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Abstract

In this paper we present an automatic method for calibrat-
ing a network of cameras from only silhouettes. This is par-
ticularly useful for shape-from-silhouette or visual-hull sys-
tems, as no additional data is needed for calibration. The
key novel contribution of this work is an algorithm to ro-
bustly compute the epipolar geometry from dynamic silhou-
ettes. We use the fundamental matrices computed by this
method to determine the projective reconstruction of the
complete camera configuration. This is refined into a met-
ric reconstruction using self-calibration. We validate our
approach by calibrating a four camera visual-hull system
from archive data where the dynamic object is a moving per-
son. Once the calibration parameters have been computed,
we use a visual-hull algorithm to reconstruct the dynamic
object from its silhouettes.

1 Introduction

Shape-from-Silhouette initially proposed by [3], has re-
cently received a lot of attention and various algorithms
for recovering the shape of objects have been proposed
[5, 8, 15, 10, 20]. Many Shape-from-Silhouette methods
attempt to compute the visual hull [11] of an object, which
is the maximal shape that produces the same set of silhou-
ettes seen from multiple views. For a fully calibrated cam-
era, the rays through the camera center and points on the
silhouette define a viewing cone [17]. Intersecting viewing
cones backprojected from silhouettes in multiple views pro-
duces the visual hull of the object. Shape-from-Silhouette
implementations are relatively simple and real-time model
acquisition techniques exist [5, 15]. However with a few
cameras, the visual hull can only coarsely approximate the
shape of the real object. For more accurate shape estimates,
more silhouettes images are needed. This could be achieved
by increasing the number of cameras or by trying to align
visual hulls over time, when the scene exhibits rigid mo-
tion [8]. Sand et al. [20] use silhouettes to estimate shape
of dynamic objects and is able to get good estimates by as-
suming a parameterized model of human figures.

Most multi-camera Shape-from-Silhouette systems as-

Figure 1: Multi-view Uncalibrated Video Sequence

sume that the calibration and pose of the cameras has been
precomputed offline via a specific calibration procedure.
Typically, the calibration data is obtained by moving a pla-
nar pattern [26] or a LED in the field of view of the cameras.
This has the significant disadvantage that physical access to
the observed space is necessary and it precludes reconfigu-
ration of cameras during operation (at least without insert-
ing an additional calibration session). Some approaches for
structure-from-motion for silhouettes have been proposed,
but most of these have limitations rendering them impracti-
cal for arbitrary unknown camera configurations, which we
call a camera network. These limitations include : requir-
ing the observed object to be static [7], requiring a specific
camera configuration (i.e. at least partially circular) [23],
using an orthographic projection model [22], and requiring
a good initialization [24].

In this paper we address the problem of calibrating a
camera network and constructing the visual hull from the
video sequences of a dynamic object using only silhouette
information. Our approach is based on a novel algorithm to
robustly compute the epipolar geometry from two silhouette
sequences. This algorithm is based on the constraints aris-
ing from the correspondence of frontier points and epipolar
tangents [23, 19, 1, 2]. These are points on an objects’ sur-
face which project to points on the silhouette in two views.
Epipolar lines which pass through the images of a frontier
point must correspond. Such epipolar lines are also tan-
gent to the respective silhouettes at these points. Previous
work used those constraints to refine an existing epipolar
geometry [19, 1, 2]. Here we take advantage of the fact that
a camera network observing a dynamic object will record
many different silhouettes, yielding a large number of con-



straints that need to be satisfied. We devise a RANSAC [4]
based approach to extract such matching epipolar tangents
in the video sequence. The epipole positions are hypothe-
sized, an epipolar line homography is computed and verified
at every RANSAC iteration. Random sampling is used both
for exploring the 4D space of possible epipole positions as
well as dealing with outliers in the silhouette data. A sub-
sequent non-linear minimization stage computes a more ac-
curate estimate of the epipolar geometry and also provides
matching frontier points in the video-sequence. These point
matches are used later in a bundle adjustment to improve
calibration. Once some of the fundamental matrices are
known, a projective reconstruction of the � Cameras can
be recovered. This is first refined using a projective bun-
dle adjustment. Next, using self-calibration methods and
a Euclidean bundle adjustment, we are able to compute a
set of optimal Euclidean cameras. Finally, the metric visual
hull of the observed dynamic object is reconstructed for the
sequence. Other reconstruction approaches such as multi-
baseline stereo or voxel coloring, could also be used with
the computed calibration.

As our calibration approach relies on silhouettes, it de-
pends on a robust background segmentation approach. Our
RANSAC algorithm, however, allows a reasonable ratio of
bad silhouettes. It is also important that the frontier points
cover a sufficient part of the image and depth range to yield
satisfactory results. This requires sufficient motion of the
observed object over the space observed by the cameras.
Advantages of our method are that it does not rely on fea-
ture matching and wide-baselines between camera pairs are
handled well. Our approach is particularly well suited for
systems that rely on silhouette extraction for reconstruction,
as in this case no additional data needs to be extracted for
calibration. We cannot directly compute the epipolar geom-
etry of camera configurations where the epipole is located
within the convex hull of the silhouette, but we can often
handle this case as the projective reconstruction stage only
requires a subset of the fundamental matrices. The remain-
der of this paper is organized as follows. Section 2 presents
the background theory and terminology. The details of our
algorithm are presented in Section 3. Section 4 shows our
results on a real dataset and we finally conclude with dis-
cussions in Section 5.

2 Background and notation
The signifance of epipolar tangencies and frontier points
has been extensively studied in computer vision [19, 17, 23,
13]. Frontier points are points on the object’s surface which
project to points on the silhouettes in two views. In Fig. 2,�

and � are frontier points which project to points on the
silhouettes ��� and �	� respectively. They both lie on the in-
tersection of the apparent contours, 
�� and 
�� which give
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Figure 2: The frontier points and epipolar tangents for two
views.

rise to these two silhouettes. The projection of ) , the epipo-
lar plane tangent to

�
gives rise to corresponding epipolar

lines * � and * � which are tangent to � � and � � at the im-
ages of

�
in the two images respectively. No other point

on � � and � � other than the projected frontier points,
�

and � are guaranteed to correspond. Unfortunately, frontier
point constraints do not, in general exist over more than two
views. In a three-view case generally, the frontier points in
the first and second view do not correspond to those in the
second and third view. As we show later, this has impor-
tant implications for the recovery of the projective camera
network configuration. For a complicated non-convex poly-
tope object such as a human figure, there could be many po-
tential frontier points. However it is hard to find all of them
in uncalibrated sequences since the position of the epipoles
are unknown [19] a priori. In [23] Wong et. al searches for
outer-most epipolar tangents for circular motion. In their
case, the existence of fixed entities in the images such as
the horizon and the image of the rotation axis simplify the
search for epipoles. We also look for the two outer epipolar
tangents and make the key observation that the image of the
frontier points corresponding to these outer-most epipolar
tangents must lie on the convex hull of the silhouette. We
apply a RANSAC-based approach to search for the epipoles
and compute the epipolar line homography which satisfies
the epipolar geometry as well as retrieve the corresponding
frontier points in the whole seqeunce.

We shall denote the Fundamental Matrix between view+
and view , by -/.10 (transfers points in view

+
to epipo-

lar lines in view , ) and the epipole in view , of camera
center

+
as 2 .10 . The pencil of epipolar lines in each view

centered on the epipoles, is considered as a 354 projective
space [9] [Ch.8 p.227]. The epipolar line homography be-
tween two such 354 projective spaces is a 674 homography.
Knowing the position of the epipoles 2 .10 , 2 08. ( 6:9<;7= each)
and the epipolar line homography ( >?9<;7= ) fixes -@.10 which
has AB9C;7= . Three pairs of corresponding epipolar lines are



Figure 3: The Calibration Procedure.

sufficient to determine the epipolar line homography DFEHG.10
so that it uniquely determines the transfer of epipolar lines
(note that DIEHG.J0 is only determined up to 3 remaining de-
grees of freedom, but those do not affect the transfer of
epipolar lines). The fundamental matrix is then given by-�.10�KML 2N.10PORQHDS.J0 .

The metric camera network configuration of a system
with � cameras is described by a set of Euclidean cam-
era projection matrices TVU. KXWY.8L ZB[.F\ ZB[.�] .^O`_ + Ka3Cbcb5b �
where Wd. represent the camera intrinsics, ZB. and ] . describe
the rotation and translation of the camera center of the

+
th

camera w.r.t the world coordinate frame. The set of projec-
tive camera matrices will be denoted by T . _ + Ke3fb5bcb � .
Those camera matrices are related by a projective transfor-
mation gihU so that T . KjgihU T:U. _ + Kk3fb5bcb � .

3. Our approach
Fig. 3 describes the step by step procedure we follow. We
have � fixed cameras placed around an object. The in-
put to the system is � synchronized video sequences of l
frames each. We denote the set of silhouettes in the , th set
of frames by � .0 ; + Km3Cbcb5b � . Our goal is to compute the
Euclidean camera projection matrices T?U. corresponding to
the camera network configuration.

3.1 Silhouette Tangent Envelopes
For every frame in each sequence, a binary segmentation
of the object is computed using background segmentation.
Noisy patches are cleaned up using a hole-filling algorithm
that uses an area threshold in pixels to distinguish noisy
blobs from the object’s silhouette blob. Instead of explicitly
storing every silhouette � , we directly compute and store
its tangent envelope g?no�qp , which is a more compact repre-
sentation. The tangent envelope of � , (see Fig. 4(a)) con-
sists of its convex hull 
BDrno�qp , stored as an ordered list
of s vertices ( t � bcb5bRtfu in counter-clockwise order (CCW))
and a table of directed tangents parameterized by the an-
gle vFKxwCy/b5bcb8>Czfw<y , where for every tangent ] . we store{ . , the point of tangency on the convex hull 
BDFno�|p . A 37y
sampling interval is chosen for the tangent tables. The tan-
gent orientation defines a consistent direction of the tangent
with respect to 
BDFno�|p such that there is only one tangent

Figure 4: (a) The Tangent Envelope T(S) for silhouette S
(only 1 in 6 tangents is shown for clarity). We sample for
the epipoles in this tangent space parameterized by v . (b)
Computing the Silhouette Convex Hull CH(S)

]R} in a direction 9 } and not two. This simplifies tangency
computations later on.

To compute the Tangent Envelope g~no�|p for a silhouette� , we first construct its convex hull 
BDrn��|p using Melk-
man’s �Sn���p on-line convex hull algorithm [16]. This re-
quires a simple path traversing all points in the point-set,
which can be computed in �Sn��	*�;N����p time. In our case, a
top-down scan of the bounding box of � implicitly gives us
2 simple paths in �Sn^��p time, a left extreme boundary ��n��|p
and a right extreme boundary Z�n��|p of � (see Fig. 4(b)). In
a single pass, we obtain ordered lists of vertices for the left
hull �qDrn��|p , in CCW order and right hull Z�DFno�|p in CW
order. A union of �qDrn��|p and ZBDrno�qp produces 
BDFno�|p
which is stored in CCW order. If the silhouettes are clipped
at image boundaries, we store the convex hull as a single



ordered list instead of multiple connected segments. We in-
troduce new vertices where the silhouettes are clipped and
store flags to indicate the segments which lie inside the im-
ages. The next step is computing the tangency points { }
for v�Kaw y bcb5b8>fzCw y . We start by determining {�� and then
rotate the tangent ] } (incrementing v ) allowing it to switch
to the next point in 
BDrn��|p when required. This step takes�Sn^vCp time. g?no�qp is an extremely compact representation
and allows us to compute tangents to 
BDrno�qp from any ex-
ternal point in �Sn�*o;N�<vCp time. 
BDFno�|p typically had 25-35
vertices for the image resolution of our datasets. A single
frame required only about 500 bytes of storage. Therefore
the tangent tables for several minutes of multi-camera video
would easily fit into memory. This would allow us to effi-
ciently access thousands of video frames without any mem-
ory bottlenecks. Efficient tangent computation is key to the
feasibility of our algorithm as we see in 3.2.2. Computing a
pencil of tangents to a sequence of silhouettes is further op-
timized by using temporal coherence between silhouettes.

3.2. Computing the Epipolar Geometry
Given non-trivial silhouette shapes, we cannot compute the
epipolar geometry linearly from corresponding silhouettes
because the location of the frontier points depend on the po-
sition of the epipoles. Given an approximate solution, it is
possible to refine it using an optimization approach [19, 1].
Since we recover calibration of arbitrary camera configura-
tions using only silhouettes, an initial solution is not avail-
able to us. Therefore, we need to explore the full space
of possible solutions. While a fundamental matrix has 79C;7= ’s, we only have to randomly sample in a 4D space be-
cause once the position of the epipoles are known, the fron-
tier points can be determined, and from them the remaining
degrees of freedom of the epipolar geometry can be com-
puted. Here we propose a RANSAC-based approach that in
a single step, allows us to efficiently explore this 4D space
as well as robustly deal with incorrect silhouettes.

In Section 2 we discuss the parameterization of -@.J0 in
terms of the epipole positions 2�.J0 , 2P08. and the homographyD�.10 . The basic step of our algorithm makes a hypothesis
on the position of 2�.J0 and 2c08. in the two views. This fixes �9C;7=H��� and leaves us with >B9C;7=���� which can be determined
if we have a solution for D�.10 . To compute DS.10 we need
to pick three pairs of corresponding lines in the two viewsn�* u.�� * u0 _�s�Ka3fb5bcb >Cp . Every D .J0 satisfying the system of
equations L * u0 ORQHD�E�G.J0 * u. KXw�_�s�Ka3Cbcbcb > is a valid solution.
Note that these equations are linear in D EHG.10 .

3.2.1 Epipole Hypothesis and Computing H

At every iteration, we randomly choose the � th frames from
each of the two sequences. As shown in Fig. 5(a), we then,

Figure 5: (a) The 4D hypothesis of the epipoles (not in pic-
ture). (b) Complete collection of frontier points for one spe-
cific epipole hypothesis and one pair of transferred epipolar
lines *�� , *�� (with large residual transfer error).

randomly sample independent directions * �� from g~no�@�� p and* �� from g?n��@�� p for the first pair of tangents in the two views.
We choose a second pair of directions * �� from g~no�@�� p and* �� from g~no� �� p such that * �. K�* �. \r� for

+ K�3C �6 where �
is drawn from the normal distribution, �rnR35¡Cw� 8¢	p 1. The in-
tersections of the two pair of tangents produces the epipole
hypothesis ( 27�R� , 2£�¤� ). An alternative approach consists of
sampling both epipole directions randomly on a sphere [13],
which in the uncalibrated case is equivalent to random sam-
pling on an ellipsoid and yields comparable results. We next
randomly pick another pair of frames ¥ , and compute ei-
ther the first pair of tangents or the second pair. Let us de-
note this third pair of lines by *�¦� tangent to 
BDrn��|§� p and *�¦�
tangent to 
BDFno�q§� p (see Fig. 5(a)). D .J0 is computed fromn�* u.S� * u0 _�sYKM3fb5bcb ><p 2. The entities ( 2 .10 , 2 08. , D .10 ) form the
model hypothesis for every iteration of our algorithm.

1In case silhouettes are clipped in this frame, the second pair of direc-
tions could be chosen from another frame.

2For simplicity we assume that the first epipolar tangent pair corre-
sponds as well as the second pair of tangents. This limitations could be
easily removed by verifying both hypotheses for every random sample.



3.2.2 Model Verification

Once a model for the epipolar geometry is available, we
verify its accuracy. We do this by computing tangents from
the hypothesized epipoles to the whole sequence of silhou-
ettes in each of the two views. For unclipped silhouettes
we obtain two tangents per frame whereas for clipped sil-
houettes, there may be one or even zero tangents. Every
tangent in the pencil of the first view is transferred throughD�EHG.10 to the second view (see Fig. 5(b)) and the reprojec-
tion error of the transferred line from the point of tangency
in that particular frame is computed. We count the outliers
that exceed a reprojection error threshold (we choose this
to be 5 pixels) and throw away our hypothesis if the outlier
count exceeds a certain fraction of the total expected inlier
count. This allows us to abort early whenever the model
hypothesis is completely inaccurate (an approach inspired
by [6]). Thus tangents to all the silhouettes � 0. , j ¨©3Bbcbcbfl
in view

+
,
+ Kx3f �6 would be computed only for a promis-

ing hypothesis. For all such promising hypotheses an inlier
count is maintained using a lower threshold (we choose this
to be 1.5 pixels).

After a solution with a sufficiently high inlier fraction
has been found, or a preset maximum number of itera-
tions has been exhausted, we select the solution with the
most inliers and improve our estimate of F for this hypoth-
esis through an iterative process of non-linear Levenberg-
Marcquardt minimization while continuing to search for ad-
ditional inliers. Thus, at every iteration of the minimization,
we recompute the pencil of tangents for the whole silhou-
ettes sequence � 0. , j ¨�3ªbcb5b�l in view

+
,
+ K«3f �6 until

the inlier count converges. The cost function minimized is
the symmetric epipolar distance measure in both images. At
this stage we also recover the frontier point correspondences
(the points of tangency) for the full sequence of silhouettes
in the two views.

3.3. Computing Projective Cameras
Typical approaches for computing projective structure and
motion recovery require correspondences over at least 3
views. However, it is also possible to compute them based
on two-view correspondences. Levi and Werman [14] have
recently described how this could be achieved given a sub-
set of all possible fundamental matrices between � views.
They were mainly concerned with theoretical analysis and
their proposed algorithm is not suited for practical imple-
mentation in the presence of noise. Here we briefly describe
our approach which provides a projective reconstruction of
the camera network.

The basic building block that we first resolve is a set
of 3 cameras with non-collinear centers for which the 3
fundamental matrices -|�¬�f 8-@� ¦  8-/� ¦ have been computed
(Fig. 6(a),(b)). Given those, we use linear methods to find

a consistent set of projective cameras T|� , T/� and T ¦ (see
Eq.1) [9], choosing T|� and T/� as follows :

T­��KkL ®°¯ w�O T���KML±L 2£����O¬Q�-­�R�<¯ 2£����OT ¦ KML±L 2 ¦ ��O¬QH-@� ¦ ¯ w�O�²F2 ¦ �¤t<[ (1)

T ¦ is determined upto an unknown 4-vector t (Eq. 1). Ex-
pressing - � ¦ as a function of T � and T ¦ we obtain :

-:� ¦ KML±L 2 ¦ �PO¬Q�T ¦ T:³� (2)

which is linear in t , such that all possible solutions for-�� ¦ span a 4D subspace of TV´ [14]. We solve for t which
yields -:� ¦ , the closest appromixation to -­� ¦ in the sub-
space. T ¦ is obtained from the value of t from Eq. 1. The
resulting T �  8T �  �T ¦ are fully consistent with - �¬�  8- � ¦   - � ¦ .

Using the camera triplet as a building block, we could
handle our � -view camera network using two different in-
duction steps. The first induction step is as follows. Given
a consistent set of cameras for the n�s \ 3Np -view camera
network µ u E � and the F matrices, -	¶ u , - § u and -	¶ § for{  �¥�¨�µ u E � and s , a new view, we can build µ u using the
same linear algorithm used to resolve the 3-view case. We
show this induction step in Fig. 6(c). An estimate of -�¶ § is
available if the epipolar geometry of view { and view ¥ was
computed in the first phase of our algorithm. Otherwise,
we could derive -	¶ § since consistent projective cameras forµVu E � are already known. The second induction step (as
shown in Fig. 6(d)) is applied when independent sets of
cameras for camera networks, µ ¶ and µ § , which have the
view s in common are available. Consider the triplet of
views {  8¥� �s , { ¨�µ ¶ and ¥B¨�µ § . Based on Eq. 1, camerasT/u and T § can be chosen as,

T u KkL ®H¯ w7O T § KkL·L 2 § u O¬Q�- u § ¯ 2 § u O
and - ¶ § can be estimated similar to - � ¦ and this uniquely
connects µ ¶ and µ § . - ¶ u and - § u could be derived indi-
rectly if they are not already available from the calibration
procedure. This method works with � cameras in general
position if one can robustly compute the epipolar geometry
for at least n�67� \ >Cp -view pairs. We use the view triplet
as the fundamental building block since the � -view cam-
era network we solve for, can always be decomposed into a
single triangle strip. A single triangle strip with � vertices
must have 6f� \ > edges by Euler’s relation. Using this ap-
proach, more general graphs of fundamental matrices can
also easily be dealt with. For a detailed discussion of all
solvable cases the reader is referred to [14].

3.4. Computing Metric Cameras
In this section we briefly describe how the projective cali-
bration obtained by the method described in 3.3 can be up-
graded to a metric calibration. First, we use the linear self-
calibration algorithm [18], to estimate the transformation



Figure 6: (a) Three non-degenerate views for which we
estimate all F matrices. (b) The three-view case. - � ¦
is the closest approximation of -­� ¦ we compute. (c)&(d)
The induction steps used to resolve larger graphs using our
method.

g�hU , for each of the projective cameras. Both the camera
matrices and the frontier points are transformed using g�hUand these are used to initialize the Euclidean bundle adjust-
ment [21]. At this stage we could extend our camera model
to include radial distortion. The Euclidean bundle produces
the final calibration of the full camera network.

4. Experimental Results
We applied our techniques to an archived 4-view video
footage that was 4 mins. long, captured at 30 fps and was
synchronized within a frame [20]. Fig. 1 shows four corre-
sponding frames each from a different camera. The subject
is moving within the overlapping view frustum of these 4
views. Occasionally the subjects’s silhouette is clipped in
some of the views. All background images were available.

We selected a set of keyframes from the long 30 fps
video sequences to reduce redundancy in our datasets. This
is preferable because in a typical video sequence, the fron-
tier points and the epipolar tangents remain static over long
subsequences. Often the motion is periodic and examin-
ing a longer sequence does not necessarily provide more
information. To deal with this issue, we selected frames
that yielded new information for a limited set of epipole hy-
potheses (we used the 4 image corners in our implementa-
tion). From these hypothetical epipoles, a pencil of tangents
are computed to the convex hull of all the silhouettes for
each pair of sequences. Each of these tangents are inserted
into a high-resolution angular bin of size 0.2 degrees each.
We compute a minimal subset of frames that covers the set
of angular bins in the valid range of angles. We ended up

with upto 700 out of 7500 frames from our sequences.

Figure 7: (a) Recovered camera configuration and visual-
hull reconstruction of person. (b) The visual hull repro-
jected back into the four corresponding images. The sil-
houettes are completely filled except for fast-moving body
parts. (c) Another frame in one of the views shows the effect
of ignoring sub-frame synchronization.

Using the approach described in Section 3.2 we compute
the epipolar geometry for all viewpairs. For the epipole hy-
potheses, a random epipolar tangent was selected in view+
,
+ K¸3C �6 at angle v . and a second one was selected at�rn^v . ²k35¡CwCy£ �¢	p (we chose ¢ to be >Cw<y ). On an average,

we obtained one correct solution (converged to global min-
imum after non-linear refinement) for every 5000 hypoth-
esis3. This took approximately 15 seconds of computa-

3For the different camera pairs we get respectively one in 5555, 4412,
4168, 3409, 9375 and 5357. The frequency was computed over a total of
150,000 hypothesis for each viewpair.



tion time on a 3.0 GHz PIV with 1 GB RAM. Assuming
a Poisson distribution, 15,000 hypothesis would yield ap-
proximately ¹<ºC» probability of finding the correct solution
and 50,000 hypothesis would yield ¹C¹�b ¹f¹�» probability.

We computed the projective camera matrices for the four
cameras used in this experiment from the fundamental ma-
trices -@�¬�C 8-@� ¦  �-�� ¦  �-­�¬¼C �-��8¼ . -�� ¦ and -/�R¼ were adjusted
so that they were consistent with the other fundemental ma-
trices. The projective camera estimates were then improved
through a projective bundle adjustment (reducing the repro-
jection error from 4.6 pixels to 0.44 pixels). The final re-
projection error after self-calibration and metric bundle ad-
justment was 0.73 pixels. Using these projection matrices
the visual-hull was constructed as seen in Figure 7(a). To
test the accuracy of our obtained calibration, we projected
the reconstructed visual hull back into the images. For a
perfect system the silhouettes would be filled completely.
Mis-calibration would give rise to empty regions in the sil-
houettes. These tests gave consistent results on our 4-view
dataset (see Figure 7(b)). The silhouettes are completely
filled, except for fast moving bodyparts where the repro-
jected visual hull is sometimes a few pixels smaller on one
side of a silhouette (see Figure 7(c)). This is due to non-
perfect synchronization (subframe offsets were ignored) or
poor segmentation due to motion blur or shadows.

Additional experiments were performed with a 2-view
dataset that was about 1.5 mins. long, and captured at 30
fps. Fig. 8 shows two corresponding frames with a few
epipolar lines corresponding to the fundamental matrix F,
that we compute. The reference F was computed by man-
ually picking 50 corresponding features using the method
described in [9][ Ch.10, p.275 ]. Our computed F was used
to transfer these 50 features from the first view to the sec-
ond and vice-versa. Fig. 8(c) shows the distribution of the
symmetric epipolar transfer error. These results are compa-
rable with the results prior to bundle adjustment for the first
set of experiments.

5. Summary and Conclusions
In this paper we have presented a complete approach to ob-
tain the full metric calibration of a camera network from sil-
houettes. The core of the proposed method is a RANSAC-
based algorithm to efficiently compute the fundamental ma-
trix. The proposed method is both robust and accurate. An
important advantage of our approach is that it allows cali-
brating camera networks without the need for the acquisi-
tion of specific calibration data. This can be particularly
relevant when physical access to the observed space is im-
practical and when reconfiguration of an active camera net-
work is required during operations, making it suitable for
surveillance camera networks. Our approach is intrinsically
well suited for dealing with widely separated views, typ-
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Figure 8: (a) Two corresponding frames from a second
dataset with corresponding epipolar lines computed by our
algorithm. (b) The distribution of the symmetric epipolar
transfer error for the fundamental matrix we compute, cor-
responding to 50 manually clicked points. The root mean
square residual was 1.38 pixels (this is prior to bundle ad-
justment.

ical of surveillance camera networks and the robust algo-
rithm we utilize, allows us to deal with noisy silhouettes
caused by poor background segmentation or motion blur.
Another advantage of our method is that it would work well
in the absence of texture and is insensitive to poor photo-
metric calibration. At this point we require reasonably well
synchronized cameras, but in the future we intend to ex-
plore an extension of our approach to deal with unsynchro-
nized cameras and reconstruct visual hulls from unsynchro-
nized video footage. Conceptually, this could be achieved
by sampling over one additional dimension. We also intend
to study more in detail the possibilities of maintaining the
calibration of active camera networks based on silhouettes.
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