COMBINATORIAL DYNAMICS
MICHAEL FIELD

ABSTRACT. Recently Stewart, Golubitsky and coworkers have for-
mulated a general theory of networks of coupled cells. Their ap-
proach depends on groupoids, graphs, balanced equivalence rela-
tions and ‘quotient networks’. We present a combinatorial ap-
proach to coupled cell systems. While largely equivalent to that
of Stewart et al., our approach is motivated by ideas coming from
analog computers and avoids abstract algebraic formalism.

1. INTRODUCTION

Recently Stewart et al [11, 1, 9] have developed a theory of coupled
cell systems. This theory is designed to allow the investigation and
classification of patterns of synchrony in networks of (not necessarily
identical) coupled differential equations and may be regarded as an at-
tempt to quantify the extent to which the architecture of a network
of coupled differential equations determines the dynamics of the sys-
tem. The formalism of the theory involves groupoids, graphs, balanced
equivalence relations and, in particular, quotient networks. The the-
ory of coupled cell networks can be thought of as a generalization of
the theory of symmetric coupled cell systems (see [2, 3, 8], [4, Chapter
7]). The global symmetries of a symmetrically coupled system are now
replaced by ‘local’ symmetries, quantified by the groupoid structure.

In this paper we present a somewhat different, though largely equiv-
alent, formulation of the theory of coupled cell networks. We hope that
our presentation may be appealing to those with more of an engineer-
ing or applications background — indeed, the formalism we adopt was
motivated by previous experience working with analog computers in
the context of control and simulation. An advantage of our approach
is that it avoids the use of quotient networks and groupoid formalism
and is highly combinatorial in character. Also, we emphasize the syn-
thesis and construction of networks rather than the analysis of specific
given networks. In this sense, our viewpoint is slanted more towards
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potential applications in engineering rather than to biology or neuro-
science. So as to distinguish our approach from that of Stewart et
al, we adopt the term ‘network cell system’ rather than ‘coupled cell
system’. While familiarity with the works of Stewart et al on coupled
cell systems is not necessary for a reading of this work, we do make
comparative references to their works and have included a number of
‘dictionary’ entries to show how our terminology corresponds to the
groupoid terminology used in the papers by Stewart et al.

In general terms, our aim is to develop the conceptual basis of a
network cell system rather than pursue the detailed investigation of
dynamics or bifurcation in specific network cell systems. Our focus will
be on minimal and slaved networks and how synchrony can be viewed
as invariant under appropriate repatchings of a network cell system.
Nevertheless, we do present several examples, some quite interesting
from the point of view of dynamics. We refer the reader to [11, 1, 9, 6, 5]
for more explicit examples involving dynamics and bifurcation.

1.1. Analog computer model. As motivation for our approach it
may be helpful to give a brief and simplified description of the analog
computer model (for a more detailed introduction, see [10]). An analog
computer consists of a number of different types of “black box” that we
shall henceforth refer to as cells. For the simplest analog computers,
all the cells will be identical linear devices which either allow a sign-
reversing summation or integration. FKEither of these operations may
be realized using a high gain DC amplifier. Cells mays be included
to model specific nonlinear phenomena (including multiplication and
division!). These ‘nonlinear’ cells are typically electro-mechanical de-
vices. Every cell in the analog computer allows a number of inputs and
an ‘unlimited’ number of outputs. Of course, for linear devices we can
always allow an unlimited number of inputs but for nonlinear devices
the number of allowed inputs is usually fixed. Practically speaking, the
various cells are coupled together using “patch cords”. This is achieved
by having a large matrix of sockets — directly connected to inputs and
outputs of cells. Patchcords are then used to connect the output of
one cell to the input of another — possibly the same — cell. In this way,
complex networks of cells can be patched together so as to model linear
and nonlinear systems.

As a simple example, the differential equation 2’ = —z can be mod-
eled by taking the output of an integrator cell, denoted by I in figure 1,
into the input of the same cell. The equation 2’ = x can be modeled
using two cells — one integrator, one sign reverser, denoted by S in fig-
ure 1. Formally, the integrator and sign reversor cells act on an input
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X’ = =X X’ = +X

FiGURrE 1. Modeling ODEs using an analog computer

x(t) according to Ix(t) = — f(fx(s) ds and Sz(t) = —x(t) respectively.
Initial conditions can be set using a second input (not shown) to the
integrator cell.

We should mention that real analog computers allow additional fea-
tures such as varying the gain in a loop, and multiplication and division.

Our concept of a network cell system will differ from that of an analog
computer in following way. We allow a fixed number of different types
of cell and each type of cell will have a prescribed number of inputs of
each type. When we patch a group of cells together to form a network
cell system, we insist that all the inputs are filled — this is related to
the fact that we are dealing with nonlinear devices. Just as for the
analog computer, there are no restrictions on the number of outputs.

1.2. Brief description of contents. In sections 2, 3, we give an in-
formal description of a number of basic examples that underlie the
formalism we develop in later sections. In section 4, we give formal
definitions for a network cell system and synchrony classes. Much of
what we do in this and subsequent sections corresponds more closely to
the multiarrow formalism of Golubitsky et al. [9] rather than the origi-
nal work of Stewart et al. [11]. In section 5, we define patch equivalence,
minimal subnetworks, slaved subnetworks, transitivity and component
subnetworks. We develop the basic combinatorics of network cell sys-
tems and show that every network cell system is patch equivalent to
a network cell system in ‘normal’ form (Proposition 5.16). The latter
network contains a minimal subnetwork which is dynamically equiva-
lent to the quotient network of Stewart et al [11, 9]. In our setup, it
is a triviality that every solution on a minimal network determines a
(synchronous) solution on the original network. In section 6, we make
a more thorough study of the possible synchrony classes for a fixed
network cell system. This investigation uses the concept of a balanced
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family of cells — related to the ‘balanced equivalence relation’ of Stew-
art et al. — and the corresponding versions of minimality, transitivity
and patch equivalence. We conclude with some remarks about possi-
ble applications of our approach and mathematical differences with the
work of Stewart et al [11, 9].

2. NETWORK CELL SYSTEMS: EXAMPLES

ooooogb

Ficure 2. Cells

2.1. Building blocks: model examples. In figure 2, we show two
symbolic representations of basic cells from which we might build a
network. Each cell allows inputs — which we have denoted by trian-
gles, squares, etc in the figure — and an output — denoted by a circle
containing a single regular figure which signifies the type of output.
Cell A has a triangle output and one input of triangle type, two of
square type and three of pentagon type. On the other hand, cell B
has a square output and allows one triangle input and two inputs each
of pentagonal and hexagonal type. (We often omit the regular figures
signifying input types if all the cells in a network are identical or the
context makes the cell type clear.)

Typically the evolution of the state of the cell — quantified by its
output — will be governed by an ordinary differential equation (discrete
time evolution is also possible though we will not consider that possi-
bility here). If we think of cell A as being of ‘triangular type’ (type is
determined by the output), and denote the state of the cell by u, then
the evolution of cell A will be governed by a differential equation of
the form

(21) u= F(u; Ug, Vb, Ve, Wdyweawf>>

where u, will be an input from a cell of triangular type, vy, v, will
be inputs from cell(s) of square type and wg, W, w; will be inputs
from cell(s) of pentagonal type. In general, the evolution of a cell may
depend on its state and so we allow F' to depend on the ‘internal’
variable u.
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In order to interconnect cells, we use ‘patchcords’. Each patchcord
is terminated by two plugs of the same type which can be triangular,
square etc. We can plug any number of patchcords with a regular n-
gon plug into the output of a cell with n-gon output. The other end
of the patchcord must go into an a free n-gon input socket of a cell.
The order in which we plug patchcords with the same termination is
irrelevant. In terms of the equation governing the evolution of cell A,
this means that

F<u; Ug, Vi, Ve, Wq, We, Wf) = F<u; Ug, Ve, Vb, Wy, We, Wf)a
= F(uju,, vy, Ve, We, Wp, Wg), etc.
This symmetry in the inputs of the same type imposes constraints on
the evolution of dynamics of interconnected cells. The group of input

symmetries for a given cell corresponds to the verter group of Stewart
et al. [11, §3].

2.2. Network cell system. A network cell system will consist of a
finite number of cells, interconnected by patchcords with no input left
unfilled!. In figure 3, we show a simple network comprising cells A;, A,

FIGURE 3. A simple network

of triangular type and a cell B of square type. The corresponding
equations that govern the evolution of this system are given by

Xa1 = F(Xa1;%X41,X42,X5B),
Xa2 = F(Xa2;X41,X42,X5),
xg = G(Xp;Xa1,%Xa1),

'We can relax this requirement by allowing for null and/or constant cells —
basically we can either ‘earth’ the unused inputs or feed them a constant input.
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where [’ and G define vector fields on the phase spaces of cells of type
A and B respectively.

Although the network shown in figure 3 is asymmetric, it does admit
a robust family of synchronous solutions where the outputs of A, A,
are equal. Observe that we can we repatch the network without de-
stroying this synchrony property. See figure 4 and note that we have
changed the patchcords denoted by «, 3 in figure 3.

FiGURE 4. Repatching the network

It is obvious looking at figure 4 that the cell Ay has no influence
on the rest of the network. We refer to a subnetwork of this type
as a slaved network (we give a precise definition later). If we remove
the slaved network, the remaining collection of cells continues to be
an admissible network — all the inputs are filled, see figure 5. In this
instance it is easy to see that there are no repatchings that allow us to
further reduce the number of cells in the network. The network shown
in figure 5 corresponds? to the quotient network of Golubitsky et al. [9].
We call a network that cannot be reduced in size by repatching and
excision of slaved subnetworks, a minimal network. The equations
governing the evolution of the minimal network shown in figure 5 are

X4 = F(xa;%a,X4,Xp),
xp = G(Xp;Xa,Xa),

Any solution (x4(t),xp(t)) for the minimal network determines a syn-
chronous solution (xa;(t),x42(t),x5(t)) = (xa(t),xa(t),xp5(t)) of the
original network and conversely.

2Strictly speaking it is not a ‘quotient’. An analogy would be that the vector
space complement of a subspace H C E corresponds to the quotient space E/H
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FIGURE 5. Minimal network

In figure 6, we show two repatchings of an eight cell network com-
prised of two different types of cells. Later we shall show that the first
network admits multiple synchronous states. Observe that the first
repatching results in a ‘circular’ network, while the second repatching

results in four disjoint identical two-cell networks, each consisting of a
B cell and a slaved A cell.

F1GURE 6. Two repatchings of a linear network
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However we repatch the original network, it will always be the case
that any solution (x4(t),xp(t)) of one of the two-cell networks deter-
mines a synchronous solution X 41, . .., Xpgy4 of the full eight cell network
(possibly repatched) by setting xa; = X4, Xp; = xp, 1 =1,...,4.

3. MULTIPLE SYNCHRONOUS STATES

As was suggested in the discussion of the first network shown in

figure 6, it is possible for a network cell system to exhibit more than
the ‘maximal’ synchronous state where all cells of the same type are
synchronous. In order to discuss more general synchronous solutions,
it is helpful to adopt the following
Notational conventions.
Suppose that a network cell system is comprised of cells of types A,
B, C, ....... We label individual cells of the same type according to
Al, A2, .... By a synchrony class we shall mean a group of cells that
can admit a set of nontrivial synchronous solutions determined by the
architecture of the network®. Typically, we write a synchrony class S
in the form {A;,..., As|| B1,...,B;]| -..}. This notation is to be in-
terpreted as meaning that the cells Ay,..., A are synchronous (and
therefore are identical cells), By,..., B; are synchronous (and there-
fore are identical cells) and so on. It is understood that the A and
B-cells may or not be identical. If they are identical, it is not re-
quired that the A- and B-cells are synchronous. Indeed, we use the
notation {A,..., A, By,..., Bs} to signify that the cells Ay,..., By
are synchronous (and so A and B cells must be identical).

It is easy to verify that the first network shown in Figure 6 has nine
synchrony classes:

{B1, B2}, {B3, B4}, {B1, B2 || B3, B4}, {B1, B2, B3, B4},
{Al, A4|| B1, B2, B3, B4}, {Al, A2, A3, A4|| B1, B2, B3, B4},
{A1, A2, A3|| B1, B2, B3, B4}, {A2, A3, A4|| B1, B2, B3, B4},
and {A2, A3 || B1, B2, B3, B4}.

We briefly examine one of the synchrony classes: {B1, B2|| B3, B4}.
In figure 7, we have grouped the B-cells into two blocks G1 and G2.
Note that G1 receives no inputs from cells outside G1. Similarly for
G2. It follows that in this case, we only need concern ourselves with the
subnetwork cell systems determined by G1 and G2. We can repatch
(GG1 to obtain the minimal networks shown in figure 8. The differential
equations for these minimal networks will be of the form

(3.2) x = F(x;x).

3The term synchrony class corresponds to the polydiagonal subspace of [11, §6].
Synchrony classes will be robustly polysynchronous [11, §6],[9, §4].
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FIGURE 8. Minimal networks associated to G'1

Any solution x(t) of (3.2) will determine a synchronous solution of
the G'1 subnetwork by setting xp; = xps = x. Similarly for the G2
subnetwork (using a different solution of (3.2)). Allowing the A-cells
to evolve according to B-inputs we arrive at equations governing the
synchronous solutions in the class {B1, B2|| B3, B4}.

For this rather simple example, we imposed a repatching rule that
restricted repatching to be within specified subsets of cells. Later, we
will allow repatching where the input and output of patchcords are
constrained to lie in (possibly) different subsets of a balanced parti-
tion of the network. These repatching rules will allow us to identify —
in theory at least — all possible synchrony classes in a given network
and determine the associated dynamics using minimal models. Our
approach may be compared with the use by Stewart et al [11, 9] of
‘balanced equivalence relations’ and ‘multicolour formalism’.

4. NETWORK CELL SYSTEMS

In this section we give a formal description of a network cell system
built from k different types of cell. In order to do this, we need to
describe rules for the time evolution of each of the k£ individual cell
types as well as the ‘connection matrix’ for the entire network. We
shall assume that the evolution of each cell is governed by an ordinary
differential equation. This differential equation will depend on param-
eters (corresponding to cell outputs). The connection matrix of the
system specifies the connections between cells in the network. When
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we repatch the network, we change the connection matrix but not the
individual cells.
We adopt the convention that if a < b € N, then [a,b]y = [a,b] N N.

4.1. Cell dynamics. We assume k different cell types. We denote
the phase space for a cell of type j by V;, where V; will be a finite
dimensional vector space, j € [1, k]x.

For j € [1,k]n, let p/ = (p}) € N*. The integers p}, i € [1, k], give
the total number of inputs that a cell of type j receives from cells of
type ¢. In particular, Zip§ = p; is the total number of inputs for a cell
of type j.

Suppose that for each j € [1, k]y, we are given a parametrized family

(4.3) FIVx @b,V =

of vector fields on V;. We assume that F7 is symmetric in each of the

variables x' = (2f,...,7};) € V. More precisely, each F7 will be
J .

invariant with respect to the natural action on @le‘/;pj of the product

S(j) = Sp;_ X ... X Sp§ of symmetric groups.

Remark 4.1. The symmetry we require of the FV corresponds to sym-
metry of the patchcord examples described in the previous section: if
we insert a triangular plug into an input of a particular cell, it does
not matter which triangular socket we use. These local ‘socket sym-
metries’ possessed by a cell have a major impact on the dynamics that
can occur robustly in a network of cells and correspond to the vertex
groups of Stewart et al. [11].

We regard the vector field FY as defining a cell of type j. In the
sequel we frequently regard cell and associated differential equation
as synonymous. The evolution of the cell will be governed by the
differential equation

(4.4) &= Fi(r;x', ... x"),

where x' = (21,...,27;) € Vip;, i € [1,k]y. The variable € V; defines

the state of the cell and may be regarded as an internal variable for
the cell defined by (4.4). We call the variables z, € V; input variables.

4.2. Connection data. Suppose that we are given a fixed set C =
{F7|1<j <k} of k distinct cells.

We describe the concept of a network cell system modeled on C. The
number of cells of each type is specified by a vector m € N¥, m # 0.
The pair (C, m) represents a set of |m| = m!+...+m* cells containing
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mj—cells of type 7, j € [1, k]n. We order cells of each type in (C,m) and
let ¢/ denote the ith cell of type j, i € [1,m/]y, j € [1, k]y. We refer to
the pair (C,m) as a ‘set of C-cells’.

Definition 4.2. A network cell system modeled on C is a triple N =
(C,m, P) where

(1) (C,m) is a set of C-cells. . .
(2) p : {pys € [Ovp;]N ‘ 1,] € [17 k]Na s € [OamJ]Nar € [Oamz]N}'
(3) ¥ pl, = p} is independent of s, all 7, 5.

The array P gives the connection matriz for N.

Remarks 4.3. (1) Suppose that NV = (C, m, P) is a network cell system.
The system will comprise a total of |m| cells. There will be m/ cells
in NV of type j, 1 < j < k. The array P describes the number and
type of connections between different cells. More precisely, The integer
p%. gives the number of inputs the sth cell of type j receives from the
rth cell of type 4. Thus p! = X7, pl/, gives the total number of inputs
of type i into any cell of type j, and X p, = X;p} = p; is the total
number of inputs for any cell of type j. Implicit in condition (3) of
the definition is the requirement that no inputs are left unfilled. In
figure 9, we show the set of inputs to the sth. cell of type j.

(2) Abusing notation, we often identify N with the cells {¢] |i €
[1,m7]n,7 € [1,k|]ny} that comprise N. In particular, whenever we
write S C N, this is to be interpreted as meaning that S is a subset of
the cells comprising N

X ptl inputs from cells of type 1

NG Y, Pkl inputs from cells of type k

FIGURE 9. Inputs to the cell ¢J.
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Subnetwork of cells of given type. If N' = (C,m,P) is a network cell
system, and j € [1, k], we define

N = ({7}, m P7),
P’ = { 7‘?9 € [0,]9;:]1\] | TS € [O7mj]N}'

The set N7 represents the cells of type j together with all connections
between cells of type j. In general, N7 will not be a network cell
system. As noted above (remarks 4.3(2)), we will sometimes identify
N7 with the set of cells {¢] | s € [1,m/]y} that comprise N7. Similarly,
if S C N, we let 87 denote the subset of S consisting of cells in S
which are of type j. Note that, as far as is practical, we always use
superscripts to specify cell type.

4.3. Dynamics on a network cell system. We now describe dy-
namics for the network cell system A" = (C, m, P).
The phase space for N will be the vector space V defined by

V= @levimi-

We define a vector field F on V so that the evolution of the network cell
system N is determined by the solutions of the differential equation x =
F(x) on V. In order to do this, it suffices to specify the component of F
that governs the evolution of each cell in the network. The differential
equations governing the evolution of individual cells in the network are
given by

(45) &= F (i (x)P L (PY), 1<s<md, 1< <k,

where ) ) B
(x)PY = (@), ... (2 )Pmis), 1 < i < k.

mt

With this definition of F, we say that (4.5) are the equations for the
network cell system A

Example 4.4. We recall the equations for the network cell system
shown in figure 3. For this system we have k = 2. We regard the cells
A1, A as being of type 1, and the cell B as being of type 2. In this
case, we have pi = 2, p? = 1, pi = 2, p = 0. We assume that the
phase space for type 1 cells is V;, and for type 2 cells is V5. The family
of differential equations for the network is given by

-1 1. .1 1 2
ry = F1($1,271,1)2,£L'1>,
-1 1. .1 1 2
Ty = F1(5E2,ZE27171,I1>,

#o= Byt o),
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where Fy : Vi x (VE@Vy) — Vi, Fy : Vo x V2 — V,, and Fy, Fy
satisfy Fy(v;xq,29,2) = F1(v; 29,21, 2), Fo(w;z1,29) = Fo(w; xe, 1),
all z1,29,v € Vi, w,z € V.

4.4. Synchrony classes. In this section we give a definition of syn-
chrony class for network cell systems. Our definition is chosen so that
synchrony classes depend on the architecture of the system — that is,
on the connection matrix P — and do not depend on explicit knowledge
of the vector fields F; used to model the evolution of each cell.

Let S = {S¢/|¢ € [1,L]|n} be a family of mutually disjoint non-
empty subsets of the network cell system N = (C,m,P). We define
the subspace Vg of V by

Vs ={(x,...,x" |2l =], a,be S}, 0e[l,Lln,j €[l kn}.
Definition 4.5. The family S defines a synchrony class for N if Vg
is invariant by the flow of (4.5). We refer to Vg as a synchrony sub-

space for N' and any solution with initial condition lying in Vg as
S-synchronized.

As it stands, this definition a little imprecise since the invariance of
Vs may occur because of some “accidental” properties of the vector
fields Fj.

Example 4.6. Consider the four cell system defined for (z1,...,z4) €

R* by
T = Fi(zi;29,x3),
Ty = Fi(z2;21,24),
3 = Fy(xs;zs),
ty = F3(rg;73,24).

This system does not have any synchrony classes. However, if we define
Fi(x;u,v) = f(x) + u+ (x — u)?v, then the subspace of R* defined by
r1 = 9 is an invariant subspace. Of course, for “generic” F, 1 = x5
will not be an invariant subspace.

There are several ways to proceed. First, we could simply require

that Vg was an invariant subspace for generic choices of Fi, ..., F}
(satisfying the symmetry conditions on inputs of like type) or that the
invariance of Vg was stable under perturbations of Fi,..., Fy. More

formally, we could work in terms of variable substitutions — replacing
the variables in each §] by a single new variable and requiring that the
original equations define a unique equation in the new variables.
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Providing we work symbolically, none of this will cause us any prob-
lems. Hence, rather than go through the somewhat tedious and un-
enlightening algebra involved in formalizing these ideas, we defer the
matter for the moment. Later, in section 6, we will introduce the idea
of a balanced partition of N' and show that every balanced partition
determines a unique synchrony class and conversely.

Remarks 4.7. (1) In definition 4.5, if S] = () or S/ consists of one cell,
then no restrictions are placed on x7. If every S, € S consists of only
one cell, or if all the cells in S have different type, then S defines the
null or minimal synchrony class for NV.

(2) A synchrony class S can always be extended to a partition S’ of
N by defining 8" = SU {{c} | ¢ ¢ U,S;}. We have Vg = Vg and S’
is a synchrony class. Often, in examples, it is preferable to suppose
that a synchrony class contains no singleton cells. In more theoretical
discussions, it is usually easiest to allow for singleton cells and assume
that the synchrony class defines a partition of A/. Indeed, this is the
approach we adopt in section 6.

(3) The definition allows for there to be multiple sets Sy consisting of
cells of the same type. However, for the examples and results in this
section it will always be the case that S consists of a single subset

S. Thus, we may and shall identify S with S and write S :L.Jj:1 S7
without ambiguity.

Examples 4.8. (1) If N is a network cell system S = {N!| ... || N*}
is always a synchrony class: the mazimal synchrony class of N'. The
existence of this synchrony class follows rather simply because of our
emphasis on cell type. Of course, if there are no two cells of the same
type then there are no nontrivial synchronous solutions. (The maximal
synchrony class corresponds to the coarsest balanced equivalence rela-
tion >1* described in Golubitsky et al. [9, Appendix].)
(2) If we define S = {A1, A2}, then S is a synchrony class for the net-
works shown in Figure 3, 4 (we could also have taken S = { A1, A2 || B},
the maximal synchrony class of the network).
(3) In the example discussed in section 3, every synchrony class con-
tained at least one synchronous B-pair (notation of Figure 6). In Fig-
ure 10 we show an example of an asymmetric network containing two
types of cell which can synchronize independently.

The network has three synchrony classes: {B1, B2}, {Al, A2, A3},
and {Al, A2, A3|| B1, B2}. This type of network can admit robust
heteroclinic cycles, see [5] and section 6.
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FiGURE 10. A network with “independent” synchronous states

Lemma 4.9. Suppose that the network cell system N = (C, m,P) has
synchrony class 8. Then for all cells ¢J € S, ¢! ¢ S, we have

ph=pd, allcl €S8, i.je Lk
Moreover, if we have a subset IC of cells for which this condition holds,
then K is a synchrony class for N.

Proof. 1f the cell ¢/ € S receives k inputs from a cell ¢! ¢ S, then all
type j cells in S must receive k inputs from ¢’ — else S could not be a
synchrony class for A/. The converse follows equally simply. U

Remarks 4.10. (1) It is required in Lemma 4.9 that the synchrony class
consist of a single subset of N'. Note that if S = A/, the lemma imposes
no restrictions and we recover the maximal synchrony class of N

(2) The lemma may be regarded as giving a satisfactory formal defini-
tion of synchrony class for the case when the synchrony class is given
by a single subset of A. In section 6, we address the case when the
synchrony class is given in terms of multiple disjoint subsets of N

5. COMBINATORICS

In this section we start to explore the invariants of a network cell
system under repatching.

Definition 5.1. We say two network cell systems N' = (C,m,P),
M = (D,n, Q) are patch equivalent if by repatching the connections
we can change N to M.

If N and M are patch equivalent then it is obvious (count inputs — in
1:1 correspondence with connections) that C = D and m = n. Further,
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we must have pj = ¢}, all i,j € [1,k]n. Indeed, patch equivalence of
two network cell systems is equivalent to requiring that the systems
have the same number of cells of each type and the same underlying
dynamics. In particular, corresponding cells have the same number of
inputs of each type. The next lemma summarizes this discussion.

Lemma 5.2. The network cell systems (C,m,P), (D,n, Q) are patch
equivalent if only only if C =D and m = n.

Example 5.3. Following [9], we say that a network cell system N =
(C,m,P) is homogeneous if C contains exactly one cell. In figure 11,
we show a homogeneous network containing three cells. This is patch
equivalent to a disconnected network consisting of three cells — see
figure 11. We remark that similar results holds for any homogeneous
network and that the single cell system is dynamically equivalent to the
quotient network in the sense of [9, 11]. Any solution x(¢) determines
a synchronous solution (x(t),x(t),x(t)) for N.

F1GURE 11. Patch equivalence for a homogeneous network

Definition 5.4. Suppose that N is a network cell system and S C .
(1) We say that S is a slaved subnetwork N'\ & — S of N if

(a) pi4 =0 for all cells ¢ € S, ¢ € N'\'S (there are no connections
from cells in S to cells in N'\ S),
(b) There exists at least one connection from N\ S to S.

(2) If K is a subnetwork cell system of A/, we say that a slaved sub-
network § is K-slaved, written  — S, if S U K is a subnetwork cell
system of N and S is a slaved subnetwork of S U K.

Remark 5.5. If N'\' S — S then there are no outputs from cells of S
to cells in A\ S. A slaved subnetwork N\ & — S is never a (sub)
network cell system. On the other hand, if N\ S — S, then '\ S has
the structure of a network cell system (induced from that on N).



COMBINATORIAL DYNAMICS 17

Definition 5.6. We say that the network cell system N is minimal if
every network cell system A* patch equivalent to A/ contains no slaved
subnetwork.

Definition 5.7. Suppose that N is a network cell system and S C V.
We say that S is a disconnected subnetwork if we can write § = S;USs,
where S1,Ss are proper subsets of & and there are no connections
between cells in §; and S;. If S is not disconnected, we say S is
connected.

Definition 5.8. Suppose that N is a network cell system and S C N.
We say that S is strongly connected if S is connected and it is not
possible to disconnect § by repatching the subnetwork §.

Example 5.9. In figure 12, we show two examples of subnetworks.
The first example figure 12(a) consists of three cells and is strongly
connected. The second example, figure 12(b), consists of two cells and
is connected but not strongly connected (we can repatch {Al, A2} so
that the output of Ai goes to Ai, i =1,2).

(a) (b)

FIGURE 12. Connectedness of a subnetwork

Definition 5.10. Suppose that A is a network cell system and Q@ C N.
We say that Q is a component of N if

(1) There are no connections between cells in Q and cells in N\ Q
(either from or to Q).

(2) Q contains at least one cell.

(3) Q is strongly connected.

We say that N has k components if we can write A/ as a disjoint union

L.Ji N;, where each N is a component of N'. We say N is connected if
it has one component.

Remark 5.11. If Q is a component of the network cell system N, then Q
is a network cell system with connection matrix defined by restricting
the connection matrix of N to Q.
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Definition 5.12. A network cell system N is transitive if for all 4, j €
[1, k], there exist cells ¢;, ¢} such that there is a (directed) path of
connections from ¢! to c.

Lemma 5.13. (1) Transitivity is an invariant of patch equivalence.
(2) Every minimal network is transitive.

Proof. Trivial. 0

Let C = (C,1,C) be the network cell system which consists of one
cell of each type. In this case, the array of connections C is uniquely
determined. Henceforth, we shall always assume that our cells C are
such that C is connected.

Lemma 5.14. (1) C contains a finite set of disjoint minimal sub-
networks M(C) = {C; | 1 < i < c¢}. The C; are uniquely deter-
mined up to order.

(2) If C transitive, C is minimal and M(C) = {C}.
(3) There exists a partition of C \ U,C;, into sets S;, 1 < j < d,
such that
(a) Fach S; is strongly connected.
(b) For each j € [1,d]n, there exists a subset p(j) C [1,c|y for
which 8; 15 Uiep(;)Ci-slaved.

(c) There are no connections between cells in S; and Sy, j #
-/

g’
(d) Properties (a,b,c) uniquely characterize the S;.

Proof. We prove 1 by induction on the number of cells k£ in C. The
result is trivial if & = 1. So suppose the result is known for all net-
work cell systems with fewer than & cell types. Let S be any nonempty
proper subset of C. Either there exists a connection from a cell of C\ S
to S or not. If there exists a connection, then & is not minimal. If
this is so for all proper subsets S, then C is minimal and we are done.
If there is no such connection, then S defines a network cell system
with fewer than k cells and so, by the inductive hypothesis, & con-
tains a minimal subnetwork. It follows that C contains a maximal set
{C; | 1 <i < ¢} of minimal subnetworks. Since a minimal subnetwork
is transitive, Lemma 5.13, it follows that the minimal subnetworks we
have constructed are unique and mutually disjoint, proving 1.

We define an equivalence relation ~ on cells in C \ U,C; by requiring
that ¢ ~ ¢ if there exists a connected subnetwork S C C \ U;C; which
contains ¢, . Let {S; |1 < j < d} denote the resulting partition of
C \ U;C;. Associated to each j € [1,d]n, we let p(j) C [1, ]y be the
set of indices 7 for which there exists a connection from a cell in C; to
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a cell in §;. It is obvious that the set {S;} satisfies all the required
properties. U

Example 5.15. In figure 13, we show a 5-cell connected network. This
network is connected but not transitive. It contains two minimal sub-
networks C; = {A, B}, and C; = {E}. The subnetwork {C} is C; U Cs-
slaved, and the subnetwork {D} is Co-slaved.

FiGURE 13. Decomposition of a 5-cell network

We now prove a version of Lemma 5.14 that holds for general network
cell systems and shows that, up to permutation of certain connections,
every network cell system has a ‘normal’ form. The important part
of this result is the description of the minimal subnetworks. We make
little use of the remaining statements in the sequel and we only include
them for completeness and comparison with Lemma 5.14.

Proposition 5.16. Suppose that N' = (C, M, P) is a network cell sys-
tem and that m? > 0, j € [1,k|ln. Then N is patch equivalent to a
network cell system N* where

(1) N** contains a finite set of mutually disjoint minimal subnet-
works M;, 1 < i <t. The M; are unique up to order. As sets,
{M; |1 <1<t} =M(C).

(2) There exists a partition of N* \ U;M,, into sets S;, 1 < j <d,
such that
(a) Each S; is strongly connected.

(b) For each j € [1,d]n, there exists a subset p(j) C [1,t]n for
which S; is Ujep(j)M;-slaved.

(c) There are no connections between cells in S; and Sy, j #
j'

(d) If S; contains cells of type €, then there are no connections
from cells of type £ in N*\'S; to cells in S;.
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(e) Properties (a,b,c,d) uniquely characterize the S;.

(3) If N is transitive, then t = min; m?, and the minimal subnet-
works M; are all patch equivalent and contain exactly k cells.
In particular, if the network is homogeneous, there are exactly
my mainimal subnetworks, each containing one cell.

Proof. We proceed by a double induction on the number of cells M =
|m| and the number k of different types of cell.

Suppose k = 1. Then N is patch equivalent to the network cell
system A* with M components, each of which consists of a single cell
with every output of the cell going to an input of the cell. Hence the
proposition is true if £ = 1. Suppose now that we have verified the
proposition for network cell systems containing fewer than M cells and
at most k distinct types of cell. Since every cell type occurs at least
once, it is easy to see that N is patch equivalent to a network cell
system N; which has a connected subnetwork Q containing k cells, one
of each type (cf lemma 5.14), and no connections from cells in N \ Q
to cells in Q. Suppose first that A; \ Q contains at least one cell of each
type or that there are no outputs from cells in Q to cells in A7 \ Q. In
the former case, we may repatch so that there are no cells in A \ Q
which receive an output from a cell in Q. Consequently, N7 \ Q is
a network cell system and we may apply the inductive hypothesis to
N1\ Q to find a network cell system N} which is patch equivalent to
N1\ Q and satisfies all the conditions of the proposition. Since N is
patch equivalent to Nj U Q, the result now follows from the inductive
hypothesis and an application of lemma 5.14 to Q. Suppose instead
that there are outputs from Q to cells in A'\ Q. We can always repatch
so that the outputs come from cells in @ which do not appear in A7\ Q.
Suppose there are ¢ of these cells. Necessarily ¢ < k. We now define
a new network cell system A that consists of A\ Q. together with ¢
new dummy cells, without inputs, which fill in the inputs that originally
came from Q. The network cell system N has fewer than M cells, at
most k types, and so we may apply the inductive hypothesis. We then
reinsert @ in the obvious way and apply lemma 5.14 so as to obtain
the required patch equivalence between N and a network N™* satisfying
the hypotheses of the proposition. This completes the first inductive
step.

Next suppose that we have verified the proposition for k£ > 1, no
restriction on M. Let N be a network cell system with k& + 1 different
types of cell. Certainly, we must have M > k+ 1. If M = k + 1, the
result follows by Lemma 5.14. If M > k41, we proceed as before. We
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leave the verification of the uniqueness statements as an easy exercise
for the reader. O

Remark 5.17. If the network cell system N* satisfies the hypotheses of
proposition 5.16, we say that N* is the normal form of N'. The normal
form is unique up to permutation of connections from the minimal
networks to slaved subnetworks.

Examples 5.18. (1) The network of figure 3 is transitive and is patch
equivalent to the network A/* shown in figure 4. Note that the cells
A, B define a minimal subnetwork M; of N* and {A,} is an M;-
slaved subnetwork of N*.

(2) The networks shown in figure 6 are not transitive. They are all
patch equivalent to the third network shown in figure 6. This network
has four components, all minimal and patch equivalent.

(3) The network shown in figure 10 is transitive and patch equivalent
to the network N* of figure 14. The network N'* contains two minimal
subnetworks M; = {A;, B}, and My = {As,B3}. The subnetwork
Aj is My-slaved.

[T

A2 A3
\
]

FIGURE 14. Minimal and slaved subnetworks

Proposition 5.19. Suppose that the network cell system N has normal
form N*. Each of the minimal subnetworks of N* given by proposi-
tion 5.16, determines a (unique) synchrony class of the network N .
Moreover, each set of slaved metworks also determines a synchrony
class.

Proof. Tt follows from proposition 5.16 that each minimal subnetwork
of N* is equal to a unique C; € M(C). If C; contains cells of types
J1 < ... < Js, then we may define the synchrony class S; to consist of
all the cells in N which are of types ji, ..., js. If Sj is Ujep(j)M;-slaved,
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then we define the associated synchrony class to consist of all the cells
in A/ which are of the types occurring in S; U U;ep;)M;. Similarly, any
set of slaved networks determines a synchrony class. U

Example 5.20. Suppose that N is a network cell system with C equal
to the network shown in figure 13. It follows from proposition 5.19,
that NV has at the least the following synchrony classes: (a) All A-cells
synchronized and all B-cells synchronized, (b) all £ cells synchronized;
(c) all cell types synchronized except cells of type D; (d) all E cells
synchronized and all D-cells synchronized; (e) all cell types synchro-
nized.

Remark 5.21. Although Proposition 5.19 gives a relatively weak re-
sult, it does, as the previous example shows, give nontrivial minimal
information about synchrony classes for a network. Nonetheless, it is
the best we can do without additional structural assumptions on the
network A/. We address this issue in the next section.

Example 5.22. In figure 15 we show an eight cell network N with
normal form N*. Each minimal subnetwork of N* consists of a single
type A-cell. Consequently, { A1, A2, A3} is a synchrony class for NV.

FIGURE 15. An eight cell network

In N* we find slaved networks of the form A — C and A — B. Con-
sequently, we have the synchrony classes {Al, A2, A3 || B1, B2, B3},
{A1, A2, A3 || C1,C2} as well as the whole network N

6. SYNCHRONY SUBSPACES

Throughout this section N' = (C, m, P) will denote a fixed network
cell system. We assume that A is connected and that m/ > 0, all
J € (LK.



COMBINATORIAL DYNAMICS 23

Let ¢, be cells in N. We let p(c, ') denote the number of connec-
tions from ¢ to c. In terms of P, if ¢ is the sth cell of type j and ¢ is
the rth cell of type 4, then p(c, ¢) = p.. In general, p(c, ) will depend
on r,s as well as the types ¢ and j.

Definition 6.1. Let S C AV and 7 C N be nonempty sets of cells of
the same type. We say S is 7 -balanced if for allc € S, Y~ . p(c,e) =
kje depends only on j, ¢ (not on the choice of ¢ € S).

Remarks 6.2. (1) If b is a cell in N\ S, then S is {b}-balanced if and
only if for every ¢ € S, p(c,b) depends only on j and b (and not on the
choice of ¢ € §). Note that {b} is trivially S-balanced.

(2) It is easy to extend Definition 6.1 to allow for arbitrary subsets
S,7T of N. We then have that S is 7-balanced if and only if S’ is 7*
balanced for all 7, ¢ € [1, k]ny. However, in this section we shall always
assume that when S is 7-balanced, & and 7 both consist of cells of
the same type.

Definition 6.3. [cf [9]] Let S = {S; |1 < ¢ < L} be a partition of
the network cell system N into disjoint sets of cells of the same type.

We say S is balanced or a balanced partition if each S; is S;-balanced,
1<ij<L.

Remark 6.4. Instead of requiring that S defines a partition of NV, we
could equally have required that the sets S; all contain at least two
cells. Under this assumption, we would add the condition that for
all i € [1, L]y, ¢ € S; and every cell b ¢ U;S;, S; is {b}-balanced (see
remarks 6.2(1)) If this extra condition holds, we refer to S as a balanced
family. Conversely, given a balanced family, we can always adjoin the
single cell sets S, = {c}, ¢ ¢ S, to obtain a balanced partition of A/. In
the sequel, we often work with balanced families and assume that the
sets S; all contain at least two cells. Implicit in this description will be
the requirement that S; is {b}-balanced, b ¢ U;S;.

Examples 6.5. (1) Referring to the network of figure 10, let & =
{Al, A2, A3}, S, = { By, B2}, S = {Al, A2, A3, B1, B2}. In this case
the families {S1}, {Sa2}, {S1,S2} and {S;} are all balanced.

(2) Referring to the network of figure 11, the family S = {A1, A2} is
balanced. However, neither { A2, A3} nor {Al, A3} is balanced.

(3) Our final example comes from [9]. In figure 16, we show a homo-
geneous network of four cells. Obviously S; = {A0, Al, A2, A3, A4}
is balanced. If we define S§; = {Al, A3}, Sy = {A2, A4}, then Sy =
{81, 8>} is also a balanced family. There are no other balanced families
for this network (granted the conventions of remark 6.4).
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FIGURE 16. A homogeneous network of four cells

Proposition 6.6. Every balanced family of subsets of N naturally de-
termines a synchrony class for N'. Conversely, every synchrony class
S determines a unique balanced family with associated synchrony class

S.

Proof. Suppose that S = {S,| 1 < ¢ < L} is a balanced family. Let
¢ € [1, L]y and suppose that S, C N”7. Define

Ve={(x',....x" &} = 2], a,b € &}

Set Vg = N, V,. It follows immediately from the definition of balanced
that Vg is invariant by the flow of the dynamical system defined by
N. The converse is equally straightforward. U

Remarks 6.7. (1) It follows from Proposition 6.6 that if S = {S, |1 <
¢ < L} is a balanced family, then the corresponding synchrony class of
the network cell system is obtained by requiring cells within each S
to be synchronous. Of course, if we had worked in terms of a balanced
partition, this would not impose conditions on the singleton cells.

(2) The conditions for a family S to be balanced can obviously be
written in terms of the connection matrix P. This gives us a way of
defining a synchrony class purely in terms of the connection matrix P.
It also suggests the possibility of developing computer based search al-
gorithms to determine all synchrony classes in medium sized networks.
In this direction, a useful observation is that if {S; |1 < ¢ < L} is a
balanced family, then S, must be Sy-balanced, 1 < ¢ < L.
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6.1. Order structure on synchrony classes. Most of what we say
is closely related to [9, Appendix]. We start by defining an order on
the set of all partitions of a set.

Definition 6.8. Given partitions Py, P of a set, we write P; > Py if
each component of Py is contained within some component of P;.

Lemma 6.9. Given two synchrony classes S, T, S > T if and only if
Vs C Vr.

Proof. Immediate from Proposition 6.6 and the definition of >. O

Remark 6.10. The relation > defines a partial order on the set of syn-
chrony classes. Note the maximal synchrony class is the unique maxi-
mal element for the partial order >. The order > corresponds to the
order < defined in [9, Appendix]|. There is a unique minimal class de-
fined by desynchronization of all cells and with corresponding invariant
subspace V. This class corresponds to the finest balanced equivalence
relation defined in [9, Appendix].

Definition 6.11 (cf [9, Appendix]). Suppose that S, T are balanced
partitions of A/. Let SV T, S AT denote the balanced partitions
characterized by the following properties.

(a) SV T is the smallest balanced partition B satisfying B > S, T.
(b) S AT is the largest balanced partition B satisfying S, T > B.

The next result is immediate from the definitions.

Lemma 6.12. (al) Vgyr = VsN V.
(bl) Vsar = NuVu, where the intersection is over all synchrony
classes U such that Vy D Vg U V.

Remarks 6.13. (1) It is possible to give a natural description of S V
T independent of considerations of balanced structure. We define a
symmetric and reflexive relation ~' on N as follows. If ¢,d € N are
cells, then ¢ ~' ¢ if and only if either ¢, ¢ lie in the same component
of S or they lie in the same component of T. Observe that if ¢ ~' ¢,
then the cells ¢ and ¢ are of the same type. We define the equivalence
relation ~ on N by requiring that ¢ ~ ¢ if and only if there exist cells
¢c=cy,...,cs = ¢ such that ¢; ~ ¢;41, 1 <17 < s. Then SV T is the
partition associated to ~. In particular, SV T is the smallest partition
B satistying B > S, T.

(2) In general, S AT will not be the largest partition B satisfying
S, T > B. In fact this partition will generally not be balanced (for an
example, see Examples 6.21(1)).

(3) The set of all synchrony classes has the structure of a lattice under
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the operations V, A. We refer to [9, Appendix] for more details on this
point.

Example 6.14. Suppose that the network cell system A has a pair of
synchrony classes S = {A4;,...,A,} and 7 = {By,..., B,}. If the two
sets {Ay,..., A}, {Bi,..., B,} are disjoint, then

S\/T:{Ala"wAUHBl""’BD}’

and S A 7 is the minimal synchrony class. On the other hand, if
{Ay, ..., A}, {B1,..., B,} are not disjoint (and so necessarily both S
and 7 consist of cells of the same type), then

SVT ={A,,...,AYU{B,,...,B),

and SAT = {Ay,..., A}t N{By,...,B,}. In this case S AT is the
largest partition satisfying S, T > SA 7.

6.2. Patch equivalence for balanced partitions.

Definition 6.15. Suppose that S = {S, |1 < ¢ < L} is a balanced
partition of cells for the network cell system A. We say that N is
patch S-equivalent to the network cell system N* if

(1) N is patch equivalent to N*.
(2) For all ¢,p € [1, L]y, the total number of connections from cells
in Sy to cells in S, is the same for N and N*.

Remarks 6.16. (1) Definition 6.15 implies that when we repatch a con-
nection from &, to S,, we do not move the output plug outside of S,
nor the input plug outside of S,.

(2) If NV is patch S-equivalent to the network cell system N*, then N*
is necessarily S-balanced.

Example 6.17. We continue with the notation and assumptions of
examples 6.5(3). The network of figure 16 is Se-equivalent to the net-
work of shown in figure 17, Note that M; = {A0, A1, A2} is minimal
with respect to Sp-equivalence and that {A3, A4} is M;j-slaved. The
minimal subnetwork M; corresponds to the quotient networks defined
in [9]. In our situation, it is trivial that every solution defined on M;
corresponds to an S,-synchronous solution for the original network.

Definition 6.18. Let B = {B, | ¢ € [1, L]y} be a balanced family of
subsets of the network cell system N
(1) The network N is B-minimal if every network cell system N*
which is B-patch equivalent to N contains no slaved subnet-
work.
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FiGURE 17. Repatching the network of figure 16

(2) Assuming that B defines a partition of A/, the network N is
B-transitive if for all £,p € [1, L]y, there is a (directed) path of
connections from a cell in By to a cell in B,,.

(3) We say that S C N is strongly B-connected if S is connected
and it is not possible to disconnect S by B-repatching the sub-
network S.

Example 6.19. The subnetwork M; of figure 17 is S;-minimal and
So-transitive. The network of figure 16 is Sy-transitive.

Theorem 6.20. Let N = (C,m,P) be a network cell system with
m? >0, j € [1,kly. Suppose that B = {B, |1 < ¢ < L} is a balanced
family of subsets of N'. Then N is patch B-equivalent to N* where

(1) N* contains a finite set of mutually disjoint B-minimal subnet-
works M;, 1 <1 <t. The M; are unique up to order.
(2) There exists a partition of N* \ U;M,, into sets S;, 1 < j <d,
such that
(a) Each S; is strongly B-connected.
(b) For each j € [1,d]n, there exists a subset p(j) C [1,t]n for
which S; is Ujep(jyM;-slaved.
(c) There are no connections between cells in S; and Sy, j #
J'
(d) If S; contains cells in By, then there are no connections
from cells in B, N (N*\'S;) to cells in S;.
(e) Properties (a,b,c,d) uniquely characterize the S;.
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(3) If N is B-transitive, the minimal subnetworks M; are all B-
patch equivalent and contain exactly L+ R cells, where R is the
number of cells in the set N\ U,B,.

Proof. We use the partition of A/ determined by B and declare that
cells lying in different sets of the partition have different types. The
proof of the theorem then follows using Proposition 5.16. U

Examples 6.21. (1) In figure 18 we show a network N of six identical
cells, each cell with two inputs. If we set B = {Bj, By, B3}, where
By, = {Al, A2}, By = {B1, B2}, B3 = {C1,C2}, then B is a balanced
family of subsets of N and {A1, A2|| B1, B2|| C1,C2} is a synchrony
class. Obviously, N is B-transitive.

— 4@

FIGURE 18. An asymmetric network of identical cells

Similarly, the sets { B1, B2}, {C1,C2}, and { B1, B2 || C'1,C2} define
synchrony classes for A/ associated to the balanced families {By}, {Bs}
and {By, B3} respectively. We emphasize that even though the cells are
all assumed to be identical, we do not assume that the B- and C-cells in
{B1, B2|| C1,C2} are synchronous. Indeed, { B1, B2,C1,C2} is not a
synchrony class. There are two other synchrony classes (balanced fam-
ilies). There is the maximal synchrony class {Al, A2, B1, B2,C1,(C2}
where the cells A, B and C cells are all synchronous, and there is the
synchrony class: {Al, A2 || B1,C1|| B2,C2} associated to the unique
symmetry of the system: Al «— A2, Bl «— C1, B2 «—— (2.

It follows from the theory in [5] that this type of network cell sys-
tem can admit robust heteroclinic cycles. More specifically, let Vpe,
Vi and Vi denote the invariant subspaces respectively defined by the
synchrony classes { B1, B2 || C'1,C2}, {B1, B2}, {C1,C2}. Tt is shown
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F1GURE 19. Heteroclinic cycles

in [5] that if we assume that the cells are governed by one-dimensional
dynamics (dimension(V') = 1) then there are choices for the underlying
dynamics F' which give a robust heteroclinic cycle between equilibria
X, Y € Vgo. We refer to figure 19 and note that the dimension of
the unstable manifolds of X and Y will be one, with W*(X) C Vg,
W*(Y) C Vp. Noting that, through loss of stability, asymptotically
stable cycles often give rise to nearby attracting limit cycles, this net-
work has the possibility of exhibiting periodic solutions corresponding
to an oscillation between (approximately) synchronous B and C' states.

F1GURE 20. B-minimal network

The network N is patch B-equivalent to N*, where N'* consists of
two identical B-minimal networks, see figure 20. Observe that the
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B-minimal network has Ds-symmetry. Any fully Ds-symmetric solu-
tion to the minimal B-minimal network equations determines a syn-
chronous solution lying in the { A1, A2, B1, B2, C'1, C2} synchrony sub-
space. In general, an asymmetric solution of the B-minimal network
equations determines a solution lying in the { A1, A2 || B1, B2 || C1,C2}
synchrony subspace. One way of obtaining such a solution is via a D3-
equivariant Hopf bifurcation from a fully symmetric equilibrium of the
B-minimal network. For suitable model equations, this solution will
determine three pairs of periodic solutions for the original network,
each differing by a phase which is a multiple of 27/3 [7]. That is, each
of cell pairs {A1, A2}, {B1, B2}, {C1,C2} will oscillate synchronously
with the same frequency but each pair will be £27/3 out of phase with
the other pairs. That solutions of this type exist is perhaps not obvious
from a casual glance at the network of figure 18. We refer to [9, §5]
for another example of this type that depends on an interesting vari-
ation of the Hopf bifurcation argument. The differential equations for
dynamics on the B-minimal network are given by the Ds-equivariant
system

i‘A - F(I‘A;I’B,J,‘C),
j:B — F(.TB;.rA,./L'C),
l"c = F(mc;l'A,.Z'B).

(Note that the map F'(x;u,v) is symmetric in u, v — see section 4).

FIGURE 21. B’-minimal network

If we define B" = {B,, B3}, then B’ defines the synchrony class
{B1,B2| C1,C2}. The network N is B’ transitive. We show the

corresponding unique minimal network in figure 21.
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The differential equations for dynamics on the B’-minimal network
are given by

Ty = Flza;rp zc),
Tas = F(wa2;zp,20),
tp = F(rp;rar,v0),
tc = F(rc;xas,Tp).

Here F' is the vector field defining the dynamics on the cells. This
system of equations is equivariant with respect to the order two group
generated by (z41, %42, 7B, 2c) — (Ta2,Ta1,To, TB).

(2) Consider the network N of figure 10. Let B; = {Ai}, i = 1,2,3 and
B, = {B1,B2}. Then (see examples 6.5(1)), B = {B; |i =1,...,4}
is a balanced partition of of N'. Clearly, N is B-transitive. It follows
that (up to B-patch equivalence) there is just one B-minimal network.
See figure 22.

R

~"" Slaved subnetwork ...

FiGURE 22. Repatching the network of figure 10

The equations for the minimal network are

a1 = Fi(2a;242,TB2),
Taz = Fi(2a2;243,TB2),
Ta3 = Fi(Ta3;741,7B2),
Ty = I5(Tp2; a2, Tp2).

Any solution of these equations gives a solution of the original network
where B1 and B2 are synchronized. Of course, since the equations for
the minimal network are Zs-equivariant (under cyclic permutations of
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the A-cells), we can have solutions of the original network where B1
and B2 are synchronized and the cells A1, A2 and A3 are 27/3 out of
phase. This can be achieved via bifurcation from solutions where Al,
A2 and A3 are synchronous.

7. CONCLUDING COMMENTS

The emphasis in this paper has been on obtaining a reformulation of
the concept of coupled cell network that avoids some of the algebraic
superstructure developed in [11, 9].

One advantage of the approach developed here is that it suggests
more of an ‘engineering’ approach to coupled cell systems. That is,
given a number of basic units (cells or operational amplifiers), design
in a simple way circuits that possess certain robust patterned dynam-
ics. Even the relatively simple six cell system described in the previous
example, displays a remarkable variety of structured dynamics. Prac-
tically, there are issues of determining the stability of synchronous so-
lutions and heteroclinic cycles. The resolution of these issues depends
to a greater or lesser extent on understanding the functional structure
of vector fields defined on coupled cell systems. For synchronous so-
lutions, this requires a study of a minimal network, for asynchronous
solutions (for example, attracting heteroclinic cycles), information is
required about the functional structure on the entire network (see [5]).

It should be noted that there are no restrictions on the minimal
networks. That is, every network cell system M may be regarded as
the minimal network of a (larger) network cell system N. Each cell
b; € M will determine a subset B; C N such that B = {B,} is a
balanced family of subsets of N.

Finally a few comments about the mathematical differences between
the two approaches to coupled cell systems. Stewart and coworkers
fix a coupled cell system and then quantify the information using
groupoids and graphs. Using various types of equivalence relation on
the groupoid, it is then possible to define quotients which encapsulate
dynamics on synchronous subspaces. On the other hand, we start with
a coupled cell network and then find the invariants under various types
of repatching of the network. This leads naturally to the concepts of
minimal and slaved networks that determine dynamics on synchronous
subspaces. Whatever approach one uses, the eventual equations that
determine dynamics are the same.
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