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1 Notation

Notation

• X - random variable or vector

• E [X] - expected value of random variable X.

• Var (X) - Variance of random variable X.

• IA - Indicator function for the event A ⊂ Ω.

• Pr [A] - Probability of the event A.

• ‖ · ‖2, ‖ · ‖1 - Euclidean norm, Absolute sum norm.

• N (µ, P ) - Gaussian distribution with mean µ and covariance P .

• (x)+ - max{0, x}.

• tr(M) - trace of the square matrix M .
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2 Introduction

Abstract: This talk provides a tutorial covering basic material on concentration inequalities of functions of
independent random variables around their mean. We will start with the inequalities of Markov, Chernoff and
Hoeffding and end with the logarithmic Sobolev inequalities of Ledoux. We will also discuss other inequalities
that apply to Gaussian processes. The focus will be on inequalities that play a role in applications to signal
processing and compressive sensing and thus we will provide examples that show the practical use of the
results.

2.1 References

The follow lecture notes, available on-line, are an excellent introduction to the subject, and covers all the
results given here (Markov, Chernoff, Hoeffding, Efron-Stein and Sobolev inequalities) in good detail, along
with many examples from statistical learning theory.

Gábor Lugosi, Concentration-of-measure Inequalities, Lecture Notes.
online: http://www.econ.upf.edu/∼lugosi/anu.pdf

Alexander Barvinok, Lecture notes, University of Michigan.
online: http://www.math.lsa.umich.edu/∼barvinok/total710.pdf

Ladoux and Talagrand developed many of the techniques for obtaining exponential concentration bounds.
These books contain further material that extends the basic results.

Michel Ladoux, The Concentration of Measure Phenomenon, American Mathematical Society,
2001

Michel Talagrand, The Generic Chaining: Upper and Lower Bounds of Stochastic Processes,
Springer-Verlag, 2005

The following are the original references where concentration of measure is applied towards proving the
Johnson-Lindenstrauss lemma.

P. Frankl and H. Maehara, “The Johnson-Lindenstrauss lemma at the sphericity of some graphs,”
Journal of Combinatorial Theory, Ser. B, vol. 44, no. 3, pp.355-362, 1988

P. Indyk and R. Motwani, Approximate nearest neighbors: towards removing the curse of dimen-
sionality, 30th Annual ACM Symposium on Theory of Computing, Dallas, TX, pp. 604-613,
1998.

S. Dasgupta and A. Gupta, An elementary proof of the Johnson-Lindenstrauss lemma, Technical
Report 99-006, UC Berkeley, March 1999.

2.2 Motivation

Concentration of Measure: What is it?

• Recall: the Weak Law of Large Numbers

– Xi are independent random variables with common mean µ and uniformly bounded variance.

– X̄n = 1
n

∑n
i=1Xi.

– Result:
∀ε > 0 lim

n→∞
Pr
[∣∣X̄n − µ

∣∣ < ε
]

= 1

• This is a statement about a particular function of independent random variables being concentrated
about its mean

X̄n = f (X1, X2, · · · , Xn)
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Concentration of Measure: The behavior of functions of independent random variables

• Other functions are of interest, especially the norm of a linear mapping

f(X1, X2, · · · , Xn) = ‖ΦX‖2

• Possible mappings Φ

– Projection Operator

– Convolution Operator

– Dictionary

• Concentration probabilities for finite n are useful

• Rates of decay can be important (want tight bounds)

2.3 Examples

Example 1: Stable Embeddings

Rn

ψ(x)−−→

Rm

• Map set of N data points into lower dimensional space while preserving pair-wise distances.

– Possible applications: search for nearest neighbors, compact data representations, clustering

• Questions:

– For a given N and n, what is the required m to meet a specific distortion bound? (Johnson and
Lindenstrauss)

– How do we find the mapping ψ?

Example 2: Signal Recovery

• Basic signal processing question: How many measurements needed to represent a signal?

Measurement
Process

High Dimensional
Signal z Sampled Signal ym
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Example 2: Signal Recovery: Spectral Recovery

• Answer depends on signal model (s ∈ S) and measurement model (ym = φm(s)).

• Signal model: Signal has spectral representation (in Fourier basis)

s(t) =
∑
k

αke
jω0kt

• Measurement model: Sampling
ym = s(m∆t)

• Nyquist theorem: Original signal s can be recovered from samples ym (over one period) if the sampling
rate is twice the signal bandwidth.

Example 2: Signal Recovery: Compressive Sensing

• Compressive Sensing has different signal and measurement models.

• Signal model: Signal has sparse representation on some basis

s Φ x

=

• Measurement model: Linear mapping

• Questions (Answered next lecture):

– What are the conditions on the measurement process that guarantee that all signals s of given
sparsity can be recovered?

– How can we design a good measurement process?

Example 3: Trace Estimate of a Matrix

• In large scale problems, the matrix multiplication Mx may be feasible, but tr(M) may not be.

– M may not fit in memory, and may be defined via other operations

• Estimate of trace for symmetric M ∈ Rn×n:

– Select x ∼ N (0, I).

– Calculate r = x′(Mx).

• E [r] = trM .

• Does this estimate concentrate around its mean? How does the concentration probability depend on
the properties of M?
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3 Basic Results

3.1 Markov and Chebyshev inequalities

The Statement of Markov’s Inequality

Theorem 1 (Markov’s Inequality). For any nonnegative random variable X with finite mean and t > 0,

Pr [X ≥ t] ≤ E [X]

t

Remark 1. Markov’s inequality follows directly from the following:

E [X] = E [XIX≥t] + E [XIX<t]
≥ tE [IX≥t]
= tPr [X ≥ t] .

This is illustrated below for a random variable with pdf pX(x).

Proof of Markov’s Inequality

x

xpX(x)

︸ ︷︷ ︸
E[X]

≥

x

tpX(x)

t

︸ ︷︷ ︸
tE[IX≥t]

E [X] ≥ tPr [X ≥ t]

Application of Markov’s Inequality: Chebyshev’s Inequality

Theorem 2 (Chebyshev’s Inequality). For random variable X with finite variance σ2,

Pr [|X − E [X]| ≥ t] ≤ σ2

t2
∀t > 0

Proof of Chebyshev’s Inequality

• Note that Pr [|X − E [X]| ≥ t] = Pr
[
|X − E [X]|2 ≥ t2

]
• Apply Markov’s Inequality to the random variable

φ = |X − E [X]|2 .

• E [φ] = Var (X)

Pr
[
φ ≥ t2

]
≤ E [φ]

t2

Pr
[
|X − E [X]|2 ≥ t2

]
≤ Var (X)

t2

Pr [|X − E [X]| ≥ t] ≤ Var (X)

t2
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Application of Chebyshev’s Inequality: The Weak Law of Large Numbers

• Xi are independent random variables with common mean µ and uniform variance bound σ2
sup

• X̄n = 1
n

∑n
i=1Xi.

E
[
X̄n

]
= µ

Var
(
X̄n

)
=

1

n2

n∑
i=1

Var (Xi)

≤ 1

n
sup
i

Var (Xi) =:
σ2
sup

n

• Chebyshev’s Inequality

Pr
[∣∣X̄n − µ

∣∣ ≥ ε] ≤ σ2
sup

nε2

lim
n→∞

Pr
[∣∣X̄n − µ

∣∣ ≥ ε] = 0

How Tight is Chebyshev’s Inequality?

• Chebyshev bound

Pr
[∣∣X̄n − µ

∣∣ ≥ ε] ≤ σ2
sup

nε2

• Suppose Xi are Gaussian, Xi ∼ N (µ, σ2)

• Then X̄n ∼ N (µ, σ2/n) (would approach Gaussian regardless by CLT)

• From tail bound on Gaussian distribution,

Pr
[∣∣X̄n − µ

∣∣ ≥ ε] ≤ σ

ε
√

2πn
e−nε

2/(2σ2)

• Chebyshev’s bound decreases as 1/n. The actual probability decreases exponentially in n.

Comparison of bounds

n

B
o
u
n
d

Chebyshev bound

Gaussian Tail Bound

101 102 103 104
10−20

10−15

10−10

10−5

100

• Exponential dependence implies critical n. If probability of failure is small for n = n0, it is really small
for n = 10n0.
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3.2 Chernoff’s bounding method

Idea of Chernoff’s bounding method

• For Chebyshev’s bound, we applied the second moment function φ(x) = x2 before applying Markov’s
inequality.

• Some moments may be better than others.

• Idea: choose
φ(x, s) = esx,

(which includes all moments,) then optimize over s.

Process for Chernoff’s bounding method

• Given: random variable X.

• By monotonicity of esx for s > 0,

Pr [X ≥ t] = Pr
[
esX ≥ est

]
• Apply Markov’s inequality to right hand side

Pr [X ≥ t] ≤
E
[
esX

]
est

• E
[
esX

]
is moment generating function for X (when finite around s = 0)

Chernoff’s bounding method summary

Theorem 3 (Chernoff’s bounding method). For any random variable X and t > 0,

Pr [X ≥ t] ≤ min
s>0

E
[
esX

]
est

Pr [X ≤ t] ≤ min
s>0

E
[
e−sX

]
e−st

when RHS exists.

Application: Norm of a Random Vector

• Let

X =


X1

X2

...
Xn


be a Gaussian random vector with mean 0 and covariance matrix P .

• Does ‖X‖22 concentrate around its mean?
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Application: Norm of a Random Vector Step 1: Moment Generating Function

• Moment Generating Function for ‖X‖22:

E
[
e±s‖X‖

2
2

]
=

1√
det (I ∓ 2sP )

when s ≤ λmax(P )2.

• Proof: Completion of squares

E
[
e±s‖X‖

2
2

]
=

∫
1

(2π det (P ))
1
2

e±sX
′Xe−

1
2X
′P−1XdX

=

∫
1

(2π det (P ))
1
2

e−
1
2X
′(P−1∓2sI)XdX

=
det

1
2

((
P−1 ∓ 2sI

)−1)
det

1
2 (P )

=
1

(det (P−1 ∓ 2sI) detP )
1
2

=
1√

det (I ∓ 2sP )
.

• Special case: P = I (‖X‖22 ∼ χ2
n)

E
[
es‖X‖

2
2

]
= (1− 2s)

−n2

Application: Norm of a Random Vector Step 2: Use Chernoff’s Method

• Concentration of norm of X ∼ N (0, σ2I) around mean.

• Expected Norm

E
[
‖X‖22

]
=

n∑
i=1

E
[
X2
i

]
= nVar (X1) = nσ2

• Chernoff’s bound, ε > 0:

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ min

s>0

E
[
es‖X‖

2
2

]
es(1+ε)nσ2

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ min

s>0

(
1− 2sσ2

)−n2 e−s(1+ε)nσ2

Application: Norm of a Random Vector Step 3: Optimize over s

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ min

s>0

(
1− 2sσ2

)−n2 e−s(1+ε)nσ2

• optimal s = ε
2(1+ε)σ2
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Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤
(
(1 + ε)e−ε

)n
2

Note that
(1 + ε)e−ε = e−ε+log(1+ε).

It is easy to verify that log(1 + ε) ≤ ε− ε2/2 + ε3/3. Thus

(1 + ε)e−ε ≤ e−
(
ε2

2 −
ε3

3

)
.

Substituting into the probability bound,

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤
(
e
−
(
ε2

2 −
ε3

3

))n
2

A second bound comes from noting that ε2

2 −
ε3

3 ≥
ε2

3 for 0 < ε < 1/2. Thus,

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ e−ε

2n/6 0 < ε < 1/2

Application: Norm of a Random Vector: Result

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ e−ε

2n/6

Pr
[
‖X‖22 ≤ (1− ε)E

[
‖X‖22

]]
≤ e−ε

2n/4

• In high dimensions, X ∼ N (0, 1
nI) is concentrated near the unit sphere

R2:

-2 0 2
-2

-1

0

1

2

Rn:

-2 0 2
-2

-1

0

1

2

Application: Stable Embedding

Rn

ψ(x)−−→

Rm

Theorem 4 (Johnson-Lindenstrauss). Given ε > 0 and integer N , let m be a positive integer such that

m ≥ m0 = O

(
logN

ε2

)
.

For every set P of N points in Rn, there exists ψ : Rn → Rm such that for all u, v ∈ P,

(1− ε)‖u− v‖2 ≤ ‖ψ(u)− ψ(v)‖2 ≤ (1 + ε)‖u− v‖2
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Application: Stable Embedding

• Original proof utilized geometric approximation theory

• Simplified and tightened by Frankl and Maehara, Indyk and Motwani, Dasgupta and Gupta, using
random mappings/concentration of measure

Application: Stable Embedding: Proof of J-L theorem

• Choose mapping

ψ(x) :=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 an2 · · · amn

x = Ax

where aij ∼ N
(
0, 1

m

)
, indepdenent.

• Given set P of N points, there are
(
N
2

)
vectors x = u− v, u, v ∈ P.

Application: Stable Embedding: Proof of J-L theorem, step 1

• For fixed x consider y = Ax.

• By properties of Gaussian variables, yi ∼ N
(

0,
‖x‖22
m

)
, independent.

• E
[
‖Ax‖22

]
= E

[
‖y‖22

]
= E

[∑m
i=1 y

2
i

]
= ‖x‖22

• By “Norm of a Random Vector” result, for 0 < ε < 0.5,

Pr
[
(1− ε)‖x‖22 ≥ ‖Ax‖22 ≥ (1 + ε)‖x‖22

]
≤ 2e−

ε2m
6

Application: Stable Embedding: Proof of J-L theorem, step 2

• Now consider
(
N
2

)
vectors x.

• Using union bound P (A ∪B) < P (A) + P (B),

Pr
[
(1− ε)‖x‖22 ≥ ‖Ax‖22 ≥ (1 + ε)‖x‖22

]
≤ 2

(
N

2

)
e−

ε2m
6

≤ 2 (eN/2)
2
e−

ε2m
6

=
1

2
e2e−

ε2m
6 +2 logN

• Probability of not achieving JL-embedding small if m > O
(

logN
min(ε,0.5)2

)
Application: Stable Embedding: Proof of J-L theorem, step 3

• Once the probability of failure drops below 1, a mapping exists.

• A linear mapping that is generated randomly will work with high probability for m > m0 = O
(

logN
ε2

)
.

• Probability of success depends exponentially on m.
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Application: Trace Estimate: Problem Statement

• Estimate of trace for symmetric M ∈ Rn×n:

– Select x ∼ N (0, I).

– Calculate r = x′(Mx).

• E [r] = trM .

• Using eigenvalue/eigenvector decomposition of M = UDU ′,

r = x′UDU ′x = z′Dz =

n∑
i=1

λiz
2
i

where zi ∼ N (0, I), λi: eigenvalues of M .

Application: Trace Estimate: Apply Chernoff Bound

• Chernoff bound (0 < ε < 1):

Pr [r ≤ (1− ε)trM ]] ≤ es(1−ε)trME
[
e−s

∑
λiz

2
i

]
• We found

E
[
e−sλiz

2
i

]
=

1√
1 + 2sλi

• Thus

Pr [r ≤ (1− ε)trM ]] ≤ es(1−ε)trM∏
i

√
1 + 2sλi

≤ e−εs(trM)es
2∑

i λ
2
i

where we used 1/
√

1 + x = e−0.5 log(1+x) and log(1 + x) ≥ x− x2

2 for x > 0.

Application: Trace Estimate: Result

• Bound so far
Pr [r ≤ (1− ε)trM ]] ≤ e−εs(trM)es

2∑
i λ

2
i

• Optimal s = ε(trM)
2
∑
i λ

2
i

Pr [r ≤ (1− ε)trM ]] ≤ e−ε
2/4γ(M)

where γ(M) =
∑
i λ

2
i

trM2 =
∑
i λ

2
i

(
∑
i λi)

2

• γ(M) is related to the “spread” of eigenvalues

– M orthonormal, γ(M) = 1
n .
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3.3 Hoeffding’s Inequality

The Statement of Hoeffding’s Inequality

• Problem: the moment generating function is not always easy to find, (any may not exist.)

Theorem 5 (Hoeffding’s Inequality). Let X be a bounded random variable with mean 0 and a ≤ X ≤ b.
Then for s > 0

E
[
esX

]
≤ es

2(b−a)2/8

• Proof: Use convexity of the exponential function: for s ∈ [a, b],

esx ≤ x− a
b− a

esb +
b− x
b− a

esa

Hoeffding’s Tail Inequality

• Plugging into Chernoff’s bound:

Theorem 6. Let Xi be independent bounded random variables and ai ≤ Xi ≤ bi. Let Sn =
∑n
i=1Xi. Then

for all ε > 0

Pr [Sn ≥ E [Sn] + ε] ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
Pr [Sn ≤ E [Sn]− ε] ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)

Application: Inner-Product of Sequence with Rademacher Distribution

• Suppose X is a length n random vector with elements drawn independently from {−, 1, 1} with equal
probability

• Let w be a length n vector with deterministic entries

• Consider inner product

Sn = 〈w,X〉 =

n∑
i=1

wiXi

• Note that wiXi is a random variable bounded between −wi and wi, and E [Sn] = 0.

• Using Hoeffding’s Tail Inequality:

Pr [|Sn| ≥ ε] ≤ exp

(
−2t2∑n
i=1(2wi)2

)

Pr [|Sn| ≥ ε] ≤ exp

(
−t2

2‖w‖22

)
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4 Logarithmic Sobolev inequalities

What comes next?

• So far, we have looked at inequalities for the 2-norm and inner products (which is still sums of random
variables)

• In what follows, we will look at some inequalities that are useful for general functions of independent
(but not necessarily identically distributed) random variables, which are not necessarily bounded

Z := g(X1, · · · , Xn)

4.1 Efron-Stein Inequality

Prediction

• Prediction plays an important role in signal processing

• Basic problem: Given measurement of Y , estimate X.

– Y : radar return, X: airplane location

– Y : reflectance measurement, X film thickness

– · · ·

Theorem 7 (Minimum Mean Square Estimate). Given random variables X and Y , the (measureable)
function g(Y ) that minimizes

E
[
(X − g(Y ))

2
]

is the conditional mean
ĝ(Y ) = E [X|Y ]

Efron-Stein Inequality, conditional mean version

Definition 8. Given (independent) random variablesX1, · · · , Xn and measurable function Z = g(X1, · · · , Xn),
define

E [Z|X−i] := E [Z|X1, · · · , Xi−1, Xi+1, · · · , Xn]

Theorem 9 (Efron-Stein Inequality, conditional mean version).

Var (Z) ≤
n∑
i=1

E
[
(Z − E [Z|X−i])2

]
• Proof: See, e.g. Lugosi. Uses simple properties of conditional expectation.

• Note: If Z is sum of Xi, then E
[
(Z − E [Z|X−i])2

]
= Var (Xi) and equality is achieved.

Efron-Stein Inequality: Modification of conditional mean

Definition 10. Given random variables X1, · · · , Xn and measurable function Z = g(X1, · · · , Xn), let X̃i

be independent and identically distributed as Xi and define

Zi := g(X1, · · · , Xi−1, X̃i, Xi+1, · · · , Xn)

• For any iid random variables X, Y

Var (X) =
1

2
E
[
(X − Y )2

]
= E

[
(X − Y )2IX>Y

]
• Note that Zi and E [Z|X−i] are iid, conditioned on X−i.
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Efron-Stein Inequality: Theorem Statement

Theorem 11 (Efron-Stein Inequality).

Var (Z) ≤ 1

2

n∑
i

E
[
(Z − Zi)2

]
=

n∑
i

E
[
(Z − Zi)2 IZ>Zi

]
• Can be used with Chebyshev inequality, but doesn’t give exponential bounds.

Application: Largest Eigenvalue of a Random Matrix: Problem Statement

• Let A ∈ Rn×n be a symmetric real matrix with elements [A]ij , 1 ≤ i ≤ j ≤ n independent random
variables with magnitude bounded by 1.

• Let λi be the (real) eigenvalues of A, and define

Z = max
i
λi

• is Z concentrated around its mean?

Application: Largest Eigenvalue of a Random Matrix: Characterization of Max Eigenvalue

• Max gain property of largest eigenvalue of a symmetric matrix.

Z = max
‖u‖=1

u′Au

• The unit eigenvector v associated with the max eigenvalue attains the max gain.

Application: Largest Eigenvalue of a Random Matrix: Find Bound on Perturbed Value

• Let Ã be matrix obtained by replacing [A]ij with an iid copy, and Zij be the max eigenvalue of this
matrix. Then

(Z − Zij)IZ>Zij ≤ (v′Av − v′Ãv)IZ>Zij
≤
(
vi([A]ij − [Ã]ij)vj

)
+

• Since [A]ij and −[Ã]ij are bounded by 1,

(Z − Zij)IZ>Zij ≤ 2|vivj |

Application: Largest Eigenvalue of a Random Matrix: Result

• Result:
Var (Z) ≤

∑
1≤i≤j≤n

4|vivj |2 ≤ 4‖v‖2 = 4

• Using Chebyshev’s Inequality,

Pr [|Z − E [Z]| ≥ ε] ≤ 4

ε2
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4.2 Entropy Method - Logarithmic Sobolev Inequality

Towards Exponential Bounds: Preliminaries

• Let M(s) = E
[
esZ
]

be the moment generating function of Z. If it exists,

E [Z] = M ′(s)|s=0 =
M ′(s)

M(s)

∣∣∣∣
s=0

• Suppose there exists C > 0 such that the following bound holds:

F ′(s) < C

Then clearly for s > 0, F (s) < F (0) + sC.

Towards Exponential Bounds: What if...

• Suppose
M ′(s)

sM(s)
− logM(s)

s2
≤ C

• Then with F (s) = logM(s)
s ,

F ′(s) ≤ C

• Thus, for s > 0,

logM(s)

s
< lim
s→0

logM(s)

s
+ sC

=
M ′(s)

M(s)

∣∣∣∣
s=0

+ sC

= E [Z] + sC

• Implying

M(s) < esE[Z]+s2C

Towards Exponential Bounds: Recap

• Inequality
sM ′(s)−M(s) logM(s) ≤ s2CM(s)

implies the bound on moment generating function

M(s) < esE[Z]+s2C .

• This can be used with Chebyshev’s bounding method to show, e.g.

Pr [Z − E [Z] ≥ ε] ≤ e−ε
2/4C
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Entropy Method

• Note that since
Var (Z) = E

[
Z2
]
− (E [Z])

2

the conditional mean version of the Efron-Stein Inequality can be re-written as

E [φ(Z)]− φ (E [Z]) ≤ 1

2

n∑
i=1

E [E [φ(Z)|X−i]− φ (E [Z|X−i])]

where φ(z) = z2.

• Idea: Prove this is true with for φ(z) = z log(z), and use Z ← esZ , since in this case

E [φ(Z)] = sM ′(s), φ (E [Z]) = M(s) logM(s)

Why is this called Entropy Method?

Definition 12. Given two probability distributions P and Q with densities p(x) and q(x), define the relative
entropy (or Kullback-Leibler divergence) of P from Q to be

D(P ||Q) =

∫
p(x) log

p(x)

q(x)
dx

• Given an optimal coding of Q, the relative entropy is the expected extra number of bits needed to
transmit samples from P using this code.

Entropy interpretation

• Given distribution P of Xi with density p(x), Let Q be the distribution with density q(X) = g(X)p(X).

• Interpretation: Let E [Z] = 1. Then

E [φ(Z)]− φ (E [Z]) = E [Z log(Z)]− E [Z] log(E [Z])

= E [Z log(Z)]

=

∫
g(x) log(g(x))p(x)dx

=

∫
q(x) log

q(x)

p(x)
dx

= D(P ||Q)

Tensorization inequality of the entropy

Theorem 13. Let φ(x) = x log(x) for x > 0. Let X1, · · · , Xn be independent random variables, and let g
be a positive-valued function of these variables, with Z = g(X1, · · · , Xn). Then for φ(z) = z log(z),

E [φ(Z)]− φ (E [Z]) ≤ 1

2

n∑
i

E [E [φ(Z)|X−i]− φ (E [Z|X−i])]

• Proof: Lugosi, Ledoux.
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A Logarithmic Sobolev Inequality...

Theorem 14. Suppose there exists a positive constant C such that (a.s.)

n∑
i=1

(Z − Zi)2IZ>Zi ≤ C.

Let M(s) = E
[
esZ
]

be the moment generating function of Z. Then

sM ′(s)−M(s) logM(s) ≤ s2CM(s)

• This is exactly the kind of bound we are looking for!

• Proof sketch: bound right hand side using

E
[
φ(esZ)|X−i

]
− φ

(
E
[
esZ |X−i

])
≤ E

[
s2esZ(Z − Zi)2IZ>Zi |X−i

]
... Gives a Concentration of Measure Inequality

Corollary 15. Suppose there exists a positive constant C such that

n∑
i=1

(Z − Zi)2IZ>Zi ≤ C.

Then for all t > 0,

Pr [Z − E [Z] ≥ ε] ≤ e−ε
2/4C

Application: Largest Eigenvalue of a Random Matrix, again

Theorem 16. Let A ∈ Rn×n be a symmetric real matrix with elements [A]ij, 1 ≤ i ≤ j ≤ n independent
random variables with magnitude bounded by 1. Let Z be the max eigenvalue of A. Then

Pr [Z − E [Z] ≥ ε] ≤ e−ε
2/16

Conclusion

• Everything starts with Markov’s inequality

• For exponential bounds, we needed

– Chernoff’s bounding method

– Logarithmic Sobolev Inequality

• Next lecture: Concentration of Measure applied to Compressive Sensing
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