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1. Introduction

This paper presents the theory and application of a patiassitier built with the sparse network of
Cellular Automata (CA). Following scenario provided thetiviation to undertake this research.

The inter-networked society of cyber-age has been expenigian explosion of data in diverse fields.
However, meaningful interpretation of this voluminousadatbecoming increasingly difficult. Efficient
techniques for extraction of knowledge from large datalimsebasic necessity of the current age. Data
classification provides a solution to this problem.

Data classification is the process of identifying commonpprbes among a set of objects in a
database. It classifies the objects into different clasgesample set from the database, each mem-
ber belonging to one of the predefined classes, is used tottraimodel. Subsequent to training, the
model performs the task of prediction. The prediction plagputs the desired class in which the input
data belongs [16].

The essential prerequisites of designing the classifiestfment information age are high throughput
and low storage requirements. Further, low cost hardwingalémentation of the scheme is becoming
a very important criterion for on line real time applicatsornThe conventional techniques developed for
classification - Bayesian Classification [9], Neural Netkdr7], Genetic Algorithm [14], Decision Tree
[6, 22, 28, 32] are too complex to meet such requirements.

In this background, design of pattern classifier based oeci@xlass of Cellular Automata (referred
to as Multiple Attractor Cellular Automata (MACA)) has beexplored in a number of papers [7, 12, 24,
34, 35]. Design of a two class classifier have been proposg®]nin the current paper we consolidate
and refine the design approach while providing a detaileiginsnto the applications of the CA based
pattern classifier in diverse fields. Experimental resuldata classification in the fields of data mining,
image compression, and fault diagnosis have establiskeslberiority, versatility, and scalability of the
proposed scheme. The major contributions of this paper eauinmarized as follows.

e The special class of CA referred to as Multiple Attractor AACA) is employed to design
the proposed pattern classifier. MACA acts as an implicit mgmconsequently the memory
overhead of the proposed scheme has come down significantly.

e The complexity of classification algorithm is linear.

e Excellent classification accuracy of MACA in diverse apations like - data mining, image com-
pression, fault diagnosis in electronic circuits, etcyehbeen established through extensive exper-
imentation reported in this paper.

e The desired structure of MACA for a particular dataset isaot#td through Genetic Algorithm
(GA) formulation that leads to significant reduction of staspace.

e The classifier employs the simple computing model of 3-nssghood linear CA. The simple,
regular, modular and local neighborhood sparse network/o&(dits ideally for low cost VLSI
implementation [8].

In the above background we proceed to report CA prelimisaneluding MACA (Multiple Attrac-
tor CA) fundamentals irSection 2 This is followed by a new linear operator termed as Depetygen
Vector/String used to characterize MACA. Design of MACA ddglassifier is next presentedSection
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4 along with the Genetic Algorithm (GA) formulation. In ordervalidate the theoretical formulation of
the proposed classifier, the experimental results on tipekcation areas - data mining, image compres-
sion, and fault diagnosis are reportedSactions 56, and 7 respectively. Finally, the&section &eports
the hardware architecture of the proposed CA based pattessifter.

2. Cellular Automata (CA)

A Cellular Automaton (CA) can be viewed as an autonomousefstiite machine (FSM) consisting of a
number of cells [23]. In a 3-neighborhood dependency, thxéstateg; (¢ + 1) of a cell is assumed to be
dependent only on itself and on its two neighbors (left aghtji and is denoted as

qi(t+1) = f(qi-1(t),qi(t), giy1(t))

whereg;(t) represents the state of ti#é cell at¢!* instant of time. ‘f’ is the next state function and
referred to as the rule of the automata. The decimal equit/aliethe next state function, as introduced
by Wolfram [36], is the rule number of the CA cell. For example

Rule 90 : gi(t+1) = ¢i—1(t) & qita ()
Rule 150 : qi(t + ].) = qi_l(t) &5 qi(t) @ qit1 (t)

where@ (XOR function) denotes modulo-2 addition. Sing# is a function of 3 variables, there are
22" j.e., 256 possible next state functions (rules) for a CA. delltthis paper, we have used hybrid (also
referred to as non-homogeneous) null boundary CA. A hybAdeGploys different rules to different
cells, while in a null boundary CA, left/right neighbor oitleftmost/rightmost terminal cell is connected
to logic 0. Out of 256 rules there are only 7 rules with XOR tofffable 1). The CA employing XOR
rule is referred to as linear CA. The pattern classifier psegoin this paper employs linear CA. The
theory of linear CA and its applications in diverse fieldsénbeen extensively dealt with in [8].

Table 1. Linear CA rules

Rule No. Next State Logic Function
Rule 60 ai(t+1) = qi—1(t) @ a(?)
Rule 90 gi(t+1) = q—1(t) & qit1(t)
Rule 102 qi(t+1) = qi(t) © ¢it1(?)
Rule 150 | ¢i(t+1) = qi-1(t) @ ¢i(t) ® g4 (?)
Rule 170 Gt +1) = g1 (t)

Rule 204 gi(t+1) = ¢(t)

Rule 240 ¢(t+1) = ¢—1(t)

2.1. Characterization of Linear CA

The global stateS; of ann-cell CA att* instant of time is a string of binary symbols. The next state
Sy1 of the CAis given by:S;,; = T.S;. T is ann x n characteristic matrix [8] (also referred to as



324

Maji et al./ MACA Based Classifier

Dependency Matrix), where

1, if next state ofit* cell depends on present
T = state ofjth cell; 4, j = 1,2, ..., n
0, otherwise.

If we restrict to 3-neighborhood dependency, tiigncan have non-zero values only fpe= (i — 1),

i, and(z + 1). Thus,T becomes a tri-diagonal matrix. The polynomél:) of which T is a root is
referred to as the characteristic polynomial of the CA. Tharacteristic polynomial is derived froffi
by calculating detl” + Ix) [8, 13].

If all the states in the state transition diagram of a CA lisame cycles, it is a group CA, whereas

a non-group CA state transition graph has both cyclic andayatic states (Fig 1). For a group CA,
de{T] # 0; while for the non-group CA, dgf'] = 0. In this paper we have employed a special class of
non-group CA referred to as Multiple Attractor CA (MACA) fdesigning the classifier.

2.2. Multiple Attractor Cellular Automata (MACA)

The state transition graph of an MACA consists of a numbewyolic and non-cyclic states. The set of
non-cyclic states of an MACA forms inverted trees rootechatdyclic states. The cyclic states with self
loop are referred to as attractors. Fig 1 depicts the staissition diagram of a 5-cell MACA with its
rule vector as< 102, 60,204,204, 170 >. Thei'” cell (i = 1 to 5) employs the rule specified by tié
element of the rule vector. The corresponding dependescspecified in Table 1, gets reflected by the
i row of theT matrix. The four cyclic state§00000(0), 00011(3), 00100(4), 00111 BJre referred to
as attractors and the corresponding inverted tree rooted(an= 0, 3, 4, 7) asy-basin.

\ 10001\ \ 01001] \ 10010\ \ 10011\
\10000H 11000H 01ood \ 01010H 11011H 01011]
\ ooomH oooooF—{ 11001\ \ oomoH 00011}<—{ 11010\
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(a) State Transition Diagram
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(b) Dependency Matrix

Figure 1. State transition diagram of a 5-cell MACA with Dagency Matrix ()



Maji et al./ MACA Based Classifier 325

The detailed characterization of MACA is available in [8].1A few fundamental results for an
n-cell MACA having £ number of attractor basins is next outlined. Each of thesebean illustrated
underExample 2.that follows.

e Result I:The characteristic polynomial of afrcell MACA with & number of attractor basins is
(™™ (1 4+ z)™), wherem = logs(k).

e Resultll:

Definition 2.1. An m-bit field of ann-bit pattern set is said to be pseudo-exhaustive if all jptessi
2™ patterns appear in the set.

Theorem 2.1. [8] In an n-cell MACA with £ = 2™ attractors, there exist®-bit positions at
which the attractors generate pseudo-exhaugtivgatterns.

e Result Ill: The pseudo-exhaustive field (PEF) of an attractor providespbinter to the class of
states in the attractor basin. In order to identify the ctdssstateP, the MACA is initialized with
‘P and operated for maximum df (depth) number of cycles till it reaches an attractor. Nt
PEF bits can be extracted (as noted in [8]) to identify the<laP. In general, depth is defined
as the number of time steps an MACA needs to reach an attrstetigr when it is initialized with
a non-reachable state as seed.

e ResultIV:

Theorem 2.2. [8] The 0-basin of am-bit MACA with 2™ attractors forms a vector subspace of
dimension ¢ — m).

e Result V:A tri-diagonal Dependency MatrixXI{) corresponding to the characteristic polynomial
(™™ . (1+x)™) can be obtained fror: number of Dependency Matric&%s ¢ = 1,2, -+ ,m)
arranged in Block Diagonal Form (Fig 2), where edgltorresponds to the characteristic polyno-
mial (z™ ! (1 + z)) andny + ng + - -+ + ny, = n [8, 12].

o
&1

] T |

CTm |

Figure 2. 14,15, - -, etc. in Block Diagonal Formil; (1) has no dependency dr) (1)

Example 2.1. The example MACA of Fig 1 is used to illustrate tResults to V.
e Itis ab-cell MACA having4-attractors and depth) of the MACA is 2.
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e Result I:The characteristic polynomial is{- (1+ z)?). Therefore;n=2, k = number of attractors
=2M =4,

e Result Il:In Fig 1, 3rd and 4th bit positions constitute the PEF.

e Result Ill: Consider a stat¢10001} whose class is to be identified. The MACA of Fig 1 is
initialized with {10003 and operated for 2 cycles (as depth 2) till it reaches an attractor
{00000 . The PEF bit§00} of the attractor points to the class {0001 .

e Result IV:In the 0-basin, (i) the all zero vector is always presenj;tfie modulo-2 sum of any
two states in the 0-basin lies in the 0-basin only. These twpqrties make the 0-basin a vector
subspace.

e Result V:The Dependency MatrixI(), as indicated in Fig 1(b) with characteristic polynomial
(z3 - (1 + z)?), can be obtained from two matric&% and7; by Block Diagonal Form of Fig 2,
whereT} andT;, correspond to characteristic polynomiat8 {(1+z)) and ¢-(1+x)) respectively.

Thus, an MACA acts as an implicit memory. The states of itélagve low hamming distance (HD)
among themselves [12] and the basin gets identified by thedPEle attractor.

2.3. MACA - As A Pattern Classifier

An n-bit MACA with k-attractor basins can be viewed as a natural classifieragsifles a given set of
patterns intok number of distinct classes, each class containing the ssht#s in the attractor basin.
The following example illustrates an MACA based two clastgra classifier.

Example 2.2. Let, the MACA of Fig 1 be employed to classify patterns intmtelasses (say | and Il),
where Class | is represented by the states of one set oftatttaasins - say [I]={00100 and 0011}
while Class Il is represented by the states in rest of thenbagi00000 and 00011 All the patterns in
the attractor basins [I] belong to Class | while rest of thiegras belong to Class Il. As per tiéieorem
2.1, the pseudo-exhaustive field (PEF) will identify the clakthe patterns uniquely. The PEF yields the
address of the memory that stores the class informationtefdre, Class | attractors yield the memory
addresq 10, 11, while Class Il will be identified by the memory addrg$¥), 01} (Fig 3). To identify
the class of an input pattef®, the MACA is loaded withP and operated till it reaches an attractor state.
The PEF of the attractor points to the memory location traestthe class information 1.

An attractor basin of an MACA, as reported by Ganguly in [12s patterns close to each other
in respect of hamming distance (HD). Consequently, pattbaving low HD between them have high
probability of getting covered by lesser number of attradtasins. IfP is a pattern of a class with
which the classifier has been trained - that is, MACA has besigded and® be another pattern not
covered by the training set, but it satisfies the criteriaoef HD with P, then the patter® will have
high probability of lying in the same attractor basin, andsexjuently being predicted in the same class
as that ofpP.

MACA, as discussed earlier, acts as an implicit memory antseguently it can function as an
effective pattern classifier. Genetic Algorithm (GA) forlation to arrive at the desired MACA realizing
this specific objective of pattern classification has beap@sed in [12] with O¢3) complexity. The



Maji et al./ MACA Based Classifier 327

(01)

PEF (bits)
PEF (bits)

MEMORY

Figure 3. MACA based classification strategy

design reported in this paper achieves classification viral complexity. It utilizes the concept of
Dependency Vector/String introduced in next section. Taimulation has enabled us to reduce the
complexity of the classification algorithm from &) to O(n).

3. MACA Characterization Based on Dependency String

Identification of the PEF of the attractor basin, as disatisseSection 2.3 constitutes the main task
for pattern classification. In [7, 8, 12, 24, 34, 35],abit MACA has been characterized by iisx n
Dependency MatrixX) and its characteristic polynomia$(z)). Generation of an attractor stafe
from any stateP (P = T - P) involves O@?) complexity, whered is defined as depthResult I1}).
Consequently, the identification of the PEF of the attracfathe basin in which any state belongs,
involves O@3) complexity. In order to ensure the scalability on very éadatasets, linear complexity of
algorithm is highly desirable. This motivates us to undertaew characterization of MACA with the
help of some linear operators other than Dependency Matrix.

In this section, we introduce the concept of new linear dpesaermed as Dependency Vector (DV)
and Dependency String (DS), to characterize the attra@sinb of an MACA. Applications of such
operators bring down the complexity from@j to O(n) to identify the PEF of an attractor basin.

3.1. Dependency Vector (DV) and Dependency String (DS)

Consider a subspace withbit vectors of dimensionn( — m). Then the cardinality of the subspace is
2(n=m) "|f the set of these-bit vectors is conceived as a systermofariable equations, then there will
bem number of linear dependency relations as illustrated iffdtiewing example.

Example 3.1. Let then (=5) bit vector subspac& be {00000, 01001, 10001,11000, 00110, 01111,
10111,11119 with dimension 3 andn = 5 - 3 = 2. Now,V contains zero vector<{ 00000 >) as an
element. If the vector set/) is conceived as a system of linear equations with five veasdb, b, ¢, d, €),
then the elements of the vector subspdéggan be rewritten in the form noted in Table 2.

In the set of equations of Table2, = 2; there are two linear dependency relations for all the vscto
v; €V

e a®dbde=0;and

e chHd=0.
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Table 2. System of Linear Equations representing a set dbxe¢/)

Vector @;) Corresponding Linear Equation
00000 0-a+0-b4+0-¢c+0-d+0-e=0
01001 0-a+1-b64+0-c+0-d+1-e=0
10001 1-a+0-04+0-¢c+0-d+1-e=0
11000 l-a+1-04+0-¢+0-d+0-e=0
00110 0-a+0-b+1-¢c+1-d+0-e=0
01111 Oca+1-b+1-c+1-d+1-e=0
10111 1-a4+0-b+1-c+1-d+1-e=0
11110 l-a+1-b4+1-¢c+1-d+0-e=0

In the context of above illustrative example (Table 2) wenrfally introduce the terms Dependency
Vector and Dependency String.

Definition 3.1. Dependency Vector (DV) represents each individual linegrethdency relationship of
the variables supported by all the elements in the vectosmade V). The two Dependency Vectors
(DVs) for the illustrativeExample 3.lare < 11001 > and< 00110 >. Each of then-bits signify the
variables in that order - that is, the bits in the DV represéhe variable in the sequenee abcde >.
The 1's in the DV specify the dependent variables Example 3.1while a, b ande are the dependent
variables in first DV andd are the dependent variables in second DV. The modulo-2 siRpof the
corresponding variables in alj € V =0, asV contains zero vector( 00000 >).

Definition 3.2. Dependency String (DS) represents the multiple linear wiggrecy of the variables in
the vector subspac&’]. The Dependency String (DS) in ti&ample 3.1s [11221] where ‘1’ indicates
the relationship between b ande while ‘2" indicates the relationship betweerandd. In essence, the
two Dependency Vectors (DVs) are merged together to fornb#mendency String (DS).

The 0-basin (with all zero vector as attractor, also retetceas zero basin) plays a significant role
in characterizing an MACA [8]. As per th€heorem 2.2the zero basin of an MACA having 2-attractor
basins is a subspace of dimensjen— 1). So there is one linear dependency relationship in the vecto
subspace and thus the characterization of the zero basihecanlely done by a Dependency Vector.
Whereas the zero basin of an MACA wif#l" attractor basins is a subspace of dimengion- m).
Therefore, there ara number of linear dependency relationships in the subsgaBependency String
(DS) representingn number of DVs is necessary for characterization of such MACA

Theorem 3.1. The Dependency String (DS) of an MACA with more than 2-attyabasins can be de-
rived from the Dependency Vector (DV) of the MACA with 2-aittor basins.

Proof:
The Dependency MatrixI() corresponding to the characteristic polynomielt ("™ - (1 4+ x)™) can be
obtained fromm number of Dependency Matricdss ¢ = 1,2,--- ,m), where eacl; represents a

2-attractor MACA. The entire vector space produced by zesirbof an MACA with multiple attractor
basins is the direct sum of individual vector spaces prodllageeach 2-attractor MACA [13].
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The characteristic polynomiat{~"™ - (1 4+ x)™) can be broken inten groups each containing one
(1 + z), whereby we can claim that zero basin is formed as a resulireétdsum of vector subspaces
produced byn distinct groups. Each individual group hag{ !-(1+z)) as its characteristic polynomial
and so represents an MACA with 2-attractor basins.

So, the Dependency String (DS) of an MACA witff-attractor basins can be derived fremnum-
ber of Dependency Vectors (DVs) produced by each membergrioups. Hence the result follows O

Characteristic Polynomial : x3(1 +X) 2

ECharacleristic Polynomial : X2(l +X) Characteristic Polynomial : x (I +x) i

§ Dependency Vector: <0 0 1> Dependency Vector: <1 0>
(b) Dependency Vectors of Tyand Ty

Dependency String: <0 0 1> <1 0> — [<001><20>]

DV ole DV of T2

(c) Dependency String of T obtained from two Dependency Vectors

PEF Bits

zero basin of T + zero basin of Ty —|0]0

zero basin of T{+ non-zero basin of T) ——=| 0 | 1
non—zero basin of T+ zero basin of Tp —11]0
non-zero basin of T{+ non-zero basin of Ty ——| 1 | 1

(d) DV of T, contributes first bit of PEF; DV of Tzcontributes second bit

Figure 4. Dependency String (DS) of Dependency Matrix (Tigf1 which is formed through concatenation of
two Dependency Vectors.

Note : (i) While the first Dependency Vector contributes tladue of first pseudo-exhaustive bit, second Depen-
dency Vector gives the value of another bit. (i) Depende®iring of T Matrix is obtained by concatenating two
Dependency Vectors df, and7s; respectively - which are placed in non-overlapping posgio

Example 3.2. Fig 4 represents the Dependency String (DS) of the Depepdeiatrix (1) of Fig 1
which is formed through concatenation of two DependencytdreqDVs). TheT' matrix (Fig 4(a)) of
Fig 1 with characteristic polynomiak:¢ - (1 + z)?) can be obtained from two matriceg, (and7y) by the
Block Diagonal Method of Fig 2. Fig 4(b) represents two chtastic polynomials -#£* - (1 + z)) and
(z- (14 z)), of Ty andT;, respectively. The DV of the two groups are001 > and< 10 > respectively.
Consequently, the DS ([00120]) of the corresponding MACH (B can be easily accomplished through
concatenation of each individual DV (Fig 4(c)).

Derivation of the bits in pseudo-exhaustive field (PEF) a®aan Fig 4(d), has been explained in
the subsection that follows.
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3.2. Dependency String (DS) for Identification of PEF of An Atractor Basin

The following formulation provides the application of Depiency String (DS) to identify the PEF of an
attractor basin.

According to Section 3.1(Definition 3.3, if DV is ann-bit Dependency Vector ofn — 1) di-
mensional vector subspace aRds ann-bit pattern, then the modulo-2 sum (XOR) of the dependent
variables ofP (whereDV contains 1's) is equal to zero® belongs to zero basin; otherwise 1. That is,

0, if P € zero basin

DV .-P= _ _
1, if P € non-zero basin

For example, ifDV = < 10111 > andP =< 11001 >, thenDV -P =< 10111 > - < 11001 >= 0;
that isP € zero basin. So, an MACA with characteristic polynomiél ! - (1 + z) can be represented
by ann-bit Dependency Vector.

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,

Characteristic Polynomial : x -M (] +x) M

Figure 5. Ann-bit Dependency String (DS) consistsrafnumber of Dependency Vectors (DVSs).
Note: Each DV contributes the value of a pseudo-exhausitiveither O or 1) of an attractor basin.

A Dependency String (DS), consisting @f number of DVs -DV;, DV, --- | DV,,, represents an
MACA with characteristic polynomiala(*~" - (1 + z)™) (Fig 5). According to theTheorem 2.1the
number of pseudo-exhaustive bits will be Each DV contributes the value of a pseudo-exhaustive bit
(either O or 1) of an attractor basin.

Let, ann-bit DS is produced through concatenationnofnumber of DVs of lengthy, no, - - - , nyp,
respectively (Fig 5), wherg; + ns + - - - + n,,, = n andP is ann-bit pattern whose attractor basin is to
be identified. Then, for eachV; (of lengthn;), the dependent variables of the correspondipgits of
P (sayP;) results in -

0, if P; € zero basin oDV;

DV;-P; = . .
1, if P; € non-zero basin aDV;

The resulting bit is the value af” pseudo-exhaustive bit. Finally, a string «f bits can be obtained

from m number of DVs. Thign-bit binary string is the pseudo-exhaustive field (PEF) ef #ttractor

basins where the pattefn belongs.

Example 3.3. We illustrate the above concept with the example MACA of Figlippose, we want to
identify the attractor basin of a pattefh =< 10010 >. We first synthesize a DJ001|20] of Fig 4)

for which the distribution of patterns of MACA is similar tbdt of Fig 1. The DS of Fig 4 consists of
two DVs (< 001 > and< 10 >) of length 3 and 2 respectively. While the modulo-2 sum (X@R)
dependent variables of first 3 bits Bf (P;) contributes the first pseudo-exhaustive bit as 0, rest bit
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(P2) contribute 1. This is explained in Fig 4(d). So, the PEF afegponding attractor basin containing
P is 01.

In [7, 8, 12], when the MACAT) of Fig 1 is loaded with the patter® =< 10010 >, it travels
through a number of states equal to the degth-(2) of the MACA and ultimately reaches an attractor
stateP =< 00011 > - that is,

P=1%P @

whereT is then x n Dependency Matrix of Fig 1. The pseudo-exhaustive field érd 4th bit, - that
is PEF = 01) of the attractor basin is identified as per therdlgn reported in [8]. The complexity of
the algorithm is Og?), n being the size of the pattern. Whereas in the proposed schemeseudo-
exhaustive field (PEF) of the attractor basirofs given by

PEF =DS-P (2)

whereDS andP - both aren-bit vectors. So, the complexity of this approach is«D(Thus, to identify
the PEF of an attractor basin of a pattern, Dependency Sténgoe employed rather than the Depen-
dency Matrix (") which reduces the complexity from @{) to O@n).

In order to reduce the search space for identifying the ee@dilACA to be employed for pattern
classification, we next introduce the concept of Valid Dejsrty Vector/String.

3.3. Valid Dependency Vector/String

A 3-neighborhood MACA whose next state depends on itsslfeft neighbor and right neighbor, cannot

produce all the variations of Dependency Vector/String.thie present context, the Dependency Vec-
tor/String which can be generated by this MACA is termed d&gd\M@ependency Vector/String respec-

tively. The following theorems set the guideline for detaration of Valid Dependency Vector/String.

Theorem 3.2. [11] The vector subspace of a 3-neighborhoodell MACA with two attractor basins
cannot generate a Dependency Vector (DV) of the formi--- (k£ 0's )---1--- with ¥ number of 0's
between two 1's, where > 2.

Example 3.4. The examples of Dependency Vectors which cannot be gedebgta 3-neighborhood
MACA are < 100011 >, < 1001001 >. In all these cases, there are more than 1 zeroes between
consecutive ones and hence these are termed as invalid.e Btrihe valid Dependency Vectors are

< 101011 >, < 00010111 > etc.

Theorem 3.3. A Valid Dependency String has the constituent Valid Depecgé/ectors placed in non-
overlapping positions.

Proof:

Let, the characteristic polynomial of a Dependency Matfixi§ given by ¢~ - (1 + z)™) for n-cell
MACA with 2" -attractor basins. According to the resultsSdction 2.2the characteristic polynomial
can be written asy@® - (1 +x) -2% - (1 +z)--- 2% - (1 +x)), whered; +dy +- - +dp, = n—m. Let
Ty, T, --- , T, are the Dependency Matrices corresponding to the chaistittgrolynomialsz® - (1+z),
% (14 ), -+, 2% - (14 ) respectively. SAT}, Ty, - - - , Ty, are the MACA with 2-attractor basins.
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Now, theT" matrix with characteristic polynomiak("" - (1 + z)™) can be obtained from all these
matrices {1,T»,--- ,T;,) by the Block Diagonal Method of Fig 2 whefg (7;) has no dependency
onTj (1;). The entire vector subspace produced by zero basin of MACY(ll be the direct sum
of individual vector subspaces produced by the zero baseraoT;'s. Also, the Dependency Vector
corresponding td; does not affect that df’; and vise versa. As a result, the Dependency String of
matrix can be obtained through concatenationnofiumber of Dependency Vectors of, Ty, - - - , T}y,
respectively - which are placed in non-overlapping posgi@~ig 4). Hence, the result follows. O

Example 3.5. An example Valid Dependency String[i€)1012020], whereas the following Dependency
String - [12010] - where 1 and 2 are interleaved is invalid; that is, the vectdrthe zero basin of an
MACA will not generate such invalid Dependency String.

Characterization of MACA based on Dependency Vector/§tdaatablishes that MACA acts as an
implicit memory. It also acts as a natural classifier. In deisig MACA based pattern classifier, in stead
of storing the Dependency Matrif'] of the MACA, we store only DV/DS. Naturally, memory overldea
of the classifier goes down significantly.

4. Design of Multiple Attractor CA Based Two Stage Pattern Cassifier

To enhance the classification accuracy of the machine, we tefined the approach reported in [12]
and report a new CA based classifier. It can classify.doit pattern with Of) complexity. Multi-class
classifier is built by recursively employing the conceptediclass classifier. The MACA based classifier
proposed here has two distinct stages and hence referredlitemStage Classifier (Fig 6).

4.1. MACA Based Two Stage Classifier

The design of MACA based classifier for twebit pattern set$; and.Ss should ensure that elements of
one class (sag,) are covered by a set of attractor basins that do not inclagereember from the class
Ss and vice versa. Consequently, any twabit patternsP; € S; andP, € Ss should fall in different
attractor basins.

The design of the proposed Two Stage Classifier has beerralablon the subsequent discussions.
Let, an MACA corresponding to the characteristic polyndr@i& " - (1 + z)™) can classify twa:-bit
pattern sets; andS,. That is,

DS Py # DS P, 3)

whereDS is ann-bit Dependency String consisting of number of Dependency Vectors (Fig 5). Then,
the total number of attractor basins will B&" and the pseudo-exhaustive field (PEFhéorem 2.1
of each attractor basin will be an-bit binary pattern/string. The Stage 1 of the proposed Tieg&
Classifier maps:-bit patterns ton-bit patterns representing the PEF of attractor basins.

Next, for two class classification the-bit patterns are classified into two distinct classes. Tdsk
is handled by Stage 2 of the Two Stage Classifier. ketandks be twom-bit pattern sets consisting
of pseudo-exhaustive bits of attractors of twit pattern sets$; and.S, respectively. Therk; andk,
can also be regarded as twobit pattern sets for two class classification. So, we sysiieea 2-attractor
basin MACA based two class classifier. While one class ksayelongs to one attractor basin, another
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attractor basin houses the elements of the dlas#&\ny two m-bit patternsp, € k; andp, € ks should
fall in different attractor basins (while one in zero basinpther in non-zero basin), - that is,

DV -py # DV - pg (4)

whereDV is anm-bit Dependency Vector.

x; O
xp O
P yi © Stage 2
. Yy O\/ RN
s | Classifier #2 o O
Ym-10 Output Layer
- Ym ©O (1-bit )
Xp—10
Xxp O Hidden Layer
('m-bit )
Iltprl:;?))ler Classifier #1: n—bit Dependency String consisting of m number of Dependency Vector:

Classifier #2: m—bit Dependency Vector

Figure 6. Two Stage Classifier

Fig 6 represents the architecture of Two Stage Classifiarorisists of three layers - input, hidden
and output layers denoted as(i = 1,2,--- ,n), y; (j = 1,2,--- ,m), andoy (k = 1) respectively.
While the first classifier (Classifier #1) maps asbit pattern of the input layer into am-bit pattern
(PEF) of the hidden layer, the second classifier (Classi2¢miaps thain-bit pattern into a single bit
(either O or 1) of the output layer. That is, Classifier #1 e an appropriate mappings of patterns of
input layer into PEF (pseudo-exhaustive field) of the hiddger and the Classifier #2 implements the
classification of the PEFs rather than the original patterns

Let, z be ann-bit input pattern whose class is to be identified by MACA hi$&o Stage Classifier.
At first, z is loaded with the Classifier #1 which outputs+anrbit patterny (pseudo-exhaustive field of
attractor of the basin whetebelongs). That is,

y=DS-x (5)

Next,y is loaded with the Classifier #2 which gives a single valpseudo-exhaustive field of attractor
of the basin wherg belongs) that determines the class of the input patteifhat is,

o=DV -y (6)

In order to evolve the MACA based Two Stage Classifier (two M&Jor Stage 1 and Stage 2
respectively) realizing this design objective, we haveettgyed a special type of Genetic Algorithm
(GA) formulation.

4.2. Genetic Algorithm (GA) for Evolution of Two Stage Clas#ier

The basic structure of GA [18] revolves around the concenabding a solution in bit string format
referred to as chromosome and evolving the successive@wdccording to its fitness. The three major
functions of GA - Random Generation of Initial PopulatioR)| Crossover and Mutation, as developed
in the current GA formulation for evolution of Two Stage Gldigr, are next discussed.
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4.2.1. Chromosome

Rather than the conventional bit string, the proposed sehemploys a chromosome which consists of
two parts:

e a Dependency String (DS) for Classifier #1 - a symbol stringusherical digits; and

e a Dependency Vector (DV) for Classifier #2 - a binary stringhwialid format defined irmheorem

3.2and Theorem 3.3
Dependency String ( DS ) : Dependency Vector (DV )
‘0‘1‘]‘22 20‘2‘3‘3 10‘1‘
n]=3 n2=5 n3:2 : m=3
n=n,+n,+n, :
Classifier #1: n-bit Dependency String (DS) consisting ! Classifier #2: m-bit Dependency

of m number of Dependency Vectors (DVs) ! Vector (DV)

Characteristic Polynomial : x7(l+x)3
Figure 7.  An example chromosome for current GA formulation
So, the length of a chromosome is equakta-(n) wheren is the number of bits in a pattern andis
the number of pseudo-exhaustive bits. Fig 7 representsoandsome corresponding to the characteristic
polynomial ¢7 - (1 + x)?3). It consists of a 10-bit=£ n) DS [011]22202|33] (Classifier #1) and a 3-bit

(= m) DV < 101 > (Classifier #2). The Dependency String (DS) has partitiomtpaat 3rd and 8th
positions and the corresponding DVs are of lengte=3:(), 5 (= n9) and 2 & ng) respectively.

4.2.2. Random Generation of Initial Population

To form the initial population, it must be ensured that eashtfn randomly generated is a combination
of ann-bit DS with 2™ number of attractor basins (Classifier #1) anchaibit DV (Classifier #2). The
chromosomes are randomly synthesized according to thewfiolg steps.

1. Randomly partitiom into . number of integers such that + no + - - - + n,, = n.

2. For eaclm;, randomly generate a valid Dependency Vector (DV).

3. Synthesize Dependency String (DS) through concatenafig: number of DVs for Classifier #1.
4. Randomly synthesize an-bit Dependency Vector (DV) for Classifier #2.

5. Synthesize a chromosome through concatenation of Géassl and Classifier #2.

Fig 7 represents a randomly generated 13-bit chromosomehvigiproduced through concatena-
tion of 10-bit DS (Classifier #1) and 3-bit DV (Classifier #@®hile the 10-bit DS is produced through
concatenation of three DVs of length 3, 5 and 2 respectively.
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4.2.3. Crossover Algorithm

The crossover algorithm implemented is similar in naturthéoconventional one normally used for GA
framework with minor modifications as illustrated below. eTégorithm takes two chromosomes from
the present population (PP) and forms the resultant chromesLike a single point crossover, it sets a
crossover point and each half about the crossover poinkestee from the two respective chromosomes.

‘1‘1‘2‘0 223044i>11><6(1+><)4 ****** ~(a)
‘1‘0‘1‘1‘ 1‘ 2‘ 2‘ 3‘ o‘ o1 |1 1‘ xT(1+xP - = (b)
T falalol alea[alals a[s] | wraess
laTelole Ll el ol A ofa [o[a] | sraes o

1 2 3 4 5 6 7 8 9 10:11 12 13 14

Classifier #1 Classifier #2 Characteristic
Polynomial

Figure 8. An example of crossover technique

Fig 8 shows an example of the crossover process. Two chromesswith characteristic polynomials
(8- (1 +2)*) and ¢7 - (1 + z)?) respectively are shown in Fig 8(a) and Fig 8(b). The singlatp
crossover is performed in two parts separately. The cresgmints are selected randomly which are 4
in first part (Classifier #1) and 12 in second part (Classif®r 80, the first 4 symbols are taken from first
chromosome and the next 6 symbols are taken from second oboone to form Classifier #1. Similarly,
11th and 12th bits are taken from first chromosome and 13tis kétken from second chromosome to
form Classifier #2. But due to this crossover, the resultingpmosome, as explained below, generates
an invalid DS due to the symbols in 3rd, 4th and 5th positiemifcled in Fig 8(c)).

In Fig 8(c), the DS (Classifier #1) {4120122300] where 1 and 2 are interleaved, which is invalid
(Theorem 3.8 The resultant valid chromosome after local recoding dfilsgls is shown in Fig 8(d).

4.2.4. Mutation Algorithm

The mutation algorithm emulates the conventional mutagidmeme. It makes some minimal change in
the existing chromosome of PP (Present Population) to fomava chromosome for NP (Next Popu-
lation). Similar to conventional single point mutationetbhromosome is mutated at a single point as
illustrated in Fig 9. The mutation points for Classifier #1 a2 are 4 and 12 respectively.

Any anomaly in respect of validity of Dependency Vectolif®jr if appears, is resolved to ensure
that the mutated chromosome is also a valid chromosome.nthasistent format, as shown in Fig 9(b)
is the mutated version of Fig 9(a). The inconsistency of tirermosome of Fig 9(b) is resolved through
local recoding of symbols to generate the valid format of Hig).
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|

‘0‘1‘1‘0‘1‘2‘2‘3‘0‘0 1‘1‘1‘x7(1+x)" ———————— - (@)
of1]1 @12 2] 8/ of0]1]01] a0
‘0‘1‘1‘2‘2‘2‘2‘3‘0‘01‘0‘1‘x7(1+xf> ””””” > (c)

1 2 3 4 5 6 7 8 9 10 11 12 13

Classifier #1 Classifier #2 Characteristic
Polynomial

Figure 9. An example of mutation technique

4.2.5. Fitness Function

In classification, the fitnesk of a particular chromosome in a population is determinednauyfactors.

e The capability of the evolved DS (Classifier #1) for clagsifythe given input pattern séy and
S5 into separate set of attractor basins - this is referred theafactorF; .

e The capability of the evolved DV (Classifier #2) for classify the pseudo-exhaustive field (PEF)
setk; andk, into different attractor basins (while one in zero basimthar in non-zero basin) -
this is referred to as the factés.

The fitness functior’ of a particular chromosome is given by
F=F -F (7

The experimental results reportedSections 56 and 7, confirm that this relation, although evolved
empirically, provides the desired direction of GA evolutio arrive at the best solution for classification.
Next subsection reports the performance of the proposedStage Classifier.

4.3. Performance Analysis

To evaluate the efficiency of the proposed pattern classiierperform extensive experiments for dif-
ferent values of, (humber of bits in a pattern) and(size of dataset - that is, number of tuples in the
dataset). The pattern sets are generated according to thedngroposed in [12]. The Genetic Algo-
rithm (GA) has been evolved for maximum 100 generationsitfdlexperiments are performed in SUN
with Solaris 5.6, 350 MHz clock.

Table 3 reports the efficiency of the Two Stage Classifier.u@ol | and 1l of Table 3 represent
different topologiess : m : 1; wheren andm are the number of bits in the input layer and hidden layer
respectively) and size of the datasets respectively. Qollihand IV depict the classification accuracy
and memory overhead of the proposed pattern classifier. [@lssification accuracy is defined as the
percentage of test data that can be correctly classified mgmory overhead of the proposed classifier
is the memory required to store thebit DS (Classifier #1) angh-bit DV (Classifier #2). So, the number
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Table 3. Efficiency of MACA based Two Stage Classifier

Topology Size of | Classification | Memory Generation | Retrieval
(n:m:1) Dataset | Accuracy (%) | Overhead| Time (ms) | Time (ms)
100:5:1 5000 97.13 105 454 161
10000 97.41 105 461 298
200:7:1 5000 98.03 207 1102 301
10000 97.83 207 1139 578
300:7:1 5000 98.03 307 1573 438
10000 97.83 307 1581 849
400:10:1 5000 96.93 410 1789 606
10000 97.03 410 1809 1125
500:10:1 5000 96.43 510 2344 710
10000 96.71 510 2339 1403

of bits required to store each Two Stage Classifier is equ@a tom). In Column V and VI we provide
the generation and retrieval time of the proposed patteassifler. The following conclusions can be
derived from this experimental results.

e The memory overhead of Two Stage Classifier, as per Columis iidependent of the size of
datasets. The low memory overhead, independent of datasehas been achieved due to the fact
that -

1. MACA functioning as pattern classifier acts as an imphogmory; and
2. MACAs are stored by their DV/DS.

e The generation and retrieval time, as the results of Colunam®VI indicate, are linear in nature.

High classification accuracy, low memory overhead, andalinrene complexity of the proposed
pattern classifier have been validated through extensperarentations. Next three sections report the
pattern classification results in three different applimatdomains - data mining, image compression,
and fault diagnosis.

5. Data Mining

Data Mining/Knowledge Discovery in Databases (KDD) [21] @8n be defined as the nontrivial extrac-
tion of implicit, previously unknown, and potentially uséfnformation from a database [25]. One of
the important problems in data mining is classification [€]assification based data mining has been
proposed in the fields of medical diagnosis, performancdigiien, selective marketing, etc. Solutions
based on Bayesian Classification [9], Neural Networks [D7,@enetic Algorithms [14], Decision Trees
[22, 28, 32], etc., have been reported. However, in all tleses [9, 22, 28, 32], the algorithms require
a data structure proportional to the number of tuples to staynory resident. This restriction puts a
hard limit on the amount of data that can be handled by thesssifilers. In other words, the issue of
scalability is the source of major concern.
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In the above background, the Two Stage Classifier propostaisipaper achieves following:

e it refines the scheme proposed in [12] by enhancing clagsificaccuracy, minimizing memory
overhead; and

¢ linear complexity of classification in prediction phase.

5.1. Experimental Setup

To analyze the performance of Two Stage Classifier, we parfattensive experiments on the datasets
available from http://www.ics.uci.edwimlearn/MLRepository.html. The classification accuracyg Hre
memory overhead of the Two Stage Classifier are compareddiffdrent standard classification al-
gorithms such as Bayesian [9], C4.5 [28], MLP (Multilayeréaptron) [17], First Generation MACA
[12], etc. To handle real data having categorical and/otisoaus attributes, the dataset is suitably mod-
ified using Data Discretization [16] and Thermometer Coditgj to fit the input characteristic of the
proposed classifier. All the experiments are performed iN8lith Solaris 5.6, 350 MHz clock.

5.2. Classification Accuracy

Table 4 compares the classification accuracy of Two Stagesfliler with that of different standard classi-

fication algorithms. The experimental results of Table 4dieestablish that the classification accuracy
of proposed Two Stage Classifier is comparable to that oémdifft standard classification algorithms
[9, 12,17, 28].

Table 4. Classification Accuracy of Different Algorithmshrata Mining Application

Dataset Bayesian | C4.5 | MLP First Generation| Two Stage

MACA [12] Classifier
monk1 99.9 100 100 100 100
monk2 69.4 66.2 | 75.16 76.24 78.16
monk3 92.12 96.3 | 76.58 97.01 97.17
crx 83.14 845 | 74.29 83.87 86.12
labor-neg 83.07 82.4 | 89.03 87.37 89.14
vote 92.37 94.8 | 90.87 95.06 95.88
hypo 98.18 99.4 | 94.13 99.51 99.59
Australian 83.4 85.8 84.7 86.42 86.47
Diabetes 72.9 74.2 75.3 75.93 75.93
DNA 90.3 93.3 914 87.99 87.96
German 66.79 67.4 | 67.12 74.62 74.64
Heart 80.12 79.3 | 80.74 86.24 86.59
Satimage 85.4 85.2 86.2 77.45 77.49
Shuttle 99.9 99.9 99.6 94.09 94.03
Letter 87.4 86.6 67.2 84.13 84.41
Vehicle 72.9 68.5 79.3 76.2 78.7
Segment 96.7 94.6 94.4 89.4 89.5
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Table 5. Memory Overhead of Different Algorithms in Data lfig Application

Dataset Bayesian C4.5 MLP First Generation| Two Stage

MACA [12] Classifier
monk1 1.7 2.77 0.35 0.08 0.02
monk2 2.3 3.95 0.35 0.08 0.02
monk3 1.7 2.38 0.36 0.08 0.02
crx 22 24.35 2.25 65.94 0.15
labor-neg 2.4 3.44 2.56 2097.59 0.17
vote 13 14.35 2.66 0.21 0.06
hypo 213 214.54 6.32 132.75 0.62
Australian 19 37.85 1.93 0.42 0.13
Diabetes 14 27.15 0.44 0.62 0.13
DNA 1000 1067.96 | 37.22 3.13 0.38
German 49 99.31 13.64 0.71 0.16
Heart 9.8 19.46 1.52 0.38 0.12
Satimage 669 709.72 | 11.33 171.96 2.78
Shuttle 1500 1513.57 | 0.71 3.22 0.85
Letter 766 1299.28 | 2.57 43.67 6.25
Vehicle 47.02 72.14 1.32 0.39 0.10
Segment 121.89 370.42 2.74 0.52 0.23

5.3. Memory Overhead

The memory overhead of the proposed MACA based Two Stageifiéaisas discussed earlier, is equal
to (n + m), wheren is the number of bits in the input layer andis the number of bits in the hidden
layer (Fig 6). Consequently, the total memory overhead wgtleMACA based multi-class classifier
with K number of classes is

MO =(K—-1)-(n+m) (8)

Table 5 reports the comparison of memory overhead of diftec&assification algorithms in terms
of KByte. The results clearly establish that the memory bgad to implement the proposed Two Stage
Classifier is significantly lesser compared to that of oth@ssification algorithms [9, 12, 17, 28]. Also,
the memory overhead of the proposed classifier is indepémnddne size of datasets.

6. Image Compression

Lossy data compression is a process of reducing the amodatafequired to represent a given quantity
of information with acceptable loss. It removes redundareyeatability and irrelevancy of data blocks
of input file to generate the compressed output. In order modstrate the capability of Two Stage
Classifier in compression technology, we have concentratelbssy compression for human portrait.
The details of this research has been reported in [33]. $nghper we highlight the design of Two Stage
Classifier for this specific application.

The well known Vector Quantization (VQ) method has beeniadpb generate the codebook from
the training set of human portrait [15]. The MACA has beenduas an implicit memory to store the
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codebook and search for the best match of an input data bltekencoding time is reduced substantially
by employing the MACA based Two Stage Classifier reportedhis paper. The excellent compression
ratio with acceptable image quality, establishes the efficy of Two Stage Classifier for this application.

The Encoder The Decoder

Output Vector

Input Vector
P Search

Codebook

S

aE
N

S

Codebook

L
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L

Index

Channel

O Od i
0 0L

Figure 10. Encoder and Decoder

Vector Quantization (VQ) is a lossy data compression mefiddl It maps then-dimensional
vectors in the vector spack” into a finite set of vectors stored in a codebook. Each vedidhe
codebook is known as codeword. A cluster is the set of vebmrgig minimum deviation from a specific
codeword in the codebook. Thus each codeword (also knowndes/ector) is the nearest neighbor of
the set of vectors in a cluster. A VQ method mainly consistsvafoperations:

e an encoder - to encode each block of input image file with thexrof a codeword in the codebook;
e adecoder - to get back the representative block from thebomde

The encoder, as shown in Fig 10, takes an input vector anditsutipe index of the corresponding
codeword from the codebook that gives minimum deviatione Taex of the codeword is sent to the
receiver end. The decoder, on receiving this index file aegd each entry with the associated codeword
found from the codebook kept on the receiver side. Codebenkmgtion plays a key role in VQ scheme.

6.1. Codebook Design

Codebook design consists of two steps: design of trainihgres generation of codebook. Each step is
illustrated with reference to Fig 11.

6.1.1. Design of training set

The training set has been designed out of 20 different huisegimages with wide variation of pixel
values. Each image of training set is segmented i6tx 16 blocks that is subsequently processed in
following three sequential steps:
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SD1

16X16 Training
Set

16 X 16
Codebook

16X16 Training Sej

(Images)

Mean Removed

SD2

8X8 Training
Set

Mean Removed

PTSVQ

8X8
Codebook

SD = Standard Deviation
PTSVO = Prune Tree Structure Vector Ouantization

Training Set Design

SD3

4X4 Training
Set

Mean Removed

Codebook Generation

4X4
Codebook

Figure 11. Block diagram of codebook generation scheme

e Step 1: Calculate the norm (standard deviation) of da@ck 16 pixel block. If the norm matches
with the pre-specified criteria (say SD1 as shown in Fig 11} $tored as a member d6 x 16
training set, else referred to & x 16 residual training set to be processed in Step 2.

e Step 2: Each member of the residdél x 16 training set is broken into fou x 8 pixel blocks.

Next, we calculate the norm of ea8hx 8 block and compare with the pre-specified criteria (say

SD2 as shown in Fig 11). If the norm matches with the critehan it is stored a8 x 8 training

set. Otherwise it is referred to as the residuat of 8 training set to be processed in the next step.

e Step 3: Eacl8 x 8 residual block is broken into fout x 4 pixel blocks. Calculate the norm of
eachd x 4 block and compare with the pre-specified criteria (say SDshasvn in Fig 11). If the

norm matches with the criteria, then it is storedias4 training set. Otherwise the block is broken

into four2 x 2 pixel blocks and treated &sx 2 training set.

The matching criteria SD (standard deviation) has been breltie basis of statistical characteristics

of 16 x 16, 8 x 8 and4 x 4 pixel blocks of training set [33].

6.1.2. Codebook Generation

To design the codebook for three training sdt$ &« 16, 8 x 8 and4 x 4) we have used Prune Tree

Structured Vector Quantization (PTSVQ) [15] method. Thredebooks are generated from the three
different training sets as shown in Fig 11. The mean valuernsputed for each training set. The PTSVQ
is applied on the mean removed vectors. Each element of tenafter subtraction of the mean value

is known as mean removed vector. At the time of encodirid & 16 pixel block is sequentially taken
from the image and depending on the match criteria it is cedtber by the codebook indices fo6 x 16
or broken to fouR x 8 blocks and encoded with the indices8ok 8 codebook. For & x 8 pixel block,
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if a proper match in the codebook is absent, it is treated adlecton of four4 x 4 blocks and coded
by four indices from thel x 4 codebook. A separate match file is kept to track the sequdriodioes

from different codebooks.
s=| (50 () (%) (3

w®® =@
& ® @

Figure 12. Logical structure of multi-class classifier eqlent to PTSVQ

In binary PTSVQ, ifK is the total number of codebook entries, the depth of binasyislog, K. So,
the time required to search the best match for an input bblelg K comparisons of x x (z = 4, 8, 16)
pixel block size. Reduction of this comparison is necesfargn line transmission of image data. The
Two Stage Classifier proposed $ection 4is used to reduce this comparison and search time for best
match in the codebook.

The binary search for best match in the codebook is impleadenith an MACA based multi-class
classifier realized with multi-stage two class classifidrs.order to identify the best match in binary
PTSVQ scheme, the input vector is compared with two cerdrofdtwo vector clusters in each layer
of the tree and one of the branches, as shown in Fig 12, istedlaccording to matching criterion. A
sequence of comparisons are done in subsequent leveletikaf node is reached. We have designed
MACA based Two Stage Classifier to model the comparison diperat each node of PTSVQ binary
tree. The pixel blocks of the training sets employed for giesif codebook and PTSVQ binary tree are
also used as input for design of Two Stage Classifier. A setvaf Stage Classifiers are generated that
acts as multi-class classifier of the vectors in a codebook.

Fig 12 illustrates the design of MACA set for a codebook. Siggp we want to classify the pattern
setS = {{S1}, {52}, {S3}, {S4}} into four classes such that the classifier would output theecbclass
1(i=1,2,3 4) for a glven mput vectoP; € {S;}. At the first level, we divide whole pattern sgtinto
two classes $1 and Sy, whereS; = {{51}, {521} and52 = {{5s},{S4}}. The Two Stage Classifier
is designed to classify two distinct classeésand S>. Fig 12 represents two classés and $,. The
same process is then applied 6y and S to isolate{S;}, {S2} and{Ss}, {S;} respectively and to
generate two Two Stage Classifiers. Thus the logical streictithe multi-class classifier is equivalent
to the PTSVQ binary tree representing a codebook.

For a given vectofP; (P; € S1), we need to identify the codebook entry (that is codewoloBest
to P;. Atthe prediction phase, the vectBy is given as input and its class is identified as follows. At the
first stage, the classifier designed with the Two Stage Gilaiss loaded withP; and allowed to run. It
returns the desired clags. In the next level, the classifier is loaded with to output the class.
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6.2. Experimental Results of CA based Compression

The algorithm is applied on different standard pictures winan face. The experimental results are
reported in Table 6. Table 6 represents the PSNR values dasnampression ratio of the set of images
when compressed and decompressed using the proposed séhigrh@ show the comparative study of
original images and the decompressed images. The expdalmesults of Fig 13 and Table 6 confirm
high PSNR value with a compression in the range of 95% to 97.5%

kW 2R

Figure 13. Original and decompressed image of (i) lena vathgression 96.43% and PSNR 32.81; (ii) girl with
compression 95.66% and PSNR 34.27

Table 6. Results on Static Image
Image File | PSNR | Compression (%)

lena 32.81 96.43

girl 34.27 95.66
Proj100 35.02 96.54
Proj129 37.88 97.63
Proj131 34.01 95.22
Proj138 33.69 97.55
Proj140 30.02 96.68
Proj146 37.55 97.57
Proj148 38.06 97.75
Proj192 30.06 97.17
Proj210 34.24 96.41

Table 7. Execution Time (in milli seconds)

Block Size | Full Search | PTSVQ MACA
4 x4 0.0121 0.00824 | 0.00562
8 x 8 0.0473 0.03312 | 0.01367
16 x 16 0.1941 0.13192 | 0.04102

Fig 14 depicts the rate distortion behavior of the proposdetime and other standards [31]. Rate
distortion means the change of PSNR at different bit reptasion of each pixel. It is seen that, the pro-
posed scheme for specific domain outperforms all other idfgos - the JPEG 2000 reversible (J2K-R),
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Figure 14. PSNR of all test images for CA based compressidrotlrer standard algorithms when performing
lossy encoding at 0.25, 0.5, 1 and 2 bpp and other standard

non-reversible (J2K-NR), JPEG (older technology) and MREGTC at any given bit rate. The size of
test images argl12 x 512 and depth 8 bits per pixel.

Table 7 represents the comparison of execution time of thegsed MACA based Two Stage Clas-
sifier and that of the full search and PTSVQ. While Column | abl€ 7 depicts the size of the block,
Column 11, 1ll, and 1V report the execution time taken by adkdo search its closest codevector in a
tree of height 14. The number of codevectoR}8. All the results reported in Table 7 confirm that the
execution time of the proposed scheme is significantly sowetipared to full search and PTSVQ.

All the results reported above confirm the following facts:

e The excellent compression ratio with high PSNR establihesigh classification accuracy of the
Two Stage Classifier.

¢ MACA based Two Stage Classifier acts as an implicit memorydeshe codebook and search
for the best match.

e The encoding time is reduced substantially by employingppsed pattern classifier.

Next section reports the application of Two Stage Clasdifiéault diagnosis of electronic circuits.

7. Fault Diagnosis of Electronic Circuits

This section formulates fault diagnosis in electronic wits as a pattern classification problem. The
proposed pattern classification scheme has been projexdlassifier of faulty response-patterns of a
circuit leading to diagnosis of faulty module. The Genetigagkithm (GA) (Section 4.2is employed

to synthesize the desired MACA based Two Stage Classifiennegtjfor diagnosis of a CUT (Circuit
Under Test). The CUT is assumed to have a network of large auwoftxircuit components partitioned
into a number of sub-circuits referred to as modules. Intetidn of GA significantly reduces the design
overhead of the MACA based classifier that supports:

¢ low memory overhead for diagnosis - reduction of one to twdeorof magnitude of memory
overhead has been achieved over that required for fauibdarly based diagnosis scheme;
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e excellent diagnostic resolution;
¢ low diagnostic aliasing; and

¢ low cost hardware implementation of a generic Fault Diagn®achine (FDM) with simple,
regular, modular, and cascadable structure of CA that glatdly for VLSI implementation.

The FDM can be viewed as a Watch-Dog processor intendeddbrdpeed on-line diagnosis for critical
application areas. The following scenario motivated usigeutake this research.

In order to improve the product quality, reduce time to mgrked cut down production cost, the
demand for fault diagnosis in an electronic circuit has tlyeéacreased. The objective of fault diagnosis
is to guide the test engineers to search the physical lotafithe defect on a circuit in the early produc-
tion phase. Use of fault dictionaries is a probable solut@rthe diagnosis process, particularly when
repeated diagnosis is required for different copies of #mescircuit [1, 3, 4]. But this scheme becomes
inefficient for a sufficiently large circuit due to the largelwme of fault dictionary. Different schemes
to compact the size of the dictionary have been proposed[3®. However, such compaction reduces
diagnostic resolution since multiple response patternglifterent faults get compressed to the identi-
cal signature. The best test environment for diagnostipgses should differentiate between all faults
that are distinguishable. In the above background, thendisig scheme employs Two Stage Classifier
(Section ¥which effectively provides an implicit storage mechanisiwoluminous response data. Con-
sequently it provides the solution to the problem of spacktame associated with handling large fault
dictionary. The details of this MACA based fault diagnosibeame has been reported in [24, 34, 35]. In
this paper we highlight the impact of introduction of thereed MACA based Two Stage Classifier for
efficient diagnosis of electronic circuits.

7.1. Circuit Diagnosis - A Pattern Classification Problem

A circuit has been assumed to consist of a number of sub#tsiresumodules. The diagnosis framework
has been designed to diagnose the faulty module in the tirtuit, for a circuit with X number of
modules -My, My, -+, Mg, {511, 512, s }, {521, SQQ, s }, ey {SKla SKQ, s } be the Signature
sets ofK faulty modules -5;; refers to the signature generated dugttdfault in thei” moduleMs;. The
aim is to design a classifier which has to classify the sigeatats intd¥ classes, each class representing
amodule. The following example illustrates the formulatus circuit diagnosis as a pattern classification
problem.

Let us consider the Example CUT ‘EC’ of Fig 15 with 5 POs (Priyn@utputs). It has two partitions
Module 1 and Module 2. The faulty signature sgtfor Module 1 is computed through fault simulation
by injecting each of the faults of this module. SimilarlyetbetS, is also computed for Module 2. The
Signature Analyzer (SA) is a 5 bit maximum length CA or LFSR [8

Let, faulty signature sets generated for two moduleS|pe{0, 1, 8,9, 16 andS, = {2, 3, 7, 11, 3}.
The MACA of Fig 1 represents the desired pattern classifietife setsS; and.S,, whereS; is covered
by the zero attractor basin ai$d by the non-zero attractor basins. The memory locationseaddd by
the pseudo-exhaustive fiel@ijeorem 2.1 of attractors store the faulty module number.

At the testing phase, a faulty chip realizing ‘EC’ generatrg one (say) signature 9 (01001). If we
run the CA of Fig 1 with 9 as seed, it will reach to the attrad0000 (Fig 1). By observing the PEF
(00) of the attractor, the faulty module (Module 1) of ‘EC4rcbe identified.



346 Maji et al./ MACA Based Classifier
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Figure 15. Diagnosis of an example CUT ‘EC’

From the above example, it can be observed that the problelagfosis in electronic circuits maps
to the design of MACA based Two Stage Classifier. The larg# thationary gets replaced with the
memory to store multiple Two Stage Classifiers of the mu#ss classifier. The scenario of storing the
fault dictionary is equivalent to storing the codebook formge compression as illustrated in Fig 12.

7.2. Experimental Results

In this subsection, we perform fault diagnosis of eleciranicuits with MACA based Two Stage Clas-
sifier reported inSection 4 Fault diagnosis in both digital and analog circuits haverbeported. While
Section 7.2.eports the diagnosis results for digital circuits, the edian analog circuits are covered in
Section 7.2.2

7.2.1. Digital Circuit Fault Diagnosis

The fault diagnosis experimentation for digital circuish@en carried out on a large number of bench-
marks (ISCAS) for single stuck-at faults. A CUT (Circuit UWsrdTest) is simulated with the fault simu-
lator Hope [19]. The PO cones generated with Hope providd#ses of partitioning of the CUT. Hope
extracts the PO cones to construct the fault list of a CUT.fah# list constructed by Hope reflects the
spatial locality of wires in the CUT stuck at 1 or 0. The maximlength CA [8] is used to generate the
signature of a fault in the CUT. The experimental setup, asvahin Fig 15, has been simulated in SUN
with Solaris 5.6, 350 MHz clock.

Table 8 depicts the test environment and the circuit desenip While Column | and Il specify the
benchmarks along with the number of internal lines, and &yrimput (P1), Output (PO) lines; Columns
Il and IV display the number of collapsed faults and the nembf unique faulty signatures of the
CUT. The Fault coverage figures noted in Column V are deriweddplying a specific number of test
patterns generated from a Pseudo Random Pattern Gend?®B(G() [8]. This testing experiment has
been implemented only to demonstrate the elegance andafficof the proposed pattern classifier for
fault diagnosis of electronic circuits.

The fault diagnosis results are presented in Table 9. Theeptage of diagnosis achieved by the
proposed scheme and with the fault dictionary method amrdriatColumn Ili(a) and lli(b) respectively.
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Table 8. Test results of diagnosis in dictionary method

CuT No. of No. of No. of unique Fault
PI/PO Faults | collapsed | Faulty Signatures| coverage

€880 60/26 942 896 98.62
c1908 33/25 1879 1801 98.99
c3540 50/22 3428 2838 96.00
€1355m 41/32 2278 1664 92.32
c1355 41/32 1574 912 98.48
c6288 32/32 7744 7648 99.50
c499m 41/32 902 776 96.01
c499 41/32 758 699 97.62
c2670 233/140 2747 2332 84.27
c7552 207/108 7550 7053 94.71
s967 16/23 1066 993 98.22
s991 65/17 910 776 95.27
s713 35/23 581 388 81.24
s3384 43/26 3380 2810 91.48
s4863 49/16 4764 4123 93.32
s3271 26/14 3270 2585 99.39
s5378 35/49 4603 2416 66.43
s6669 83/55 6684 6358 100

s641 35/24 467 359 85.22

¢ = combinational, s = sequential, m = mutant

The percentage fault diagnosis is computed as

number of faults diagnosed

fault di is = i
% fault diagnosis number of detected faults ©

For the sake of illustration of diagnosis scheme, each ofctltelits has been partitioned into a
number of modules noted in Column Il of Table 9. Diagnosisasedto the level of faulty module in the
CUT. We have reported results for 4, 6, 8, 10 partitions fol AFrCEach partition represents a module.
In Column IV, the memory requirement to implement the TwogSt&lassifier is reported as a ratio of
that required for diagnosis based on fault dictionary. Fajamty of the CUTs, the memory overhead is
only a small percentage of the memory consumed by faultatiaty based scheme. This is due to the
fact that MACA acts as an implicit memory. The diagnosis gudColumn III) and memory overhead
figures (Column 1V) establish the utility of the proposedtgat classifier for fault diagnosis of digital
logic circuits.

7.2.2. Analog Circuit Fault Detection

A scheme is reported by Roy in [29] for synthesis of OTA (Ofiersal Transconductance Amplifier)
based analog circuits to realize different classes of §ilték/e have done experiment for diagnosis of
faulty OTA and capacitor of such circuits.

The practical inability of testing analog circuits with @esl precision demands the definition of a
tolerance band within which the circuit functions corrgcthis is particularly true when a parameter of
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the analog circuit (for example, transconductance of an)Y@&fanot be tunned precisely as per the design
requirement. As a result, test and diagnosis of an analogitsrhas become a challenging problem. In
general, test and diagnosis of an analog system demandsianail a large volume of a test response
data within the tolerance band [29]. We report the expertalesetup for generation of faulty and fault
free signatures for an analog circuit.

Table 9. Test results of MACA based Fault diagnosis

CUT (n,p) No of Fault Diagnosis (%) Memory (%)
Part | MACA | Dictionary | pifcd x 100
€880 (26, 896) 6 98.71 95.62 1.8243
€1908 (25, 1801) 6 98.83 96.03 0.9106
¢3540 (22, 2838) 8 97.73 86.52 0.8184
€1355m (32, 1664) 6 98.10 78.94 0.9672
€1355(32,912) 6 97.75 58.84 1.7646
8 96.71 2.4705
10 93.55 3.1764
c6288 (32, 7648) 6 99.72 99.33 0.2104
c499m (32, 776) 10 99.31 91.72 3.7331
c499 (32, 699) 6 97.09 93.20 2.3024
€2670 (140, 2332) 10 100 99.19 1.2046
€7552 (108, 7053) 6 98.96 98.81 0.2238
8 98.57 0.3134
10 97.67 0.4029
s967 (23, 993) 4 98.28 94.08 0.9983
s991 (17, 776) 4 97.54 89.93 1.3189
s713 (23, 388) 4 93.62 81.85 2.5549
s3384 (26, 2810) 10 94.74 81.64 1.0471
s4863 (16, 4123) 10 92.43 89.63 0.7504
s3271 (14, 2585) 6 96.71 79.54 0.6648
8 97.05 0.9308
10 94.13 1.1968
s5378 (49, 2416) 4 95.03 76.21 0.3902
8 98.06 0.9106
10 92.35 1.1707
s6669 (55, 6358) 10 99.94 95.12 0.4426
s641 (24, 359) 6 95.86 88.86 4.5845
¢ = combinational, s = sequential, m = mutant

Generation of Signatures
The set of signatures are derived out of the following dats se

* Fyo0qn) - data set of the good circuit for th& performance parameter,= 1,2,--- ,p, wherep
denotes the maximum number of performance parametersdevadi
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® Frauniy) - data set of the circuit by introducing fault #t device forit" performance parameter.
j = 1,2,--- , K, whereK is the number of components (OTA and capacitor) in the dircui

OTA3

OTAl

Input —
npu OTA1 - X1: Output of BFP

TV out
I C2 X1 *T:Di xp X2: Outputof LPF
— OTA2 l

Figure 16. OTA realization of low pass and band pass filter

The discrete set of dataF,,qf;) and F'y,.4:5 has very large volume. It is compressed to a set of
signaturesS = [Sp,S1,- - ,Sk], whereS, represents the signature set for non-faulty circuit &pd
(forz = 1,2,---,K) denotes the signature set generated by introducing fault*acomponent kX
being number of components. To generate the signature éaioterance band (non-faulty region) and
faulty region, a device parameter is divided iptoumber of equal steps. The corresponding signature is
given asSy = [S(z)1; S(z)2:*** » S(a)qls WhereSi,); G = 1,2,--- ,q) denotes the signature generated
at thej'" step of ther'” component. The complete sequential steps for signatureragon procedure
are noted in [29].

The signature sets generated by the above procedure ait@ped into two classes - faulty and
non-faulty. Faulty class is next divided infd number of sub-classes, each sub-class corresponds to
signature set generated due to fault in a single compondret MIACA based two class classifiers (Two
Stage Classifier) have been synthesized at each level ofabag

Experimental Results

In this subsection, we demonstrate the efficiency of therdiaig procedure with two example circuits.
Fig 16 show the OTA (Operational Transconductance AmpJifiealization of a low pass filter (LPF) and
a band pass filter (BPF) respectively. The fault diagnosislte are shown in Table 10. While Column
| specifies the type of filters, Column Il shows the circuit gmments - OTAs and Capacitors. Column
Il specifies the number of sample values picked up from thpudsignal of the analog circuit. Digital
signature is generated out of these digitized sample valkiaslts detected under this experimental set
up is shown in Column IV. The overall success rate of diagnoEfaulty component (OTA) is more than
99%. In both the cases (LPF and BPF), the memory requireraemipiement Two Stage Classifier as a
ratio of that required for diagnosis based on fault dictigrare 0.0372% and 0.0468% respectively. All
the results reported in Table 10 confirm the high fault diagmefficiency and low memory overhead of
the proposed Two Stage Classifier.

One of the major strength of the proposed classifier is itsdost high speed hardwired implemen-
tation for online real time application. So, we next dealhwitardwired version of the MACA based
pattern classifier.
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Table 10. Fault Diagnosis Analysis of LPF and BPF of Fig 16

Filters | Compo- No of Faults Faults not | Success

nents Samples | Detected | Detected Rate

LPF OTAl 8970 8962 8 99.91
OTA2 5430 5424 6 99.88

C1 5430 5421 9 99.83

C2 5610 5603 7 99.87

BPF OTAl 7201 7193 8 99.89
OTA2 4321 4306 15 99.65

OTA3 4441 4436 5 99.88

C1 4297 4181 116 97.30

C2 4321 4219 102 97.64

8. Hardware Architecture of Two Stage Classifier

In software implementation we employ Dependency Vectaritto identify the class of a pattern in

O(n) time complexity. However, it is expensive to implement #ssociated logic of Dependency Vec-
tor/String in hardware compared to hardwired realizatibbependency Matrix of Linear CA (Table 1).

So, to design the hardware of the proposed classifier, whasize a Dependency Matrix corresponding
to each Dependency Vector/String representing an MACA.folhewving example illustrates this point.

Example 8.1. Dependency MatrixX) corresponding to
1. DV =< 1010111 >

2. DS =[< 10101 >< 0222 >]

1. The Dependency Matrix fabV =< 1010111 > is given by

T 1T 0 00 0 0
0 1 1) 0 0 0 0
0 1 1 T O 00
T=|0 010 1 1 0 0
0 00 1 1 T 0|
0 00 0 |0 0 1]
LO 00 010 0 0

where the first block corresponds4o101 > followed by < 101 > and< 111 >.

2. The DS consists of two DVs, wherfel; =< 10101 > andDV,; =< 0111 >. Now, Dependency
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Matrix for DV} is

I 1T 0 0 0
0 1 1 0 0
Ty=|10 1 1 1 0
0 0 0 1 1
0 0 0 1 1
and Dependency Matrix fabV; is
0 0 0
0 [T 1T 0
0 10 0 1]
0 [0 0 0

So, Dependency Matrix corresponds to Dependency String i€bgven by

[T T000 0 00 0]
01100 0 000
0 1 1 10 0 00 0
000 1 11 0 000

T, 0
T = =0 0011 0000
0 T _
0 0000 [00 0 0
00000 [01 1 0
0 0000 [00 0 1
L0 0000 000 0]

|

Input Register

¢ i | Left Cell B Right Cell

Control ‘ i-1 ‘ ‘ Cell i i+l ‘

Program Memory Programmable Block
CA (PCA) (CB)

l _ | \—

CA
Output Register
l Rules
(a) APCA cell

Note: A Program Step = < a > <b > < ¢ > in Program Memory

< a> = CA rule 3-bit for each cell

< b > = Number of Clock Cycles. The CA ‘ 1 ‘ ””Z] - 1[:] ! [:] 1+ 1[:”" n ‘
configured with the rule noted in< a > will run.

< ¢ > = Optional Field (b) PCA realized with a linear array of programmable cell

Figure 17. Hardware architecture of the proposed pattassifler

The hardware architecture of the proposed MACA based patlassifier is shown in Fig 17. A
pattern classifier, as explained $®ction 4is built out of a multi-class classifier that is designedhvet
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set of MACA based Two Stage Classifiers. Thus a pattern @lssonsists of a set of MACAs. Each
of these MACAs is a linear CA that employs CA rules noted inl&ah To identify the class of an
input element, it is necessary to traverse the MACA tree. fasjcally we need to design a structure
that can be configured as different MACAs at different timstamces of the traversal. For hardwired
design of a pattern classifier, we utilize the structure o€aARPProgrammable CA) proposed in [8]. The
design of PCA and its application has been elaborated in 83 CA supports a CA structure that can
be programmed to realize different MACAs at different timstances. The structure of a PCA and its
cell is noted in Fig 17. A PCA cell has 3 switches to configurg kmear rule (Table 1) on a CA cell.
Different MACA based two class classifier can be realizediogmmming such a PCA. The rule vectors
of MACA realizing the pattern classifier are stored in Progfdlemory as shown in Fig 17. The input
pattern is stored in the Input Register that initializes B@A. The Control Block (CB) configures the
PCA with the rule vector (field of a program step) and run foruanher of cycles till an attractor state
is reached. The CB controls the program flow - that is, it d¢eldee next program step to be executed
based on the output register value arrived at in the eantmgram step. The process is continued until
the program is fully executed that leads to identificatiothef class of the input pattern.

9. Conclusion

The paper presents the theory and application of an effigiatiern classifier, termed as Two Stage
Classifier, which is built around a special class of sparsear& referred to as Cellular Automata (CA).
The proposed classifier reduces the complexity of the CAdalsssification algorithm from @) (as
reported in [12]) to Of). Extensive experimental results have been reported pect®f its application

in the fields of data mining, image compression, and fautjrtigis. The excellent classification accuracy
and low memory overhead figures prove the superiority of thé&sed classifier over that of the existing
classification algorithms. The simple structure of CA makeateally suitable for VLSI implementation.
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