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1. Introduction

This paper presents the theory and application of a pattern classifier built with the sparse network of
Cellular Automata (CA). Following scenario provided the motivation to undertake this research.

The inter-networked society of cyber-age has been experiencing an explosion of data in diverse fields.
However, meaningful interpretation of this voluminous data is becoming increasingly difficult. Efficient
techniques for extraction of knowledge from large databaseis a basic necessity of the current age. Data
classification provides a solution to this problem.

Data classification is the process of identifying common properties among a set of objects in a
database. It classifies the objects into different classes.A sample set from the database, each mem-
ber belonging to one of the predefined classes, is used to train the model. Subsequent to training, the
model performs the task of prediction. The prediction phaseoutputs the desired class in which the input
data belongs [16].

The essential prerequisites of designing the classifier forcurrent information age are high throughput
and low storage requirements. Further, low cost hardwired implementation of the scheme is becoming
a very important criterion for on line real time applications. The conventional techniques developed for
classification - Bayesian Classification [9], Neural Network [17], Genetic Algorithm [14], Decision Tree
[6, 22, 28, 32] are too complex to meet such requirements.

In this background, design of pattern classifier based on a special class of Cellular Automata (referred
to as Multiple Attractor Cellular Automata (MACA)) has beenexplored in a number of papers [7, 12, 24,
34, 35]. Design of a two class classifier have been proposed in[12]. In the current paper we consolidate
and refine the design approach while providing a detailed insight into the applications of the CA based
pattern classifier in diverse fields. Experimental results of data classification in the fields of data mining,
image compression, and fault diagnosis have established the superiority, versatility, and scalability of the
proposed scheme. The major contributions of this paper can be summarized as follows.

� The special class of CA referred to as Multiple Attractor CA (MACA) is employed to design
the proposed pattern classifier. MACA acts as an implicit memory; consequently the memory
overhead of the proposed scheme has come down significantly.

� The complexity of classification algorithm is linear.

� Excellent classification accuracy of MACA in diverse applications like - data mining, image com-
pression, fault diagnosis in electronic circuits, etc., have been established through extensive exper-
imentation reported in this paper.

� The desired structure of MACA for a particular dataset is obtained through Genetic Algorithm
(GA) formulation that leads to significant reduction of search space.

� The classifier employs the simple computing model of 3-neighborhood linear CA. The simple,
regular, modular and local neighborhood sparse network of CA suits ideally for low cost VLSI
implementation [8].

In the above background we proceed to report CA preliminaries including MACA (Multiple Attrac-
tor CA) fundamentals inSection 2. This is followed by a new linear operator termed as Dependency
Vector/String used to characterize MACA. Design of MACA based classifier is next presented inSection
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4 along with the Genetic Algorithm (GA) formulation. In orderto validate the theoretical formulation of
the proposed classifier, the experimental results on three application areas - data mining, image compres-
sion, and fault diagnosis are reported inSections 5, 6, and7 respectively. Finally, theSection 8reports
the hardware architecture of the proposed CA based pattern classifier.

2. Cellular Automata (CA)

A Cellular Automaton (CA) can be viewed as an autonomous finite state machine (FSM) consisting of a
number of cells [23]. In a 3-neighborhood dependency, the next state�� �� � ��

of a cell is assumed to be
dependent only on itself and on its two neighbors (left and right), and is denoted as

�� �� � �� � � ���	
���� �� ���� ���
����

where�� ��� represents the state of the
�� cell at
��� instant of time. ‘

�
’ is the next state function and

referred to as the rule of the automata. The decimal equivalent of the next state function, as introduced
by Wolfram [36], is the rule number of the CA cell. For example,

���� �� � �� �� � �� � ��� ��� ! ��" ������� �#� � �� �� � �� � ��� ��� ! �� ��� ! ��" ���

where$ (XOR function) denotes modulo-2 addition. Since‘
�

’ is a function of 3 variables, there are%&'
i.e., 256 possible next state functions (rules) for a CA cell. In this paper, we have used hybrid (also

referred to as non-homogeneous) null boundary CA. A hybrid CA employs different rules to different
cells, while in a null boundary CA, left/right neighbor of the leftmost/rightmost terminal cell is connected
to logic 0. Out of 256 rules there are only 7 rules with XOR logic (Table 1). The CA employing XOR
rule is referred to as linear CA. The pattern classifier proposed in this paper employs linear CA. The
theory of linear CA and its applications in diverse fields have been extensively dealt with in [8].

Table 1. Linear CA rules

Rule No. Next State Logic Function

Rule 60 �� �� � �� � ��� ��� ! �� ���
Rule 90 �� �� � �� � ��� ��� ! ��" ���
Rule 102 ���� � �� � �� ��� ! ��" ���
Rule 150 ���� � �� � ��� ��� ! �� ��� ! ��" ���
Rule 170 �� �� � �� � ��" ���
Rule 204 �� �� � �� � �� ���
Rule 240 �� �� � �� � ��� ���

2.1. Characterization of Linear CA

The global state(� of an)-cell CA at
��� instant of time is a string of) binary symbols. The next state

(��
 of the CA is given by:(��
 � * +(�.
*

is an) ,) characteristic matrix [8] (also referred to as
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Dependency Matrix), where

��� �
���
��

��
if next state of��	 cell depends on present

state of
�	 cell; �� 
 � �� �� ���� 

�� otherwise.

If we restrict to 3-neighborhood dependency, then
*�� can have non-zero values only for� � �
 � ��

,

, and �
 � ��

. Thus,
*

becomes a tri-diagonal matrix. The polynomial����
of which

*
is a root is

referred to as the characteristic polynomial of the CA. The characteristic polynomial is derived from
*

by calculating det�* � ���
[8, 13].

If all the states in the state transition diagram of a CA lie insome cycles, it is a group CA, whereas
a non-group CA state transition graph has both cyclic and non-cyclic states (Fig 1). For a group CA,
det�* � �� �

; while for the non-group CA, det�* � � �
. In this paper we have employed a special class of

non-group CA referred to as Multiple Attractor CA (MACA) fordesigning the classifier.

2.2. Multiple Attractor Cellular Automata (MACA)

The state transition graph of an MACA consists of a number of cyclic and non-cyclic states. The set of
non-cyclic states of an MACA forms inverted trees rooted at the cyclic states. The cyclic states with self
loop are referred to as attractors. Fig 1 depicts the state transition diagram of a 5-cell MACA with its
rule vector as� ��%���� %��� %��� ��� �

. The
�� cell (
 = 1 to 5) employs the rule specified by the
��
element of the rule vector. The corresponding dependency, as specified in Table 1, gets reflected by the

�� row of the

*
matrix. The four cyclic states�00000(0), 00011(3), 00100(4), 00111(7)� are referred to

as attractors and the corresponding inverted tree rooted on� (� = 0, 3, 4, 7) as�-basin.

0 0 0 0 00 0 0 0 1 1 1 0 0 1

1 1 0 0 01 0 0 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0 1

0 0 0 1 1

1 1 0 1 1

0 0 0 1 0 1 1 0 1 0

0 1 0 1 0 0 1 0 1 1

1 0 0 1 0 1 0 0 1 1

1T  

2T  1T  =
1 1 0
1 1 0
0 0 1 2T  = 1 0

1 0

(0) (3)

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0

T  = =
0

0
where and

(a) State Transition Diagram

(b) Dependency Matrix

(4) (7)

0 0 1 0 0

1 1 1 0 0

0 0 1 0 1

0 1 1 0 0

1 0 1 0 0 1 0 1 0 1

0 0 1 1 10 0 1 1 0 1 1 1 1 0

1 1 1 1 1 0 1 1 1 0 0 1 1 1 1

1 0 1 1 0 1 0 1 1 1

0 1 1 0 1

1 1 1 0 1

Figure 1. State transition diagram of a 5-cell MACA with Dependency Matrix (
�

)
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The detailed characterization of MACA is available in [8, 11]. A few fundamental results for an
)-cell MACA having � number of attractor basins is next outlined. Each of these has been illustrated
underExample 2.1that follows.

� Result I:The characteristic polynomial of an)-cell MACA with � number of attractor basins is
(��	� � �� � ���

), where� � ���& ���.
� Result II:

Definition 2.1. An �-bit field of an)-bit pattern set is said to be pseudo-exhaustive if all possible%�
patterns appear in the set.

Theorem 2.1. [8] In an )-cell MACA with � � %�
attractors, there existsm-bit positions at

which the attractors generate pseudo-exhaustive
%�

patterns.

� Result III: The pseudo-exhaustive field (PEF) of an attractor provides the pointer to the class of
states in the attractor basin. In order to identify the classof a state�, the MACA is initialized with
� and operated for maximum of	 (depth) number of cycles till it reaches an attractor. Next,the
PEF bits can be extracted (as noted in [8]) to identify the class of�. In general, depth	 is defined
as the number of time steps an MACA needs to reach an attractorstate when it is initialized with
a non-reachable state as seed.

� Result IV:

Theorem 2.2. [8] The 0-basin of an)-bit MACA with
%�

attractors forms a vector subspace of
dimension () ��).

� Result V:A tri-diagonal Dependency Matrix (
*

) corresponding to the characteristic polynomial
(��	� � ������

) can be obtained from� number of Dependency Matrices
*�s (
 � ��%� � � � ��)

arranged in Block Diagonal Form (Fig 2), where each
*� corresponds to the characteristic polyno-

mial (��
	
 � �� � ��
) and)
 � )& � � � �� )� � ) [8, 12].

T1

T2

T =
T

T

i

m

Figure 2.
� , ��, � � � , etc. in Block Diagonal Form.

�� (
��) has no dependency on

�� (
��)

Example 2.1. The example MACA of Fig 1 is used to illustrate theResults Ito V.

� It is a 
-cell MACA having
�
-attractors and depth (	) of the MACA is 2.
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� Result I:The characteristic polynomial is (�� � �����&
). Therefore,�=2, � = number of attractors

=
%�

= 4.

� Result II: In Fig 1, 3rd and 4th bit positions constitute the PEF.

� Result III: Consider a state�10001� whose class is to be identified. The MACA of Fig 1 is
initialized with �10001� and operated for 2 cycles (as depth	 = 2) till it reaches an attractor
�00000�. The PEF bits�00� of the attractor points to the class of�10001�.

� Result IV: In the 0-basin, (i) the all zero vector is always present; (ii) the modulo-2 sum of any
two states in the 0-basin lies in the 0-basin only. These two properties make the 0-basin a vector
subspace.

� Result V:The Dependency Matrix (
*

), as indicated in Fig 1(b) with characteristic polynomial
(�� � �� � ��&

), can be obtained from two matrices
*
 and

*& by Block Diagonal Form of Fig 2,
where

*
 and
*& correspond to characteristic polynomials (�& ������

) and (� ������
) respectively.

Thus, an MACA acts as an implicit memory. The states of its basin have low hamming distance (HD)
among themselves [12] and the basin gets identified by the PEFof the attractor.

2.3. MACA - As A Pattern Classifier

An )-bit MACA with �-attractor basins can be viewed as a natural classifier. It classifies a given set of
patterns into� number of distinct classes, each class containing the set ofstates in the attractor basin.
The following example illustrates an MACA based two class pattern classifier.

Example 2.2. Let, the MACA of Fig 1 be employed to classify patterns into two classes (say I and II),
where Class I is represented by the states of one set of attractor basins - say [I]=�00100 and 00111�,
while Class II is represented by the states in rest of the basins - �00000 and 00011�. All the patterns in
the attractor basins [I] belong to Class I while rest of the patterns belong to Class II. As per theTheorem
2.1, the pseudo-exhaustive field (PEF) will identify the class of the patterns uniquely. The PEF yields the
address of the memory that stores the class information. Therefore, Class I attractors yield the memory
address�10, 11�, while Class II will be identified by the memory address�00, 01� (Fig 3). To identify
the class of an input pattern�, the MACA is loaded with� and operated till it reaches an attractor state.
The PEF of the attractor points to the memory location that stores the class information of�.

An attractor basin of an MACA, as reported by Ganguly in [12],has patterns close to each other
in respect of hamming distance (HD). Consequently, patterns having low HD between them have high
probability of getting covered by lesser number of attractor basins. If� is a pattern of a class with
which the classifier has been trained - that is, MACA has been designed and

�
� be another pattern not

covered by the training set, but it satisfies the criteria of low HD with �, then the pattern
�
� will have

high probability of lying in the same attractor basin, and consequently being predicted in the same class
as that of�.

MACA, as discussed earlier, acts as an implicit memory and consequently it can function as an
effective pattern classifier. Genetic Algorithm (GA) formulation to arrive at the desired MACA realizing
this specific objective of pattern classification has been proposed in [12] with O()�) complexity. The
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I

I

II

II

PEF (bits)

PEF (bits)

PEF (bits)
PEF (bits)

(10) (11)(01)(00)

Figure 3. MACA based classification strategy

design reported in this paper achieves classification with linear complexity. It utilizes the concept of
Dependency Vector/String introduced in next section. Thisformulation has enabled us to reduce the
complexity of the classification algorithm from O()�) to O()).

3. MACA Characterization Based on Dependency String

Identification of the PEF of the attractor basin, as discussed in Section 2.3, constitutes the main task
for pattern classification. In [7, 8, 12, 24, 34, 35], an)-bit MACA has been characterized by its) ,)
Dependency Matrix (

*
) and its characteristic polynomial (����

). Generation of an attractor state
�
�

from any state� (
�
� � * � � �) involves O()�) complexity, where	 is defined as depth (Result III).

Consequently, the identification of the PEF of the attractorof the basin in which any state� belongs,
involves O()�) complexity. In order to ensure the scalability on very large datasets, linear complexity of
algorithm is highly desirable. This motivates us to undertake new characterization of MACA with the
help of some linear operators other than Dependency Matrix.

In this section, we introduce the concept of new linear operators termed as Dependency Vector (DV)
and Dependency String (DS), to characterize the attractor basins of an MACA. Applications of such
operators bring down the complexity from O()�) to O()) to identify the PEF of an attractor basin.

3.1. Dependency Vector (DV) and Dependency String (DS)

Consider a subspace with)-bit vectors of dimension () ��). Then the cardinality of the subspace is%��	��
. If the set of these)-bit vectors is conceived as a system of) variable equations, then there will

be� number of linear dependency relations as illustrated in thefollowing example.

Example 3.1. Let the ) (=5) bit vector subspace� be �00000, 01001, 10001,11000, 00110, 01111,
10111,11110� with dimension 3 and� = 5 - 3 = 2. Now,� contains zero vector (� ����� �

) as an
element. If the vector set (� ) is conceived as a system of linear equations with five variables ��� ����	���,
then the elements of the vector subspace (� ) can be rewritten in the form noted in Table 2.

In the set of equations of Table 2,� � %
; there are two linear dependency relations for all the vectors	� 
 � :

� � $ � $ � � �
; and

�
� $ 	 � �

.



328 Maji et al. / MACA Based Classifier

Table 2. System of Linear Equations representing a set of Vectors (� )

Vector (��) Corresponding Linear Equation

00000 � � � �� � � �� � � �� � � �� � � � �
01001 � � � � � � � �� � � �� � � � � � � � �
10001

� � � �� � � �� � � �� � � � � � � � �
11000

� � � � � � � �� � � �� � � �� � � � �
00110 � � � �� � � � � � � � � � � �� � � � �
01111 � � � � � � � � � � � � � � � � � � � � �
10111

� � � �� � � � � � � � � � � � � � � � �
11110

� � � � � � � � � � � � � � � �� � � � �

In the context of above illustrative example (Table 2) we formally introduce the terms Dependency
Vector and Dependency String.

Definition 3.1. Dependency Vector (DV) represents each individual linear dependency relationship of
the variables supported by all the elements in the vector subspace (� ). The two Dependency Vectors
(DVs) for the illustrativeExample 3.1are� ����� �

and� ����� �
. Each of the)-bits signify the

variables in that order - that is, the bits in the DV represents the variable in the sequence� ���	� �
.

The 1’s in the DV specify the dependent variables. InExample 3.1, while �,
�

and
�

are the dependent
variables in first DV,

�
and	 are the dependent variables in second DV. The modulo-2 sum (XOR) of the

corresponding variables in all	� 
 � = 0, as� contains zero vector (� ����� �
).

Definition 3.2. Dependency String (DS) represents the multiple linear dependency of the variables in
the vector subspace (� ). The Dependency String (DS) in theExample 3.1is ���%%�� where ‘1’ indicates
the relationship between�,

�
and

�
while ‘2’ indicates the relationship between

�
and	. In essence, the

two Dependency Vectors (DVs) are merged together to form theDependency String (DS).

The 0-basin (with all zero vector as attractor, also referred to as zero basin) plays a significant role
in characterizing an MACA [8]. As per theTheorem 2.2, the zero basin of an MACA having 2-attractor
basins is a subspace of dimension�) � ��

. So there is one linear dependency relationship in the vector
subspace and thus the characterization of the zero basin canbe solely done by a Dependency Vector.
Whereas the zero basin of an MACA with

%�
attractor basins is a subspace of dimension�) � ��

.
Therefore, there are� number of linear dependency relationships in the subspace.A Dependency String
(DS) representing� number of DVs is necessary for characterization of such MACA.

Theorem 3.1. The Dependency String (DS) of an MACA with more than 2-attractor basins can be de-
rived from the Dependency Vector (DV) of the MACA with 2-attractor basins.

Proof:
The Dependency Matrix (

*
) corresponding to the characteristic polynomial (��	� � �� � ���

) can be
obtained from� number of Dependency Matrices

*�s (
 � ��%� � � � ��), where each
*� represents a

2-attractor MACA. The entire vector space produced by zero basin of an MACA with multiple attractor
basins is the direct sum of individual vector spaces produced by each 2-attractor MACA [13].
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The characteristic polynomial (��	� � �� � ���
) can be broken into� groups each containing one�� � ��

, whereby we can claim that zero basin is formed as a result of direct sum of vector subspaces
produced by�distinct groups. Each individual group has (��
	
 ������

) as its characteristic polynomial
and so represents an MACA with 2-attractor basins.

So, the Dependency String (DS) of an MACA with
%�

-attractor basins can be derived from� num-
ber of Dependency Vectors (DVs) produced by each member of� groups. Hence the result follows.��

1  0

1  0

0  0
0  0
0  0

1  1  0
1  1  0 
0  0  1

0  0  0

0  0  0

T 
1

T 
2

T = =

0  0
0  0
0  0

0  0  0

0  0  0

x  (1 + x) 23

x  (1 + x)2

1  1  0
1  1  0 
0  0  1

T 
1

Characteristic Polynomial :

Dependency Vector : < 0  0  1 >

=

Characteristic Polynomial : x  (1 + x)

< 1  0 >Dependency Vector :

T 
2

=
1  0

1  0

0 0
10
01

1 1

+ non−zero basin of T
non−zero basin of T + zero basin of T

zero basin of T

+non−zero basin of T non−zero basin of T

+zero basin of T zero basin of T
1
1
1
1

2
2

2
2

DV of T
1

DV of T
2

(d)

(a)

Characteristic Polynomial :

(b)

Dependency String :

(c)

< 0  0  1 > < 1  0 >

DV of T
1

DV of T
2

[<0 0 1> <2 0>]

contributes first bit of PEF; contributes second bit 

Dependency Vectors of T  and T1 2

Dependency String of T obtained from two Dependency Vectors

PEF Bits

1 2Matrix T obtained from T  and T   by Block Diagonal Method

Figure 4. Dependency String (DS) of Dependency Matrix (T) ofFig 1 which is formed through concatenation of
two Dependency Vectors.
Note : (i) While the first Dependency Vector contributes the value of first pseudo-exhaustive bit, second Depen-
dency Vector gives the value of another bit. (ii) DependencyString of T Matrix is obtained by concatenating two
Dependency Vectors of

� and
��

respectively - which are placed in non-overlapping positions.

Example 3.2. Fig 4 represents the Dependency String (DS) of the Dependency Matrix (
*

) of Fig 1
which is formed through concatenation of two Dependency Vectors (DVs). The

*
matrix (Fig 4(a)) of

Fig 1 with characteristic polynomial (�� � �����&
) can be obtained from two matrices (

*
 and
*&) by the

Block Diagonal Method of Fig 2. Fig 4(b) represents two characteristic polynomials - (�& � �� ���
) and

(� � �����
), of

*
 and
*& respectively. The DV of the two groups are� ��� �

and� �� �
respectively.

Consequently, the DS ([00120]) of the corresponding MACA (Fig 1) can be easily accomplished through
concatenation of each individual DV (Fig 4(c)).

Derivation of the bits in pseudo-exhaustive field (PEF) as noted in Fig 4(d), has been explained in
the subsection that follows.
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3.2. Dependency String (DS) for Identification of PEF of An Attractor Basin

The following formulation provides the application of Dependency String (DS) to identify the PEF of an
attractor basin.

According toSection 3.1(Definition 3.1), if �� is an )-bit Dependency Vector of�) � ��
di-

mensional vector subspace and� is an)-bit pattern, then the modulo-2 sum (XOR) of the dependent
variables of� (where�� contains 1’s) is equal to zero if� belongs to zero basin; otherwise 1. That is,

�� � � � � ��
if � 
 zero basin��
if � 
non-zero basin

For example, if�� = � ����� �
and� �� ����� �

, then�� �� �� ����� � � � ����� �� �
;

that is� 
 zero basin. So, an MACA with characteristic polynomial��	
 � �� � ��
can be represented

by an)-bit Dependency Vector.

x  n - m (1 + x) mCharacteristic Polynomial :

DV m1 2DV DV

n
1 2 m

m - 1DV

m - 1n n n

Figure 5. An



-bit Dependency String (DS) consists of� number of Dependency Vectors (DVs).
Note: Each DV contributes the value of a pseudo-exhaustive bit (either 0 or 1) of an attractor basin.

A Dependency String (DS), consisting of� number of DVs -��
���&� � � � ����, represents an
MACA with characteristic polynomial (��	� � �� � ���

) (Fig 5). According to theTheorem 2.1, the
number of pseudo-exhaustive bits will be�. Each DV contributes the value of a pseudo-exhaustive bit
(either 0 or 1) of an attractor basin.

Let, an)-bit DS is produced through concatenation of� number of DVs of length)
�)&� � � � �)�
respectively (Fig 5), where)
 �)& � � � ��)� � ) and� is an)-bit pattern whose attractor basin is to
be identified. Then, for each��� (of length)�), the dependent variables of the corresponding)� bits of
� (say��) results in -

��� � �� � � ��
if �� 
 zero basin of�����
if �� 
non-zero basin of���

The resulting bit is the value of
�� pseudo-exhaustive bit. Finally, a string of� bits can be obtained
from � number of DVs. This�-bit binary string is the pseudo-exhaustive field (PEF) of the attractor
basins where the pattern� belongs.

Example 3.3. We illustrate the above concept with the example MACA of Fig 1. Suppose, we want to
identify the attractor basin of a pattern� �� ����� �

. We first synthesize a DS (�����%�� of Fig 4)
for which the distribution of patterns of MACA is similar to that of Fig 1. The DS of Fig 4 consists of
two DVs (� ��� �

and� �� �
) of length 3 and 2 respectively. While the modulo-2 sum (XOR)of

dependent variables of first 3 bits of� (�
) contributes the first pseudo-exhaustive bit as 0, rest 2 bits
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(�&) contribute 1. This is explained in Fig 4(d). So, the PEF of corresponding attractor basin containing
� is 01.

In [7, 8, 12], when the MACA (
*

) of Fig 1 is loaded with the pattern� �� ����� �
, it travels

through a number of states equal to the depth (	 � %
) of the MACA and ultimately reaches an attractor

state
�
� �� ����� �

- that is, �
� � * � � � (1)

where
*

is the) ,) Dependency Matrix of Fig 1. The pseudo-exhaustive field (3rdand 4th bit, - that
is PEF = 01) of the attractor basin is identified as per the algorithm reported in [8]. The complexity of
the algorithm is O()��, ) being the size of the pattern. Whereas in the proposed scheme, the pseudo-
exhaustive field (PEF) of the attractor basin of� is given by

��� � �( � � (2)

where�( and� - both are)-bit vectors. So, the complexity of this approach is O()). Thus, to identify
the PEF of an attractor basin of a pattern, Dependency Stringcan be employed rather than the Depen-
dency Matrix (

*
) which reduces the complexity from O()�) to O()).

In order to reduce the search space for identifying the desired MACA to be employed for pattern
classification, we next introduce the concept of Valid Dependency Vector/String.

3.3. Valid Dependency Vector/String

A 3-neighborhood MACA whose next state depends on itself, its left neighbor and right neighbor, cannot
produce all the variations of Dependency Vector/String. Inthe present context, the Dependency Vec-
tor/String which can be generated by this MACA is termed as Valid Dependency Vector/String respec-
tively. The following theorems set the guideline for determination of Valid Dependency Vector/String.

Theorem 3.2. [11] The vector subspace of a 3-neighborhood)-cell MACA with two attractor basins
cannot generate a Dependency Vector (DV) of the form

� � � � � � � � �
� ��� � � � � � � � �

with
�
� number of 0’s

between two 1’s, where
�
� � %

.

Example 3.4. The examples of Dependency Vectors which cannot be generated by a 3-neighborhood
MACA are � ������ �

, � ������� �
. In all these cases, there are more than 1 zeroes between

consecutive ones and hence these are termed as invalid. While some valid Dependency Vectors are
� ������ �

, � �������� �
etc.

Theorem 3.3. A Valid Dependency String has the constituent Valid Dependency Vectors placed in non-
overlapping positions.

Proof:
Let, the characteristic polynomial of a Dependency Matrix (

*
) is given by (��	� � �� � ���

) for )-cell
MACA with

%�
-attractor basins. According to the results ofSection 2.2, the characteristic polynomial

can be written as (��� � ����� ���� � ����� � � ���� � �����
), where	
 �	& � � � ��	� � ) ��. Let*
�*&� � � � �*� are the Dependency Matrices corresponding to the characteristic polynomials��� ������

,��� � �����
,
� � �

, ��� � �����
respectively. So,

*
�*&� � � � �*� are the MACA with 2-attractor basins.
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Now, the
*

matrix with characteristic polynomial (��	� � �� � ���
) can be obtained from all these

matrices (
*
�*&� � � � �*�) by the Block Diagonal Method of Fig 2 where

*� (
*�) has no dependency

on
*� (

*�). The entire vector subspace produced by zero basin of MACA (
*

) will be the direct sum
of individual vector subspaces produced by the zero basin ofeach

*�’s. Also, the Dependency Vector
corresponding to

*� does not affect that of
*� and vise versa. As a result, the Dependency String of

*
matrix can be obtained through concatenation of� number of Dependency Vectors of

*
�*&� � � � �*�
respectively - which are placed in non-overlapping positions (Fig 4). Hence, the result follows. ��

Example 3.5. An example Valid Dependency String is������%�%��, whereas the following Dependency
String - ��%���� - where 1 and 2 are interleaved is invalid; that is, the vectors of the zero basin of an
MACA will not generate such invalid Dependency String.

Characterization of MACA based on Dependency Vector/String establishes that MACA acts as an
implicit memory. It also acts as a natural classifier. In designing MACA based pattern classifier, in stead
of storing the Dependency Matrix (

*
) of the MACA, we store only DV/DS. Naturally, memory overhead

of the classifier goes down significantly.

4. Design of Multiple Attractor CA Based Two Stage Pattern Classifier

To enhance the classification accuracy of the machine, we have refined the approach reported in [12]
and report a new CA based classifier. It can classify an)-bit pattern with O()) complexity. Multi-class
classifier is built by recursively employing the concept of two class classifier. The MACA based classifier
proposed here has two distinct stages and hence referred to as Two Stage Classifier (Fig 6).

4.1. MACA Based Two Stage Classifier

The design of MACA based classifier for two)-bit pattern sets(
 and(& should ensure that elements of
one class (say(
) are covered by a set of attractor basins that do not include any member from the class
(& and vice versa. Consequently, any two)-bit patterns�
 
 (
 and�& 
 (& should fall in different
attractor basins.

The design of the proposed Two Stage Classifier has been elaborated in the subsequent discussions.
Let, an MACA corresponding to the characteristic polynomial (��	� � �� � ���

) can classify two)-bit
pattern sets(
 and(&. That is, �( � �
 �� �( � �& (3)

where�( is an)-bit Dependency String consisting of� number of Dependency Vectors (Fig 5). Then,
the total number of attractor basins will be

%�
and the pseudo-exhaustive field (PEF) (Theorem 2.1)

of each attractor basin will be an�-bit binary pattern/string. The Stage 1 of the proposed Two Stage
Classifier maps)-bit patterns to�-bit patterns representing the PEF of attractor basins.

Next, for two class classification the�-bit patterns are classified into two distinct classes. Thistask
is handled by Stage 2 of the Two Stage Classifier. Let,�
 and�& be two�-bit pattern sets consisting
of pseudo-exhaustive bits of attractors of two)-bit pattern sets(
 and(& respectively. Then,�
 and�&
can also be regarded as two�-bit pattern sets for two class classification. So, we synthesize a 2-attractor
basin MACA based two class classifier. While one class (say�
) belongs to one attractor basin, another
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attractor basin houses the elements of the class�&. Any two �-bit patterns�
 
 �
 and�& 
 �& should
fall in different attractor basins (while one in zero basin,another in non-zero basin), - that is,

�� ��
 �� �� ��& (4)

where�� is an�-bit Dependency Vector.

m−1y

ym

y

y
1

2
ok

n−1x

xn

x2

x1

Input Layer

Hidden Layer

Output Layer

( n−bit )

( m−bit )

( 1−bit )

Classifier #1 Classifier #2

Classifier #1: n−bit Dependency String consisting of m number of Dependency Vectors

Classifier #2: m−bit Dependency Vector

Stage 1 Stage 2

Figure 6. Two Stage Classifier

Fig 6 represents the architecture of Two Stage Classifier. Itconsists of three layers - input, hidden
and output layers denoted as�� (
 � ��%� � � � �)), �� (� � ��%� � � � ��), and

��
(� � �

) respectively.
While the first classifier (Classifier #1) maps an)-bit pattern of the input layer into an�-bit pattern
(PEF) of the hidden layer, the second classifier (Classifier #2) maps that�-bit pattern into a single bit
(either 0 or 1) of the output layer. That is, Classifier #1 provides an appropriate mappings of patterns of
input layer into PEF (pseudo-exhaustive field) of the hiddenlayer and the Classifier #2 implements the
classification of the PEFs rather than the original patterns.

Let, � be an)-bit input pattern whose class is to be identified by MACA based Two Stage Classifier.
At first, � is loaded with the Classifier #1 which outputs an�-bit pattern� (pseudo-exhaustive field of
attractor of the basin where� belongs). That is,

�
� �( �� (5)

Next,� is loaded with the Classifier #2 which gives a single value
�

(pseudo-exhaustive field of attractor
of the basin where� belongs) that determines the class of the input pattern�. That is,

� � �� � � (6)

In order to evolve the MACA based Two Stage Classifier (two MACAs for Stage 1 and Stage 2
respectively) realizing this design objective, we have developed a special type of Genetic Algorithm
(GA) formulation.

4.2. Genetic Algorithm (GA) for Evolution of Two Stage Classifier

The basic structure of GA [18] revolves around the concept ofencoding a solution in bit string format
referred to as chromosome and evolving the successive solutions according to its fitness. The three major
functions of GA - Random Generation of Initial Population (IP), Crossover and Mutation, as developed
in the current GA formulation for evolution of Two Stage Classifier, are next discussed.
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4.2.1. Chromosome

Rather than the conventional bit string, the proposed scheme employs a chromosome which consists of
two parts:

� a Dependency String (DS) for Classifier #1 - a symbol string ofnumerical digits; and

� a Dependency Vector (DV) for Classifier #2 - a binary string with valid format defined inTheorem
3.2andTheorem 3.3.

n
3

= 2 m = 3

n  = n
1

+ n
2

+ n
3

Characteristic Polynomial : x  (1+x)7 3

11 22 2 0 3 32 1 0 10

n
1

= 3 n
2

= 5

Dependency String ( DS ) Dependency Vector ( DV )

Classifier #1: n-bit Dependency String (DS) consisting 

of m number of Dependency Vectors (DVs)

Classifier #2: m-bit Dependency
Vector (DV)

Figure 7. An example chromosome for current GA formulation

So, the length of a chromosome is equal to ()��) where) is the number of bits in a pattern and� is
the number of pseudo-exhaustive bits. Fig 7 represents a chromosome corresponding to the characteristic
polynomial (�� � �� � ���). It consists of a 10-bit (

� )) DS �����%%%�%���� (Classifier #1) and a 3-bit
(
� �) DV � ��� �

(Classifier #2). The Dependency String (DS) has partition points at 3rd and 8th
positions and the corresponding DVs are of length 3 (

� )
), 5 (
� )&) and 2 (

� )�) respectively.

4.2.2. Random Generation of Initial Population

To form the initial population, it must be ensured that each solution randomly generated is a combination
of an)-bit DS with

%�
number of attractor basins (Classifier #1) and an�-bit DV (Classifier #2). The

chromosomes are randomly synthesized according to the following steps.

1. Randomly partition) into � number of integers such that)
 � )& � � � � � )� � ).

2. For each)�, randomly generate a valid Dependency Vector (DV).

3. Synthesize Dependency String (DS) through concatenation of � number of DVs for Classifier #1.

4. Randomly synthesize an�-bit Dependency Vector (DV) for Classifier #2.

5. Synthesize a chromosome through concatenation of Classifier #1 and Classifier #2.

Fig 7 represents a randomly generated 13-bit chromosome which is produced through concatena-
tion of 10-bit DS (Classifier #1) and 3-bit DV (Classifier #2),while the 10-bit DS is produced through
concatenation of three DVs of length 3, 5 and 2 respectively.
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4.2.3. Crossover Algorithm

The crossover algorithm implemented is similar in nature tothe conventional one normally used for GA
framework with minor modifications as illustrated below. The algorithm takes two chromosomes from
the present population (PP) and forms the resultant chromosome. Like a single point crossover, it sets a
crossover point and each half about the crossover point is selected from the two respective chromosomes.

x    ( 1 + x )6 4

x    ( 1 + x )7 3

x    ( 1 + x )7 3

x    ( 1 + x )7 3

(a)

(b)

(c)

(d)

1 20 1 1 1 2 3 0 0

1 1 2 0 21 2 3 0 0

1 1 2 0 2 2 3 0 02

1 2 3

1 1 2 0 2 2 03 4 4

4 5 6 7 8 9 10

Classifier #1 Classifier #2

1 0 1 1

1 1 1

1 0 1

11 0

Characteristic
Polynomial

11 12 13 14

Figure 8. An example of crossover technique

Fig 8 shows an example of the crossover process. Two chromosomes with characteristic polynomials
(�� � �� � ���

) and (�� � �� � ���) respectively are shown in Fig 8(a) and Fig 8(b). The single point
crossover is performed in two parts separately. The crossover points are selected randomly which are 4
in first part (Classifier #1) and 12 in second part (Classifier #2). So, the first 4 symbols are taken from first
chromosome and the next 6 symbols are taken from second chromosome to form Classifier #1. Similarly,
11th and 12th bits are taken from first chromosome and 13th bitis taken from second chromosome to
form Classifier #2. But due to this crossover, the resulting chromosome, as explained below, generates
an invalid DS due to the symbols in 3rd, 4th and 5th positions (encircled in Fig 8(c)).

In Fig 8(c), the DS (Classifier #1) is���%��%%���� where 1 and 2 are interleaved, which is invalid
(Theorem 3.3). The resultant valid chromosome after local recoding of symbols is shown in Fig 8(d).

4.2.4. Mutation Algorithm

The mutation algorithm emulates the conventional mutationscheme. It makes some minimal change in
the existing chromosome of PP (Present Population) to form anew chromosome for NP (Next Popu-
lation). Similar to conventional single point mutation, the chromosome is mutated at a single point as
illustrated in Fig 9. The mutation points for Classifier #1 and #2 are 4 and 12 respectively.

Any anomaly in respect of validity of Dependency Vector/String, if appears, is resolved to ensure
that the mutated chromosome is also a valid chromosome. The inconsistent format, as shown in Fig 9(b)
is the mutated version of Fig 9(a). The inconsistency of the chromosome of Fig 9(b) is resolved through
local recoding of symbols to generate the valid format of Fig9(c).
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21 1 2 3 0 010 2
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21 2 3 0 010 2 2
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Polynomial

Figure 9. An example of mutation technique

4.2.5. Fitness Function

In classification, the fitness
�

of a particular chromosome in a population is determined by two factors.

� The capability of the evolved DS (Classifier #1) for classifying the given input pattern set(
 and
(& into separate set of attractor basins - this is referred to asthe factor

�
.
� The capability of the evolved DV (Classifier #2) for classifying the pseudo-exhaustive field (PEF)

set�
 and�& into different attractor basins (while one in zero basin, another in non-zero basin) -
this is referred to as the factor

�&.
The fitness function

�
of a particular chromosome is given by

� � �
 ��& (7)

The experimental results reported inSections 5, 6 and7, confirm that this relation, although evolved
empirically, provides the desired direction of GA evolution to arrive at the best solution for classification.
Next subsection reports the performance of the proposed TwoStage Classifier.

4.3. Performance Analysis

To evaluate the efficiency of the proposed pattern classifier, we perform extensive experiments for dif-
ferent values of) (number of bits in a pattern) and

�
(size of dataset - that is, number of tuples in the

dataset). The pattern sets are generated according to the method proposed in [12]. The Genetic Algo-
rithm (GA) has been evolved for maximum 100 generations. Allthe experiments are performed in SUN
with Solaris 5.6, 350 MHz clock.

Table 3 reports the efficiency of the Two Stage Classifier. Column I and II of Table 3 represent
different topologies () � � �

�
; where) and� are the number of bits in the input layer and hidden layer

respectively) and size of the datasets respectively. Column III and IV depict the classification accuracy
and memory overhead of the proposed pattern classifier. The classification accuracy is defined as the
percentage of test data that can be correctly classified. Thememory overhead of the proposed classifier
is the memory required to store the)-bit DS (Classifier #1) and�-bit DV (Classifier #2). So, the number
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Table 3. Efficiency of MACA based Two Stage Classifier

Topology Size of Classification Memory Generation Retrieval

(

 �� � �) Dataset Accuracy (%) Overhead Time (ms) Time (ms)

100:5:1 5000 97.13 105 454 161

10000 97.41 105 461 298

200:7:1 5000 98.03 207 1102 301

10000 97.83 207 1139 578

300:7:1 5000 98.03 307 1573 438

10000 97.83 307 1581 849

400:10:1 5000 96.93 410 1789 606

10000 97.03 410 1809 1125

500:10:1 5000 96.43 510 2344 710

10000 96.71 510 2339 1403

of bits required to store each Two Stage Classifier is equal to() ��). In Column V and VI we provide
the generation and retrieval time of the proposed pattern classifier. The following conclusions can be
derived from this experimental results.

� The memory overhead of Two Stage Classifier, as per Column IV,is independent of the size of
datasets. The low memory overhead, independent of dataset size, has been achieved due to the fact
that -

1. MACA functioning as pattern classifier acts as an implicitmemory; and

2. MACAs are stored by their DV/DS.

� The generation and retrieval time, as the results of Column Vand VI indicate, are linear in nature.

High classification accuracy, low memory overhead, and linear time complexity of the proposed
pattern classifier have been validated through extensive experimentations. Next three sections report the
pattern classification results in three different application domains - data mining, image compression,
and fault diagnosis.

5. Data Mining

Data Mining/Knowledge Discovery in Databases (KDD) [21, 26] can be defined as the nontrivial extrac-
tion of implicit, previously unknown, and potentially useful information from a database [25]. One of
the important problems in data mining is classification [2].Classification based data mining has been
proposed in the fields of medical diagnosis, performance prediction, selective marketing, etc. Solutions
based on Bayesian Classification [9], Neural Networks [17, 20], Genetic Algorithms [14], Decision Trees
[22, 28, 32], etc., have been reported. However, in all thesecases [9, 22, 28, 32], the algorithms require
a data structure proportional to the number of tuples to staymemory resident. This restriction puts a
hard limit on the amount of data that can be handled by these classifiers. In other words, the issue of
scalability is the source of major concern.



338 Maji et al. / MACA Based Classifier

In the above background, the Two Stage Classifier proposed inthis paper achieves following:

� it refines the scheme proposed in [12] by enhancing classification accuracy, minimizing memory
overhead; and

� linear complexity of classification in prediction phase.

5.1. Experimental Setup

To analyze the performance of Two Stage Classifier, we perform extensive experiments on the datasets
available from http://www.ics.uci.edu/�mlearn/MLRepository.html. The classification accuracy and the
memory overhead of the Two Stage Classifier are compared withdifferent standard classification al-
gorithms such as Bayesian [9], C4.5 [28], MLP (Multilayer Perceptron) [17], First Generation MACA
[12], etc. To handle real data having categorical and/or continuous attributes, the dataset is suitably mod-
ified using Data Discretization [16] and Thermometer Coding[10] to fit the input characteristic of the
proposed classifier. All the experiments are performed in SUN with Solaris 5.6, 350 MHz clock.

5.2. Classification Accuracy

Table 4 compares the classification accuracy of Two Stage Classifier with that of different standard classi-
fication algorithms. The experimental results of Table 4 clearly establish that the classification accuracy
of proposed Two Stage Classifier is comparable to that of different standard classification algorithms
[9, 12, 17, 28].

Table 4. Classification Accuracy of Different Algorithms inData Mining Application

Dataset Bayesian C4.5 MLP First Generation Two Stage

MACA [12] Classifier

monk1 99.9 100 100 100 100
monk2 69.4 66.2 75.16 76.24 78.16
monk3 92.12 96.3 76.58 97.01 97.17

crx 83.14 84.5 74.29 83.87 86.12
labor-neg 83.07 82.4 89.03 87.37 89.14

vote 92.37 94.8 90.87 95.06 95.88
hypo 98.18 99.4 94.13 99.51 99.59

Australian 83.4 85.8 84.7 86.42 86.47
Diabetes 72.9 74.2 75.3 75.93 75.93

DNA 90.3 93.3 91.4 87.99 87.96
German 66.79 67.4 67.12 74.62 74.64
Heart 80.12 79.3 80.74 86.24 86.59

Satimage 85.4 85.2 86.2 77.45 77.49
Shuttle 99.9 99.9 99.6 94.09 94.03
Letter 87.4 86.6 67.2 84.13 84.41

Vehicle 72.9 68.5 79.3 76.2 78.7
Segment 96.7 94.6 94.4 89.4 89.5
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Table 5. Memory Overhead of Different Algorithms in Data Mining Application

Dataset Bayesian C4.5 MLP First Generation Two Stage

MACA [12] Classifier

monk1 1.7 2.77 0.35 0.08 0.02
monk2 2.3 3.95 0.35 0.08 0.02
monk3 1.7 2.38 0.36 0.08 0.02

crx 22 24.35 2.25 65.94 0.15
labor-neg 2.4 3.44 2.56 2097.59 0.17

vote 13 14.35 2.66 0.21 0.06
hypo 213 214.54 6.32 132.75 0.62

Australian 19 37.85 1.93 0.42 0.13
Diabetes 14 27.15 0.44 0.62 0.13

DNA 1000 1067.96 37.22 3.13 0.38
German 49 99.31 13.64 0.71 0.16
Heart 9.8 19.46 1.52 0.38 0.12

Satimage 669 709.72 11.33 171.96 2.78
Shuttle 1500 1513.57 0.71 3.22 0.85
Letter 766 1299.28 2.57 43.67 6.25

Vehicle 47.02 72.14 1.32 0.39 0.10
Segment 121.89 370.42 2.74 0.52 0.23

5.3. Memory Overhead

The memory overhead of the proposed MACA based Two Stage Classifier, as discussed earlier, is equal
to �) ���

, where) is the number of bits in the input layer and� is the number of bits in the hidden
layer (Fig 6). Consequently, the total memory overhead to design MACA based multi-class classifier
with

�
number of classes is �� � �� � �� � �) ���

(8)

Table 5 reports the comparison of memory overhead of different classification algorithms in terms
of KByte. The results clearly establish that the memory overhead to implement the proposed Two Stage
Classifier is significantly lesser compared to that of other classification algorithms [9, 12, 17, 28]. Also,
the memory overhead of the proposed classifier is independent of the size of datasets.

6. Image Compression

Lossy data compression is a process of reducing the amount ofdata required to represent a given quantity
of information with acceptable loss. It removes redundancy, repeatability and irrelevancy of data blocks
of input file to generate the compressed output. In order to demonstrate the capability of Two Stage
Classifier in compression technology, we have concentratedon lossy compression for human portrait.
The details of this research has been reported in [33]. In this paper we highlight the design of Two Stage
Classifier for this specific application.

The well known Vector Quantization (VQ) method has been applied to generate the codebook from
the training set of human portrait [15]. The MACA has been used as an implicit memory to store the
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codebook and search for the best match of an input data block.The encoding time is reduced substantially
by employing the MACA based Two Stage Classifier reported in this paper. The excellent compression
ratio with acceptable image quality, establishes the efficiency of Two Stage Classifier for this application.

Search

Engine

Input Vector
Output Vector

Channel

CodebookCodebook Index Index

The  DecoderThe  Encoder

Figure 10. Encoder and Decoder

Vector Quantization (VQ) is a lossy data compression method[15]. It maps the)-dimensional
vectors in the vector space�� into a finite set of vectors stored in a codebook. Each vector of the
codebook is known as codeword. A cluster is the set of vectorshaving minimum deviation from a specific
codeword in the codebook. Thus each codeword (also known as codevector) is the nearest neighbor of
the set of vectors in a cluster. A VQ method mainly consists oftwo operations:

� an encoder - to encode each block of input image file with the index of a codeword in the codebook;

� a decoder - to get back the representative block from the codebook.

The encoder, as shown in Fig 10, takes an input vector and outputs the index of the corresponding
codeword from the codebook that gives minimum deviation. The index of the codeword is sent to the
receiver end. The decoder, on receiving this index file, replaces each entry with the associated codeword
found from the codebook kept on the receiver side. Codebook generation plays a key role in VQ scheme.

6.1. Codebook Design

Codebook design consists of two steps: design of training set and generation of codebook. Each step is
illustrated with reference to Fig 11.

6.1.1. Design of training set

The training set has been designed out of 20 different human-face images with wide variation of pixel
values. Each image of training set is segmented into

�� , ��
blocks that is subsequently processed in

following three sequential steps:
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Figure 11. Block diagram of codebook generation scheme

� Step 1: Calculate the norm (standard deviation) of each
�� ,��

pixel block. If the norm matches
with the pre-specified criteria (say SD1 as shown in Fig 11), it is stored as a member of

�� , ��
training set, else referred to as

�� ,��
residual training set to be processed in Step 2.

� Step 2: Each member of the residual
�� , ��

training set is broken into four� ,� pixel blocks.
Next, we calculate the norm of each� ,� block and compare with the pre-specified criteria (say
SD2 as shown in Fig 11). If the norm matches with the criteria,then it is stored as� ,� training
set. Otherwise it is referred to as the residual of� ,� training set to be processed in the next step.

� Step 3: Each� , � residual block is broken into four
� ,�

pixel blocks. Calculate the norm of
each

� ,�
block and compare with the pre-specified criteria (say SD3 asshown in Fig 11). If the

norm matches with the criteria, then it is stored as
� ,�

training set. Otherwise the block is broken
into four

% ,%
pixel blocks and treated as

% ,%
training set.

The matching criteria SD (standard deviation) has been fixedon the basis of statistical characteristics
of

�� ,��
, � ,� and

� ,�
pixel blocks of training set [33].

6.1.2. Codebook Generation

To design the codebook for three training sets (
�� , ��

, � , � and
� , �

) we have used Prune Tree
Structured Vector Quantization (PTSVQ) [15] method. Threecodebooks are generated from the three
different training sets as shown in Fig 11. The mean value is computed for each training set. The PTSVQ
is applied on the mean removed vectors. Each element of the vector after subtraction of the mean value
is known as mean removed vector. At the time of encoding, a

�� , ��
pixel block is sequentially taken

from the image and depending on the match criteria it is codedeither by the codebook indices for
��,��

or broken to four� ,� blocks and encoded with the indices of� ,� codebook. For a� ,� pixel block,
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if a proper match in the codebook is absent, it is treated as a collection of four
� ,�

blocks and coded
by four indices from the

� ,�
codebook. A separate match file is kept to track the sequence of indices

from different codebooks.

S =

S = S =

S S1 2 S S3 4

S1

S1

S2

S2

S3

S3 S4

S41 2’’

Figure 12. Logical structure of multi-class classifier equivalent to PTSVQ

In binary PTSVQ, if
�

is the total number of codebook entries, the depth of binary tree is���&�. So,
the time required to search the best match for an input block is ���&� comparisons of�,� (� � ���� ��)
pixel block size. Reduction of this comparison is necessaryfor on line transmission of image data. The
Two Stage Classifier proposed inSection 4, is used to reduce this comparison and search time for best
match in the codebook.

The binary search for best match in the codebook is implemented with an MACA based multi-class
classifier realized with multi-stage two class classifiers.In order to identify the best match in binary
PTSVQ scheme, the input vector is compared with two centroids of two vector clusters in each layer
of the tree and one of the branches, as shown in Fig 12, is selected according to matching criterion. A
sequence of comparisons are done in subsequent levels till the leaf node is reached. We have designed
MACA based Two Stage Classifier to model the comparison operation at each node of PTSVQ binary
tree. The pixel blocks of the training sets employed for design of codebook and PTSVQ binary tree are
also used as input for design of Two Stage Classifier. A set of Two Stage Classifiers are generated that
acts as multi-class classifier of the vectors in a codebook.

Fig 12 illustrates the design of MACA set for a codebook. Suppose, we want to classify the pattern
set( � ��(
�� �(&�� �(��� �(��� into four classes such that the classifier would output the correct class

 (
 � ��%����

) for a given input vector�� 
 �(��. At the first level, we divide whole pattern set( into
two classes -

�(
 and
�(&, where

�(
 � ��(
�� �(&�� and
�(& � ��(��� �(���. The Two Stage Classifier

is designed to classify two distinct classes
�(
 and

�(&. Fig 12 represents two classes
�(
 and

�(&. The
same process is then applied for

�(
 and
�(& to isolate�(
�, �(&� and �(��, �(�� respectively and to

generate two Two Stage Classifiers. Thus the logical structure of the multi-class classifier is equivalent
to the PTSVQ binary tree representing a codebook.

For a given vector�
 (�
 
 (
), we need to identify the codebook entry (that is codeword) closest
to �
. At the prediction phase, the vector�
 is given as input and its class is identified as follows. At the
first stage, the classifier designed with the Two Stage Classifier is loaded with�
 and allowed to run. It
returns the desired class

�(
. In the next level, the classifier is loaded with�
 to output the class(
.
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6.2. Experimental Results of CA based Compression

The algorithm is applied on different standard pictures of human face. The experimental results are
reported in Table 6. Table 6 represents the PSNR values as well as compression ratio of the set of images
when compressed and decompressed using the proposed scheme. Fig 13 show the comparative study of
original images and the decompressed images. The experimental results of Fig 13 and Table 6 confirm
high PSNR value with a compression in the range of 95% to 97.5%.

Figure 13. Original and decompressed image of (i) lena with compression 96.43% and PSNR 32.81; (ii) girl with
compression 95.66% and PSNR 34.27

Table 6. Results on Static Image

Image File PSNR Compression (%)

lena 32.81 96.43

girl 34.27 95.66

Proj100 35.02 96.54

Proj129 37.88 97.63

Proj131 34.01 95.22

Proj138 33.69 97.55

Proj140 30.02 96.68

Proj146 37.55 97.57

Proj148 38.06 97.75

Proj192 30.06 97.17

Proj210 34.24 96.41

Table 7. Execution Time (in milli seconds)

Block Size Full Search PTSVQ MACA
� ��

0.0121 0.00824 0.00562
� ��

0.0473 0.03312 0.01367�� � ��
0.1941 0.13192 0.04102

Fig 14 depicts the rate distortion behavior of the proposed scheme and other standards [31]. Rate
distortion means the change of PSNR at different bit representation of each pixel. It is seen that, the pro-
posed scheme for specific domain outperforms all other algorithms - the JPEG 2000 reversible (J2K-R),
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Figure 14. PSNR of all test images for CA based compression and other standard algorithms when performing
lossy encoding at 0.25, 0.5, 1 and 2 bpp and other standard

non-reversible (J2K-NR), JPEG (older technology) and MPEG-4 VTC at any given bit rate. The size of
test images are
�% ,
�% and depth 8 bits per pixel.

Table 7 represents the comparison of execution time of the proposed MACA based Two Stage Clas-
sifier and that of the full search and PTSVQ. While Column I of Table 7 depicts the size of the block,
Column II, III, and IV report the execution time taken by a block to search its closest codevector in a
tree of height 14. The number of codevector is

%
�
. All the results reported in Table 7 confirm that the

execution time of the proposed scheme is significantly smallcompared to full search and PTSVQ.
All the results reported above confirm the following facts:
� The excellent compression ratio with high PSNR establishesthe high classification accuracy of the

Two Stage Classifier.

� MACA based Two Stage Classifier acts as an implicit memory to store the codebook and search
for the best match.

� The encoding time is reduced substantially by employing proposed pattern classifier.

Next section reports the application of Two Stage Classifierin fault diagnosis of electronic circuits.

7. Fault Diagnosis of Electronic Circuits

This section formulates fault diagnosis in electronic circuits as a pattern classification problem. The
proposed pattern classification scheme has been projected as a classifier of faulty response-patterns of a
circuit leading to diagnosis of faulty module. The Genetic Algorithm (GA) (Section 4.2) is employed
to synthesize the desired MACA based Two Stage Classifier required for diagnosis of a CUT (Circuit
Under Test). The CUT is assumed to have a network of large number of circuit components partitioned
into a number of sub-circuits referred to as modules. Introduction of GA significantly reduces the design
overhead of the MACA based classifier that supports:

� low memory overhead for diagnosis - reduction of one to two order of magnitude of memory
overhead has been achieved over that required for fault dictionary based diagnosis scheme;
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� excellent diagnostic resolution;

� low diagnostic aliasing; and

� low cost hardware implementation of a generic Fault Diagnosis Machine (FDM) with simple,
regular, modular, and cascadable structure of CA that suitsideally for VLSI implementation.

The FDM can be viewed as a Watch-Dog processor intended for high speed on-line diagnosis for critical
application areas. The following scenario motivated us to undertake this research.

In order to improve the product quality, reduce time to market, and cut down production cost, the
demand for fault diagnosis in an electronic circuit has greatly increased. The objective of fault diagnosis
is to guide the test engineers to search the physical location of the defect on a circuit in the early produc-
tion phase. Use of fault dictionaries is a probable solutionfor the diagnosis process, particularly when
repeated diagnosis is required for different copies of the same circuit [1, 3, 4]. But this scheme becomes
inefficient for a sufficiently large circuit due to the large volume of fault dictionary. Different schemes
to compact the size of the dictionary have been proposed [5, 27, 30]. However, such compaction reduces
diagnostic resolution since multiple response patterns for different faults get compressed to the identi-
cal signature. The best test environment for diagnostic purposes should differentiate between all faults
that are distinguishable. In the above background, the diagnosis scheme employs Two Stage Classifier
(Section 4) which effectively provides an implicit storage mechanismof voluminous response data. Con-
sequently it provides the solution to the problem of space and time associated with handling large fault
dictionary. The details of this MACA based fault diagnosis scheme has been reported in [24, 34, 35]. In
this paper we highlight the impact of introduction of the proposed MACA based Two Stage Classifier for
efficient diagnosis of electronic circuits.

7.1. Circuit Diagnosis - A Pattern Classification Problem

A circuit has been assumed to consist of a number of sub-circuits or modules. The diagnosis framework
has been designed to diagnose the faulty module in the circuit. Let, for a circuit with

�
number of

modules -
�
��&� � � � ��

�, �(

�(
&� � � � �, �(&
�(&&� � � � �, � � �
, �(�
� (�&� � � � � be the signature

sets of
�

faulty modules -(�� refers to the signature generated due to� �� fault in the
�� module
��. The

aim is to design a classifier which has to classify the signature sets into
�

classes, each class representing
a module. The following example illustrates the formulation of circuit diagnosis as a pattern classification
problem.

Let us consider the Example CUT ‘EC’ of Fig 15 with 5 POs (Primary Outputs). It has two partitions
Module 1 and Module 2. The faulty signature set(
 for Module 1 is computed through fault simulation
by injecting each of the faults of this module. Similarly, the set(& is also computed for Module 2. The
Signature Analyzer (SA) is a 5 bit maximum length CA or LFSR [8].

Let, faulty signature sets generated for two modules be(
 = �0, 1, 8, 9, 16�and(& = �2, 3, 7, 11, 31�.
The MACA of Fig 1 represents the desired pattern classifier for the sets(
 and(&, where(
 is covered
by the zero attractor basin and(& by the non-zero attractor basins. The memory locations addressed by
the pseudo-exhaustive field (Theorem 2.1) of attractors store the faulty module number.

At the testing phase, a faulty chip realizing ‘EC’ generatesany one (say) signature 9 (01001). If we
run the CA of Fig 1 with 9 as seed, it will reach to the attractor00000 (Fig 1). By observing the PEF
(00) of the attractor, the faulty module (Module 1) of ‘EC’, can be identified.
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Figure 15. Diagnosis of an example CUT ‘EC’

From the above example, it can be observed that the problem ofdiagnosis in electronic circuits maps
to the design of MACA based Two Stage Classifier. The large fault dictionary gets replaced with the
memory to store multiple Two Stage Classifiers of the multi-class classifier. The scenario of storing the
fault dictionary is equivalent to storing the codebook for image compression as illustrated in Fig 12.

7.2. Experimental Results

In this subsection, we perform fault diagnosis of electronic circuits with MACA based Two Stage Clas-
sifier reported inSection 4. Fault diagnosis in both digital and analog circuits have been reported. While
Section 7.2.1reports the diagnosis results for digital circuits, the same for analog circuits are covered in
Section 7.2.2.

7.2.1. Digital Circuit Fault Diagnosis

The fault diagnosis experimentation for digital circuit has been carried out on a large number of bench-
marks (ISCAS) for single stuck-at faults. A CUT (Circuit Under Test) is simulated with the fault simu-
lator Hope [19]. The PO cones generated with Hope provide thebasis of partitioning of the CUT. Hope
extracts the PO cones to construct the fault list of a CUT. Thefault list constructed by Hope reflects the
spatial locality of wires in the CUT stuck at 1 or 0. The maximum length CA [8] is used to generate the
signature of a fault in the CUT. The experimental setup, as shown in Fig 15, has been simulated in SUN
with Solaris 5.6, 350 MHz clock.

Table 8 depicts the test environment and the circuit description. While Column I and II specify the
benchmarks along with the number of internal lines, and Primary Input (PI), Output (PO) lines; Columns
III and IV display the number of collapsed faults and the number of unique faulty signatures of the
CUT. The Fault coverage figures noted in Column V are derived by applying a specific number of test
patterns generated from a Pseudo Random Pattern Generator (PRPG) [8]. This testing experiment has
been implemented only to demonstrate the elegance and efficiency of the proposed pattern classifier for
fault diagnosis of electronic circuits.

The fault diagnosis results are presented in Table 9. The percentage of diagnosis achieved by the
proposed scheme and with the fault dictionary method are noted in Column III(a) and III(b) respectively.



Maji et al. / MACA Based Classifier 347

Table 8. Test results of diagnosis in dictionary method

CUT No. of No. of No. of unique Fault

PI/PO Faults collapsed Faulty Signatures coverage

c880 60/26 942 896 98.62
c1908 33/25 1879 1801 98.99
c3540 50/22 3428 2838 96.00
c1355m 41/32 2278 1664 92.32
c1355 41/32 1574 912 98.48
c6288 32/32 7744 7648 99.50
c499m 41/32 902 776 96.01
c499 41/32 758 699 97.62
c2670 233/140 2747 2332 84.27
c7552 207/108 7550 7053 94.71
s967 16/23 1066 993 98.22
s991 65/17 910 776 95.27
s713 35/23 581 388 81.24
s3384 43/26 3380 2810 91.48
s4863 49/16 4764 4123 93.32
s3271 26/14 3270 2585 99.39
s5378 35/49 4603 2416 66.43
s6669 83/55 6684 6358 100
s641 35/24 467 359 85.22

c = combinational, s = sequential, m = mutant

The percentage fault diagnosis is computed as

� ���
�� ��

������� � ��	
�� �� ������ ��
�������

��	
�� �� ����
��� ���
��� (9)

For the sake of illustration of diagnosis scheme, each of thecircuits has been partitioned into a
number of modules noted in Column II of Table 9. Diagnosis is done to the level of faulty module in the
CUT. We have reported results for 4, 6, 8, 10 partitions for a CUT. Each partition represents a module.
In Column IV, the memory requirement to implement the Two Stage Classifier is reported as a ratio of
that required for diagnosis based on fault dictionary. For majority of the CUTs, the memory overhead is
only a small percentage of the memory consumed by fault dictionary based scheme. This is due to the
fact that MACA acts as an implicit memory. The diagnosis quality (Column III) and memory overhead
figures (Column IV) establish the utility of the proposed pattern classifier for fault diagnosis of digital
logic circuits.

7.2.2. Analog Circuit Fault Detection

A scheme is reported by Roy in [29] for synthesis of OTA (Operational Transconductance Amplifier)
based analog circuits to realize different classes of filters. We have done experiment for diagnosis of
faulty OTA and capacitor of such circuits.

The practical inability of testing analog circuits with desired precision demands the definition of a
tolerance band within which the circuit functions correctly. This is particularly true when a parameter of
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the analog circuit (for example, transconductance of an OTA) cannot be tunned precisely as per the design
requirement. As a result, test and diagnosis of an analog circuits has become a challenging problem. In
general, test and diagnosis of an analog system demands analysis of a large volume of a test response
data within the tolerance band [29]. We report the experimental setup for generation of faulty and fault
free signatures for an analog circuit.

Table 9. Test results of MACA based Fault diagnosis

CUT �
��� No of Fault Diagnosis (%) Memory (%)

Part� MACA Dictionary
����

�����	
��

� ���

c880 (26, 896) 6 98.71 95.62 1.8243
c1908 (25, 1801) 6 98.83 96.03 0.9106
c3540 (22, 2838) 8 97.73 86.52 0.8184
c1355m (32, 1664) 6 98.10 78.94 0.9672

c1355 (32, 912) 6 97.75 58.84 1.7646
8 96.71 2.4705
10 93.55 3.1764

c6288 (32, 7648) 6 99.72 99.33 0.2104
c499m (32, 776) 10 99.31 91.72 3.7331
c499 (32, 699) 6 97.09 93.20 2.3024
c2670 (140, 2332) 10 100 99.19 1.2046

c7552 (108, 7053) 6 98.96 98.81 0.2238
8 98.57 0.3134
10 97.67 0.4029

s967 (23, 993) 4 98.28 94.08 0.9983
s991 (17, 776) 4 97.54 89.93 1.3189
s713 (23, 388) 4 93.62 81.85 2.5549
s3384 (26, 2810) 10 94.74 81.64 1.0471
s4863 (16, 4123) 10 92.43 89.63 0.7504

s3271 (14, 2585) 6 96.71 79.54 0.6648
8 97.05 0.9308
10 94.13 1.1968

s5378 (49, 2416) 4 95.03 76.21 0.3902
8 98.06 0.9106
10 92.35 1.1707

s6669 (55, 6358) 10 99.94 95.12 0.4426
s641 (24, 359) 6 95.86 88.86 4.5845

c = combinational, s = sequential, m = mutant

Generation of Signatures

The set of signatures are derived out of the following data sets.

�
�
������� - data set of the good circuit for the
�� performance parameter,
 � ��%� � � � ��, where�

denotes the maximum number of performance parameters considered.
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�
���������� - data set of the circuit by introducing fault at� �� device for
�� performance parameter.
� � ��%� � � � ��

, where
�

is the number of components (OTA and capacitor) in the circuit.
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Figure 16. OTA realization of low pass and band pass filter

The discrete set of data -
�
������� and

���������� has very large volume. It is compressed to a set of
signatures( � �(� � (
� � � � � (��, where(� represents the signature set for non-faulty circuit and(�
(for � � ��%� � � � ��

) denotes the signature set generated by introducing fault at ��� component,
�

being number of components. To generate the signature for the tolerance band (non-faulty region) and
faulty region, a device parameter is divided into� number of equal steps. The corresponding signature is
given as(� � �(���
� (���&� � � � � (�����, where(���� (� � ��%� � � � � �) denotes the signature generated
at the� �� step of the��� component. The complete sequential steps for signature generation procedure
are noted in [29].

The signature sets generated by the above procedure are partitioned into two classes - faulty and
non-faulty. Faulty class is next divided into

�
number of sub-classes, each sub-class corresponds to

signature set generated due to fault in a single component. The MACA based two class classifiers (Two
Stage Classifier) have been synthesized at each level of diagnosis.

Experimental Results

In this subsection, we demonstrate the efficiency of the diagnosis procedure with two example circuits.
Fig 16 show the OTA (Operational Transconductance Amplifier) realization of a low pass filter (LPF) and
a band pass filter (BPF) respectively. The fault diagnosis results are shown in Table 10. While Column
I specifies the type of filters, Column II shows the circuit components - OTAs and Capacitors. Column
III specifies the number of sample values picked up from the output signal of the analog circuit. Digital
signature is generated out of these digitized sample values. Faults detected under this experimental set
up is shown in Column IV. The overall success rate of diagnosis of faulty component (OTA) is more than
99%. In both the cases (LPF and BPF), the memory requirement to implement Two Stage Classifier as a
ratio of that required for diagnosis based on fault dictionary are 0.0372% and 0.0468% respectively. All
the results reported in Table 10 confirm the high fault diagnosis efficiency and low memory overhead of
the proposed Two Stage Classifier.

One of the major strength of the proposed classifier is its lowcost high speed hardwired implemen-
tation for online real time application. So, we next deal with hardwired version of the MACA based
pattern classifier.
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Table 10. Fault Diagnosis Analysis of LPF and BPF of Fig 16

Filters Compo- No of Faults Faults not Success

nents Samples Detected Detected Rate

LPF OTA1 8970 8962 8 99.91

OTA2 5430 5424 6 99.88

C1 5430 5421 9 99.83

C2 5610 5603 7 99.87

BPF OTA1 7201 7193 8 99.89

OTA2 4321 4306 15 99.65

OTA3 4441 4436 5 99.88

C1 4297 4181 116 97.30

C2 4321 4219 102 97.64

8. Hardware Architecture of Two Stage Classifier

In software implementation we employ Dependency Vector/String to identify the class of a pattern in
O()) time complexity. However, it is expensive to implement theassociated logic of Dependency Vec-
tor/String in hardware compared to hardwired realization of Dependency Matrix of Linear CA (Table 1).
So, to design the hardware of the proposed classifier, we synthesize a Dependency Matrix corresponding
to each Dependency Vector/String representing an MACA. Thefollowing example illustrates this point.

Example 8.1. Dependency Matrix (
*

) corresponding to

1. �� �� ������� �

2. �( � �� ����� �� �%%% ��

1. The Dependency Matrix for�� �� ������� �
is given by

� �

�
�����������

�� � �� � � � �
�� � �� � � � �
�� � �� � �� � �
� � �� � �� � �
� � �� � �� � ��
� � � � �� � ��
� � � � �� � ��

�
�����������

where the first block corresponds to� ��� �
followed by� ��� �

and� ��� �
.

2. The DS consists of two DVs, where��
 �� ����� �
and��& �� ���� �

. Now, Dependency
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Matrix for ��
 is

� �

�
�������

�� � �� � �
�� � �� � �
�� � �� � ��
� � �� � ��
� � �� � ��

�
�������

and Dependency Matrix for��& is

�� �
�
����

� � � �
� �� � ��
� �� � ��
� �� � ��

�
����

So, Dependency Matrix corresponds to Dependency String (DS) is given by

� � � � �
� �� � �

�
����������������

�� � � � �� � � � �
�� � � � �� � � � �
�� � � � �� � � � �
�� � � � �� � � � �
�� � � � �� � � � �
� � � � � �� � � ��
� � � � � �� � � ��
� � � � � �� � � ��
� � � � � �� � � ��

�
����������������
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Figure 17. Hardware architecture of the proposed pattern classifier

The hardware architecture of the proposed MACA based pattern classifier is shown in Fig 17. A
pattern classifier, as explained inSection 4, is built out of a multi-class classifier that is designed with a
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set of MACA based Two Stage Classifiers. Thus a pattern classifier consists of a set of MACAs. Each
of these MACAs is a linear CA that employs CA rules noted in Table 1. To identify the class of an
input element, it is necessary to traverse the MACA tree. So,basically we need to design a structure
that can be configured as different MACAs at different time instances of the traversal. For hardwired
design of a pattern classifier, we utilize the structure of a PCA (Programmable CA) proposed in [8]. The
design of PCA and its application has been elaborated in [33]. A PCA supports a CA structure that can
be programmed to realize different MACAs at different time instances. The structure of a PCA and its
cell is noted in Fig 17. A PCA cell has 3 switches to configure any linear rule (Table 1) on a CA cell.
Different MACA based two class classifier can be realized by programming such a PCA. The rule vectors
of MACA realizing the pattern classifier are stored in Program Memory as shown in Fig 17. The input
pattern is stored in the Input Register that initializes thePCA. The Control Block (CB) configures the
PCA with the rule vector (field of a program step) and run for a number of cycles till an attractor state
is reached. The CB controls the program flow - that is, it selects the next program step to be executed
based on the output register value arrived at in the earlier program step. The process is continued until
the program is fully executed that leads to identification ofthe class of the input pattern.

9. Conclusion

The paper presents the theory and application of an efficientpattern classifier, termed as Two Stage
Classifier, which is built around a special class of sparse network referred to as Cellular Automata (CA).
The proposed classifier reduces the complexity of the CA based classification algorithm from O()�) (as
reported in [12]) to O()). Extensive experimental results have been reported in respect of its application
in the fields of data mining, image compression, and fault diagnosis. The excellent classification accuracy
and low memory overhead figures prove the superiority of the CA based classifier over that of the existing
classification algorithms. The simple structure of CA makesit ideally suitable for VLSI implementation.
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