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Summary 

Microarrays have been widely used to study differential gene expression at the genomic 
level. They can also provide genome-wide co-expression information. Biologically 
related datasets from independent studies are publicly available, which requires robust 
combined approaches for integration and validation. Previously, meta-analysis has been 
adopted to solve this problem.  

As an alternative to meta-analysis, for microarray data with high similarity in biological 
experimental design, a more direct combined approach is possible. Gene-level 
normalization across datasets is motivated by the different scale and distribution of data 
due to separate origins. However, there has been limited discussion about this point in the 
past. Here we describe a combined approach for microarray analysis, including gene-level 
normalization and Coex-Rank approach. After normalization, a linear modeling process is 
used to identify lists of differentially expressed genes. The Coex-Rank approach 
incorporates co-expression information into a rank-aggregation procedure. We applied 
this computational approach to our data, which illustrated an improvement in statistical 
power and a complementary advantage of the Coex-Rank approach from a biological 
perspective. 

Our combined approach for microarray data analysis (Coex-rank) is based on 
normalization, which is naturally driven. The Coex-rank process not only takes advantage 
of merging the power of multiple methods regarding normalization but also assists in the 
discovery of functional clusters of genes. 

1 Introduction 

High-throughput microarray technologies have become popular for genome-wide 
investigation of gene expression profiles. Careful experimental design followed by a variety 
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of proper computational analyses can reveal interaction of genes and related biological 
pathways [1]. For the data analysis, a common goal is to detect differentially expressed genes 
(DEGs) between controls and cases or in response to specific factors, such as time and dose 
effects.  Different laboratories may carry out microarray experiments with related biological 
experimental design, but using different types of platforms. Due to the high cost of 
microarrays, many studies suffer from the problem of small sample size, which may lead to a 
high false discovery rate (FDR) in determination of DEGs [2]. Combining related but 
independent microarray datasets increases sample size and may result in higher reliability of 
novel gene candidate discovery from a statistical view [3]. For example, a combined approach 
may be able to detect small but consistent changes. In fact, this is one of the motivating 
factors for the construction of public microarray databases, such as Gene Expression Omnibus 
(GEO) [4]. In another way, successful combined analysis demonstrates the reproducibility of 
these studies [5], which is a fundamental issue in validation of biological experiments.  

However, rarely is a direct combined analysis suitable for microarray studies, as 
complications arise from biological variations and technical differences. Meta-analysis, which 
has been well-studied in statistics, is a practical way to solve this problem. The application of 
meta-analysis to microarray data has been demonstrated by different groups, yet no consensus 
has been reached as to the best method. Hong,F. et al. evaluated the performance of different 
microarray meta-analysis methods and recommended approaches derived from two different 
philosophies. One is the t-based modeling approach, and the other is a rank-product approach, 
which has the advantage of robustness in ranking genes over the t-based method, but only 
provides relative prioritization of genes [6]. 

As an alternative to meta-analysis, a more direct combined approach is also possible for 
datasets with highly similar biological design. With the development of microarray 
technology, more comprehensive arrays become available for researchers in biological fields. 
For example, exon arrays are designed to focus on exon level analysis, but also provide 
accurate assessments for gene expression. Thus, there exists a series of microarray datasets 
with similar biological samples but from different array platforms. Obviously, there are scale 
and distribution differences among those datasets. To solve this issue, gene-level 
normalization across datasets has typically been performed, but the details of this have not 
been widely discussed in combined analysis of microarray datasets.  

Gene level normalization is generally the preferred option for microarray analysis in a single 
study, and this has been revealed by an application of the M-A based loess normalization to a 
wholly defined control dataset from a “spike-in” experiment [7]. A previous study regarding 
the comparison of probe level normalization methods suggested that complete data methods 
including the M-A based loess normalization and the quantile normalization have better 
performance compared to other methods making use of a baseline array [8]. Therefore, we 
adopt both M-A based loess normalization and quantile normalization, and then mix them 
with scale normalization for gene level implementation.  

After gene-level normalization, a liner model is set up, which helps to identify lists of 
differentially expressed genes. Different normalization methods lead to lists of relevant genes, 
and rank-aggregation approach is used to merge the power of different normalization 
methods.  

To further complement the rank-aggregation approach, we have incorporated co-expression 
information to prioritize DEGs. The co-expression pattern of genes at the mRNA level can be 
recognized from a large set of microarray data. The rich body of data in GEO serves to 
provide this added dimension to our method. Genes with similar mRNA expression profiles 
are likely to be regulated via the same mechanism or share common functions [9]. This 
correlated information is useful for detecting or prioritizing genes with weak differential 
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expression, since these genes are expected to co-express with other highly DEGs. A statistical 
method of predicting genes with differential expressions based on co-expression patterns has 
already been proposed [10]. Moreover, rank-aggregation for similar items has been 
investigated as well [11]. Thus, we modified the rank-aggregation approach using genome-
wide co-expression information, which we term as Co-expression-Rank-aggregation (Coex-
Rank).  

In this article, we describe an approach for Coex-Rank featured analysis to combine 
microarray data via normalization. We applied this to our own S-PPAR (a mutant PPARγ) 
dataset. A simulation study was also conducted to demonstrate that the strength of this method 
is not limited to our specific datasets. 

2 Methods 

2.1 Motivating datasets 

Before introducing our method, we first provide two motivating datasets, with similar, but 
non-identical experimental designs or platforms. A combined analysis to explore genes with 
significant expression-level changes will illustrate the potential power of the Coex-Rank 
featured approach from both statistical and biological perspectives. 

Our laboratory has generated transgenic mice with dominant negative PPARγ (P467L) 
targeted to vascular smooth muscle cells (VSMCs) and these mice (called S-PPAR mice) have 
been shown to exhibit severe aortic dysfunction [12]. PPARγ has effects in vascular smooth 
muscle cells (VSMCs), with impact to cardiovascular diseases [12]. Two independent 
microarray experiments were carried out using mRNA from the aortas of these mice, 
compared to wild-type littermate controls (denoted as S-PPAR datasets). The first experiment 
was performed using the Affymetrix mouse genome 430 2.0 array (expression array), with 
only 2 control and 3 transgenic samples. The second set of samples from the same mice took 
advantage of the Affymetrix mouse exon 1.0 ST array (exon array); this time with 5 control 
and 7 transgenic samples. More details are available in supplementary files. 

To generate gene-level expression values, we used the Robust Multi-chip Average (RMA) 
algorithm [13, 14]. For expression array data, the implementation was carried out using the 
affy package of R [15] and resulted in 45,101 probe-sets. The Affymetrix Expression Console 
software (http://www.affymetrix.com/) was applied to data from the exon arrays and 101,176 
gene-level probe-set records were generated. Next, we attempted to remove redundant and 
ambiguous probe-sets so that comparisons across platforms could be performed. First of all, 
probe-sets without annotations such as gene symbols or mRNA accession information were 
removed. In the case of multiple probe-sets matching the same gene, we selected the probe-set 
with the most significant p-value. Student’s T test with equal variance was used to calculate 
the p-value, comparing control vs. transgenic samples. Through the above steps, 26,599 
probe-sets on the expression array and 33,797 probe-sets on exon array were retained. Then, 
we combined probe-sets from two datasets if they had any annotations in common. For 
example, there is one record with annotations “NM_015781 /// Nap1l1” from the expression 
array data and another record from the exon array data annotated as “D12618 /// Nap1l1”, 
therefore, they can be merged into a new record as they share the same gene symbol 
“Nap1l1”. Following this rule, we finally generated a combined dataset with 18,307 records.  

2.2 Normalization 

Normalization is naturally driven by the relative scale or differences in the distribution of 
expression levels among arrays from multiple studies. In the case of S-PPAR data for example 
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(see Figure 1), the distributions of gene expression intensities are dissimilar between two 
platforms. In our implementation, we applied scale normalization first, which is capable of 
correcting linear variations, followed by either quantile or M-A based loess normalization.  

Scale normalization is sometimes referred as global normalization, which enforces an equal 
median or mean intensity criteria for all arrays [15]. In our implementation, we selected a 
method based on median, which is less sensitive to extreme data points. Quantile 
normalization enforces an equal distribution of intensity values across all the arrays [15].  

M-A based Loess normalization is a classical method for cDNA array normalization and can 
also be applied to two one-channel arrays. First, Y and X denote the log2-scaled expression 
values from two arrays, and M denotes the difference of Y and X, while A represents the 
average of Y and X.  That is, M=Y–X and A=(Y+X)/2. The M’-A’ plot after loess regression 
should show a cloud of points scattered about the M’=0 axis and Y’, X’ are generated 
afterwards [16].  

Loess normalization can be realized via two different approaches -- either a median-base 
method or a trim-mean method. For the median-base method, consider the S-PPAR combined 
data mentioned above. In each iteration, Y proceeds from array X1 to array X17, while X is the 
array storing the median of the median intensities of all arrays (termed as Xbase), therefore 
there are 17 rounds of loess regressions. For each loess regression, X is selected dynamically 
based on the current expression values of all arrays, and both Y’ and X’ are used to update Y 
and X. The pseudo code of this algorithm is as follows:  

for ( i in 1:#iteration ) /*the number of iterations*/ 

{ 

for (j in 1:#sample)  /* sample size=17 in our S-PPAR dataset*/ 

{ 

Y=Xj ; X=Xbase ; 

Loess normalization using Y and X ; 

} 

} 

For the trim-mean method, in each iteration, Y proceeds from array X1 to array X17, while X 
is the reference array, dynamically generated consisting of the 0.05 trim mean of all 17 arrays. 
As X is only a series of reference arrays, only Y is updated using Y’.  

For loess normalization, the regression can also be performed using only rank-invariant genes. 
The size of the rank-invariant gene set is data dependent. Genes are defined as rank-invariant 
as described in a previous study [17].  

2.3 Linear model 

After normalizing using different methods, we generated lists of significantly changed genes 
for further comparison or validation by a simple linear model. A variety of complex methods 
have been proposed, but they do not necessarily perform better than a simple one. Further, 
complex methods may add background noise and even induce bias if all assumptions are not 
satisfied [18].  For example, consider our S-PPAR data, a linear model can be constructed for 
each gene by the following formula:  

Y= b + a1×X1 + a2 ×X2 , 
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where Y is the observed value of gene expression and b is the baseline level of gene 
expression. Data from expression array and wild type are considered as the baselines. The 
exon array effect is indicated by a1 and X1 = (0 or 1).  The S-PPAR mutant effect is measured 
by a2 and X2 = (0 or 1) as well. The regression is carried out using the lm() function of R and 
then ANOVA is used to test the statistical significance of a2. The +/- sign of a2 indicates up or 
down regulation and the absolute value of a2 indicates fold-change, which is different from 
the original scale but can still be used to rank genes or indicate relative changes. 

 

 

Figure 1: The boxplots of all 17 arrays from S-PPAR datasets. X1-X5 refer to data from the 
expression arrays and they show different distributions from X6-X17 plots of the exon arrays. 
This plot is generated by the boxplot() function of R. 

2.4 Co-Expression-Rank-aggregation (Coex-Rank) 

Multiple lists of up and down regulated genes can be generated from different normalization 
methods. To take advantage of the power from merging all these lists, we investigated the 
rank-aggregation method, which focuses on finding a robust list with minimum distance 
among all available ordered lists of genes. The RankAggreg package of R is publicly available 
[19]. For choices of distance function, this package concentrates on the two most popular 
ones: Spearman foot distance and Kendall’s tau distance. The realization of rank-aggregation 
is provided with two different algorithms: a Cross-entropy Monte Carlo algorithm (CE) and a 
Genetic algorithm (GA). 

For Coex-Rank, we modified the R implementation of rank-aggregation by incorporating co-
expression information into the approach. The goal of Coex-Rank is to prioritize genes that 
are highly correlated with already-top-ranked genes. For instance (see Figure 2), Gene_a and 
Gene_a’ are highly correlated in expression. Gene_a is a top-ranked gene on all input lists for 
Coex-Rank, but Gene_a’ is present at the bottom of some of the input lists. Through our 
Coex-Rank process, Gene_a’ will be pulled up onto top of the output list. 

For our implementation, the co-expression information is included in the distance calculation 
step. The co-expression information is obtained from a combination of microarray datasets 
with samples from similar tissues of the same species to avoid bias. To be consistent with our 
case study, mouse S-PPAR data, we added four more microarray datasets using blood vessels 
of mice and the total sample size increased to 59 (more details are available in supplementary 
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files). The co-expression co-efficients calculation was based on the probe-sets matching with 
the final combined S-PPAR dataset as described in section 2.1.2. Then, for any two genes, the 
Pearson’s correlation co-efficient was calculated from 59 pairs of records.  

 
Figure 2: Demonstration of Coex-Rank approach. Gene_a and Gene_a’ are two assumed genes. 
Gene_a is a top-ranked gene on all input lists for Coex-Rank processing, but Gene_a’ is only 
present at the bottom of some of the input lists or even absent from some fo the input lists. Coex-
Rank approach prioritizes Gene_a’ because it is highly correlated with already-top-ranked 
Gene_a. 

Distance calculation with co-expression information is the core part of Coex-Rank algorithm. 
The distance D( ) between two ranked gene lists L1 and L2, given the co-expression co-
efficients, is defined as follows:  

 D(L1,L2)= 1

2
 × ( F(L1,L1-co) + F(L2,L2-co)), 

where F( ) is either the Spearman footrule or the Kendall’s tau distance of two lists [11]. List 
L1-co contains all the genes from list L1 but the rank information is obtained from list L2. For 
genes also present on list L2, their ranks remain the same, while for genes only present on list 
L1 but not on list L2, the ranks of their highly correlated genes from list L2 are used instead. 
There is a cut-off value for co-expression co-efficients for consideration. For example, 
Gene_a is only present in list L1, and it has n highly correlated genes on list L2. The rank of 
Gene_a on list L1-co is defined as follows: 

 L1-co-rank (Gene_a) = 1

n
 × 

n

i=1
∑ [ ( )

( )
2L -Rank Gene _ i

Co Gene _ a,Gene _ i
], i = 1,2, …n. 

Co(Gene_a,Gene_i) denotes the co-expression co-efficient between Gene_a and Gene_i (we 
used Pearson correlation co-efficient in implementation) and L2-Rank (Gene_i) is the rank of 
Gene_i on list L2. For genes only present on list L1 but not on list L2, if they do not have any 
highly correlated genes from list L2, their ranks are assigned as Length(L2)+1, where Length( 
) is the length of the gene list.  

The R program is freely available for download from http://code.google.com/p/coex-
rank/downloads/list with simple data as an example. 

3 Results  

3.1 Similar effect of different normalization methods 

For our mouse S-PPAR data, 10 different normalization methods were implemented. They 
were quantile, loess-median-base, loess-median-base-invariant, loess-trim-mean, loess-trim-
mean-invariant and the same 5 methods utilizing scale normalization first.  

Input list 1 Input list 2 Output list
Rank Gene Rank Gene Rank Gene

1 a 1 a 1 a
2 … 2 … 2 …
3 … 3 … 3 a'
… … … … … …
98 a' 98 … 98 …
99 … 99 … 99 …

100 … 100 … 100 …
a' not on list 2
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For the loess-median-base approach, 10 iterations were chosen for normalization. More 
iterations should result in more similar distributions of intensities from different arrays. As 
many as 50 iterations were tried, but no significant improvement in the results was observed 
(see Supple. Figures 1-3 and Supple. Table 1). 

The loess-trim-mean approach could narrow the distribution of intensities after running 
through a large number of iterations. In an extreme example of 50 iterations, the boxplots of 
intensities degenerate into many repeated data points. Thus, we selected 5 iterations for the S-
PPAR data, which produced similar distributions of intensities as other approaches.  

For loess regression based on rank-invariant genes, a separate analysis (data shown in section 
3.2) showed that no more than 1,000 genes significantly changed between control and 
transgenic groups. So we used 17,000 as the size of our rank-invariant gene-set.  

After normalization using each method, linear models were created for each gene. An 
ANOVA test was applied to generate lists of up/down regulated genes due to the S-PPAR 
effect. Next, a comparison of 10 up-regulated lists was performed, each with the top 100 
genes ranked by p-value (see Table 1). In the table showing the size of the union of any two 
gene lists, the largest set contains 129 genes, which indicates that lists from any two 
normalization methods have about 70% overlapping genes at least. For down-regulated genes, 
the results are similar (see Supple. Table 2). Though different normalization methods were 
applied, similar gene lists were generated, which motivated us to apply the rank-aggregation 
approach to utilize information from all the normalization methods. 

 
Table 1: Size table of union of any two lists from different normalizations. The first row and the 
first column show the index of normalization Methods. The numbers in the table are the size of 
union of any two list from different normalization method. The maximum union size is 129, 
shown in bold. 

3.2 Combined analysis increases statistical power 

By increasing sample size, statistical power of an analysis will tend to increase. For our S-
PPAR data, the combined analysis has a sample size of 17, while the separate datasets have 
sample sizes of 5 or 12. Comparison of the two different analyses demonstrated the benefit of 
the larger sample size.  

For the separate analysis, student’s T test with equal variance was used to compare control vs. 
transgenic samples. This statistical test is mathematically equivalent to a one-way ANOVA 
test. When we selected p-value<0.005 as cut-off value, we could achieve roughly twice the 

  1 2 3 4 5 6 7 8 9 10 
1 Quantile 100 113 112 110 108 129 123 127 122 
2 scale-quantile 113 112 110 108 129 123 127 122 
3 loess-trim-mean 102 111 109 128 129 125 126 
4 scale-loess-trim-mean 110 108 127 127 125 124 
5 loess-trim-mean-invariant 103 127 123 126 119 
6 scale-loess-trim-mean-invariant 126 123 126 120 
7 loess-median-base 128 115 127 
8 scale-loess-median-base 127 122 
9 loess-median-base-invariant 127 
10 scale-loess-median-base-invariant 
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number of genes via combined analysis, compared to the separate approach (see Table 2). The 
statistics of the combined analysis were based on the scale-loess-trim-mean-invariant 
normalization method; other normalization methods resulted in similar numbers.  

 
Table 2: Comparison of combined and separate analyses of S-PPAR data using cut-off value: p-
value < 0.005 and FDR < 0.05. Numbers of total DEGs and up/down-regulated genes are shown 
separately for expression/exon array data and combined analysis. Both the p-value and FDR are 
used as cutoff criteria. The combined analysis demonstrates a better statistical power. 

 Expression Array Exon Array Combined Analysis 

p-value       FDR p-value       FDR p-value       FDR 

#Total 288        5 218        23 583        286 

#Up 200        2 115          9 283        140 
#Down 88        3 103        14 300        146 

 

We also corrected for multiple comparisons effect using the the qvalue package of R [20]. 
When we set FDR (also called q-value) < 0.05, we could see a dramatic improvement with the 
combined analysis, from 5 genes from the expression arrays, 23 genes from the exon arrays to 
286 genes from the combined analysis (see Table 2). Two different cut-off values were set 
and more genes were selected as DEGs in the combined analysis, indicating the increasing 
statistical power of this approach. 

3.3 Complementary advantage of Coex-Rank 

Gene lists from 5 normalization methods starting with scale normalization were used as the 
input for rank-aggregation and Coex-Rank approaches. For example, for the up-regulated 
genes, considering p-value < 0.005 as the cut-off, 5 gene lists were generated and then the 
genes were ranked either by p-value or fold change, which resulted in 10 different lists. The 
top 100 genes were selected from each list and then served as the input for both rank-
aggregation and Coex-Rank approaches. The reason we chose 100 genes from each list was 
that these genes were significantly up-regulated according to the FDR < 0.05 cut-off value.  

The parameter settings for the rank-aggregation step were the default values (spearman 
footrule distance and cross-entropy algorithm), except that the maximum-iteration was 
increased from 1000 to 1500 for our S-PPAR data. For Coex-Rank approach, one more 
parameter for the cut-off value of co-expression co-efficients was set as 0.95 for our S-PPAR 
data. The output of both rank-aggregation and Coex-Rank approaches were lists, each with 
100 genes.  

We note that the rank-aggregation and the Coex-Rank methods, both generated different lists 
of genes, but that they shared about 70% genes in common (73 for up-regulated genes and 67 
for down-regulated genes). To investigate the biological significance of these genes, we 
focused on the enrichment of annotations. We compared the gene lists from two approaches 
by clusters generated by DAVID [21] (the default medium and low classification stringencies 
were used). Coex-Rank approach led to slightly more enrichments (see Table 3) due to the 
incorporation of co-expression information. If we focused on individual genes, for instance, 
Calpain 13 – CAPN13 , was only reported to be up-regulated via Coex-Rank approach. 
Increased calpain activity has been associated with vascular dysfunction and enhanced 
angiotensin II signaling. Thus inhibition of calpains has several beneficial actions, preventing 
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cardiovascular remodeling in angiotensin II-induced hypertension [22]. Moreover, another 
gene TIMP4 - tissue inhibitor of metalloproteinase 4 – was only found to be down-regulated 
in the Coex-Rank analysis. TIMPs normally inhibit MMPs (metalloproteinases). This 
inhibitory action is mostly thought to be a good thing. So in the S-PPAR mice, a potential 
hypothesis is that decreased TIMP4 leads to increased MMPs which in turn leads to vascular 
remodeling or damage or at least a predisposition to those consequences. Linking back to 
PPARγ, it has also been shown to have binding sites near TIMP4 gene in a Chip-Seq 
experiment [23].  

 
Table 3: Comparison of gene annotations enrichment for both rank-aggregation and Coex-Rank 
approaches. Bothe medium and low stringencies are used to generate clusters of up/down-
regulated for each approaches and Coex_Rank method achieves more clusters compared to 
Rank-aggregation only method. 

 
#Clusters of up-regulated genes #Clusters of down-regulated genes 

Medium Stringency  Low Stringency Medium Stringency  Low Stringency 

Rank-
aggregation 1                   5 3                   5 

Coex-Rank 3                   7 3                   6 

 

However, Coex-Rank approach prioritizes genes highly correlated with already-top-ranked 
genes on the input lists at the cost of excluding some already-top-ranked genes. Therefore, we 
decided to add non-overlapping genes from the Coex-Rank approach to the top 100 genes 
from rank-aggregation and in total we promoted 127 up-regulated genes and 133 down-
regulated genes to the final reported lists (see Supple. Files Sppar_up.xls and 
Sppar_down.xls). These up-regulated genes generate 7 clusters according to DAVID (with 
low classification stringency). For down-regulated genes, 9 clusters were generated.  

4 Discussion  

To confirm that our result shown in section 3.2 regarding the advantage of combined analysis 
over separate analysis was not dataset dependent, we conducted a simulation study consisting 
of one dataset from the exon arrays and one dataset from the expression arrays. Each dataset 
had six samples, three controls v.s. three treatments and each sample covered 18,307 genes. 
Consider the exon array dataset for example, generated as follows:  

(1) The sample means µi ( i = 1, 2, 3…18,307 ) were from a real dataset. Four arrays using 
mammary gland were exacted from GSE10246 and the same probe-sets were selected as 
in our S-PPAR case study. Sample means were calculated for 18,307 genes separately.  

(2) Background variations were added according to the following formulas: 
         Yij=µi +Zij  (i=1,2,3…18307,j=1,2,3,4,5,6), 
         Zij ~ N(0,σ 2),  
           σ= α×(0.3–0.02×µi)×Gi, Gi~Gamma(5). 

Yij refers to the expression value of the ith gene from the jth sample and α is a parameter 
controlling the scale of variation [2]. We evaluated α = 0.1, 0.2, and 0.3 to demonstrate 
different levels of background noise. Here, we also made the assumption that the 
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amount of variation is µi dependent. As it is often seen in real data, genes with smaller 
expression values have larger proportional variations [2].  

(3) The first 200 genes from treated samples were added with differential expression values 
as follows [2]: 

        Yij=µi+Zij+δ ij (i = 1,2,3 ……200, j = 4,5,6),  

        δ ij = 0.2×(2×Bij - 1) ×Gi ,  

        Bij~Bernoulli(0.5), Gi ~ Gamma(5).  

The simulation data from expression arrays were generated in a similar way. At step 1, the 
four arrays using mammary gland were extracted from GSE15998 and at step 3, the 
differential expression value for a specific gene was scaled by the ratio of sample means from 
two platforms.  

We then generated 10 datasets for each platform. We applied both separate analysis and 
combined analysis including normalization and linear regression followed by an ANOVA test 
as described in our Methods section. We used a p-value cutoff of 0.001 to select significantly 
changed genes. The number of differentially expressed genes was averaged for calculation of 
sensitivity and specificity and FDR respectively for expression array data, exon array data and 
a combined dataset. As shown in Table 4, the combined analysis increases the Sensitivity and 
reduces the FDR compared to the separate analysis, with Specificity remaining consistent 
(around 0.99) at different levels of background noise. The consistency of specificity is due to 
the nature of microarray data, as the expression levels of most genes are unchanged.  

 
Table 4: Comparison of combined and separate analyses based on simulation. Combined 
analysis has advantage in increasing of sensitivity and decreasing of FDR compared with 
expression array or exon array only analysis. Different background variation has been evaluated 
via α = 0.1, 0.2 and 0.3. 

 Expression Array Exon Array Combined Analysis 

Sensitivity     FDR Sensitivity     FDR Sensitivity      FDR 

α = 0.1 0.89          0.09 0.69           0.11 0.94           0.07 

α = 0.2 0.67          0.12 0.40           0.17 0.82           0.07 

α = 0.3 0.47          0.16 0.24           0.28 0.64           0.09 

5 Conclusion 

In this article, we describe an approach for combined analysis of microarray data, starting 
from normalization, and proceeding to rank-aggregation / Coex-Rank procedures. Different 
normalization methods were discussed and compared. Rank-aggregation / Coex-Rank 
approach was employed to generate final robust lists of genes with differential expression. 
This approach is flexible regarding normalization procedures and takes advantage of merging 
the power of multiple methods. Moreover, incorporating the co-expression information in the 
rank-aggregation approach helps to discover functional clusters of genes. 

In this paper, Coex-Rank was applied to generate robust results from different normalizations. 
It can be applicable to merge gene lists from potentially incompatible methods arising from 
statistical tests as well. For example, multiple significance testing methods have been 
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proposed for microarray experiments with small sample size, and thus our Coex-Rank 
solution also provides an alternative to a seemingly arbitrary choice among many good 
methods. Coex-Rank is not limited to microarray data, and it is open to prioritize any lists of 
genes from other high-throughput technology, such as deep sequencing.   
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