
A brief note on the Karhunen-Loève expansion

Alen Alexanderian∗

Abstract

We provide a detailed derivation of the Karhunen-Loève expansion of a stochastic process.
We also discuss briefly Gaussian processes, and provide a simple numerical study for the pur-
pose of illustration.
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1 Introduction

The purpose of this brief note is to provide a self-contained coverage of the idea of the
Karhunen-Loève (KL) expansion of a stochastic process. The writing of this note was motivated
by being exposed to the many applications of the KL expansion in uncertainty propagation
through dynamical systems with random parameter functions (see e.g. in [3, 1]). Since a
clear and at the same time rigorous coverage the KL exapnsion is not so simple to find in
the literature, here we provide a simple exposition of the theoretical basis for the KL expansion,
including a detailed proof of convergence. We will see that the KL expansion is obtained through
an interesting application of the Spectral Theorem for compact normal operators, in conjunction
with Mercer’s theorem which connects the spectral representation of a Hilbert-Schmidt integral
operator to the corresponding Hilbert-Schmidt kernel.

We begin by recalling some functional analytic basics on compact operators in Section 2.
The material in that section are classical and can be found in many standard textbooks on
the subject; see e.g., [5] for an accessible presentation. Next, Mercer’s Theorem is recalled
in Section 3. Then, we recall some basics regarding stochastic processes in Section 4. In that
section, a basic result stating the equivalence of mean-square continuity of a stochastic process
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and the continuity of the corresponding autocorrelation function is mentioned also. In Section 5,
we discuss in detail KL expansions of centered mean-square continuous stochastic processes
including a proof of convergence. Finally, in Section 6, we provide a numerical example where
the KL expansion of a Gaussian random field is studied.

2 Preliminaries on compact operators

Let us begin by recalling the notion of precompact and relatively compact sets.
Definition 2.1. (Relatively Compact)
Let X be a metric space; A ⊆ X is relatively compact in X, if Ā is compact in X.
Definition 2.2. (Precompact)
Let X be a metric space; A ⊆ X is precompact (also called totally bounded) if for every ε > 0,
there exist finitely many points x1, . . . , xN in A such that ∪N1 B(xi, ε) covers A.

The following Theorem shows that when we are working in a complete metric space, pre-
compactness and relative compactness are equivalent.
Theorem 2.3. Let X be a metric space. If A ⊆ X is relatively compact then it is precompact.
Moreover, if X is complete then the converse holds also.

Then, we define a compact operator as below.
Definition 2.4. Let X and Y be two normed linear spaces and T : X → Y a linear map
between X and Y . T is called a compact operator if for all bounded sets E ⊆ X, T (E) is
relatively compact in Y .

By the above definition 2.4, if E ⊂ X is a bounded set, then T (E) is compact in Y . The
following basic result shows a couple of different ways of looking at compact operators.
Theorem 2.5. Let X and Y be two normed linear spaces; suppose T : X → Y , is a linear
operator. Then the following are equivalent.

1. T is compact.
2. The image of the open unit ball under T is relatively compact in Y .
3. For any bounded sequence {xn} in X, there exist a subsequence {Txnk

} of {Txn} that
converges in Y .

Let us denote byB[X] the set of all bounded linear operators on a normed linear space space
X:

B[X] = {T : X → X| T is a bounded linear transformation.}.

Note that equipped by the operator norm B[X] is a normed linear space. It is simple to show
that compact operators form a subspace of B[X]. The following result (cf. [5] for a proof) shows
that the set of compact normal operators is in fact a closed subspace of B[X].
Theorem 2.6. Let {Tn} be a sequence of compact operators on a normed linear space X.
Suppose Tn → T in B[X]. Then, T is also a compact operator.

Another interesting fact regarding compact linear operators is that they form an ideal of the
ring of bounded linear mappingsB[X]. This follows from the following basic result whose simple
proof is also included for reader’s convenience.
Lemma 2.7. Let X be a normed linear space, and let T and S be in B[X]. If T is compact, then
so are ST and TS.

Proof. Consider the mapping ST . Let {xn} be a bounded sequence in X. Then, by Theo-
rem 2.5(3), there exists a subsequence {Txnk

} of {Txn} that converges in X: Txnk
→ y∗ ∈ X.

Now, since S is continuous, it follows that STxnk
→ S(y∗); that is, {STxnk

} converges in X

also, and so ST is compact. To show TS is compact, take a bounded sequence {xn} in X and
note that {Sxn} is bounded also (since S is continuous). Thus, again by Theorem 2.5(3), there
exists a subsequence {TSxnk

} which converges in X, and thus, TS is also compact.

Remark 2.8. A compact linear operator of an infinite dimensional normed linear space is not
invertible in B[X]. To see this, suppose that T has an inverse S in B[X]. Now, applying the pre-
vious Lemma, we get that I = TS = ST is also compact. However, this implies that the closed
unit ball in X is compact, which is not possible since we assumed X is infinite dimensional.
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(Recall that the closed unit ball in a normed linear space X is compact if and only if X is finite
dimensional.)

2.1 Hilbert-Schmidt operators

Let D ⊂ Rn be a bounded domain. We call a function k : D×D → R a Hilbert-Schmidt kernel
if ∫

D

∫
D

|k(x, y)|2 dx dy <∞,

that is, k ∈ L2(D×D) (note that one special case is when k is a continuous function on D×D).
Define the integral operator K on L2(D), K : u→ Ku for u ∈ L2(D), by

[Ku](x) =

∫
D

k(x, y)u(y) dy. (2.1)

It is simple to show that K is a bounded operator on L2(D). Linearity is clear. As for bounded-
ness, we note that for every u ∈ L2(D),

‖Ku‖2L2(D) =

∫
D

∣∣∣(Ku)(x)
∣∣∣2 dx =

∫
D

∣∣∣ ∫
D

k(x, y)u(y) dy
∣∣∣2 dx

≤
∫
D

(∫
D

|k(x, y)|2 dy
)(∫

D

|u(y)|2 dy
)
dx (Cauchy-Schwarz)

= ||k||L2(D×D)||u||L2(D) <∞.

An integral operator K as defined above is called a Hilbert-Schmidt operator. The following
result which is usually proved using Theorem 2.6 is very useful.
Lemma 2.9. Let D be a bounded domain in Rn and let k ∈ L2(D × D) be a Hilbert-Schmidt
kernel. Then, the integral operator K : L2(D) → L2(D) given by [Ku](x) =

∫
D
k(x, y)u(y) dy is

a compact operator.

2.2 Spectral theorem for compact self-adjoint operators

Let H be a real Hilbert space with inner product 〈·, ·〉 : H × H → R. A linear operator
T : H → H is called self adjoint if

〈Tx, y〉 = 〈x, Ty〉 , ∀x, y ∈ H.

Example 2.10. Let us consider a Hilbert-Schmidt operator K on L2([a, b]) as in (2.1) (where
for simplicity we have taken D = [a, b] ⊂ R). Then, it is simple to show that K is self-adjoint if
and only if k(x, y) = k(y, x) on [a, b]× [a, b].

A linear operator T : H → H, is called positive if 〈Tx, x〉 ≥ 0 for all x in H. Recall that a
scalar λ ∈ R is called an eigenvalue of T if there exists a non-zero x ∈ H such that Tx = λx.
Note that the eigenvalues of a positive operator are necessarily non-negative.

Compact self-adjoint operators on infinite dimensioal Hilbert spaces resemble many proper-
ties of the symmetric matrices. Of particular interest is the spectral decomposition of a compact
self-adjoint operator as given by the following:
Theorem 2.11. Let H be a (real or complex) Hilbert space and let T : H → H be a compact
self-adjoint operator. Then,H has an orthonormal basis {ei} of eigenvectors of T corresponding
to eigenvalues λi. In addition, the following holds:

1. The eigenvalues λi are real having zero as the only possible point of accumulation.
2. The eigenspaces corresponding to distinct eigenvalues are mutually orthogonal.
3. The eigenspaces corresponding to non-zero eigenvalues are finite-dimensional.

In the case of a positive compact self-adjoint operator, we know that the eigenvalues are
non-negative. Hence, we may order the eigenvalues as follows

λ1 ≥ λ2 ≥ ... ≥ 0.
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Remark 2.12. Recall that for a linear operatorA on a finite dimensional linear space, we define
its spectrum σ(A) as the set of its eigenvalues. On the other hand, for a linear operator T on an
infinite dimensional (real) normed linear space the spectrum σ(T ) of T is defined by,

σ(T ) = {λ ∈ R : T − λI is not invertible in B[X]},

and σ(T ) is the disjoint union of the point spectrum (set of eigenvalues), contiuous spectrum,
and residual spectrum (see [5] for details). As we saw in Remark 2.8, a compact operator T
on an infinite dimensional space X cannot be invertible in B[X]; therefore, we always have
0 ∈ σ(T ). However, not much can be said on whether λ = 0 is in point spectrum (i.e. an
eigenvalue) or the other parts of the spectrum.

3 Mercer’s Theorem

Let D = [a, b] ⊂ R. We have seen that given a continuous kernel k : D × D → R, we can
define a Hilbert-Schmidt operator through (2.1) which is compact and has a complete set of
eigenvectors in L2(D). The following result by Mercer provides a series representation for the
kernel k based on spectral representation of the corresponding Hilbert-Schmidt operator K. A
proof of this result can be found for example in [2].
Theorem 3.1 (Mercer). Let k : D × D → R be a continuous function, where D = [a, b] ⊂ R.
Suppose further that the corresponding Hilbert-Schmidt operator K : L2(D) → L2(D) given
by (2.1) is postive. If {λi} and {ei} are the eigenvalues and eigenvectors of K, then for all
s, t ∈ D,

k(s, t) =
∑
i

λiei(s)ei(t), (3.1)

where convergence is absolute and uniform on D ×D.

4 Stochastic processes

In what follows we consider a probability space (Ω,F , P ), where Ω is a sample space, F is
an appropriate σ-algebra on Ω and P is a probability measure. A real valued random variable
X on (Ω,F , P ) is an F/B(R)-measurable mapping X : (Ω,F , P ) → (R,B(R)). The expectation
and variance of a random variable X is denoted by,

E [X] :=

∫
Ω

X(ω) dP (ω), Var [X] := E
[
(X − E [X])2

]
.

L2(Ω,F , P ) denotes the Hilbert space of (equivalence classes) of real valued square integrable
random variables on Ω:

L2(Ω,F , P ) = {X : Ω→ R :

∫
Ω

|X(ω)|2 dP (ω) <∞}.

with inner product, 〈X,Y 〉 = E [XY ] =
∫

Ω
XY dP and norm ||X|| = 〈X,X〉1/2.

Let D ⊆ R, a stochastic prcess is a mapping X : D × Ω → R, such that X(t, ·) is measur-
able for every t ∈ D; alternatively, we may define a stochastic process as a family of random
variables, Xt : Ω → R with t ∈ D, and refer to X as {Xt}x∈D. Both of these points of view of a
stochastic process are useful and hence we will be switching between them as appropriate.

A stochastic process is called centered if E [Xt] = 0 for all t ∈ D. Let {Yt}t∈D be an arbitrary
stochastic process. We note that

Yt = E [Yt] +Xt,

where Xt = Yt −E [Yt] and {Xt}t∈D is a centered stochastic process. Therefore, without loss of
generality, we will focus our attention to centered stochastic processes.

We say a stochastic process is mean-square continuous if

lim
ε→0

E
[
(Xt+ε −Xt)

2
]

= 0.

The following definition is also useful.
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Definition 4.1 (Realization of a stochastic process). Let X : D × Ω → R be a stochastic
process. For a fixed ω ∈ Ω, we define X̂ : D → R by X̂(t) = Xt(ω). We call X̂ a realization of
the stochastic process.

For more details on theory of stochastic processes please consult [8, 6, 7].

4.1 Autocorrelation function of a stochastic process

The autocorrelation function of a stochastic process {Xt}t∈D is given by RX : D × D → R

defined through
RX(s, t) = E [XsXt] , s, t ∈ D.

The following well-known result states that for a stochastic process the continuity of its autocor-
relation function is a necessary and sufficient condition for the mean-square continuity of the
process.
Lemma 4.2. A stochastic process {Xt}t∈[a,b] is mean-square continuous if and only if its auto-
correlation function RX is continuous on [a, b]× [a, b].

Proof. Suppose RX is continuous, and note that

E
[
(Xt+ε −Xt)

2
]

= E
[
X2
t+ε

]
− 2E [Xt+εXt] + E

[
X2
t

]
= RX(t+ ε, t+ ε)− 2RX(t+ ε, t) +RX(t, t).

Therefore, since RX is continuous,

lim
ε→0

E
[
(Xt+ε −Xt)

2
]

= lim
ε→0

RX(t+ ε, t+ ε)− 2RX(t+ ε, t) +RX(t, t) = 0.

That is Xt is mean-square continuous. Conversely, if Xt is mean-square continous we proceed
as follows:

|RX(t+ ε, s+ ν)−RX(t, s)| = |E [Xt+εXs+ν ]− E [XtXs] |

=
∣∣∣E [(Xt+ε −Xt)(Xs+ν −Xs)] + E [(Xt+ε −Xt)Xs] + E [(Xs+ν −Xs)Xt]

∣∣∣
≤
∣∣∣E [(Xt+ε −Xt)(Xs+ν −Xs)]

∣∣∣+
∣∣∣E [(Xt+ε −Xt)Xs]

∣∣∣+
∣∣∣E [(Xs+ν −Xs)Xt]

∣∣∣
≤ E

[
(Xt+ε −Xt)

2
]1/2

E
[
(Xs+ν −Xs)

2
]1/2

+ E [(Xt+ε −Xt)]
1/2

E
[
X2
s

]1/2
+ E

[
(Xs+ν −Xs)

2
]1/2

E
[
X2
t

]1/2
,

where the last inequality follows from Cauchy-Schwarz inequality. Thus, we have,

|RX(t+ ε, s+ ν)−RX(t, s)| ≤ E
[
(Xt+ε −Xt)

2
]1/2

E
[
(Xs+ν −Xs)

2
]1/2

+ E [(Xt+ε −Xt)]
1/2

E
[
X2
s

]1/2
+ E

[
(Xs+ν −Xs)

2
]1/2

E
[
X2
t

]1/2
, (4.1)

and therefore, by mean-square continuity of Xt we have that

lim
(ε,ν)→(0,0)

|RX(t+ ε, s+ ν)−RX(t, s)| = 0.

5 Karhunen-Loève expansion

Let D ⊆ R. In this section, we assume that X : D × Ω → R is a centered mean-square
continuous stochastic process such that X ∈ L2(D × Ω). With the technical tools from the
previous sections, we are now ready to derive the KL expansion of X.

Define the integral operator K : L2(D)→ L2(D) by

[Ku](s) =

∫
D

k(s, t)u(t) dt, k(s, t) = RX(s, t), (5.1)

The following lemma summarizes the properties of the operator K.
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Lemma 5.1. Let K : L2(D)→ L2(D) be as in (5.1). Then the following hold:

1. K is compact.
2. K is positive
3. K is self-adjoint.

Proof. (1) Since the process X is mean-square continuous, Lemma 4.2 implies that k(s, t) =

RX(s, t) is continuous. Therefore, by Lemma 2.9, K is compact.

(2) We need to show 〈Ku, u〉 ≥ 0 for every u ∈ L2(D), where 〈·, ·〉 denotes the L2(D) inner
product.

〈Ku, u〉 =

∫
D

Ku(s)u(s) ds =

∫
D

(∫
D

k(s, t)u(t) dt
)
u(s) ds

=

∫
D

(∫
D

E [XsXt]u(t) dt
)
u(s) ds

= E

[∫
D

∫
D

XsXtu(t)u(s) dt ds

]
= E

[(∫
D

Xsu(s) ds
)(∫

D

Xtu(t) dt
)]

= E

[(∫
D

Xtu(t) dt
)2
]
≥ 0,

where we used Fubini’s Theorem to interchange integrals.

(3) This follows trivially from RX(s, t) = RX(t, s) and Fubini’s theorem:

〈Ku, v〉 =

∫
D

Ku(s)v(s) ds =

∫
D

(∫
D

k(t, s)v(s) ds
)
u(t) dt = 〈u,Kv〉 .

Now, let K be defined as in (5.1) the previous lemma allows us to invoke the spectral theo-
rem for compact self-adjoint operators to conclude that K has a complete set of eigenvectors
{ei} in L2(D) and real eigenvalues {λi}:

Kei = λiei. (5.2)

Moreover, since K is positive, the eigenvalues λi are non-negative (and have zero as the only
possible accumulation point). Now, the stochastic process X which we fixed in the beginning of
this section is assumed to be square integrable on D × Ω and thus, we may use the basis {ei}
of L2(D) to expand Xt as follows,

Xt =
∑
i

xiei(t), xi =

∫
D

Xtei(t) dt (5.3)

The above equality is to be understood in mean square sense. To be most specific, at this point
we have that the realizations X̂ of the stochastic process X admit the expansion

X̂ =
∑
i

xiei

where the convergence is in L2(D × Ω). We will see shortly that the result is in fact stronger,
and we have

lim
N→∞

E

[(
Xt −

N∑
i=1

xiei(t)
)2
]

= 0,

uniformly in D, and thus, as a consequence, we have that (5.3) holds for all t ∈ D. Before
proving this, we examine the coefficients xi in (5.3). Note that xi are random variables on Ω.
The following lemma summarizes the properties of the coefficients xi.
Lemma 5.2. The coefficients xi in (5.3) satisfy the following:

1. E [xi] = 0

2. E [xixj ] = δijλj .
3. Var [xi] = λi.
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Proof. To see the first assertion note that

E [xi] = E

[∫
D

Xtei(t) dt

]
=

∫
Ω

∫
D

Xt(ω)ei(t) dt dP (ω)

=

∫
D

∫
Ω

Xt(ω)ei(t) dP (ω) dt (Fubini)

=

∫
D

E [Xt] ei(t) dt = 0,

where the last conclusion follows from E [Xt] = 0 (X is a centered process). To see the second
assertion, we proceed as follows

E [xixj ] = E

[(∫
D

Xsei(s) ds
)(∫

D

Xtej(t) dt
)]

= E

[∫
D

∫
D

Xsei(s)Xtej(t) ds dt

]
=

∫
D

∫
D

E [XsXt] ei(s)ej(t) ds dt

=

∫
D

(∫
D

k(s, t)ej(t) dt
)
ei(s) ds

=

∫
D

[Kej ](s)ei(s) ds (from (5.1))

= 〈Kej , ei〉
= 〈λjej , ei〉
= λjδij ,

where again we have used Fubini’s Theorem to interchange integrals and the last conclusion
follows from orthonormality of eigenvectors of K. The assertion (3) of the lemma follows easily
from (1) and (2):

Var [xi] = E
[
(xi − E [xi])

2
]

= E
[
x2
i

]
= λi.

Now, we have the technical tools to prove the following:
Theorem 5.3 (Karhunen-Loeve). Let X : D × Ω → R be a centered mean-square continuous
stochastic process with X ∈ L2(Ω×D). There exist a basis {ei} of L2(D) such that for all t ∈ D,

Xt =

∞∑
i=1

xiei(t), in L2(Ω),

where coefficients xi are given by xi(ω) =
∫
D
Xt(ω)ei(t) dt and satisfy the following.

1. E [xi] = 0

2. E [xixj ] = δijλj .
3. Var [xi] = λi.

Proof. Let K be the Hilbert-Schmidt operator defined as in (5.1). We know that K has a
complete set of eigenvectors {ei} in L2(D) and non-negative eigenvalues {λi}. Note that
xi(ω) =

∫
D
Xt(ω)ei(t) dt satisfy the the properties (1)-(3) by Lemma 5.2. Next, consider

εn(t) := E

[(
Xt −

n∑
i=1

xiei(t)
)2
]
.

The rest of the proof amounts to showing lim
n→∞

εn(t) = 0 uniformly (and hence pointwise) in D.

εn(t) = E

[(
Xt −

n∑
i=1

xiei(t)
)2
]

= E
[
X2
t

]
− 2E

[
Xt

n∑
i=1

xiei(t)

]
+ E

 n∑
i,j=1

xixjei(t)ej(t)

 (5.4)
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Now, E
[
X2
t

]
= k(t, t) with k as in (5.1),

E

[
Xt

n∑
i=1

xiei(t)

]
= E

[
Xt

n∑
i=1

( ∫
D

Xsei(s) ds
)
ei(t)

]

=

n∑
i=1

(∫
D

E [XtXs] ei(s) ds
)
ei(t)

=

n∑
i=1

(∫
D

k(t, s)ei(s) ds
)
ei(t) =

n∑
i=1

[Kei](t)ei(t) =

n∑
i=1

λiei(t)
2. (5.5)

Through a similar argument, we can show that

E

 n∑
i,j=1

xixjei(t)ej(t)

 =

n∑
i=1

λiei(t)
2 (5.6)

Therefore, by (5.4), (5.5), and (5.6) we have

εn(t) = k(t, t)−
n∑
i=1

λiei(t)ei(t),

invoking Theorem 3.1 (Mercer’s Theorem) we have

lim
n→∞

εn(t) = 0,

uniformly; this completes the proof.

Remark 5.4. Suppose λk = 0 for some k, and consider the coefficient xk in the expansion (5.3).
Then, we have by the above Theorem E [xk] = 0 and Var [xk] = λk = 0, and therefore, xk = 0.
That is, the coefficient xk corresponding to a zero eigenvalue is zero. Therefore, only xi cor-
responding to postive eigenvalues λi appear in KL expansion of a square integrable, centered,
and mean-square continous stochastic process.

In the view of the above remark, we can normalize the coefficients xi in a KL expansion and
define ξi = 1√

λi
xi. This leads to the following, more familiar, version of Theorem 5.3.

Corollary 5.5. Let X : D × Ω→ R be a centered mean-square continuous stochastic process
with X ∈ L2(Ω×D). There exist a basis {ei} of L2(D) such that for all t ∈ D,

X(t, ω) =

∞∑
i=1

√
λiξi(ω)ei(t) in L2(Ω). (5.7)

where ξi are centered mutually uncorrelated random variables with unit variance and are given
by,

ξi(ω) =
1√
λi

∫
D

Xt(ω)ei(t) dt.

The KL expansion of a Gaussian process has the further property that ξi are independent
standard normal random variables (see e.g. [3, 1]). The latter is a useful property in practical
applications; for instance, this is used extensively in the method of stochastic finite element [1].
Moreover, in the case of a Gaussian process, the series representation in (5.7) converges almost
surely [4].

6 A classical example

Here we consider the KL decomposition of a Gaussian random fieldX, which is characterized
by its variance σ2 and an autocorrelation function RX(s, t) given by,

RX(s, t) = σ2 exp
(
− |s− t|

Lc

)
. (6.1)

We show in Figure 1 a plot of RX(s, t) over [0, 1]× [0, 1].
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Figure 1: The autocorrelation function.

6.1 Spectral decomposition of the autocorrelation function

For this particular example, the eigenfunctions ei(t) and eigenvalues λi can be computed
analytically. The analytic expression for eigenvalues and eigenvectors can be found for example
in [1, 3]. We consider the case of σ2 = 1 and Lc = 1 in (6.1). In Figure 2, we show the first few
eigenfunctions and eigenvalues of the autocorrelation function defined in (6.1). To get an idea
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Figure 2: The first few eigenfunctions (a) and eigenvalues (b) of the autocorrelation function.

of how fast the approximation,

RNX(s, t) =

N∑
i=1

λiei(s)ei(t)

converges to RX(s, t) we show in Figure 3 the plots of RNX(s, t) for N = 2, 4, 6, 8. In Figure 4, we
see that with N = 6, absolute error is bounded by 8× 10−2.

6.2 Simulating the random field

Having the eigenvalues and eigenfunctions of RX(t, ω) at hand, we can simulate the random
field X(t, ω) with a truncated KL expansion,

XN
trunc(t, ω) :=

N∑
i=1

√
λiξi(ω)ei(t).

As discussed before, in this case, ξi are independent standard normal variables. In Figure 5(a),
we plot a few realizations of the truncated KL expansion of X(t, ·), t ∈ [0, 1] and in Figure 5(b),
we show the distribution of X(t, ·) at t = 1/2 versus standard normal distribution. For this
experiment we used a low oreder KL expansion with N = 6 terms.

6.3 A final note regarding practical applications of KL expansions

In practice, when using KL expansions to model uncertainties in mathematical models, a
premature a priori truncation of the KL expansion could potentially lead to misleading results,
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Figure 3: Improvements of the approximations to RX(s, t) as the expansion order is increased.

(a) (b) (c)

Figure 4: (a) The autocorrelation function RX(s, t), (b) the approximation RNX(s, t) with N = 6,
and (c) pointwise difference between RX(s, t) and RNX(s, t) with N = 6.

because the effect of the higher order oscillatory modes on the output of a physical system
could be significant. Also, sampling such a low-order KL expansion results in realizations of the
random field that might look artificially smooth; see for example the realizations of a low-order
KL expansion reported in Figure 5. In Figure 6 we illustrate the influence of the higher order
modes on the realizations of the truncated KL expansion, in the context of the same example;
in the figure, we consider two fixed realizations of the process, and for each realization we plot
XN

trunc(t, ω) with successively larger values of N .

10



A brief note on the Karhunen-Loève expansion

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a) (b)

Figure 5: (a) A few realizations of the random field X(t, ·) approximated by a truncated KL
expansion with N = 6 terms. (b) distribution of X(t, ω) at t = 1/2 (blue) versus a standard
normal distribution (red).
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Figure 6: Two realizations of the random field X(t, ·) simulated via a truncated KL expansion.
To see the influence of the higher order oscillations captured by higher order KL modes, we
successively increase the truncation order N .
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