∈ V for each j. As usual,
∑∞

j=1 aj is said to converge
in V if the corresponding sequence of partial sums

An =

n∑

j=1

aj(2.3)

converges in V . If
∞∑

j=1

‖aj‖(2.4)

converges as an infinite series of nonnegative real numbers, then
∑∞

j=1 aj is said
to converge absolutely in V . This implies that the sequence {An}∞j=1 of partial
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sums is a Cauchy sequence in V , because

‖An − Al‖ =

∥∥∥∥
n∑

j=l+1

aj

∥∥∥∥ ≤
n∑

j=l+1

‖aj‖ → 0(2.5)

when n ≥ l and l → ∞. If V is complete, then it follows that {An}
∞
n=1 converges

in V , so that
∑∞

j=1 aj converges in V .
Conversely, suppose that every absolutely convergent series with terms in

V also converges in V , and let us show that V is complete. If {vj}
∞
j=1 is any

Cauchy sequence in V , then there is a subsequence {vjl
}∞l=1 of {vj}

∞
j=1 such that

‖vjl+1
− vjl

‖ < 2−l(2.6)

for each l, by standard arguments. This implies that

∞∑

l=1

(vjl+1
− vjl

)(2.7)

converges absolutely in V , and hence that
∑∞

l=1(vjl+1
− vjl

) converges in V , by
hypothesis. Equivalently,

n∑

l=1

(vjl+1
− vjl

) = vjn+1
− vj1(2.8)

converges in V as n → ∞, so that {vjn+1
}∞n=1 converges as a sequence in V . It

follows that the whole sequence {vj}∞j=1 converges in V to the same limit, as
desired, because {vj}

∞
j=1 is a Cauchy sequence in V .

3 Bounded linear functionals

Let V be a real or complex vector space with a norm ‖v‖. Remember that
a linear functional on V is a linear mapping from V into the real or complex
numbers as a 1-dimensional real or complex vector space, as appropriate. A
linear functional λ on V is said to be bounded if there is a nonnegative real
number A such that

|λ(v)| ≤ A ‖v‖(3.1)

for every v ∈ V . This implies that

|λ(v) − λ(w)| = |λ(v − w)| ≤ A ‖v − w‖(3.2)

for every v, w ∈ V , and hence that λ is uniformly continuous on V with respect
to the metric associated to the norm ‖v‖. Conversely, if λ is continuous at 0 on
V , then there is a δ > 0 such that |λ(v)| < 1 for every v ∈ V with ‖v‖ < δ, and
one can use this to show that (3.1) holds with A = 1/δ.

If λ is a bounded linear functional on V , then put

‖λ‖∗ = sup{|λ(v)| : v ∈ V, ‖v‖ ≤ 1}.(3.3)
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Thus ‖λ‖∗ ≤ A when λ satisfies (3.1), and conversely (3.1) holds with A = ‖λ‖∗.
Let V ∗ be the space of bounded linear functionals on V . If λ, µ are bounded
linear functionals on V , then it is easy to see that λ+µ is also a bounded linear
functional on V , and that

‖λ + µ‖∗ ≤ ‖λ‖∗ + ‖µ‖∗.(3.4)

Similarly, if λ is a bounded linear functional on V and a is a real or complex
number, as appropriate, then aλ is also a bounded linear functional on V , and

‖aλ‖∗ = |a| ‖λ‖∗.(3.5)

Note that λ = 0 when ‖λ‖∗ = 0. It follows that V ∗ is a vector space with
respect to pointwise addition and scalar multiplication, and that ‖λ‖∗ defines a
norm on V ∗. More precisely, V ∗ is known as the dual of V , and ‖λ‖∗ is known
as the dual norm on V ∗ associated to the norm ‖v‖ on V .

If V = Rn or Cn for some positive integer n, equipped with the standard
Euclidean norm, then it is easy to see that every linear functional on V is
bounded. This also works when V = Rn or Cn is equipped with any norm,
because of the equivalence of any norm with the standard norm in this case, as
in Section 1. If V is any finite-dimensional real or complex vector space with a
norm, then every linear linear functional on V is again continuous, because one
can reduce to the case where V = Rn or Cn using a one-to-one linear mapping
from Rn or Cn onto V , as appropriate. It is well known that the space of linear
functionals on a finite-dimensional vector space V is also a finite-dimensional
vector space, with dimension equal to the dimension of V .

Let V be any real or complex vector space with a norm ‖v‖ again, and let us
check that the corresponding dual space V ∗ is complete with respect to the dual
norm ‖λ‖∗. Let {λj}

∞
j=1 be a Cauchy sequence of bounded linear functionals

on V with respect to the dual norm, so that for each ǫ > 0 there is an L(ǫ) ≥ 1
such that

‖λj − λl‖∗ < ǫ(3.6)

for every j, l ≥ L(ǫ). By definition of the dual norm, this implies that

|λj(v) − λl(v)| ≤ ǫ ‖v‖(3.7)

for every v ∈ V and j, l ≥ L(ǫ). Hence {λj(v)}∞j=1 is a Cauchy sequence in R

or C, as appropriate, for every v ∈ V . Because of the completeness of the real
and complex numbers, it follows that {λj(v)}∞j=1 converges to a real or complex
number λ(v), as appropriate, for every v ∈ V . It is easy to see that λ(v) defines
a linear functional on V , since λj(v) is a linear functional on V for each j.
Taking the limit as j → ∞ in (3.7), we get that

|λ(v) − λl(v)| ≤ ǫ ‖v‖(3.8)

for every v ∈ V and l ≥ L(ǫ). In particular, we can apply this with ǫ = 1 and
l = L(1), to get that

|λ(v)| ≤ |λ(v) − λL(1)(v)| + |λL(1)(v)| ≤ ‖v‖ + ‖λL(1)‖∗ ‖v‖(3.9)
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for every v ∈ V , which implies that λ is a bounded linear functional on V . We
can also reformulate (3.8) as saying that

‖λ − λl‖∗ ≤ ǫ(3.10)

for every l ≥ L(ǫ), so that {λl}
∞
l=1 converges to λ with respect to the dual norm

on V ∗, as desired.

4 The Hahn–Banach Theorem

Let V be a real or complex vector space, and let N be a seminorm on V . Also
let W be a linear subspace of V , and let λ be a linear functional on W such that

|λ(w)| ≤ C N(w)(4.1)

for some nonnegative real number C and every w ∈ W . Under these conditions,
the Hahn–Banach theorem implies that there is an extension of λ to a linear
functional on V that satisfies (4.1) for every w ∈ V , with the same constant C.
Of course, this is trivial when C = 0, and otherwise it is easy to reduce to the
case where C = 1. The proof is well known, and we shall not include it here.

As an application, suppose that ‖ · ‖ is a norm on V , and let v be a nonzero
element of V . Let W be the linear span of v in V , which is the 1-dimensional
subspace of V consisting of vectors of the form t v, where t ∈ R or C, as
appropriate. Let λ be the linear functional on W defined by

λ(t v) = t ‖v‖(4.2)

for every t ∈ R or C, so that

|λ(t v)| = |t| ‖v‖ = ‖t v‖(4.3)

for every t ∈ R or C. The Hahn–Banach theorem implies that there is an
extension of λ to a linear functional on V such that

|λ(w)| ≤ ‖w‖(4.4)

for every w ∈ V . This extension is a bounded linear functional on V with dual
norm equal to 1, since λ(v) = ‖v‖ by construction.

Now let Z be a closed linear subspace of V with respect to ‖ · ‖, and put

NZ(v) = dist(v, Z) = inf{‖v − z‖ : z ∈ Z}(4.5)

for each v ∈ V . This is the distance from v to Z in V with respect to ‖ · ‖, and
it is easy to see that NZ(v) = 0 if and only if v ∈ Z, because Z is closed. If
w, v ∈ V and y, z ∈ Z, then

NZ(v + w) ≤ ‖v + w − z − y‖ ≤ ‖v − z‖ + ‖w − y‖,(4.6)
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because z + y ∈ Z, and hence

Nz(v + w) ≤ Nz(v) + Nz(w),(4.7)

by taking the infimum over y, z ∈ Z in (4.6). Similarly, one can check that

NZ(t v) = |t|NZ(v)(4.8)

for every t ∈ R or C, as appropriate, so that NZ is a seminorm on V . Of course,

NZ(v) ≤ ‖v‖(4.9)

for every v ∈ V , since we can always take z = 0 in (4.5).
Let v be an element of V not in Z, and let W be the linear span of Z and

v in V . Thus W consists of the elements of V of the form t v + z for some
t ∈ R or C, as appropriate, and z ∈ Z, and every element of W has a unique
representation of this type, since v 6∈ Z. Let λ be the linear functional on W
given by

λ(t v + z) = tNZ(v)(4.10)

for each t ∈ R or C and z ∈ Z. Observe that

|λ(t v + z)| = |t|NZ(v) = NZ(t v) = NZ(t v + z)(4.11)

for every t ∈ R or C and z ∈ Z, using the definition of NZ and the fact that Z
is a linear subspace of V in the last step. The Hahn–Banach theorem implies
that there is an extension of λ to a linear functional on V that satisfies

|λ(w)| ≤ NZ(w) ≤ ‖w‖(4.12)

for every w ∈ V . In particular, λ is a bounded linear functional on V with dual
norm less than or equal to 1. One can check that the dual norm of λ is actually
equal to 1, by choosing z ∈ Z such that ‖v + z‖ approximates NZ(v), while
λ(v + z) = NZ(v) for every z ∈ Z. Note that λ(v) = NZ(v) > 0 and λ(z) = 0
for every z ∈ Z, by construction.

5 Quotient spaces

Let V be a real or complex vector space, and let W be a linear subspace of V .
If u, v ∈ V satisfy u − v ∈ W , then put u ∼ v. This defines a relation on V
which is reflexive in the sense that v ∼ v for every v ∈ V , because v − v = 0
is automatically an element of W . Similarly, this relation is symmetric on V ,
which means that u ∼ v is equivalent to v ∼ u, because u − v = −(v − u) ∈ W
if and only if v − u ∈ W . Let us check that this relation is also transitive on
V , so that u ∼ v and v ∼ z imply that u ∼ z. In this case, u − v ∈ W and
v − z ∈ W , and hence

u − z = (u − v) + (v − z) ∈ W,(5.1)
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as desired. Thus u ∼ v is an equivalence relation on V , since it is reflexive,
symmetric, and transitive. If u, u′ ∈ V satisfy u ∼ v and u′ ∼ v′, so that
u − v ∈ W and u′ − v′ ∈ W , then we get that

(u + u′) − (v + v′) = (u − v) + (u′ − v′) ∈ W,(5.2)

which implies that
u + u′ ∼ v + v′.(5.3)

Similarly, if u, v ∈ V satisfy u ∼ v and t ∈ R or C, as appropriate, then

t u ∼ t v,(5.4)

because u − v ∈ W and hence t u − t v = t (u − v) ∈ W .
Let v be any element of V , and put

v + W = {v + w : w ∈ W}.(5.5)

This is the same as the set of u ∈ V such that u ∼ v, which is known as the
equivalence class in V that contains v. Note that v + W = v′ + W for some
v, v′ ∈ V if and only if v ∼ v′. If u ∈ V is an element of both v +W and v′ +W
for some v, v′ ∈ V , then u ∼ v and u ∼ v′, so that v ∼ v′ and v + W = v′ + W .
It follows that any two equivalence classes in V are either the same or disjoint
as subsets of V .

Let V/W be the set of these equivalence classes in V , and let q be the
quotient mapping from V onto V/W that sends each v ∈ V to the corresponding
equivalence class q(v) = v + W . If v, v′ ∈ V , then put

(v + W ) + (v′ + W ) = (v + v′) + W.(5.6)

If u, u′ ∈ V satisfy u + W = v + W and u′ + W = v′ + W , which is to say that
u ∼ v and u′ ∼ v′, then we have seen that u + u′ ∼ v + v′, and hence

(u + u′) + W = (v + v′) + W.(5.7)

This shows that addition on V/W is well-defined, in the sense that the sum
of two equivalence classes does not depend on how the equivalence classes are
represented. Similarly, if v ∈ V and t ∈ R or C, as appropriate, then we put

t (v + W ) = t v + W,(5.8)

and we have that
t u + W = t v + W(5.9)

when u ∈ V and u + W = v + W . Thus scalar multiplication on V/W is
also well-defined, and it is well known and easy to check that V/W becomes a
vector space over R or C, as appropriate, with these definitions of addition and
scalar multiplication, and with W = 0 + W as the zero element in V/W . By
construction, the natural quotient mapping q is a linear mapping from V onto
V/W with kernel equal to W , since q(v) = 0 in V/W if and only if v ∈ W .
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Let Z be another vector space over the real or complex numbers, depending
on whether V is real or complex. Also let T be a linear mapping from V into
Z whose kernel contains W , so that T (w) = 0 in Z for every w ∈ W . Thus

T (u) = T (v)(5.10)

in Z when u, v ∈ V satisfy u ∼ v, which is to say that u− v ∈ W . This permits
us to define a mapping T̂ from V/W into Z by

T̂ (v + W ) = T (v),(5.11)

since (5.10) holds when u + W = v + W . More precisely, T̂ is a linear mapping

from V/W into Z under these conditions, and the composition of T̂ with q is
equal to T .

6 Quotient norms

Let V be a real or complex vector space with a norm ‖v‖V , and let W be a
closed linear subspace of V . Put

NW (v) = dist(v,W ) = inf{‖v − w‖V : w ∈ W}(6.1)

as in Section 4, so that NW is a seminorm on V and NW (v) = 0 if and only
if v ∈ W . Let V/W be the quotient of V by W , as in the previous section,
and let q be the natural quotient mapping from V onto V/W . If u, v ∈ V and
q(u) = q(v), then u − v ∈ W , and hence NW (u) = NW (v). This permits us to
define a nonnegative real-valued function ‖ · ‖V/W on V/W by putting

‖q(v)‖V/W = NW (v).(6.2)

One can check that this defines a norm on V/W , because of the corresponding
properties of NW on V . This is known as the quotient norm on V/W associated
to the norm ‖v‖V on V .

By construction,
‖q(v)‖V/W ≤ ‖v‖V(6.3)

for every v ∈ V , and hence

‖q(u) − q(v)‖V/W = ‖q(u − v)‖V/W ≤ ‖u − v‖V(6.4)

for every u, v ∈ V . As usual, this implies that q is uniformly continuous as a
mapping from V with the metric associated to the norm ‖ · ‖V onto V/W with
the metric associated to the quotient norm ‖ · ‖V/W . If v ∈ V and r is a positive
real number, then let B(v, r) be the open ball in V with center v and radius r,
so that

B(v, r) = {u ∈ V : ‖u − v‖ < r}.(6.5)

Because of (6.4), q maps B(v, r) into the open ball in V/W with center q(v)
and radius r with respect to the quotient norm ‖ · ‖V/W . Let us check that q
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actually maps B(v, r) onto the open ball in V/W with center q(v) and radius
r. If u ∈ V satisfies ‖q(u) − q(v)‖V/W < r, then there is a w ∈ W such that
‖u + w − v‖V < r, because of the way that the quotient norm is defined. This
implies that u + w ∈ B(v, r) and q(u + w) = q(u), so that q(u) is in the image
of B(v, r) under q, as desired. It follows that q is an open mapping from V onto
V/W , which means that q maps open subsets of V to open subsets of V/W .

Suppose now that V is complete with respect to ‖v‖V , and let us show
that V/W is complete with respect to the corresponding quotient norm. As
in Section 2, it suffices to show that every absolutely convergent infinite series
with terms in V/W converges in V/W under these conditions. In this case, this
means that if {vj}∞j=1 is a sequence of elements of V such that

∞∑

j=1

‖q(vj)‖V/W(6.6)

converges as an infinite series of nonnegative real numbers, then
∑∞

j=1 q(vj)
converges in V/W . Because of the way that the quotient norm is defined, for
each positive integer j there is a wj ∈ W such that

‖vj − wj‖V < ‖q(vj)‖V/W + 1/j2.(6.7)

This implies that
∑∞

j=1 ‖vj − wj‖V converges as an infinite series of nonnega-

tive real numbers, since
∑∞

j=1 1/j2 converges. It follows that
∑∞

j=1(vj − wj)
converges in V , because V is complete. Of course,

q
( n∑

j=1

(vj − wj)
)

=

n∑

j=1

q(vj − wj) =

n∑

j=1

q(vj)(6.8)

for each n ≥ 1. Using this and the continuity of q, we get that

lim
n→∞

n∑

j=1

q(vj) = q
( ∞∑

j=1

(vj − wj)
)
,(6.9)

as desired.
Let Z be another linear subspace of V , and consider the linear subspace

W + Z of V spanned by W and Z, which is given by

W + Z = {w + z : w ∈ W, z ∈ Z}.(6.10)

If Z is a finite-dimensional linear subspace of V , then its image q(Z) in V/W
under q also has finite dimension, with the dimension of q(Z) being less than
or equal to the dimension of Z. In particular, q(Z) is a closed linear subspace
of V/W with respect to the quotient norm when Z is finite-dimensional, as
in Section 2. This implies that the inverse image q−1(q(Z)) of q(Z) under
q is a closed linear subspace of V when Z has finite dimension, because q is
continuous. Hence W + Z is a closed linear subspace of V when W is a closed
linear subspace of V and Z is a finite-dimensional linear subspace of V , since
W + Z = q−1(q(Z)).
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7 Duals of quotient spaces

Let V be a real or complex vector space with a norm ‖v‖V , and let W be a
closed linear subspace of V . Also let V/W be the corresponding quotient space,
with the quotient mapping q from V onto V/W and the quotient norm ‖ · ‖V/W

on V/W . If λ̂ is a bounded linear functional on V/W , then it is easy to see that

λ(v) = λ̂(q(v))(7.1)

is a bounded linear functional on V . More precisely, the dual norm ‖λ‖V ∗ of λ

on V with respect to ‖ ·‖V is less than or equal to the dual norm ‖λ̂‖(V/W )∗ of λ̂
on V/W with respect to the quotient norm ‖·‖V/W , because of (6.3). Of course,
λ(v) = 0 for every v ∈ W , because q(v) = 0 when v ∈ W , by construction.

Conversely, suppose that λ is a bounded linear functional on V such that
λ(v) = 0 for every v ∈ W . As in Section 5, there is a linear functional λ̂ on
V/W that satisfies (7.1) for every v ∈ V . Note that

|λ(v)| ≤ ‖λ‖V ∗ ‖v‖V(7.2)

for every v ∈ V , which implies that

|λ(v)| = |λ(v − w)| ≤ ‖λ‖V ∗ ‖v − w‖V(7.3)

for every v ∈ V and w ∈ W , and hence that

|λ(v)| ≤ ‖λ‖V ∗ NW (v)(7.4)

for every v ∈ V , where NW (v) is as in the previous section. Equivalently,

|λ̂(q(v))| ≤ ‖λ‖V ∗ ‖q(v)‖V/W(7.5)

for every v ∈ V , so that λ̂ is a bounded linear functional on V/W , with

‖λ̂‖(V/W )∗ ≤ ‖λ‖V ∗ . It follows that

‖λ̂‖(V/W )∗ = ‖λ‖V ∗(7.6)

when λ and λ̂ are related as in (7.1), since the opposite inequality was obtained
earlier.

Consider the linear subspace W⊥ of V ∗ defined by

W⊥ = {λ ∈ V ∗ : λ(v) = 0 for every v ∈ W}.(7.7)

Note that this is a closed subset of V ∗ with respect to the dual norm ‖λ‖V ∗ . The
preceding discussion shows that there is a natural isometric linear isomorphism
from (V/W )∗ onto W⊥, which sends λ̂ ∈ (V/W )∗ to λ = λ̂ ◦ q ∈ W⊥.
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8 Duals of linear subspaces

Let M and N be metric spaces, let E be a dense subset of M , and let f be
a uniformly continuous mapping from E into N . If N is complete, then it is
well known that there is a unique extension of f to a uniformly continuous
mapping from M into N . More precisely, only continuity of the extension is
needed to get uniqueness. If E is not dense in M , then one can extend f to
the closure E of E in M . Let us briefly sketch the proof of this fact. If x ∈ E,
then there is a sequence {xj}

∞
j=1 of elements of E that converges to x in M . In

particular, {xj}
∞
j=1 is a Cauchy sequence of elements of E, and one can check

that {f(xj)}∞j=1 is a Cauchy sequence in N , because f is uniformly continuous.
If N is complete, then it follows that {f(xj)}

∞
j=1 converges in N . If {x′

j}
∞
j=1 is

another sequence of elements of E that converges to x, then one can use the
uniform continuity of f again to show that {f(x′

j)}
∞
j=1 converges to the same

point in N as {f(xj)}
∞
j=1. The extension of f to E is defined by taking f(x) to

be the common value of the limit in N , and one can show that this is uniformly
continuous on E using the uniform continuity of f on E.

Let V be a real or complex vector space with a norm ‖v‖V , and let W
be a linear subspace of V . If λ is a bounded linear functional on W , then λ
is uniformly continuous on W , as in Section 3. Thus λ extends to a unique
uniformly continuous mapping from the closure W of W in V into the real or
complex numbers, as appropriate, since R and C are complete. It is easy to
check that this extension is also a bounded linear functional on W under these
conditions, with the same dual norm with respect to the restriction of ‖ · ‖V to
W as the dual norm of λ on W . Let us restrict our attention to closed linear
subspaces W of V from now on in this section.

If λ is a bounded linear functional on V , then the restriction RW (λ) of λ to
W defines a bounded linear functional on W . More precisely, if ‖λ‖V ∗ denotes
the dual norm of a bounded linear functional λ on V with respect to ‖v‖V , and
if ‖µ‖W∗ denotes the dual norm of a bounded linear functional µ on W with
respect to the restriction of ‖v‖V to v ∈ W , then

‖RW (λ)‖W∗ ≤ ‖λ‖V ∗(8.1)

for every λ ∈ V ∗. Of course, RW (λ) = 0 if and only if λ ∈ W⊥, where W⊥ is
as in (7.7). If µ is any bounded linear functional on W , then the Hahn–Banach
theorem implies that there is a λ ∈ V ∗ such that µ = RW (λ) and

‖λ‖V ∗ = ‖µ‖W∗ .(8.2)

In particular, RW defines a linear mapping from V ∗ onto W ∗.
Since W⊥ is a closed linear subspace of V ∗, we can define the quotient norm

on V ∗/W⊥ associated to the dual norm ‖λ‖V ∗ on V ∗ as before. Because the

kernel of RW is equal to W⊥, there is a one-to-one linear mapping R̂W from
V ∗/W⊥ onto W ∗ whose composition with the natural quotient mapping from

V ∗ onto V ∗/W⊥ is equal to RW . Using (8.1) and (8.2), one can check that R̂W

is an isometry with respect to the quotient norm on V ∗/W⊥ just mentioned
and the dual norm ‖µ‖W∗ on W ∗.
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9 Second duals

Let V be a real or complex vector space with a norm ‖v‖, and let V ∗ be the dual
space of bounded linear functionals on V , with the corresponding dual norm
‖λ‖∗. Repeating the process, we get the second dual space V ∗∗ of bounded
linear functionals on V ∗, with the corresponding dual norm ‖ · ‖∗∗. If v ∈ V ,
then

Lv(λ) = λ(v)(9.1)

defines a linear functional on V ∗, which is bounded because

|Lv(λ)| = |λ(v)| ≤ ‖λ‖∗ ‖v‖(9.2)

for each λ ∈ V ∗. More precisely, this shows that ‖Lv‖∗∗ ≤ ‖v‖, and we actually
have that

‖Lv‖∗∗ = ‖v‖(9.3)

for every v ∈ V . Indeed, if v 6= 0, then the Hahn–Banach theorem implies that
there is a λ ∈ V ∗ such that ‖λ‖∗ = 1 and λ(v) = ‖v‖, as in Section 4. This
shows that equality can hold in (9.2) with λ 6= 0, so that (9.3) holds, as desired.
Thus the mapping v 7→ Lv is an isometric linear embedding of V into V ∗∗.

If every element of V ∗∗ is of the form Lv for some v ∈ V , then V is said to
be reflexive. It is easy to see that this happens when V is finite-dimensional,
in which case V ∗ and V ∗∗ are also finite-dimensional, with the same dimension
as V . Remember that dual spaces are automatically complete, as in Section 3.
Thus V has to be complete in order to be reflexive, because V ∗∗ is complete.

Let W be a closed linear subspace of V , and let W⊥ be the corresponding
closed linear subspace of V ∗ as in (7.7). Repeating the process, we get a linear
subspace (W⊥)⊥ of V ∗∗ which is closed with respect to ‖ · ‖∗∗. If v ∈ W , then
Lv(λ) = λ(v) = 0 for every λ ∈ W⊥, and hence Lv ∈ (W⊥)⊥. However, if
v ∈ V \W , then there is a λ ∈ W⊥ such that λ(v) 6= 0, as in Section 4. This
implies that Lv 6∈ (W⊥)⊥ when v ∈ V \W , so that Lv ∈ (W⊥)⊥ if and only if
v ∈ W .

If V is reflexive, then it follows that (W⊥)⊥ corresponds exactly to W under
the natural isomorphism between V and V ∗∗. In this case, one can check that
W and V/W are both reflexive as well. Remember that the dual of W can be
identified with V ∗/W⊥ in a natural way, and then the dual of V ∗/W⊥ can be
identified with (W⊥)⊥. Similarly, the dual of V/W can be identified with W⊥,
and the dual of W⊥ can be identified with V ∗∗/(W⊥)⊥. If V is reflexive, then
one can check that these identifications match up in the right way, to get that
W and V/W are reflexive too.

10 Minkowski functionals

Let V be a real or complex vector space. As usual, a subset A of V is said to
be convex if

t v + (1 − t)w ∈ A(10.1)
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for every v, w ∈ A and t ∈ R with 0 ≤ t ≤ 1. Similarly, we say that A is
balanced if

tA ⊆ A(10.2)

for every t ∈ R or C, as appropriate, with |t| ≤ 1, where tA is the set of vectors
of the form t v with v ∈ A. If A is balanced and nonempty, then 0 ∈ A, and the
condition that (10.2) hold for t ∈ R with 0 ≤ t ≤ 1 means that A is “star-like
about 0”, which is also implied by convexity when 0 ∈ A. If A is star-like about
0, then A is balanced if and only if (10.2) holds when t ∈ R or C satisfies |t| = 1.
In this case, we have that

tA = A(10.3)

for every t ∈ R or C, as appropriate, with |t| = 1, since we can also apply
(10.2) to t−1 when |t| = 1. If V is a real vector space, then (10.3) reduces to
the condition that A be symmetric about the origin, in the sense that −A = A.

Suppose now that V is equipped with a norm ‖v‖, and that A is a nonempty
balanced convex open subset of V . In particular, A contains a ball of some
positive radius around 0, since 0 ∈ A and A is an open set in V . The Minkowski
functional on V corresponding to A is defined by

NA(v) = inf{r > 0 : r−1 v ∈ A} = inf{r > 0 : v ∈ r A}(10.4)

for each v ∈ V . More precisely, the infima are taken over all positive real
numbers r with the indicated properties, and these properties hold when r is
sufficiently large because A contains a ball around 0 in V . By construction,

NA(t v) = tNA(v)(10.5)

for every v ∈ V and positive real number t, and in fact

NA(t v) = |t|NA(v)(10.6)

for every v ∈ V and t ∈ R or C, as appropriate, because A is balanced.
If v ∈ V satisfies NA(v) < 1, then v ∈ r A for some r < 1, and hence v ∈ A,

because r A ⊆ A. Conversely, if v ∈ A, then r−1 v ∈ A when r is sufficiently
close to 1, because A is an open set in V . This implies that NA(v) < 1, and it
follows that

A = {v ∈ V : NA(v) < 1}.(10.7)

Now let v and w be arbitrary elements of V , and let us check that

NA(v + w) ≤ NA(v) + NA(w).(10.8)

If rv > NA(v) and rw > NA(w), then r−1
v v, r−1

w w ∈ A, because A is star-like
about 0. This implies that

(rv + rw)−1 (v + w) =
rv

rv + rw
(r−1

v v) +
rw

rv + rw
(r−1

w w) ∈ A,(10.9)

because A is convex, so that

NA(v + w) ≤ rv + rw.(10.10)
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Thus we get (10.8), since (10.10) holds for every rv > NA(v) and rw > NA(w).
This shows that NA(v) is a seminorm on V under these conditions. One can

also check that
NA(v) ≤ C ‖v‖(10.11)

for some C ≥ 0 and every v ∈ V , because A contains a ball around 0 with
respect to ‖v‖. This implies that NA is a continuous function on V with respect
to ‖v‖, because of (1.6). Conversely, if N is any seminorm on V , then it is easy
to see that the open unit ball

{v ∈ V : N(v) < 1}(10.12)

in V with respect to N is a balanced convex subset of V . If N is continuous
with respect to ‖v‖ on V , then (10.12) is an open set in V with respect to ‖v‖.

11 Some separation theorems

Let V be a real or complex vector space with a norm ‖v‖, and let A be a
nonempty balanced convex open subset of V . Thus the Minkowski functional
NA(v) corresponding to A is a seminorm on V that is bounded by a constant
multiple of ‖v‖, as in the previous section. Suppose that v ∈ V \A, and let λ be
the linear functional defined initially on the 1-dimensional linear subspace of V
passing through v by

λ(t v) = tNA(v)(11.1)

for every t ∈ R or C, as appropriate. Thus

|λ(t v)| = |t|NA(v) = NA(t v)(11.2)

for every t ∈ R or C, and the Hahn–Banach theorem implies that there is an
extension of λ to a linear functional on V that satisfies

|λ(w)| ≤ NA(w)(11.3)

for every w ∈ V . In particular,

|λ(w)| < 1(11.4)

for each w ∈ A, λ(v) = NA(v) ≥ 1, and this extension is a bounded linear
functional on V , because NA(w) is bounded by a constant multiple of ‖w‖.

Suppose now that E ⊆ V is nonempty, balanced, closed, and convex, and
that v ∈ V \E. Because E is closed and v 6∈ E,

‖v − y‖ ≥ r(11.5)

for some r > 0 and every y ∈ E. Put

A = E + B(0, r) = {y + z : y ∈ E, z ∈ V, and ‖z‖ < r}.(11.6)
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Thus v ∈ V \A, by (11.5), and one can check that A is a balanced convex open
set in V , because of the corresponding porperties of E and B(0, r).

As before, there is a bounded linear functional λ on V such that |λ(v)| ≥ 1
and (11.4) holds for every w ∈ A. This implies that

|λ(y) + λ(z)| ≤ 1(11.7)

for every y ∈ E and z ∈ V with ‖z‖ < r, by applying (11.4) to w = y + z ∈ A.
Using this, one can check that

|λ(y)| ≤ 1 − r(11.8)

for every y ∈ E, by considering z’s which are suitable scalar multiples of v.

Part II

Dual linear mappings

12 Bounded linear mappings

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , respectively. A linear mapping T from V into W is said
to be bounded if there is a nonnegative real number A such that

‖T (v)‖W ≤ A ‖v‖V(12.1)

for every v ∈ V . In this case,

‖T (u) − T (v)‖W = ‖T (u − v)‖W ≤ A ‖u − v‖V(12.2)

for every u, v ∈ V , which implies that T is uniformly continuous with respect
to the metrics corresponding to the norms on V and W . Conversely, if T is
continuous at 0, then there is a δ > 0 such that ‖T (v)‖W < 1 for every v ∈ V
with ‖v‖V < δ, and one can check that (12.1) holds with A = 1/δ. Note that
bounded linear functionals on V are the same as bounded linear mappings from
V into R or C, respectively. If V = Rn or Cn with the standard norm for some
positive integer n, then it is easy to see that any linear mapping T from V into
any W is bounded. This also works when V = Rn or Cn is equipped with any
norm, because of the equivalence of any norm with the standard norm, as in
Section 1. Similarly, this works as well for any finite-dimensional vector space
V , since V is isomorphic to Rn or Cn for some n.

If T is a bounded linear mapping from V into W , then put

‖T‖op = sup{‖T (v)‖W : v ∈ V, ‖v‖V ≤ 1}.(12.3)

This is known as the operator norm of T , and it reduces to the dual norm of a
bounded linear functional when W = R or C, as approriate, with the standard
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norm. Equivalently, (12.1) holds with A = ‖T‖op, and ‖T‖op is the smallest
nonnegative real number with this property. If T ′ is another bounded linear
mapping from V into W , then it is easy to see that T + T ′ is bounded as well,
and that

‖T + T ′‖op ≤ ‖T‖op + ‖T ′‖op.(12.4)

Similarly, if a is a real or complex number, as appropriate, then aT is also a
bounded linear mapping from V into W , and

‖aT‖op = |a| ‖T‖op.(12.5)

Thus the space BL(V,W ) of bounded linear mappings from V into W is a
vector space with respect to pointwise addition and scalar multiplication, and
the operator norm defines a norm on BL(V,W ). If W is complete, then one
can show that BL(V,W ) is complete with respect to the operator norm, in
essentially the same way as for the dual space in Section 3.

Suppose that V1, V2, and V3 are vector spaces, all real or all complex, and
equipped with norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖3, respectively. Let T1 be a bounded
linear mapping from V1 into V2, and let T2 be a bounded linear mapping from
V2 into V3. The composition T2 ◦T1 of T1 and T2 is the linear mapping from V1

into V3 defined by
(T2 ◦ T1)(v) = T2(T1(v))(12.6)

for every v ∈ V1. It is easy to see that T2 ◦ T1 is also a bounded linear mapping
from V1 into V3 under these conditions, and that

‖T2 ◦ T1‖op,13 ≤ ‖T1‖op,12 ‖T2‖op,23,(12.7)

where the subscripts indicate the spaces and norms used in the corresponding
operator norm.

13 Dual mappings

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , respectively. If T is a bounded linear mapping from V
into W and λ is a bounded linear functional on W , then

T ∗(λ) = λ ◦ T(13.1)

is a bounded linear functional on V , with

‖T ∗(λ)‖V ∗ ≤ ‖T‖op ‖λ‖W∗ .(13.2)

Here ‖ ·‖V ∗ , ‖ ·‖W∗ are the dual norms on the dual spaces V ∗, W ∗ associated to
the given norms on V , W , respectively, and ‖T‖op is the corresponding operator
norm of T , as in the previous section. It is easy to see that T ∗ defines a linear
mapping from W ∗ into V ∗ which is bounded, with

‖T ∗‖op,∗ ≤ ‖T‖op(13.3)
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by (13.2), where ‖T ∗‖op,∗ is the operator norm of T ∗ with respect to the dual
norms ‖ · ‖W∗ , ‖ · ‖V ∗ .

Let us check that
‖T ∗‖op,∗ = ‖T‖op.(13.4)

If v is any vector in V and λ is any bounded linear functional on W , then

|λ(T (v))| = |(T ∗(λ))(v)| ≤ ‖T ∗(λ)‖V ∗ ‖v‖V ≤ ‖T ∗‖op,∗ ‖λ‖W∗ ‖v‖V .(13.5)

Using the Hahn–Banach theorem, there exist λ ∈ W ∗ which give

‖T (v)‖W ≤ ‖T ∗‖op,∗ ‖v‖V .(13.6)

This implies that ‖T‖op ≤ ‖T ∗‖op,∗, as desired.
Observe that

T 7→ T ∗(13.7)

defines a linear mapping from BL(V,W ) into BL(W,V ). Suppose now that V1,
V2, and V3 are vector spaces, all real or all complex, and equipped with norms.
If T1 is a bounded linear mapping from V1 into V2 and T2 is a bounded linear
mapping from V2 into V3, then it is easy to see that

(T2 ◦ T1)
∗ = T ∗

1 ◦ T ∗
2(13.8)

as linear mappings from V ∗
3 into V ∗

1 . Indeed,

(T2 ◦ T1)
∗(λ) = λ ◦ T2 ◦ T1 = (T ∗

2 (λ)) ◦ T1 = T ∗
1 (T ∗

2 (λ))(13.9)

for every λ ∈ V ∗
3 .

Let V be a real or complex vector space equipped with a norm, and let W
be a linear subspace of V . Let T be the natural inclusion mapping of W into V ,
which sends w ∈ W to itself as an element of V . In this case, the corresponding
dual mapping T ∗ sends a bounded linear functional λ on V to its restriction
to W , as in Section 8. Similarly, if W is a closed linear subspace of V , then
the natural quotient mapping q from V onto V/W is a bounded linear mapping
with respect to the quotient norm on V/W . The dual q∗ of q is an isometric
embedding of (V/W )∗ into V ∗, as in Section 7.

14 Invertibility

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , respectively. A bounded linear mapping T from V into
W is said to be invertible if T is a one-to-one mapping from V onto W for which
the corresponding inverse mapping T−1 : W → V is bounded. In this case, it
is easy to see that the corresponding dual operator T ∗ : W ∗ → V ∗ is invertible,
and that

(T ∗)−1 = (T−1)∗.(14.1)
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More precisely, if IV and IW are the identity mappings on V and W , respectively,
then their duals mappings are the same as the identity mappings IV ∗ and IW∗

on V ∗ and W ∗, respectively. Thus

T−1 ◦ T = IV , T ◦ T−1 = IW(14.2)

imply that

T ∗ ◦ (T−1)∗ = (T−1 ◦ T )∗ = IV ∗ , (T−1)∗ ◦ T ∗ = (T ◦ T−1)∗ = IW∗ ,(14.3)

as desired.
Conversely, suppose that T ∗ is invertible, and let us show that this implies

that T is invertible when V is complete. By the argument in the previous
paragraph, the dual T ∗∗ of T ∗ is invertible as a bounded linear mapping from
the second dual V ∗∗ of V onto the second dual W ∗∗ of W . If V and W are
reflexive, then it is easy to see that T ∗∗ corresponds exactly to T under the
natural isomorphisms between V and V ∗∗ and W and W ∗∗, and hence that T
is invertible. Otherwise, T corresponds to the restriction of T ∗∗ to the image
of the natural embedding of V into V ∗∗, which takes values in the image of the
natural embedding of W in W ∗∗. This implies that

‖T (v)‖W ≥ c ‖v‖V(14.4)

for some c > 0 and every v ∈ V , because of the analogous condition for T ∗∗

that follows from invertibility.
Let N (T ∗) be the nullspace or kernel of T ∗, which is the linear subspace of

W ∗ consisting of the bounded linear functionals λ on W such that T ∗(λ) = 0.
Also let T (V ) be the image of T in W , which is the linear subspace of W
consisting of vectors of the form T (v) with v ∈ V . It is easy to see that

N (T ∗) = T (V )⊥(14.5)

for any bounded linear mapping T : V → W , where T (V )⊥ is as in (7.7). More
precisely, T ∗(λ) = 0 if and only if

(T ∗(λ))(v) = λ(T (v)) = 0(14.6)

for every v ∈ V , which is the same as saying that λ ∈ T (V )⊥. In particular, if
T ∗ is one-to-one, then N (T ∗) = {0}, which implies that T (V ) is dense in W .
Otherwise, if T (V ) is not dense in W , then there is a nonzero bounded linear
functional on W equal to 0 on T (V ) as in Section 4, contradicting the fact that
T (V )⊥ = N (T ∗) = {0}. Conversely, if T (V ) is dense in W , then T (V )⊥ = {0},
which implies that N (T ∗) = {0} and hence that T ∗ is one-to-one.

A bounded linear mapping T : V → W satisfies (14.4) for some c > 0 if
and only if T is invertible as a mapping from V onto T (V ). If V is complete,
then it follows that T (V ) is complete as well. This implies that T (V ) is a closed
linear subspace of W , as in Section 2. If T ∗ is invertible, then N (T ∗) = {0},
so that T (V ) is dense in W , as in the previous paragraph. Thus we get that
T (V ) = W under these conditions, because T (V ) is both dense and closed in
W . This shows that T : V → W is invertible when T ∗ : W ∗ → V ∗ is invertible
and V is complete, as desired.
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15 Open mappings

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , respectively. A bounded linear mapping T from V into
W is said to be an open mapping if T (U) is an open set in W for every open
set U in V . In particular, if U is the open unit ball in V , then it follows that

BW (0, c) ⊆ T (BV (0, 1))(15.1)

for some c > 0, where BV (v, r) and BW (w, r) are the open balls in V and W
centered at v and w and with radius r > 0, respectively. Conversely, (15.1)
implies that

BW (T (v), c r) ⊆ T (BV (v, r))(15.2)

for every v ∈ V and r > 0, and hence that T is an open mapping. Note that open
linear mappings are surjective, and that a bounded linear mapping T : V → W
is invertible if and only if it is one-to-one and open.

Let T be a bounded linear mapping from V into W again, and let Z be a
closed linear subspace of V that is contained in the kernel of T . Thus

‖T (v)‖W = ‖T (v − z)‖W ≤ ‖T‖op ‖v − z‖V(15.3)

for every z ∈ Z, which implies that

‖T (v)‖W ≤ ‖T‖op NZ(v)(15.4)

for every v ∈ V , where NZ(v) is as in (4.5). If q is the natural quotient mapping

from V onto V/Z, then there is a linear mapping T̂ from V/Z into W such that

T̂ ◦ q = T , as in Section 5. The estimate (15.4) implies that T̂ is a bounded
linear mapping from V/Z into W with respect to the quotient norm on V/Z, with
operator norm less than or equal to the operator norm of T . Hence the operator
norms of T and T̂ are equal, because the operator norm of T is automatically
less than or equal to the operator norm of T̂ .

Under these conditions, it is easy to see that T is an open mapping from V
onto W if and only if T̂ is an open mapping from V/Z onto W . Observe also
that the kernel of T is always a closed linear subspace of V when T is bounded,
and that T̂ is one-to-one when Z is the kernel of T . In particular, it follows that
T̂ is invertible when T is an open mapping and Z is the kernel of T .

16 A criterion for openness

Let V and W be vector spaces, both real or both complex, and with norms
‖v‖V and ‖w‖W , respectively. Let T be a bounded linear mapping from V into
W , and suppose that

BW (0, c) ⊆ T (BV (0, 1))(16.1)

for some c > 0. Here T (BV (0, 1)) is the closure of T (BV (0, 1)) in W , so that
(16.1) automatically implies that

BW (0, c) ⊆ T (BV (0, 1)),(16.2)
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where BW (w, r) denotes the closed ball in W with center w and radius r. If V
is complete, then this implies that

BW (0, c) ⊆ T (BV (0, 1)),(16.3)

and hence that T is an open mapping of V onto W . To show this, it suffices to
consider the case where c = 1, since otherwise we can replace T with c−1 T .

If c = 1, then (16.2) implies that for each w ∈ W with ‖w‖W ≤ 1 and
every ǫ > 0 there is a v ∈ V such that ‖v‖V ≤ 1 and ‖w − T (v)‖W < ǫ, by
(16.2). Equivalently, for each w ∈ W and ǫ > 0 there is a v ∈ V such that
‖v‖V ≤ ‖w‖W and ‖w−T (v)‖W < ǫ. Let w ∈ W with ‖w‖W < 1 be given, and
let {ǫj}

∞
j=1 be an infinite sequence of positive real numbers such that

∞∑

j=1

ǫj < 1 − ‖w‖W .(16.4)

Let v1 be an element of V such that ‖v1‖V ≤ ‖w‖W and ‖w − T (v1)‖W < ǫ1.
Similarly, if v1, . . . , vn ∈ V have already been chosen for some positive integer
n, then let vn+1 be an element of V such that

‖vn+1‖V ≤

∥∥∥∥w −
n∑

j=1

T (vj)

∥∥∥∥
W

(16.5)

and ∥∥∥∥w −
n∑

j=1

T (vj) − T (vn+1)

∥∥∥∥
W

< ǫn+1.(16.6)

Thus ‖vn+1‖V < ǫn for each n ≥ 1, and

∞∑

j=1

‖vj‖V < ‖v1‖V +

∞∑

j=1

ǫj < ‖w‖W + (1 − ‖w‖W ) = 1.(16.7)

This implies that
∑∞

j=1 vj converges absolutely, and hence converges in V , since

V is complete. Put v =
∑∞

j=1 vj , so that ‖v‖V < 1, by (16.7). Of course,

T (v) =
∞∑

j=1

T (vj),(16.8)

because T is bounded and hence continuous. It follows that

w = lim
n→∞

n∑

j=1

T (vj) = T (v),(16.9)

as desired, using (16.6) and the fact that ǫn → 0 as n → ∞ in the first step.
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17 The open mapping theorem

Let V and W be vector spaces again, both real or both complex, and with norms
‖v‖V and ‖w‖W , respectively. Also let T be a bounded linear mapping from
V onto W . If V and W are complete, then Banach’s open mapping theorem
implies that T is an open mapping.

To see this, observe that

∞⋃

n=1

T (BV (0, n)) = T (V ) = W,(17.1)

and hence
∞⋃

n=1

T (BV (0, n)) = W.(17.2)

Because W is complete, the Baire category theorem implies that T (BV (0, n))
has nonempty interior in W for some positive integer n. Of course, this implies
that T (BV (0, r)) has nonempty interior for every r > 0, by linearity.

It is easy to see that

T (BV (0, 1/2)) − T (BV (0, 1/2)) ⊆ T (BV (0, 1)),(17.3)

where the left side is the set of differences of any two elements of T (BV (0, 1/2)).
If T (BV (0, 1/2)) has an interior point in W , as in the previous paragraph, then
it follows that 0 is in the interior of T (BV (0, 1)). Equivalently, this means that
(16.1) holds for some c > 0. If V is complete, then it follows that T is an open
mapping, as in the previous section.

18 Openness and duality

Let V and W be vector spaces which are both real or both complex, as usual,
and let ‖v‖V and ‖w‖W be norms on V and W , respectively. Also let ‖ · ‖V ∗

and ‖ · ‖W∗ be the corresponding dual norms on V ∗ and W ∗, respectively, and
let T be a bounded linear mapping from V into W .

Suppose that T satisfies (16.1) and hence (16.2) for some c > 0. If λ is any
bounded linear functional on W , then we get that

sup{|λ(w)| : w ∈ W, ‖w‖W ≤ c} ≤ sup{|λ(T (v))| : v ∈ V, ‖v‖ ≤ 1}.(18.1)

This implies that
c ‖λ‖W∗ ≤ ‖T ∗(λ)‖V ∗ .(18.2)

In particular, if T is an open mapping from V onto W , then this holds for some
c > 0 and every λ ∈ W ∗.

Conversely, suppose that (18.2) holds for some c > 0 and every λ ∈ W ∗, and
let us show that T satisfies (16.2). Put E = T (BV (0, 1)), and let w ∈ W\E
be given. Thus E is a closed set in W by construction, and it is easy to see
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that E is also balanced and convex, because BV (0, 1) and hence T (BV (0, 1))
are balanced and convex. Under these conditions, there is a bounded linear
functional λ on W such that

sup
x∈E

|λ(x)| < |λ(w)|,(18.3)

as in Section 11. In this case,

sup
x∈E

|λ(x)| = ‖T ∗(λ)‖V ∗ ≥ c ‖λ‖W∗ ,(18.4)

so that c ‖λ‖W∗ < |λ(w)| ≤ ‖λ‖W∗ ‖w‖W . Thus we get that ‖w‖W∗ > c for
every w ∈ W\E, which implies that BW (0, c) ⊆ E, as desired. If V is complete,
then it follows that (16.3) holds, as in Section 16, and hence that T is an open
mapping from V onto W .

There are analogous statements with the roles of T and T ∗ reversed. More
precisely, suppose first that

c ‖v‖V ≤ ‖T (v)‖W(18.5)

for some c > 0 and every v ∈ V , so that T is invertible as a mapping of V onto
T (V ). This case is basically the same as an inclusion mapping, and one can
check that T ∗ is an open mapping from W ∗ onto V ∗, using the Hahn–Banach
theorem. Conversely, suppose that T ∗ is an open mapping from W ∗ onto V ∗,
so that

BV ∗(0, c) ⊆ T ∗(BW∗(0, 1))(18.6)

for some c > 0. Of course, V ∗ and W ∗ are automatically complete, and hence
T ∗ is automatically an open mapping when T ∗(W ∗) = V ∗, by the open mapping
theorem. One could also start with a condition analogous to (16.1), as before.
At any rate, one can use the same type of argument as in (18.1) and (18.2), to
get that

c ‖L‖V ∗∗ ≤ ‖T ∗∗(L)‖W∗∗(18.7)

for every L ∈ V ∗∗. This implies that (18.5) holds for every v ∈ V , by taking
L = Lv in the image of the natural embedding of V into V ∗∗ in (18.7).

19 Closed range

Let V be a real or complex vector space with a norm ‖v‖V . If Y is a linear
subspace of V , then we let Y ⊥ be the linear subspace of V ∗ given by

Y ⊥ = {λ ∈ V ∗ : λ(y) = 0 for every y ∈ Y },(19.1)

as in (7.7). Similarly, if Z is a linear subspace of V ∗, then we put

⊥Z = {v ∈ V : λ(v) = 0 for every λ ∈ Z}.(19.2)
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This is a closed linear subspace of V which can be identified with Z⊥ in V ∗∗ when
V is reflexive, and otherwise ⊥Z consists of the elements of V that correspond
to elements of Z⊥ under the standard embedding of V in V ∗∗. Observe that

Y ⊆ ⊥(Y ⊥)(19.3)

and
Z ⊆ (⊥Z)⊥,(19.4)

by construction. Using the Hahn–Banach theorem, one can show that ⊥(Y ⊥)
is the same as the closure of Y in V with respect to the norm ‖v‖V , and in
particular that Y = ⊥(Y ⊥) when Y is a closed linear subspace of V with respect
to the norm. Although Y ⊥ is a closed linear subspace of V ∗ with respect to the
dual norm, a more precise statement is that Y ⊥ is a closed set with respect to
the weak∗ topology on V ∗. One can show that (⊥Z)⊥ is the same as the closure
of Z with respect to the weak∗ topology on V ∗, so that Z = (⊥Z)⊥ when Z is
already closed with respect to the weak∗ topology on V ∗.

Let W be another vector space which is real or complex depending on
whether V is real or complex, and equipped with a norm ‖w‖W . Let T be a
bounded linear mapping from V into W , and remember that N (T ∗) = T (V )⊥,
as in (14.5). We also have that

N (T ) = ⊥T ∗(W ∗).(19.5)

Indeed, T (v) = 0 if and only if λ(T (v)) = 0 for every λ ∈ W ∗, because of the
Hahn–Banach theorem. This is the same as saying that (T ∗(λ))(v) = 0 for every
λ ∈ W ∗, which is equivalent to v ∈ ⊥T ∗(W ∗), as desired.

If we take Z = T ∗(W ∗) in (19.4), then we get that

T ∗(W ∗) ⊆ N (T )⊥(19.6)

when T is any bounded linear mapping from V into W . Let us show that equality
holds when V and W are complete and T (V ) is a closed linear subspace of W ,
which implies that T (V ) is also complete with respect to the restriction of the
norm ‖w‖W to T (V ). If N (T ) = {0}, then the open mapping theorem implies
that (18.5) holds for some c > 0 and every v ∈ V , and the Hahn–Banach theorem
implies that T ∗(W ∗) = V ∗, as in the previous section. Otherwise, we can express
T as the composition of the natural quotient mapping q from V onto V/N (T )

with a bounded linear mapping T̂ from V/N (T ) into W . Note that N (T ) is
automatically a closed linear subspace of V , because T is bounded and hence
continuous, and that V/N (T ) is complete. By construction, T̂ : V/N (T ) → W
is one-to-one and

T̂ (V/N (T )) = T (V )(19.7)

is a closed linear subspace of W , so that

T̂ ∗(W ∗) = (V/N (T ))∗,(19.8)
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as in the previous case. We also know that q∗ maps (V/N (T ))∗ onto N (T )⊥,
as in Section 7. It follows that

T ∗(W ∗) = N (T )⊥(19.9)

under these conditions, because T = T̂ ◦ q and hence T ∗ = q∗ ◦ T̂ ∗.
Let T be a bounded linear mapping from V into W again, and let Y be the

closure of T (V ) in W . Thus

Y = ⊥N (T ∗),(19.10)

because Y ⊥ = N (T ∗) by (14.5), and Y = ⊥(Y ⊥) since Y is closed. If T ∗(W ∗)
is a closed linear subspace of V ∗ and V is complete, then T (V ) is a closed linear
subspace of W , which is to say that T (V ) = Y . To see this, suppose first that
N (T ∗) = {0}, so that Y = W . In this case, the open mapping theorem implies
that T ∗ satisfies (18.2) for some c > 0 and every λ ∈ W ∗, because V ∗ and W ∗

are automatically complete, and hence T ∗(W ∗) is complete since it is a closed
linear subspace of V ∗. It follows that T is an open mapping from V onto W
when V is complete, as in the previous section. Otherwise, let T1 be the same as
T , but considered as a linear mapping from V into Y , and let T2 be the obvious
inclusion mapping from Y into W . Thus T = T2 ◦ T1, which implies that

T ∗ = T ∗
1 ◦ T ∗

2 .(19.11)

As usual, T ∗
2 (W ∗) = Y ∗, because of the Hahn–Banach theorem, and hence

T ∗
1 (Y ∗) = T ∗

1 (T ∗
2 (W ∗)) = T ∗(W ∗).(19.12)

In particular, T ∗
1 (Y ∗) is a closed linear subspace of V ∗, because T ∗(W ∗) is closed

by hypothesis. By construction, T1(V ) = T (V ) is dense in Y , so that

N (T ∗
1 ) = T1(V )⊥ = {0}(19.13)

as subspaces of Y ∗. If Y is complete, then the previous argument implies that
T (V ) = T1(V ) = Y , as desired.

20 Compact linear mappings

Let (M,d(x, y)) be a metric space. Remember that a subset E of M is said to
be totally bounded if for each ǫ > 0, E is contained in the union of finitely many
balls of radius ǫ in M . It is easy to see that compact sets are totally bounded,
and it is well known that a subset of a complete metric space if compact if
and only if it is closed and totally bounded. Bounded subsets of Rn and Cn

are totally bounded, and this also works for finite-dimensional real or complex
vector spaces with any norm, by reducing to Rn or Cn with the standard norm
in the usual way.

Let V and W be vector spaces, both real or both complex, and with norms
‖v‖V and ‖w‖W , respectively. A linear mapping T from V into W is said to
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be compact if T (BV (0, 1)) is totally bounded in W , where BV (0, 1) is the open
unit ball in W . Thus compact linear mappings are bounded in particular, since
totally bounded sets are bounded. If W is complete, then T is compact if and
only if the closure T (BV (0, 1)) of T (BV (0, 1)) in W is compact. If a bounded
linear mapping T : V → W has finite rank, in the sense that T (V ) is a finite-
dimensional linear subspace of W , then T is automatically compact, because
bounded subsets of finite-dimensional spaces are totally bounded.

Let CL(V,W ) be the space of compact linear mappings from V into W . It is
easy to see that this is a linear subspace of the space B(V,W ) of bounded linear
mappings from V into W . More precisely, this uses the fact that if E1 and E2

are totally bounded subsets of W and t ∈ R or C, as appropriate, then

t E1 = {t w : w ∈ E1}(20.1)

and
E1 + E2 = {w + z : w ∈ E1, z ∈ E2}(20.2)

are also totally bounded subsets of W . One can also check that CL(V,W ) is
a closed set in BL(V,W ) with respect to the operator norm. Equivalently, if
{Tj}

∞
j=1 is a sequence of compact linear mappings from V into W that converges

to a bounded linear mapping T : V → W with respect to the operator norm,
then T is also compact.

In particular, if {Tj}
∞
j=1 is a sequence of bounded linear mappings from V

into W that converges to a bounded linear mapping T : V → W with respect to
the operator norm, and if Tj has finite rank for each j, then T is compact. In
many cases, every compact linear mapping from V into W can be approximated
by bounded linear mappings with finite rank with respect to the operator norm
in this way. This is especially simple in the context of Hilbert spaces, using
orthogonal projections.

Let V1, V2, and V3 be vector spaces, all real or all complex, and equipped
with norms ‖ ·‖1, ‖ ·‖2, and ‖ ·‖3, respectively. If T1 : V1 → V2 and T2 : V2 → V3

are bounded linear mappings, and if either T1 or T2 is compact, then it is easy
to see that the composition T2 ◦ T1 is also compact. Similarly, if T1 or T2 can
be approximated by bounded linear mappings with finite rank with respect to
the operator norm, then T2 ◦ T1 has the same property. Of course, if T1 or T2

has finite rank, then T2 ◦ T1 does too.
Let V be a real or complex vector space with a norm ‖v‖. If the open unit

ball in V is totally bounded, then it is well known that V is finite-dimensional.
Indeed, under these conditions, there are finitely many elements y1, . . . , yn of V
such that ‖yj‖ < 1 for j = 1, . . . , n, and for each v ∈ V with ‖v‖ < 1 there is a
j such that ‖v − yj‖ < 1/2. Let Y be the linear subspace of V spanned by the
yj ’s, so that Y is a finite-dimensional linear subspace of V with dimension less
than or equal to n. If v ∈ V and ‖v‖ < r for some r > 0, then there is a y ∈ Y
such that ‖v − y‖ < r/2, by applying the previous approximation condition to
v/r. This implies that for each positive integer l there is a y ∈ Y such that
‖v − y‖ < 2−l r, by repeating the process. Thus Y is dense in V , and we have
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seen that Y is also closed in V , because Y is a finite-dimensional linear subspace
of V . Hence V = Y , so that V is finite-dimensional, as desired.

In particular, if T : V → W is compact and invertible, then W is finite-
dimensional, which implies that V is finite-dimensional as well. Similarly, if
T : V → W is compact and the restriction of T to a linear subspace Z of V is
an invertible linear mapping onto T (Z), then Z is finite-dimensional.

21 Compactness and duality

Let (M,d(x, y)) be a metric space, and let E be a collection of real or complex-
valued functions on M which is equicontinuous in the sense that for each ǫ > 0
there is a δ(ǫ) > 0 such that

|f(x) − f(y)| < ǫ(21.1)

for every x, y ∈ M with d(x, y) < δ(ǫ) and every f ∈ E . If M is totally bounded,
and if the elements of E are uniformly bounded, then it is well known that E
is also totally bounded as a subset of the space of bounded continuous real or
complex-valued functions on M with respect to the supremum norm. To see
this, let ǫ > 0 be given, and let A be a finite subset of M such that for every
x ∈ M there is a y ∈ A that satisfies d(x, y) < δ(ǫ/3). If f, g ∈ E satisfy

|f(y) − g(y)| < ǫ/3(21.2)

for every y ∈ A, then one can check that

|f(x) − g(x)| < ǫ(21.3)

for every x ∈ M . This permits the total boundedness problem on M to be
reduced to one on finite subsets of M , which can then be handled using the
hypothesis that the functions in E be uniformly bounded.

Now let V and W be vector spaces, both real or both complex, and equipped
with norms ‖v‖V and ‖w‖W , respectively. If T is a compact linear mapping from
V into W , then the dual mapping T ∗ is compact as a linear mapping from W ∗

into V ∗. To see this, let M be the image of the open unit ball in V under T ,
equipped with the restriction of the metric associated to ‖w‖W on W . Also let E
be the collection of functions on M which are the restrictions of bounded linear
functionals on W with dual norm less than 1 to M . Thus M is totally bounded
by hypothesis, and the equicontinuity of the elements of E follows from linearity
and the boundedness of the dual norm. The elements of E are also uniformly
bounded on M , because M is bounded in W . As in the previous paragraph,
E is totally bounded with respect to the supremum norm on M . Using this,
one can check that the image of the open unit ball in W ∗ under T ∗ is totally
bounded in V ∗, as desired.

Similarly, if T ∗ is compact, then T ∗∗ is compact as a linear mapping from
V ∗∗ into W ∗∗. This implies that T is compact, since T can be identified with
the restriction of T ∗∗ to the image of the natural embedding of V in V ∗∗.
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Note that the dual of a bounded linear mapping with finite rank also has
finite rank, basically because the dual of a finite-dimensional vector space has
the same finite dimension. If T : V → W can be approximated by finite-rank
operations with respect to the operator norm, then it follows that T ∗ has the
same property. The converse can be obtained by considering T ∗∗ as before.

22 Alternate characterizations

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , as usual. Suppose that T is a compact linear mapping
from V into W , and let ǫ > 0 be given. By hypothesis, there are finitely many
elements z1, . . . , zn of W such that

T (BV (0, 1)) ⊆
n⋃

j=1

BW (zj , ǫ),(22.1)

where BV (v, r) and BW (w, t) are the usual open balls in V and W , respectively.
Let Z be the linear subspace of W spanned by z1, . . . , zn, so that Z has finite
dimension less than or equal to n. Under these conditions, the composition of
T with the natural quotient mapping from W onto W/Z has operator norm less
than or equal to ǫ with respect to the quotient norm on W/Z associated to the
given norm on W .

Conversely, suppose that T is a bounded linear mapping from V into W ,
and that for each ǫ > 0 there is a finite-dimensional linear subspace Z of W
such that the composition of T with the natural quotient mapping from W onto
W/Z has operator norm less than or equal to ǫ. This implies that T (BV (0, 1))
lies in an ǫ-neighborhood of Z in W . Because T is bounded, T (BV (0, 1)) is a
bounded subset of W , and hence T (BV (0, 1)) lies within an ǫ-neighborhhood
of a bounded subset of Z. Because Z is finite-dimensional, bounded subsets
of Z are totally bounded, and it follows that T (BV (0, 1)) is contained in the
union of finitely many balls of radius 2ǫ in W . Thus T is compact under these
conditions.

Suppose now that T is a bounded linear mapping from V into W , and that
for each ǫ > 0 there is a closed linear subspace Y of V with finite codimension
such that the restriction of T to Y has operator norm less than or equal to
ǫ. More precisely, to say that Y has finite codimension in V means that the
quotient space V/Y has finite dimension. Also, the condition that Y be closed
in V is not a real restriction, since otherwise one can replace Y with its closure
in V . Note that (V/Y )∗ has finite dimension equal to the dimension of V/Y
in this situation, and remember that there is a natural isometric isomorphism
between (V/Y )∗ and Y ⊥ ⊆ V ∗, as in Section 7. Let A be the natural inclusion
mapping of Y into V , which sends every element of Y to itself as an element
of V . The hypothesis that the operator norm of the restriction of T to Y be
less than or equal to ǫ is equivalent to saying that T ◦A has operator norm less
than or equal to ǫ as a bounded linear mapping from Y into W . This implies

29



that (T ◦ A)∗ has operator norm less than or equal to ǫ as a bounded linear
mapping from W ∗ into Y ∗, as in Section 13. Of course, (T ◦ A)∗ = A∗ ◦ T ∗,
and we have seen that A∗ corresponds exactly to the quotient mapping from V ∗

onto Y ∗ ∼= V ∗/Y ⊥. This shows that T ∗ satisfies the criterion for compactness
discussed in the preceding paragraph, since Y ⊥ ∼= (V/Y )∗ has finite dimension.
It follows that T is compact, as in the previous section.

Conversely, suppose that T is compact, and let ǫ > 0 be given. Because T ∗

is compact as a linear mapping from W ∗ into V ∗, there is a finite-dimensional
linear subspace Z of V ∗ such that the composition of T ∗ with the natural
quotient mapping from V ∗ onto V ∗/Z has operator norm less than or equal
to ǫ. Put Y = ⊥Z, so that Y is a closed linear subspace of V . By linear
algebra, Y has finite codimension in V equal to the dimension of Z, and there
is a natural isomorphism between (V/Y )∗ and Z. In particular, Y ⊥ = Z in this
case, since Z ⊆ Y ⊥ automatically, and Z and Y ⊥ ∼= (V/W )∗ have the same
finite dimension. Let A be the natural inclusion mapping of Y in V , as before.
Thus (T ◦A)∗ = A∗ ◦T ∗, where A∗ corresponds exactly to the quotient mapping
from V ∗ onto Y ∗ ∼= V ∗/Y ⊥ = V ∗/Z. By construction, A∗ ◦ T ∗ has operator
norm less than or equal to ǫ, which implies that T ◦ A has operator norm less
than or equal to ǫ. This is the same as saying that the restriction of T to Y has
operator norm less than or equal to ǫ, as desired.

23 Compactness and closed range

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V , ‖w‖W , respectively. Suppose that A is a bounded linear mapping
from V into W with the property that

‖A(v)‖W ≥ c ‖v‖V(23.1)

for some c > 0 and every v ∈ V . Also let T be a compact linear mapping from
V into W . As in the previous section, there is a closed linear subspace Y with
finite codimension in V such that

‖T (v)‖W ≤ (c/2) ‖v‖V(23.2)

for every v ∈ Y . Thus

c ‖v‖V ≤ ‖A(v)‖W ≤ ‖(A + T )(v)‖W + ‖T (v)‖W(23.3)

≤ ‖(A + T )(v)‖W + (c/2) ‖v‖V

for every v ∈ Y , which implies that

(c/2) ‖v‖V ≤ ‖(A + T )(v)‖W(23.4)

for every v ∈ Y .
If V is complete, then we have seen before that (23.1) implies that A(V )

is complete, and hence that A(V ) is a closed linear subspace of W . Similarly,
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(23.4) implies that A+T maps Y onto a closed linear subspace of W when V is
complete. Because Y has finite codimension in V , there is a finite-dimensional
linear subspace X of V such that the span of X and Y is equal to V . This
implies that (A + T )(X) is a finite-dimensional linear subspace of W , and that
(A+T )(V ) is the span of (A+T )(X) and (A+T )(Y ). It follows that (A+T )(V )
is a closed linear subspace of W when V is complete, because it is the span of
a closed subspace and a finite-dimensional subspace.

A similar argument works when A satisfies (23.1) on a closed linear subspace
of V of finite codimension. Of course, if A satisfies (23.1) on some linear subspace
of V , then it satisfies the same condition on the closure of that linear subspace.
Note that the intersection of two linear subspaces of V with finite codimension
also has finite codimension in V .

24 Schauder’s fixed-point theorem

Let V be a real or complex vector space with a norm ‖v‖, and let E be a
nonempty totally bounded subset of V . Also let ǫ > 0 be given, and let
x1, . . . , xn be finitely many elements of E such that

E ⊆
n⋃

j=1

B(xj , ǫ).(24.1)

Let φj(v) be a continuous real-valued function on V such that φj(v) > 0 when
‖v − xj‖ < ǫ and φj(v) = 0 otherwise, for each j = 1, . . . , n. One can take

φj(v) = (ǫ − ‖v − xj‖)+,(24.2)

for instance, where r+ is the nonnegative part of a real number r, equal to r
when r ≥ 0 and to 0 when r ≤ 0. Put

ψj(v) = φj(v)
( n∑

l=1

φl(v)
)−1

(24.3)

for each v ∈ E, which makes sense because
∑n

l=1 φl(v) > 0 for every v ∈ E, by
construction. Thus ψj is a continuous nonnegative real-valued function on E
for each j, ψj(v) > 0 when ‖v − xj‖ < ǫ, and ψj(v) = 0 otherwise, because of
the corresponding properties of φj . Moreover,

n∑

j=1

ψj(v) =
( n∑

j=1

φj(v)
) ( n∑

l=1

φl(v)
)−1

= 1(24.4)

for each v ∈ V , so that the ψj ’s form a partition of unity on E.
Put

Aǫ(v) =

n∑

j=1

ψj(v)xj(24.5)
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for each v ∈ E, which defines a continuous mapping from E into V . More
precisely, Aǫ(v) is an element of the convex hull of E for each v ∈ E, because
of the properties of the ψj ’s discussed in the previous paragraph. Note that

Aǫ(v) − v =

n∑

j=1

ψj(v) (xj − v)(24.6)

for each v ∈ E, by (24.4), and hence

‖Aǫ(v) − v‖ ≤
n∑

j=1

ψj(v) ‖xj − v‖.(24.7)

This implies that
‖Aǫ(v) − v‖ < ǫ(24.8)

for every v ∈ E, since ‖xj − v‖ < ǫ when ψj(v) > 0. Let Wǫ be the linear span
of x1, . . . , xn in V , so that Wǫ is a finite-dimensional linear subspace of V , and
Aǫ(v) ∈ Wǫ for each v ∈ E.

Suppose now that E is compact and convex, and let f be a continuous
mapping from E into itself. Thus Aǫ maps E into itself, because E is convex,
and in fact Aǫ maps E into E ∩ Wǫ. It follows that

fǫ = Aǫ ◦ f(24.9)

is a continuous mapping from E into E ∩ Wǫ, and in particular the restriction
of fǫ to E ∩ Wǫ is a continuous mapping from E ∩ Wǫ into itself. Because Wǫ

has finite dimension, one can use Brouwer’s fixed point theorem to show that
there is a point vǫ in E ∩ Wǫ such that fǫ(vǫ) = vǫ. Remember that Wǫ is a
closed linear subspace of V , since it has finite dimension, so that E ∩ Wǫ is a
compact convex set in Wǫ.

Observe that

‖f(vǫ) − vǫ‖ = ‖f(vǫ) − fǫ(vǫ)‖ = ‖f(vǫ) − Aǫ(f(vǫ))‖ < ǫ,(24.10)

by (24.8). Because E is compact, and hence sequentially compact, there is a
sequence {ǫj}

∞
j=1 of positive real numbers converging to 0 such that {vǫj

}∞j=1

converges to an element v of E with respect to the norm on V . Using (24.10)
and the continuity of f , it follows that f(v) = v, so that f has a fixed point in
E under these conditions.

25 Tychonoff’s fixed-point theorem

Let V be a locally convex topological vector space over the real or complex
numbers, let E be a nonempty compact convex subset of V , and let f be a
continuous mapping from E into itself. Under these conditions, f has a fixed
point in E, which is to say that there is a v ∈ E such that f(v) = v. This
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can be shown in roughly the same way as in the previous section, with suitable
modifications. In particular, one can get approximate fixed points for f in
E with respect to compatible seminorms on V in essentially the same way as
before. If there is a countable local base for the topology of V at 0, so that the
topology on V is determined by a translation-invariant metric, then one can get
a fixed point for f on E using sequential compactness as before. This also works
when the topology on E induced by the one on V is metrizable, and otherwise
one can use slightly more complicated compactness arguments. An advantage
of this version is that one can have larger classes of compact sets, although one
should also be careful about the corresponding continuity conditions.

To get a basic class of examples, let X be a nonempty compact Hausdorff
topological space, and let C(X) be the space of continuous real-valued functions
on X, equipped with the supremum norm

‖f‖ = sup
x∈X

|f(x)|.(25.1)

Remember that a linear functional λ on C(X) is said to be nonnegative if

λ(f) ≥ 0(25.2)

for each f ∈ C(X) such that f(x) ≥ 0 for every x ∈ X. Let 1X(x) be the
constant function on X equal to 1 for each x ∈ X. If λ is a nonnegative linear
functional on C(X) and f ∈ C(X) satisfies ‖f‖ ≤ 1, then 1X − f ≥ 0 and
1X + f ≥ 0 on X, and hence λ(1X − f) ≥ 0 and λ(1X + f) ≥ 0. This implies
that λ(f) ≤ λ(1X) and −λ(f) ≤ λ(1X), so that

|λ(f)| ≤ λ(1X).(25.3)

It follows that a nonnegative linear functional λ on C(X) is automatically
bounded with respect to the supremum norm on C(X), with dual norm less
than or equal to λ(1X). The dual norm of λ on C(X) is in fact equal to λ(1X),
since ‖1X‖ = 1.

Let P(X) be the set of nonnegative linear functionals λ on C(X) that satisfy
λ(1X) = 1. Note that the elements of P(X) correspond exactly to regular Borel
probability measures on X, by the Riesz representation theorem. As in the
previous paragraph, the elements of P(X) are also bounded linear functionals
on C(X), with dual norm equal to 1. It is easy to see that P(X) is a convex set
in the dual C(X)∗ of C(X), and one can also check that P(X) is a closed set
with respect to the weak∗ topology on C(X)∗. It follows that P(X) is compact
with respect to the weak∗ topology on C(X)∗, by the Banach–Alaoglu theorem.

Let φ be a continuous mapping from X into itself, and put

T (f) = f ◦ φ(25.4)

for each f ∈ C(X). Thus
‖T (f)‖ ≤ ‖f‖(25.5)
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for every f ∈ C(X), so that T is a bounded linear mapping from C(X) into
itself, with operator norm less than or equal to 1. More precisely, the operator
norm of T is equal to 1, because T (1X) = 1X .

The corresponding dual mapping T ∗ is defined on C(X)∗ as usual by

T ∗(λ) = λ ◦ T(25.6)

for each λ ∈ C(X)∗, so that

(T ∗(λ))(f) = λ(T (f)) = λ(f ◦ φ)(25.7)

for every λ ∈ C(X)∗ and f ∈ C(X). If λ is a nonnegative linear functional on
C(X), then T ∗(λ) is nonnegative too, because T (f) ≥ 0 on X when f ≥ 0 on
X. It follows easily that T ∗(P(X)) ⊆ P(X).

Note that T ∗ is continuous with respect to the weak∗ topology on C(X)∗,
because it is the dual of a bounded linear mapping on C(X). If we take V =
C(X)∗ with the weak∗ topology and E = P(X), then we get that T ∗ has a fixed
point in P(X). Alternatively, we can use the linearity of T ∗ to get approximate
fixed points in P(X) more directly, as follows.

Let λ be an arbitrary element of P(X), and consider

λn =
1

n + 1

n∑

j=0

(T ∗)j(λ)(25.8)

for each nonnegative integer n. Here (T ∗)j denotes the jth power of T ∗ as a
linear mapping on C(X)∗, which is the same as the dual of the jth power T j of
T on C(X). As usual, we interpret T j and (T ∗)j as being the identity mappings
on C(X) and C(X)∗, respectively, when j = 0. Observe that λn ∈ P(X) for
each n, since (T ∗)j(λ) ∈ P(X) for each j.

By construction,

T ∗(λn) − λn =
1

n + 1

n+1∑

j=1

(T ∗)j(λ) −
1

n + 1

n∑

j=0

(T ∗)j(λ)(25.9)

=
1

n + 1
((T ∗)n+1(λ) − λ)

for each n. Let ‖µ‖∗ denote the dual norm on C(X)∗ corresponding to the
supremum norm on C(X), so that

‖T ∗(µ)‖∗ ≤ ‖µ‖∗(25.10)

for every µ ∈ C(X)∗, by (25.5). Thus

‖T ∗(λn) − λn‖∗ ≤
1

n + 1
(‖(T ∗)n+1(λ)‖∗ + ‖λ‖∗)(25.11)

≤
2

n + 1
‖λ‖∗ =

2

n + 1
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for each n, since ‖λ‖∗ = 1 when λ ∈ P(X).
To get a fixed point of T ∗ in P(X), one can use the compactness of P(X)

with respect to the weak∗ topology on C(X)∗, as follows. Let Al be the closure
of the set of λn with n ≥ l with respect to the weak∗ topology on C(X)∗ for
each l ≥ 0. Thus Al ⊆ P(X), Al+1 ⊆ Al, and Al 6= ∅ for every l. This implies
that

⋂∞

l=0 Al 6= ∅, because P(X) is compact and Al is a closed subset of P(X)
for each l, with respect to the weak∗ topology on C(X)∗. One can check that
T ∗(µ) = µ for every µ ∈

⋂∞

l=0 Al, using (25.11).

26 Composition mappings

Let X and Y be nonempty compact Hausdorff topological spaces, and let C(X)
and C(Y ) be the corresponding spaces of continuous real or complex-valued
functions on X and Y , respectively. Also let ‖ · ‖C(X) and ‖ · ‖C(Y ) denote the
supremum norms on C(X) and C(Y ), respectively, and let 1X and 1Y be the
constant functions equal to 1 on X and Y . If φ is a continuous mapping from
X into Y , then

T (f) = f ◦ φ(26.1)

defines a bounded linear mapping from C(Y ) into C(X). More precisely,

‖T (f)‖C(X) ≤ ‖f‖C(Y )(26.2)

for every f ∈ C(Y ), and T (1Y ) = 1X , so that the operator norm of T is equal
to 1 with respect to the supremum norms on C(X) and C(Y ).

Suppose for the moment that X is a subset of Y , equipped with the induced
topology. Note that X is a closed subset of Y , since X is compact and Y is
Hausdorff, and conversely that closed subsets of Y are compact. In this case,
T (f) is simply the restriction of f ∈ C(Y ) to X, and the Tietze extension
theorem implies that T maps C(Y ) onto C(X), because Y is normal and X is
a closed set in Y . More precisely, if f is a continuous function on X, then there
is an extension of f to a continuous function on Y whose supremum norm on
Y is equal to the supremum norm of f on X. Thus T behaves like a quotient
mapping in terms of norms, and C(X) can be identified with the quotient of
C(Y ) by the closed linear subspace of continuous functions on Y that are equal
to 0 at every point in X.

Now suppose that φ maps X onto Y . In this case, T is an isometric embed-
ding of C(Y ) into C(X), in the sense that

‖T (f)‖C(X) = ‖f‖C(Y )(26.3)

for every f ∈ C(Y ). Note that a function f on Y is continuous if and only if
f ◦ φ is continuous on X. The “only if” part is trivial, and to check the “if”
part, it suffices to show that f−1(E) is a closed set in Y when E is a closed set
in the range of f and f ◦ φ is continuous. The continuity of f ◦ φ implies that
(f ◦ φ)−1(E) = φ−1(f−1(E)) is a closed set in X for every closed set E in the
range of f , and so the main point is that A ⊆ Y is a closed set when φ−1(A) is
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a closed set in X. If φ−1(A) is a closed set in X, then φ−1(A) is also a compact
set in X, because X is compact. Thus φ(φ−1(A)) is a compact set in Y , since
φ is continuous, which implies that φ(φ−1(A)) is a closed set in Y , because Y
is Hausdorff. Of course, A = φ(φ−1(A)) when φ(X) = Y , so that A is a closed
set in Y , as desired.

Let φ be any continuous mapping from X into Y again, and put Z = φ(X).
Also let φ1 be the same as φ but considered as a continuous mapping from X
onto Z with the topology induced from the one on Y , and let φ2 is the obvious
inclusion mapping from Z into Y , so that φ = φ2 ◦ φ1. If T1 : C(Z) → C(X)
and T2 : C(Y ) → C(Z) are the composition mappings corresponding to φ1 and
φ2, respectively, then it is easy to see that T = T1 ◦ T2. Of course, φ1 and φ2

are exactly as in the special cases described in the previous paragraphs.

27 Non-compact spaces

Let X and Y be nonempty topological spaces, not necessarily compact, and
let Cb(X) and Cb(Y ) be the corresponding spaces of bounded continuous real
or complex-valued functions on X and Y , respectively. Also let ‖ · ‖Cb(X) and
‖ · ‖Cb(Y ) be the supremum norms on Cb(X) and Cb(Y ), and let 1X and 1Y be
the constant functions equal to 1 on X and Y , as before. If φ is a continuous
mapping from X into Y , then

T (f) = f ◦ φ(27.1)

again defines a bounded linear mapping from Cb(X) into Cb(Y ), with

‖T (f)‖Cb(X) ≤ ‖f‖Cb(Y )(27.2)

for every f ∈ Cb(Y ), and T (1Y ) = 1X . Of course, continuous real or complex-
valued functions on compact spaces are automatically bounded, so that this
includes the situation discussed in the previous section.

If X is a subset of Y with the topology induced from the one on Y , then
T (f) is simply the restriction of f ∈ Cb(Y ) to X. In particular, if Y is normal
and X is a closed set in Y , then the Tietze extension theorem implies that T
maps Cb(Y ) onto Cb(X). If f is any bounded continuous function on Y and R
is a nonnegative real number, then consider the function fR on Y defined by

fR(y) = f(y) when |f(y)| ≤ R, and(27.3)

= R
f(y)

|f(y)|
when |f(y)| > R.

It is easy to see that fR is a continuous function on Y for each R ≥ 0, which
is the same as the composition of f with a certain continuous function on R

or C, as appropriate. If we take R to be the supremum of |f | over X, then fR

is a bounded continuous function on Y whose restriction to X is the same as
the restriction of f to X, and the supremum norm of fR on Y is the same as
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the supremum norm of the restriction to X. This implies that T behaves like a
quotient mapping from Cb(Y ) onto its image in Cb(X) in terms of norms, even
when the image is a proper linear subspace of Cb(X). Using this, one can show
that the image of Cb(Y ) in Cb(X) is a closed linear subspace with respect to the
supremum norm, since Cb(Y ) is complete with respect to the supremum norm.

If φ is a continuous mapping from X onto a dense subset of Y , then

‖T (f)‖Cb(X) = ‖f‖Cb(Y )(27.4)

for every f ∈ Cb(Y ), so that T is an isometric embedding of Cb(Y ) into Cb(X)
with respect to the supremum norm. In particular, if X is compact and Y is
Hausdorff, then φ(X) is a compact and hence closed set in Y , and φ(X) = Y
when φ(X) is also dense in Y . Because Cb(Y ) is complete with respect to the
supremum norm, (27.4) implies that T (Cb(Y )) is a closed linear subspace of
Cb(X), for any X and Y .

If φ is any continuous mapping from X into Y , then let Z be a subset of
Y that contains φ(X) and is contained in the closure φ(X) of φ(X) in Y . As
before, φ can be expressed as φ2 ◦ φ1, where φ1 is the same as φ but considered
as a continuous mapping from X into Z with the topology induced by the one
on Y , and where φ2 is the obvious inclusion mapping from Z into Y . This
implies that T = T1 ◦ T2, where T1 : Cb(Z) → Cb(X) and T2 : Cb(Y ) → Cb(Z)
are the composition mappings corresponding to φ1 and φ2, respectively.

28 Another openness condition

Let V and W be vector spaces, both real or both complex, and equipped with
norms ‖v‖V and ‖w‖W , respectively. Let T be a bounded linear mapping from
V into W , and suppose that there are positive real numbers k, η such that
η < 1 and for each w ∈ W with ‖w‖W ≤ 1 there is a v ∈ V with ‖v‖V ≤ k
and ‖w − T (v)‖W ≤ η. Equivalently, this means that for each w ∈ W there is
a v ∈ V such that

‖v‖V ≤ k ‖w‖W(28.1)

and
‖w − T (v)‖W ≤ η ‖w‖W .(28.2)

Let w ∈ W be given, and let v1 be an element of V that satisfies (28.1) and
(28.2). Applying this to w−T (v1) instead of w, we get an element v2 of V with

‖v2‖V ≤ k ‖w − T (v1)‖W ≤ k η ‖w‖W(28.3)

and
‖w − T (v1) − T (v2)‖W ≤ η‖w − T (v1)‖W ≤ η2 ‖w‖W .(28.4)

Similarly, if v1, . . . , vn ∈ V have already been chosen in this way, then we can
apply this to w −

∑n
j=1 T (vj) to get an element vn+1 of V such that

‖vn+1‖V ≤ k

∥∥∥∥w −
n∑

j=1

T (vj)

∥∥∥∥
W

(28.5)
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and ∥∥∥∥w −
n∑

j=1

T (vj) − T (vn+1)

∥∥∥∥
W

≤ η

∥∥∥∥w −
n∑

j=1

T (vj)

∥∥∥∥
W

.(28.6)

It follows that ∥∥∥∥w −
n∑

j=1

T (vj)

∥∥∥∥
W

≤ ηn ‖w‖W(28.7)

for each n, and hence that

‖vn‖V ≤ k ηn−1 ‖w‖W .(28.8)

In particular,
∞∑

j=1

‖vj‖V ≤
k

1 − η
‖w‖W .(28.9)

If V is complete, then
∑∞

j=1 vj converges in V , and satisfies

∥∥∥∥
∞∑

j=1

vj

∥∥∥∥
V

≤
k

1 − η
‖w||W(28.10)

and T
(∑∞

j=1 vj

)
= w. Otherwise, if V is not complete, then we get that

BW (0, r) ⊆ T (BV (0, r k/(1 − η)))(28.11)

for each r > 0. The main difference between this and the discussion in Section
16 is that here we use a single η ∈ (0, 1), instead of arbitrarily small η > 0.

As in [22], the proof of Tietze’s extension theorem can be considered as an
example of this type of situation. Let Y be a normal topological space, and let
X be a nonempty closed subset of Y . Also let Cb(X) and Cb(Y ) be the vector
spaces or bounded continuous real-valued functions on X and Y , respectively,
with the corresponding supremum norms ‖ · ‖Cb(X) and ‖ · ‖Cb(Y ). Suppose that
f ∈ Cb(X) satisfies ‖f‖Cb(X) ≤ 1, so that f takes values in [−1, 1]. Note that

A = {x ∈ X : f(x) ≤ −1/3} and B = {x ∈ X : f(x) ≥ 1/3}(28.12)

are disjoint closed subsets of X, and hence of Y . By Urysohn’s lemma, there
is a continuous real-valued function g on Y such that g(x) = −1/3 for every
x ∈ A, g(x) = 1/3 for every x ∈ B, and |g(y)| ≤ 1/3 for every y ∈ Y . It is easy
to see that

|f(x) − g(x)| ≤ 2/3(28.13)

for every x ∈ X, by considering separately the cases where x ∈ A, x ∈ B,
and x ∈ X\(A ∪ B). This puts us in the previous situation with k = 1/3 and
η = 2/3, and where T : Cb(Y ) → Cb(X) sends a continuous function on Y to its
restriction to X. Of course, Cb(Y ) is complete with respect to the supremum
norm, and so it follows that T maps Cb(Y ) onto Cb(X) under these conditions,
as desired.
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[29] S. Krantz, Real Analysis and Foundations, 2nd edition, Chapman & Hall
/ CRC, 2005.

[30] S. Krantz, A Guide to Real Variables, Mathematical Association of Amer-
ica, 2009.

[31] S. Krantz, A Guide to Topology, Mathematical Association of America,
2009.

[32] S. Krantz, Essentials of Topology with Applications, CRC press, 2010.

[33] S. Lang, Real and Functional Analysis, 3rd edition, Springer-Verlag, 1993.

[34] S. Lang, Undergraduate Analysis, 2nd edition, Springer-Verlag, 1997.

[35] P. Lax, Functional Analysis, Wiley, 2002.

[36] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes
in Mathematics 388, Springer-Verlag, 1973.

[37] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence

Spaces, Springer-Verlag, 1977.

[38] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II: Function

Spaces, Springer-Verlag, 1979.

[39] B. MacCluer, Elementary Functional Analysis, Springer-Verlag, 2009.

[40] R. Megginson, An Introduction to Banach Space Theory, Springer-Verlag,
1998.

[41] T. Morrison, Functional Analysis: An Introduction to Banach Space The-

ory, Wiley, 2001.

40



[42] L. Nachbin, Introduction to Functional Analysis: Banach Spaces and Dif-

ferential Calculus, translated from the Portuguese by R. Aron, Dekker,
1981.

[43] L. Nirenberg, Topics in Nonlinear Functional Analysis, Chapter 6 by
E. Zehnder, notes by R. Artino, New York University, American Math-
ematical Society, 2001.

[44] S. Promislow, A First Course in Functional Analysis, Wiley, 2008.

[45] H. Royden, Real Analysis, 3rd edition, Macmillan, 1988.

[46] W. Rudin, Principles of Mathematical Analysis, 3rd edition, McGraw-Hill,
1976.

[47] W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill, 1987.

[48] W. Rudin, Functional Analysis, 2nd edition, McGraw-Hill, 1991.

[49] B. Rynne and M. Youngson, Linear Functional Analysis, 2nd edition,
Springer-Verlag, 2008.

[50] K. Saxe, Beginning Functional Analysis, Springer-Verlag, 2002.

[51] M. Schechter, Principles of Functional Analysis, 2nd edition, American
Mathematical Society, 2002.

[52] E. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration,

and Hilbert Spaces, Princeton University Press, 2005.

[53] E. Stein and R. Shakarchi, Functional Analysis: Introduction to Further

Topics in Analysis, Princeton University Press, 2011.

[54] C. Swartz, An Introduction to Functional Analysis, Dekker, 2002.

[55] C. Swartz, Elementary Functional Analysis, World Scientific, 2009.

[56] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Press,
1991.

[57] K. Yosida, Functional Analysis, Springer-Verlag, 1995.

[58] R. Zimmer, Essential Results of Functional Analysis, University of Chicago
Press, 1990.

41


