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Abstract

In this paper, we use the Picard method for solving nonlinear quadratic Volterra integral equations by using approach of
the self-canceling noise terms which is proposed by Wazwaz (Wazwaz, 2013) . The analytical solutions show that only
two iterations are needed to obtain accurate approximate solutions.To illustrate the ability and reliability of the method,
some examples are given, revealing its effectiveness and simplicity.
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1. Introduction

Volterra integral equations have many applications in many areas and branches, for instance, mathematical physics, chem-
istry, electrochemistry, semi-conductors, scattering theory, seismology, heat conduction, metallurgy, fluid flow, chemical
reaction and population dynamics (Teriele, 1982) and (Lamm et al, 1997).

Hence, different methods are suggested for solving the Volterra integral equation. The Adomian decomposition, (Bougoffa
et al, 2011), (Pandey et al, 2009) and Homotopy perturbation (He, 1999) were proposed for obtaining the approximate
analytic solution of the integral equation. Huang et al (2008) used the Taylor expansion of unknown function and obtained
an approximate solution. Yang (2012) proposed a method for the solution of integral equation using the Chebyshev
polynomials, Khodabin et al (2013) solved the stochastic Volterra integral equations by triangular functions and their
operational matrix of integration. Yousefi (2006) presented a numerical method for the Abel integral equation by Legendre
wavelets. Kamyad (2010) constructed a new method based on the calculus of variations and discretisation method, Yang
et (2013) applied Laplace transform and Taylor series to solve the Volterra integral equation with a convolution kernel.

Consider the following non linear Volterra Quadratic integral equation

x(t) = a(t) + g(t, x(t))

t∫
0

f (s, x(s))ds, (1)

where a and g are known functions. The function f (s, x(s)) is nonlinear in the unknown function x. The existence of
continuous solution of (1) was proved in (El-Sayed et al, 2008).

In (El-Sayed et al, 2010), the classical method of successive approximations (Picard method) and the Adomian decom-
position method were used for solving the nonlinear Volterra Quadratic integral equation of the form in (1), the result
showed that Picard method gives more accurate solution than ADM. On the other hand, Wazwaz (2013) used a systematic
modified Adomian decomposition method (ADM) and the phenomenon of the self-canceling -noise-terms for solving
nonlinear weakly-singular Volterra, Fredholm, and Volterra-Fredholm integral equations, he show that the proposed ap-
proach minimizes the computation. In this work, we will use the same approach in (Wazwaz, 2013) with Picard method
for solving Quadratic Volterra integral equations of the form in (1). The analytical solutions for some examples show that
only two iterations are needed to obtain accurate approximate solutions. The elegance of this method can be attributed to
its simplistic approach in seeking the exact solution of the problem.

2. Modified Method of Successive Approximations (Picard Method)

Applying Picard method (Curtain, 1977) to the quadratic integral equation (1), the solution is constructed by the sequence

xn(t) = a(t) + g(t, xn−1(t))
t∫

0
f (s, xn−1(s))ds, n = 1, 2, 3, ...

x0(t) = a(t).
(2)
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All the functions xn(t) are continuous functions and the solution will be,

x(t) = lim
n→∞

xn(t).

In this work, we decomposes the function a(x) into two components f0(t) and f1(t), where the first part is assigned to the
zeroth solution, and the second is added to the first solution x1(t). ,i.e

x0(t) = f0(x),

x1(t) = f1(t) + g(t, x0(t))
t∫

0
f (s, x0(s))ds,

xn+1(t) = g(t, xn(t))
t∫

0
f (s, xn(s))ds, n ≥ 1.

(3)

Notice that if a(x) consists of one term, the modified Picard method cannot be used.

3. Numerical Examples

In this section, we will study some numerical examples by applying Picard and modified Picard method. We begin by
using Picard method first, then the modified of Picard method to show how is the new approach give an easily and fast
convergence to the exact solution with minimum time and computation cost.

Example 1.

Consider the following nonlinear Volterra equation,

x(t) =
(
t2 − t10

35

)
+

t
5

x(t)

t∫
0

s2x2(s)ds, (4)

with Exact solution x(t) = t2. If we apply the classical Picard method we get

xn(t) =
(
t2 − t10

35

)
+ t

5 xn−1(t)
t∫

0
s2xn−1

2(s)ds, n = 1, 2, ...

x0(t) =
(
t2 − t10

35

)
x1(t) =

(
t2 − t10

35

)
+ t

5 x0(t)
t∫

0
s2x0

2(s)ds

= t2 − t10

35 +
t12

35 −
44t20

18375 +
1094t28

14791875 −
76t36

73959375 +
t44

172571875 .

The solution will be,
x(t) = lim

n→∞
xn(t).

Conversely, for solving Example 1 by using the new approach, we first decompose a(x) =
(
t2 − t10

35

)
into two parts defined

as f0(x) = t2, f1(x) = − t10

35 .

Now, applying Picard method we get the following result

x0(t) = f0

x1(t) = f1 + t
5 x0(t)

t∫
0

s2x0
2(s)ds

= 0.

(5)

Therefore, xn+1(t) = 0, n ≥ 0 and consequently x(t) =
∞∑

n=0
xn(t) = t2 , which is the exact solution. As we mentioned before,

we get the Exact solution for the integral equation just after calculate x1(t).

Example 2.

Consider another example of nonlinear Volterra equation as below,

x(t) =
(
t3 − t19

100
− t20

110

)
+

t3

10
x2(t)

t

∫
0

(s + 1)x3(s)ds, (6)
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with Exact solution x(t) = t3. First, we Apply Picard method, we get

xn(t) =
(
t3 − t19

100 −
t20

110

)
+ t3

10 x2
n−1(t)

t

∫
0

(s + 1)xn−1
3(s)ds, n = 1, 2, ...,

x0(t) =
(
t3 − t19

100 −
t20

110

)
x1(t) =

(
t3 − t19

100 −
t20

110

)
+ t3

10 x2
0(t)

t

∫
0

(s + 1)x0
3(s)ds

= t3 − t19

100 −
t20

110 +
1
10 t3(t3 − t19

100 −
t20

110 )2

( t10

10 +
t11

11 −
3t26

2600 −
7t27

3300 −
3t28

3080 +
t42

140000 +
93t43

4730000 +
3t44

166375 +
t45

181500 −
t58

58000000 −
41t59

649000000

− 21t60

242000000 −
43t61

811910000 −
t62

82522000 )

and the solution will be,
x(t) = lim

n→∞
xn(t).

Again, for solving Example 2 by the new approach as in Example 1, We decompose

a(x) =
(
t3 − t19

100 −
t20

110

)
into two parts defined as f0(x) = t3, f1(x) = − t19

100 −
t20

110 . After that we apply Picard method to get

x0 = f0,

x1 = f1 + t3

10 (x0)2
t

∫
0

(s + 1)(x0(s))3ds = 0.

Therefore, xn+1(t) = 0, n ≥ 0 and consequently x(t) =
∞∑

n=0
xn(t) = t3 , which is the exact solution.

Example 3.

Consider the following nonlinear Volterra equation of second kind,

x(t) = 1 + sin(t) − cos(t) −
t∫

0

x(s)ds, 0 ≤ t ≤ 2, (7)

with Exact solution x(t) = sin(t). Applying Picard method to equation (7), we get

xn(t) = 1 + sin(t) − cos(t) −
t∫

0
xn(s)ds,

x0(t) = 1 + sin(t) − cos(t),
x1(t) = −t + 2 sin(t),
x2(t) = −1 + t2 + cos(t) + sin(t),
...
x(t) = lim

n→∞
xn(t).

On the other hand, we apply the new approach and again we decompose

a(x) = 1 + sin(t) − cos(t) into two parts defined as f0(x) = sin(t), f1(x) = 1 − cos(t).

Now, by applying Picard method we get
x0 = f0,

x1 = f1 −
t∫

0
x0(s)ds, = 0.
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Therefore, xn+1(t) = 0, n ≥ 0 and consequently x(t) =
∞∑

n=0
xn(t) = sin(t) , which is the exact solution for the equation. So,

we get the exact solution after few steps.

4. Conclusion

In this paper, we have concerned ourselves with the determination of the exact closed form solutions of several nonlin-
ear Volterra equations, the cost of the calculations was minimized, which validates the efficiency and reliability of the
proposed technique.
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