

ALEXANDRIA UNIVERSITY

FACULTY OF ENGINEERING

DEPARTMENT OF ENGINEERING MATHEMATICS AND PHYSICS

COMPUTER ALGEBRA

AND ITS APPLICATIONS

A thesis submitted to the

Department of Engineering Mathematics and Physics

in partial fulfillment of the requirements for the degree of

Master of Science
in Engineering Mathematics

By

Hazem Mohamed El-Alfy

B.Sc., Faculty of Engineering, Alexandria University, 1997

Supervised by:

Prof. Dr. Abdel-Karim Aboul-Hassan

Dr. Mohamed Sayed

August 2001

We certify that we have read this thesis and that, in our opinion, it is fully

adequate, in scope and quality, as a dissertation for the degree of Master of

Science.

Judgment Committee

Prof. Dr. Ahmed A. Belal

Dept. of Computer Science and Automatic Control

Faculty of Engineering, Alexandria University.

Prof. Dr. Ahmed M. A. ElSayed

Dept. of Mathematics

Faculty of Science, Alexandria University.

Prof. Dr. Abdel-Karim Aboul-Hassan

Dept. of Engineering Mathematics and Physics

Faculty of Engineering, Alexandria University.

For the Faculty Council

Prof. Dr. Hassan A. Farag

Vice Dean for Graduate Studies and Research

Faculty of Engineering, Alexandria University.

Supervisors:

Prof. Dr. Abdel-Karim Aboul-Hassan

Department of Engineering Mathematics and Physics,

Faculty of Engineering,

Alexandria University.

Dr. Mohamed Sayed

Department of Engineering Mathematics and Physics,

Faculty of Engineering,

Alexandria University.

ACKNOWLEDGMENT

It is a pleasure for me to acknowledge the many people who have contributed to

this work. Listing all of them would require dozens of pages, and may always

miss some others.

First and before all, glory be to Allah, the first teacher to mankind.

I would wish to thank my supervisors, Prof. Dr. Abdel-Karim Aboul-Hassan

and Dr. Mohamed Sayed for their considerable help in my research; something

I can’t deny.

I would like to extend a special note of thanks to Prof. Franz Winkler at the

Research Institute for Symbolic Computation at Linz University, Austria. He

was very helpful in providing me with several references.

Finally, I gratefully acknowledge the support, encouragement and patience of

my parents.

Abstract

In the recent decades, it has been more and more realized that computers are of

enormous importance for numerical computations. However, these powerful general-purpose

machines can also be used for transforming, combining and computing symbolic algebraic

expressions. In other words, computers can not only deal with numbers, but also with abstract

symbols representing mathematical formulas. This fact has been realized much later and is

only now gaining acceptance among mathematicians and engineers. [Franz Winkler, 1996].

Computer Algebra is that field of computer science and mathematics, where

computation is performed on symbols representing mathematical objects rather than their

numeric values.

This thesis attempts to present a definition of computer algebra by means of a survey

of its main topics, together with its major application areas. The survey includes necessary

algebraic basics and fundamental algorithms, essential in most computer algebra problems,

together with some problems that rely heavily on these algorithms. The set of applications,

presented from a range of fields of engineering and science, although very short, indicates the

applied nature of computer algebra systems.

A recent research area, central in most computer algebra software packages and in

geometric modeling, is the implicitization problem. Curves and surfaces are naturally

reperesented either parametrically or implicitly. Both forms are important and have their uses,

but many design systems start from parametric representations. Implicitization is the process

of converting curevs and surfaces from parametric form into implicit form.

We have surveyed the problem of implicitization and investigated its currently

available methods. Algorithms for such methods have been devised, implemented and tested

for practical examples. In addition, a new method has been devised for curves for which a

direct method is not available. The new method has been called near implicitization since it

relies on an approximation of the input problem. Several variants of the method try to

compromise between accuracy and complexity of the designed algorithms.

 The problem of implicitization is an active topic where research is still taking place.

Examples of further research points are included in the conclusion.

��������������	
� ����

�������������	����� ������������

��������	����� ��������������� ������������� �	�

�������	�
 ����������� ��

 ���� ���� ����	�

���	����� ���������� ���������� �	�
����� ��� ���!"�� ���#�$% & '(�� ����)�

�������	

 '*��	����� ���������

&� ����

���
 ��� ����

 ������� �	
� � ��	��������	������� ����

+���,
� �����

� .� .��� ���
 ��� ���
 ���

� .��� ��� ���

 -$./2001

�������� 	
���

 ��� �����	
 ��� �����	
 �����	
 �� �� ������	
 �
����
 ��
�� ������	
 �
����	

 ��� �����	
 !"# $� �����	
 %&� '���('�)*+
 ,&� �- �����)�	
� ������	
 .��&� ,
��/ �*���

 �����	
 ������	
 $� �)&���� �� �0� 1 '.�23� �����	
 . ������ �������	
 �
�����
 5�6- �(�

 !"# �7� �� �+
�8� ������	
 ��� �����	
 $� �����	
 �� ������ ���� ��� ����� ����� �����	

.�9�:	 ;��� <�- ��3
���3 ��(� ,&)��� <�- %	/ ���=��.

 ������" ������	
 ��* "? �	���	
 @��� ? A����	
 �������	
 ��� @�2	
 ,	" �#

�)�9�
�� �)&� �7 ��� B���	
 '�)*- %&� �)0��9�� �)&�&��� �����	
 ��� �����	
 ��
���.

 # ������� ��&�	
 ,	" ������+ �273� ��*
�� C��9 �� ������	
 ��* @��� �	���	
 !"

 ������	
 <������ ��- �����
 $�) �
��	
 ���� (��- C��9� ���� �7 ������ �73- �3F� <��
���

�	��	
 ���	
 %&� ,	"� ������	
 ��&�2�	
 �1����	
 ��*� �� ������	
 ��* G�
�� ���.

� ��+
 B��	
:<	 �6��� I���� $� ������	
 ��* �� ���0� .

� ���7	
 B��	
 : I�6� �7 ��� <	 �2&���	
 I�����	
 �3" $� B���	
 ��* ������+ ��*
��

 ������
��	
 ��*	 <2���� �F(���� B���	
 ��* . �������
��	 ���*
�� %�&� B��	
 J���� ��3

 %	/ ���=�� �B���	
 ��* ����� �� ����	
 ��	 �����-�&�	

"# ��0��9� �� ����*�.

� K	�7	
 B��	
 : '��6	
 %	/ �����
���	
 '��6	
 �� �)&���� J- ��
��	
 ���� @��� ��
��

 B���	
 ��* G�
�� ���	 �����+
 ������	
 ��- ����� J"	
� �����	
 . ��&��� ��
�� ��� �(�

 * C�9 L
��(
 $� �@���	

"# �� �2&���	
 �����	
� C�9	
 ��3��1 ���	
 �
���&	 �����0� '���

����� �� L��� �# ��� �)�� �����	
.

� $�
�	
 B��	
 : ���� �����	
 ����� �� C���	
 B��	
 �� <�� �� ��	 ������
�� ���6�

B���	
 %&� �)0��9�� �)�*��� �7.

� M���	
 B��	
 :����0� K�� 9�0�� G����	
 �6��.

Table of Contents

Chapter 1: INTRODUCTION …………………………………………... 1

1.1 WHAT IS COMPUTER ALGEBRA? …………………………………………... 1

1.1.1 An attempt at a definition …………………………………………………... 1

1.1.2 Algebraic calculations ……………………………………………………… 2

1.1.3 Why do we need algebraic calculations? …………………………………... 3

1.1.4 Limitations of Computer Algebra ………………………………………….. 3

1.2 ALGORITHMIC ALGEBRA ………………………………………………….. 4

1.2.1 An overview of active topics in algebraic computation …………………… 4

1.2.2 Algorithmic Algebra ……………………………………………………… 5

1.3 ORGANIZATION OF THE THESIS …………………………………………. 6

Chapter 2: COMPUTER ALGEBRA TOOLS AND APPLICATIONS 7

2.1 ALGEBRAIC PRELIMINARIES ………………………………………………. 7

2.1.1 Sets, functions and operations ……………………………………………… 7

2.1.2 Algebraic Systems………………………………………………………….. 8

2.1.3 Polynomial Rings ………………………………………………………….. 15

2.1.4 Representation of numbers and polynomials ……………………………… 17

2.2 THE EUCLIDEAN ALGORITHM ………………………………………………… 22

2.2.1 Basic notions ………………………………………………………………. 22

2.2.2 The Classical Euclidean Algorithm ……………………………………….. 22

2.2.3 The Extended Euclidean Algorithm ………………………………………. 23

2.3 APPLICATIONS OF THE EUCLIDEAN ALGORITHM ……………………. 25

2.3.1 Modular arithmetic ………………………………………………………… 25

2.3.2 Modular exponentiation ……………………………………………………. 27

2.3.3 Modular inverses …………………………………………………………… 27

2.3.4 Linear Diophantine equations ……………………………………………… 29

2.3.5 Squarefree factorization ……………………………………………………. 30

2.3.6 Squarefree partial fraction decomposition ………………………………… 32

2.3.7 Integration of rational functions …………………………………………… 34

2.4 THE CHINESE REMAINDER ALGORITHM ……………………………….. 37

2.5 APPLICATIONS OF THE CHINESE REMAINDER ALGORITHM ………… 38

2.5.1 The interpolation problem ………………………………………………….. 38

2.5.2 Modular algorithms ………………………………………………………… 39

2.5.3 Modular determinant computation ………………………………………… 39

2.5.4 Partial fraction decomposition ……………………………………………… 42

2.6 GRÖBNER BASES …………………………………………………………… 43

2.6.1 Basic definitions and notation ……………………………………………… 43

2.6.2 Multinomial division with remainder ……………………………………… 45

2.6.3 Hilbert’s basis theorem and Gröbner bases ………………………………… 47

2.6.4 Computation of Gröbner bases……………………………………………… 48

2.7 APPLICATIONS OF GRÖBNER BASES……………………………………… 49

2.7.1 Ideal membership problem ………………………………………………… 49

2.7.2 Geometric theorem proving ………………………………………………… 49

2.7.3 Implicitization ……………………………………………………………… 51

2.7.4 Solving systems of polynomial equations ………………………………….. 52

2.8 GENERAL APPLICATION AREAS OF COMPUTER ALGEBRA ………….. 53

2.8.1 Celestial mechanics ………………………………………………………… 53

2.8.2 Geometric theorem proving ………………………………………………… 54

2.8.3 Computational algebraic geometry ………………………………………… 54

2.8.4 Robotics ………………………………………………………………….. 55

2.8.5 Chemistry ………………………………………………………………… 56

Chapter 3: THE IMPLICITIZATION PROBLEM …………………… 58

3.1 INTRODUCTION ……………………………………………………………… 58

3.1.1 Preliminaries ……………………………………………………………… 58

3.1.2 Parametric and implicit forms ……………………………………………… 59

3.1.3 Variants of implicitization …………………………………………………. 62

3.2 MORE RESULTS FROM ALGEBRA ………………………………………… 63

3.2.1 Resultants ………………………………………………………………… 63

3.2.2 Homogeneous systems of linear equations ………………………………… 70

3.3 IMPLICITIZATION ALGORITHMS ……………………………………… 73

3.3.1 Implicitization of rational curves ………………………………………… 73

3.3.2 Implicitization of generalized trigonometric polynomials curves …………. 80

3.3.3 Near implicitization ………………………………………………………… 85

Chapter 4: IMPLEMENTATION ………………………………………. 87

4.1 IMPLICITIZATION OF RATIONAL CURVES ……………………………… 87

4.1.1 Algorithm …………………………………………………………………. 87

4.1.2 Implementation …………………………………………………………… 88

4.1.3 Sample runs ………………………………………………………………… 90

4.2 IMPLICITIZATION OF GENERALIZED TRIGONOMETRIC

POLYNOMIALS CURVES …………………………………………………………

92

4.2.1 Algorithm ………………………………………………………………… 92

4.2.2 Implementation …………………………………………………………… 92

4.2.3 Sample runs ………………………………………………………………… 93

4.3 NEAR IMPLICITIZATION ……………………………………………………. 94

4.3.1 Algorithms ………………………………………………………………… 94

4.3.2 Implementation …………………………………………………………… 95

4.3.3 Sample runs ………………………………………………………………… 96

Chapter 5: CONCLUSION AND FUTURE WORK ………………….. 104

REFERENCES …………………………………………………………………………. 105

APPENDIX A: Computer Algebra Systems ………………………………………….. 107

APPENDIX B: History of Symbolic Computation …………………………………… 112

1

Chapter 1: INTRODUCTION

In this thesis, we attempt first to answer the question: what is Computer Algebra? The

answer is extracted from the existing literature [1] [2] [4] [5]. Secondly, a review of some

computer algebra basics is given. Those reviewed basics are elements of abstract algebra and

three mathematical objects fundamentally needed, namely, Euclidean algorithm, Chinese

remainder algorithm and computation of Gröbner bases algorithm. Such objects are needed

and used to build computer algebra systems (CAS).

Since polynomial systems have a wide range of applications, in algebraic geometry,

automated geometric theorem proving, computer aided design (CAD) and computer aided

manufacturing (CAM) systems, computer graphics, virtual reality and other fields, we picked

up the problem of implicitization to investigate.

Algorithms of implicitization are given when not provided in the literature. Other

algorithms are suggested as well. These are proved and implemented using the software

package Matlab, with some sample runs to furnish their applicability.

1.1 WHAT IS COMPUTER ALGEBRA?

In this section, we attempt to define the term computer algebra. It is opposed to

numerical analysis and its uses and limitations are presented.

1.1.1 An attempt at a definition

Computer Algebra, also known as Symbolic Computation, Algebraic Manipulation or

Formula Manipulation, is a scientific field in computer science and mathematics, where

computation is performed on symbols representing mathematical objects rather than their

numeric values.

Franz Winkler [2] restates R. Loos' definition made in his introduction to Buchberger

et al. (1983): "Computer algebra is that part of computer science which designs, analyzes,

implements, and applies algebraic algorithms".

Gathen and Gerhard [1] present the following definition: "Computer Algebra is a

more recent area of computer science where mathematical tools and computer software are

developed for the exact solutions of equations".

2

In [5], it is stated that the principal function of a Computer Algebra system is the

rearrangement of data so that the relevant information in it is easier to extract. In the

implementation of the Computer Algebra System designed in this reference, it is stressed on

the fact that a symbolic solution of a problem indicates how the solution was reached in terms

of the symbols constituting the problem, instead of its numeric value.

1.1.2 Algebraic calculations

Algebraic computation or symbol manipulation or computer algebra is the field of scientific

computation which develops, analyzes, implements and uses algebraic algorithms.

Typical features of algebraic computation are:

• Computation with arbitrary precision numbers--no rounding.

• Computation with symbols and variables (e.g. x, y).

• Computation with functions (e.g. sin, cos).

• Manipulation of formulas.

• Symbolic operations (differentiation, integration, factorization, etc.)

As opposed to numerical computation, symbolic computation has the following

characteristics:

Numerical Computation Symbolic Computation

Computations with numbers only

e.g.: 2 + 3 = 5

Computing in algebraic structures

(polynomial rings, finite fields, etc…) in

addition to computing with numbers

(algebraic number domains).

e.g.: x + 2x = 3x,
12

5

4

1

6

1
=+ .

Approximate results

e.g.: 0.86602…, cos(3.1415)= -0.999…

Exact representation of results

e.g.:
2

3
, cos(π) = -1

Numeric results

e.g.: 1438.0
1

2/1

0 2
=

−

∫ dx
x

x

Symbolic results

e.g.: axdx
ax

x
−=

−

∫
2

2
ln

2

1

Numeric evaluation

e.g.: a
2
-b

2
 = ?? (undefined a,b)

Symbolic simplification

e.g.: a
2
-b

2
 = (a-b)(a+b)

3

1.1.3 Why do we need algebraic calculations?

• There exist algorithms which cannot easily be performed manually with pencil and

paper (e.g., factorization).

• Algebraic solutions are usually more compact than a set of numerical solutions;

algebraic solution gives more direct information about the relationship between the variables

than figures.

• From algebraic expressions, one can deduce how changes in the parameters affect the

result of the computation. As a consequence one can build decision algorithms on computer

algebra, e.g. for the factorizability of polynomials, the equivalence of algebraic expressions,

the solvability of certain differential equation problems, the parametrizability of algebraic

curves

• Algebraic solutions are always exact, numerical solutions will normally be

approximates; this can arise from rounding and truncation errors, further errors can creep in

when the user interpolates data given in tabular form.

• Computer algebra can save both time and effort in solving a wide range of problems;

much larger problems can be investigated than by using traditional methods.

• Computer algebra reduces the need for tables of functions, series and integrals; thus

avoids errors when using such tables.

• Traditional teaching of applied mathematics has to involve much time in teaching

techniques of solution; computer algebra systems tend to produce solutions quickly and

without errors, so they enable more time to be devoted to studying the properties of the

solution. Nowadays, there exist many attempts of using computer algebra systems (CAS) in

computer aided learning (CAL).

• Using of computer algebra allows also very effective construction of numerical

algorithms and their semiautomatic programming by code generation, the effectiveness of the

work and reliability of the results can be strongly increased.

1.1.4 Limitations of Computer Algebra

The previous sections present computer algebra much more superior than numerical

analysis. This is not the case, however. Symbolic computation has its limitations and thus

can't supersede numerical solutions. Some examples of such cases are illustrated hereunder.

4

1. High complexity problems: There are problems for which symbolic computation of an

exact solution is prohibitively expensive, e.g., the problem of finding the solutions to a

system of algebraic equations:

f1(x1, …, xn) = 0,

…

fm(x1, …, xn) = 0.

where the fi's are polynomials with, say, integral coefficients. This is the most natural

application of Gröbner bases, and they were originally invented for this. Unfortunately,

computing Gröbner bases is at least exponential in the number of variables n. In fact, Mayr

proved in 1992 that the Ideal Membership problem (a problem that is reducible to computing

a Gröbner basis in polynomial time) is EXPonential-SPACE complete, thus EXPTIME [1].

2. Problems with no symbolic solution: There are many problems that don't have closed form

or exact symbolic solutions, e.g. differential equations. Symbolic solutions are available for

only a small class of simple differential equations, such as integration problems and

homogeneous linear differential equations. However, not much is known concerning

symbolic algorithms for other types of differential equations, in particular partial differential

equations [2].

3. Cumbersome results: Exact solutions may be too complex for the user of Computer

Algebra System to assess, even for an order of magnitude. This is not a limitation in the usual

sense of the word, but rather an inconvenience of working only with exact results.

1.2 ALGORITHMIC ALGEBRA

A closely related term to computer algebra is algorithmic algebra. It can be briefly

defined as the science of developing algorithms for the solution of various problems of

algebra. In this section, this term is defined in more details, and areas where it is applied are

presented.

1.2.1 An overview of active topics in algebraic computation

In the last years, there has been dramatic progress in all areas of algebraic computation.

Many working mathematicians have access to and actually use algebraic software systems for

5

their research. No end of this development is in sight. As reported in the proceedings of the

Vienna Conference for Algebraic Computation [4], some of the active topics in this area

cover the following subjects:

• Algorithmic methods for indefinite integration.

• Solutions of systems of algebraic equations.

• Factorization of polynomials.

• Geometry of algebraic curves and surfaces: implicitization and parametrization.

• Algorithmic methods for computing closed form solutions of differential equations

(this topic is in its infancy; many differential equations are still unsolved symbolically).

Most of these topics rely heavily on algorithmic algebra defined hereunder.

1.2.2 Algorithmic Algebra

In his textbook, Algorithmic Algebra, B. Mishra proposes the following definition of

algorithmic algebra [3]: “[People] who have been instrumental in the rapid growth of

"algorithmic algebra" (…) are working toward a common goal, namely that of developing an

algorithmic foundation for various problems in algebra”.

In the same reference, he discriminates among, somewhat overlapping, four areas of interest

in this subject:

• Constructive algebra, “under which an object exists only if we can construct it” as

opposed to the classical interpretation where “an object exists if its non existence is

contradictory”.

• Computational algebra, where one is concerned with the feasibility, complexity and

implementation of algorithms.

• Symbolic computation, where the researcher’s goal is to develop algorithms that are

efficient in practice.

• Applications, where algorithms are developed to serve specific application areas of

symbolic computation.

Most computer algebra algorithms require one, if not more, of the following results from

algorithmic algebra:

• Algebraic domains and polynomials.

• Greatest common divisors: the Euclidean algorithm.

• Modular computation: the Chinese remainder algorithm.

• Gröbner bases

6

• Resultants and subresultants.

1.3 ORGANIZATION OF THE THESIS

This work proceeds as follows.

Chapter 1, Introduction, is an introduction as its name indicates. An attempt to answer

the question: “what is computer algebra?” is given. A definition of a closely related term,

algorithmic algebra, is also given.

Chapter 2, Computer Algebra tools and applications, is a survey of important results

from algorithmic algebra, used in most computer algebra problems. It starts with an overview

of algebraic systems, with a special emphasis on polynomials, which are required in most

computer algebra algorithms. Then, three fundamental algorithms are presented: the

Euclidean algorithm, the Chinese remainder algorithm and the Gröbner bases computation

algorithm. Specific applications presented after the discussion of each such computer algebra

fundamental algorithm cover a wide range of essential problems present in almost every

computer algebra system. Additional general applications supplemented at the end of the

chapter cover an even wider range of applications.

Chapter 3, the implicitization problem, presents the problem and overviews more

results from algebra required for this specific problem. In addition, it reviews some

implicitization methods (for rational and trigonometric curves) and suggests newly devised

ones (near implicitization variants).

Our work, started at the end of chapter 3, continues in chapter 4, Implementation.

Algorithms are given for all methods reviewed and suggested in the preceding chapter. These

algorithms are implemented using the software package Matlab. Several sample runs furnish

the applicability of these algorithms on practical examples.

Finally, chapter 5 concludes the thesis and suggests further research points.

7

Chapter 2: COMPUTER ALGEBRA TOOLS AND

APPLICATIONS

2.1 ALGEBRAIC PRELIMINARIES

This section presents some basic notions used throughout the thesis. For conciseness,

only definitions and basic facts are introduced, illustrated with examples. Further details and

proofs can be referred to in the literature [3] [6] [7] [8].

Operations on algebraic structures, presented in this section are essential in basic

computer algebra algorithms, such as the Euclidean algorithm and the Chinese remainder

algorithm presented later. These algorithms, in turn, are the basis of many computer algebra

applications, such as the symbolic factorization of polynomials, which serves in the exact

solution of polynomial equations, partial fraction decomposition, integration of rational

functions and many other applications.

Almost every computer algebra algorithm requires dealing with univariate and

multivariate polynomials. These are also overviewed in the present section.

2.1.1 Sets, functions and operations [6]

Sets

A set is any identifiable collection (finite or infinite) of objects of any sort. The

objects which make up a particular set are called its elements or members. Sets can be

countable or uncountable.

The Cartesian product of two sets X and Y is the set of all ordered pairs (tuples)

whose first entry belongs to X and second entry belongs to Y.

X × Y = { (x,y) | x ∈ X, y ∈Y}

Functions

A function f from X into Y is a subset of X × Y such that:

∀x ∈ X there is one and only one y ∈ Y such that (x,y) ∈ f.

X is called the domain of f. Y is called the range of f.

Operations

A binary operation * on X is a function of X × X into X.

Given an operation *, the notation a * b is used for *(a,b).

8

Closure: for an operation * defined on X, and a subset A ⊆ X, it is said that A is closed under

the operation * if: a * b ∈ A, ∀a,b ∈ A.

2.1.2 Algebraic Systems

An algebraic system is a set S together with operations *1, *2, …, *k defined on it (i.e.

S is closed under these operations. According to the number of operations, and to certain

properties which X and *i possess, different types of algebraic systems are defined.

Identity and inverse

Let * be an operation on S, and consider the algebraic system {S,*}.

e ∈ S is an identity element of the system {S,*}if:

∀x ∈ S, e * x = x * e = x.

If e is an identity of {S,*}, then x
-1

 ∈ S is called an inverse of x ∈ S, if:

x
-1

 * x = x * x
-1

 = e.

Since most of the systems dealt with don’t have more than two operations, it is

common to use the symbols “+” and “⋅” for *1 and *2. The “⋅” may also be omitted when it is

implicitly understood to be the operation in the context. Usual notations of the identity

elements (if any) with respect to “+” and “⋅” can be “0” and “1” respectively. Finally, the

inverses of x w.r.t. the previous operations will be “-x” and “x
-1

” respectively.

2.1.2.1 Groups [3]

Definition: A group G is a nonempty set with a binary operation “⋅” such that:

1. G is closed under the operation “⋅” :

∀ a,b ∈ G, a ⋅ b ∈ G.

2. The operation “⋅” is associative:

∀ a,b,c ∈ G, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

3. G possesses an identity element:

∃ e ∈ G such that ∀ a ∈ G, e ⋅ a = a ⋅ e = a.

4. Every element of G has an inverse:

∀ a ∈ G, ∃ a
-1

 ∈ G such that: a
-1

 ⋅ a = e.

If {G, ⋅ } doesn’t possess an identity element, (i.e. only the first two conditions are

satisfied), the system is called a semigroup. If condition 3 is also satisfied, but not every

element (or none) is invertible, the system is called a monoid.

9

A group is called an Abelian group if its operation is commutative, i.e.:

∀ a,b ∈ G, a ⋅ b = b ⋅ a.

Examples: [7]

1. The set of n × n matrices with real entries forms an Abelian group under addition, and

a monoid under multiplication (the identity matrix being the identity element, but a

singular matrix is not invertible).

2. Integers under multiplication form a semigroup.

3. The 3
rd

 roots of the unit: 1, ω and ω
2
 form a finite Abelian group under multiplication.

This group is also known as a cyclic group, where each element is a power of one

particular element of the group (Note that ω
3
 = 1).

Definitions:

• A subgroup H of a group G is a non empty subset of G which is itself a group

satisfying the four conditions of a group definition. Otherwise stated:

A subset of a group H ⊆ G is a subgroup if and only if: ∀ a,b ∈ H, a ⋅ b-1
 ∈ H.

• The product of two subsets H1 and H2 of a group G is:

H1H2 = {h1 ⋅ h2 | h1∈H1 and h2∈H2}.

In what follows, it doesn’t matter to omit the “⋅” sign.

• A left coset of a subgroup H of a group G is defined as:

aH = {ah | ∀h ∈ H}, where a is any element of G.

• A right coset is similarly defined as: Ha = {ha | ∀h ∈ H}.

In particular, if a ∈ H then aH = Ha = H.

According to Lagrange theorem, the family of (left or right) cosets of a subgroup H of G

constitutes a partition of G. For finite groups, the number of distinct cosets of H is |G|/|H|,

where the |⋅| denotes the cardinality of sets. [7]

• A subgroup H of a group G is called a normal (or self-conjugate) subgroup of G if:

∀a ∈ G, aH = Ha.

As a result, every subgroup of an Abelian group is a normal subgroup.

• The quotient group of a group G with respect to a normal subgroup H is the set:

G/H = {aH | a ∈ G }, under the operation (xH)⋅(yH) = x⋅yH.

10

This is a set of left cosets, and one can easily prove it is indeed a group, or read the

proof in either of [3] or [7].

Example:

Consider the Abelian group (Z, +, 0); i.e. the group of integers under addition, with identity 0.

The multiples of a positive integer m form a subgroup. The cosets are of the form:

i + mZ = {i + km | k ∈ Z, 0 ≤ i < m }

Two elements a and b of Z (integers) are congruent modulo m (belong to the same coset) if

their difference (a-b) is divisible by m. This is denoted as: a ≡ b mod m.

2.1.2.2 Rings and Ideals [3]

A ring R is a set with two binary operations “+” and “⋅” such that:

1. R is an Abelian group with respect to addition. It has an identity element 0 and every x

∈ R has an additive inverse -x.

2. R is a semigroup with respect to multiplication.

3. Multiplication is distributive over addition, i.e.:

∀ a,b,c ∈ R, a ⋅ (b + c) = a⋅b + a⋅c, and (a + b) ⋅ c = a⋅c + b⋅c.

If in addition, R has an identity “1” with respect to “⋅”, then R is a ring with identity.

If the multiplication operation is commutative, R is a commutative ring.

The group (R, +, 0) is known as the additive group over the ring R.

In what follows, the main concern will be for commutative rings with identity, thus they can

be called just rings.

Examples:

1. The set of integers Z, the rational numbers Q and the real numbers R are examples of

rings with respect to the ordinary addition and multiplication

2. The set of even numbers forms a ring without identity.

3. The set of integers modulo m forms a finite ring. [i]m = {i + mk | k ∈ Z}.

• A subring R’ of a ring R is a nonempty subset of R which is itself a ring satisfying its

three conditions mentioned above.

• An ideal is a subset of a ring I ⊆ R, which satisfies the following conditions:

1. I is an additive subgroup of the additive group of R:

∀ a,b ∈ I, (a-b) ∈ I.

2. I is closed under multiplication with ring elements:

11

∀ (a ∈ R, b ∈ I), ab ∈ I.

The ideals {0} and R are called improper ideals of R. All other ideals are proper.

Note that any ideal of R is also a subring of R. The converse is not true.

Example:

The set of integers that are divisible by 12 form the ideal I = {12r | r ∈ Z}.

• A set B ⊆ R generates the ideal I if I = {r1b1+ … +rnbn | ri ∈ R, bi ∈ B}.

We say that B is a basis or a generating set of the ideal I, and denote it as:

I = 〈b1, … ,bn〉

• A Noetherian ring is one in which any ideal has a finite basis.

Definitions:

• An element x ∈ R is called a zero divisor if there exists y ≠ 0 in R such that xy = 0. (x

and y need not be distinct).

• An element x ∈ R is called a unit if there exists y ∈ R such that xy = 1. (The element x

is thus invertible).

• A ring R is called an integral domain if it has no nonzero zero divisors. In an integral

domain, the cancellation law holds: if a ≠ 0 and ab = ac then b = c.

Thus, in an integral domain, R \ {0} forms a semigroup w.r.t. multiplication.

• A nonzero nonunit p in an integral domain R is reducible if there are nonunits a, b ∈

R such that p = ab, otherwise, p is irreducible. Units are neither reducible nor irreducible.

• A ring R is called a Unique Factorization Domain (UFD) if every nonzero nonunit

a∈R can be written as a product of irreducible elements in a unique way up to reordering and

multiplication by units. [1]

Example:

Z is a UFD, and 12 = 2⋅2⋅3 = (-3)⋅2⋅(-2) are both decompositions of 12 into irreducibles. Note

that the units of Z are 1 and -1, the only integer numbers whose inverses are integers.

• An integral domain R together with a function d:R →N ∪{-∞} is called a Euclidean

domain if for all a,b ∈ R, with b ≠ 0, a can be divided by b with remainder, i.e.:

∀ a,b ∈ R, b ≠ 0, ∃ q,r ∈ R such that a = qb + r and d(r) < d(b).

q is the quotient and r the remainder. [1]

12

2.1.2.3 Fields and Modules [3]

• A field F is an integral domain in which every nonzero element is a unit (i.e.

invertible). Thus a field consists of two Abelian groups with respect to each of its operations:

the additive group (F, +, 0) and multiplicative group (F \ {0}, ⋅, 1).

Examples: Familiar examples of fields are the field of rational numbers Q, the field of real

numbers R and the field of complex numbers C. We have: Q ⊂ R ⊂ C.

• A subfield E of a field F is a subring which itself is a field. We say E is a subfield of F

and F is an extension field of E.

• If R is an integral domain, then F = {a/b | a,b ∈ R, b ≠ 0} is called the field of

fractions or quotient field of R. The field operations can be defined on representatives of the

quotient field in the following way:

a

b

b

a

b

a

b

a

bd

ac

d

c

b

a

bd

bcad

d

c

b

a
=⎟

⎠

⎞
⎜
⎝

⎛−
=−=⋅

+
=+

−1

 , , ,

Modular arithmetic and finite fields: [2]

As already introduced in the example on group cosets, but stated here in other words,

every integer m generates an ideal 〈m〉 in Z. Two integers a, b are congruent modulo m if and

only if m divides (a - b) or (a - b) ∈ 〈m〉. This is also written as a ≡ b mod m.

The congruence relation is an equivalence relation which partitions the set of integers

Z into equivalence classes called residue classes modulo m. The residue classes can be

represented as: [i]m = {i + mk | k ∈ Z, 0 ≤ i < m}, which can be verbosely stated as the set of

integers with remainder i when divided by m.

Now, the set of residue classes forms a finite commutative ring with respect to

addition and multiplication modulo m illustrated in the example in this section. It is denoted

as Zm.

Finally, Zm will be a finite field if and only if m is a prime number. In general, a finite

field need not have prime cardinality. However, every finite field has cardinality p
n
 for some

prime p. This field is usually called the Galois field of order p
n
.

Example - (Modular arithmetic): [6]

Understanding how to compute on the set Zm of congruence classes modulo m is

crucial for computer algebra algorithms. This is called modular arithmetic.

13

Consider for example Z4. [0]4 denotes the set of integers divisible by 4. [1]4 denotes

those integers, such as 9 and -3, which have remainder 1 when divided by 4, and so on for the

classes [2]4 and [3]4. For simplicity, the brackets and subscripts can be omitted. Thus Z4 has

the following addition and multiplication tables.

+ 0 1 2 3 · 0 1 2 3

0 0 1 2 3 0 0 0 0 0

1 1 2 3 0 1 0 1 2 3

2 2 3 0 1 2 0 2 0 2

3 3 0 1 2 3 0 3 2 1

Modules: [3]

Given a ring R, an Abelian group G, and a mapping

rggr

GGR

a,

: →×μ

• We say G is an R-module if, for all r, s ∈ R and x, y ∈ G, the following axioms are

satisfied:

r(x + y) = rx + ry,

(r + s)x = rx + sx,

(rs)x = r(sx),

1x = x.

Thus, an R-module is an additive Abelian group G on which the ring R acts linearly.

• If R is a field F, then an F-module is said to be an F-vector space.

This section on algebraic systems is concluded with the chart that follows [8], which

attempts to put into perspective most of the systems considered, together with brief properties

they have. Note the convention used here, in that a structure “inherits” the properties of its

“parent”, and only those properties specific to it are indicated.

14

Figure 2-1 Relationship between basic algebraic systems

Semigroup

Monoid

Group

Abelian Group

"+" is associative

X possesses an

identity element

every element in

 X is invertible

"+" is commutative

Systems with

one set and one

operation

{ X,+}

+

Ring

{X,+} Abelian group

{X,⋅} Semigroup

"⋅" distributes over "+"

Commutative ring "+" is commutative

Ring with identity {X,⋅} has an identity

Integral domain

 X has no divisors of zero

Systems with

one set and

two

operations

{ X,+,⋅}

Field

Ring

{X*,⋅} Abelian group

Vector space

Composite

systems with

two sets

Module
{R,+,⋅} Ring with identity

{X,+} Abelian group

{F,+,⋅} Field

{X,+} Abelian group

15

2.1.2.4 Homomorphism [3]

• Let (R, +R, ⋅R, 0R, 1R) and (S, +S, ⋅S, 0S, 1S) be two rings (commutative with identity). A

ring homomorphism h is a map from R to S satisfying the conditions:

h(0R) = 0S , h(1R) = 1S , h(a +R b) = h(a) +S h(b), h(a ⋅R b) = h(a) ⋅S h(b).

• A homomorphism h is called an isomorphism from R into S iff h is bijective (i.e. 1-1

and onto).In this case we say that R and S are isomorphic and denote it by R ≅ S.

• The kernel of a homomorphism h: R → S is defined as:

ker h = {a ∈ R | h(a) = 0}.

• The image of a homomorphism h: R → S is defined as:

im h = {b ∈ S | ∃a ∈ R, h(a) = b}.

One can easily verify that ker h is an ideal of R. The quotient ring of R with respect to ker h

has the usual notation: R / ker h. The elements of R / ker h are the cosets of ker h in R, i.e. x +

ker h.

Now consider the ring homomorphism

)(ker

 imker/:

xhhx

hhRf

a+

→

Then f is an isomorphism, hence h: R → S induces a ring isomorphism: R / ker h ≅ im h. This

is known as the homomorphism theorem for rings.

2.1.3 Polynomial Rings [3]

Let S be a ring, and x a symbol called a variable or indeterminate not belonging to S. An

expression of the form: f(x) = ∑n
i=0 aix

i
 , where ai ∈ S, (n finite) is called a univariate

polynomial over the ring S, and the ring elements ai are called the coefficients of f. Assume

that ak = 0 for all k > 0.

• The leading coefficient of f is an, and a polynomial whose an = 1 is called a monic

polynomial.

• Addition and multiplication on the ring of polynomials are defined as follows:

Let f = ∑i aix
i
 and g = ∑j bjx

j
 ,

f + g = ∑k ckx
k
 , where ck = ak + bk ,

f⋅g = ∑k ckx
k
 , where ck = ∑n

i=0 aibk-i .

With the operations defined as shown, it can be verified that the set of polynomials forms a

commutative ring with zero element 0 and identity element 1.

16

• The polynomial ring thus obtained by adjoining the symbol x to S, is hence denoted

as: R = S[x]. The variable x is just a placeholder.

• The degree of a nonzero polynomial f, denoted deg(f), is the highest power of x

appearing in f. By convention, deg(0) = -∞.

• The ring of multivariate polynomials over S is obtained by adjoining the variables

x1,… , xn, successively, to S. Then R = S[x1]…[xn] = S[x1, … , xn].

To understand this more closely, consider the bivariate polynomials S[x, y]. These can be

viewed as univariate polynomials in y with coefficients in the ring S[x].

Thus R consists of the multivariate polynomials of the form: ∑ae1,…,en x1
e1

…xn
en

.

• A power product (or monomial) is an element of R of the form: p = x1
e1

…xn
en

, ei ≥ 0.

• The total degree of the power product is deg(p) = ∑n
i=1 ei.

• A term consists of a power product together with its coefficient. Thus a polynomial is

simply a sum of a finite set of terms.

• The total degree of a multivariate polynomial f is the maximum of the total degrees of

the monomials in it.

To define an analogous of leading coefficient for multivariate polynomials, an ordering of the

terms must be defined first. Many ordering techniques are available, among which the

lexicographic ordering and the total lexicographic ordering.

Let nn
b

n

bba

n

aa

xxxqxxxp LL

2121

2121
 and == be two power products.

• We say that p > q according to lexicographic ordering (p >lex q) if:

ai ≠ bi for some i, then for the minimum such i, ai > bi .

• We say that p > q according to total lexicographic ordering (p >tlex q) if:

a) deg(p) > deg(q), or else,

b) in case deg(p) = deg(q), ai ≠ bi for some i, then for the minimum such i, ai > bi

.

Examples:

In the case of polynomials in 4 variables, w, x, y, z, we have:

(i) According to lexicographic ordering:

1 < z < z
2
 < …

< y < yz < … < y
2
 …

< x < xz < … < xy < … < x
2
 …

17

< w < wz < … < wy < … < wx < … < w
2
 …

(ii) According to total lexicographic ordering:

1 < z < y < x < w < z
2
 < yz < y

2
 < xz < xy < x

2
 < wz < wy < wx < w

2
 …

• The leading term of a polynomial f is the monomial in f whose power product

(monomial) is largest relative to the chosen ordering. Its coefficient is called the leading

coefficient.

Example:

According to any of the previous ordering methods, the leading term of f = 4xy + y - 5 is 4xy.

2.1.4 Representation of numbers and polynomials [1]

2.1.4.1 Motivation

One of the basic purposes of computer algebra systems is exact arithmetic. To achieve

this goal, integers have to be represented exactly, regardless of their size. Computers store

data in pieces called words. It is common to have machines that use 64-bit words. Then one

machine word contains a single precision integer between 0 and 2
64

-1. In practice, of course,

the size of the machine memory bounds the integers that can be represented. But it is

certainly not acceptable that the word length of the machine limits this size.

How can we represent integers outside the range {0, …, 2
64

-1}? The answer is to use

multiprecision integers [1], which are lists of 64-bit words. Such structures are needed to

represent integers of arbitrary sizes, that can grow “as the need arises” [2].

2.1.4.2 Positional notation for integers

A radix-r representation of an integer a with n digits takes the form:

a = (-1)
s
 ∑0≤i≤n ai ⋅ r

i
, where s, the sign, is 0 or 1, and ai ∈{0, …, r-1}.

This representation is known as the positional notation. In the case of multiprecision integers

mentioned earlier, r = 2
64

. This allows of course for sufficiently large numbers to be

represented, the constraint being to some extent the memory size.

Example: [2]

Consider for example the integer 2000014720401, decimal for simplicity. Consider a

positional number system with basis r = 10000. Then, the previous number would be

represented by the following list: [+,2,0,1472,401], starting with most significant digits.

18

2.1.4.3 Performing integer arithmetic

Here is a review of the fundamentals of multiprecision arithmetic by considering the simplest

operation of addition of two integers of positive sign. In [1], the algorithms of other

operations are introduced.

Let a and b be two multiprecision integers: a = ∑0≤i≤n ai ⋅ 2
64i

, b = ∑0≤i≤n bi ⋅ 2
64i

. It is required

to compute the sum s = ∑0≤i≤n+1 si ⋅ 2
64i

, such that s = a + b.

First, assume the use of a hypothetical processor that has at its disposal a command for the

addition of two single word (single precision) integers x and y. The output of the operation is

a word w plus a carry flag c. This is a special bit in the processor status word which indicates

whether the result exceeds 2
64

 (the largest representable word integer) or not. The carry flag

can assume only the values 0 (no overflow) and 1 (overflow). There are also instructions to

set and clear the flag.

The key point in the addition of multiprecision integers is that of carry propagation. In the

worst case, a carry form the addition of the least significant words a0 and b0, may affect the

addition of an and bn. An example of this case is the addition of a = 2
64(n+1)

-1 and b = 1. Here

is the algorithm:

Input: a, b

Output: s = a + b. (c represent the carry flag).

c0 := 0;

for i := 0, …, n do

si := ai + bi + ci , ci+1 := 0;

if si ≥ 2
64

 then si := si - 2
64

, ci+1 := 1;

sn+1 := cn+1

return s

Example:

Let a = 9438, b = 945, and use the radix 10 instead of 2
64

.

a = 9⋅10
3
 + 4⋅10

2
 + 3⋅10 + 8, b = 9⋅10

2
 + 4⋅10 + 5.

19

i 4 3 2 1 0

ai 9 4 3 8

bi 0 9 4 5

ci 1 1 0 1 0

si 1 0 3 8 3

Related data types occurring in current processors and software systems are single and

multiprecision floating point numbers. These represent approximations of real numbers, and

arithmetic operations are subject to rounding errors, in contrast to arithmetic operations on

multiprecision integers which are exact. Computation with floating point numbers is the main

topic of numerical analysis, which is a theme of its own, not discussed in this text.

2.1.4.4 Representation of polynomials

Recall the definition of a polynomial a ∈ R[x], in the variable x over the ring R. It consists of

a finite sequence (a0, …, an) of ring elements (the coefficients of a), for some n ∈ N (the

degree of a). It is written as: a = anx
n
 + … + a1x + a0 .

The previous representation of polynomials is quite analogous to the positional notation of

integers introduced in a previous section. A number a has the radix r representation:

a = anr
n
 + … + a1r+ a0 , with digits a0 , …, an ∈ {0, …, r-1}.

Furthermore, if we take polynomials over Zr = {0, …, r-1}, the ring of integers modulo r,

with addition and multiplication modulo r, the representations are similar. This similarity is

an important point for computer algebra: many algorithms apply to both the integers and

polynomial cases, with small modifications.

Thus, polynomials can be represented using arrays whose i
th

 element is ai. This assumes of

course that a way of representing the coefficients from R exists.

2.1.4.5 Polynomial arithmetic

Arithmetic algorithms for polynomials are relatively easier than their counterpart for integers.

The basic distinction lies in the absence of the carry rule in the polynomial case. While the

low digits have some influence on the high digits in the addition of integers, each term in a

polynomial is independent of the other.

In what follows, simple algorithms for addition and multiplication of polynomials are

presented. More arithmetic on the polynomials may be referred to in [1].

20

Addition:

Input: a = ∑0≤i≤n ai ⋅ x
i
, b = ∑0≤i≤n bi ⋅ x

i
 in R[x], where R is a ring.

Output: s = a + b ∈ R[x].

for i := 0, …, n do si := ai + bi ;

return s

Multiplication:

The first version of the algorithm mimics the method of multiplication learned in school.

Note also this is a more general algorithm that lets the two input polynomials be of different

degrees.

Input: a = ∑0≤i≤n ai ⋅ x
i
, b = ∑0≤i≤m bi ⋅ x

i
 in R[x], where R is a ring.

Output: p = a ⋅ b ∈ R[x].

for i := 0, …, n do di := aix
i
 ⋅ b;

return p = ∑0≤i≤m di .

The multiplication aix
i
 ⋅ b is realized as the multiplication of each bj by ai plus a shift by i

places. The variable x serves just as a placeholder, and there is no arithmetic involved in

multiplying by x or any powers of it.

Note also that the previous algorithm is not the “best” for multiplication. One basic drawback

of a computer implementation of such algorithm is the requirement of storing n+1

intermediate polynomials with m+1 coefficients each. A way around this is to interleave the

final addition with the computation of aix
i
 ⋅ b. This uses only a space for the storage of two

polynomials, i.e. n+m coefficients.

Although the purpose of this text is not to analyze the efficiency of algorithms, but rather to

introduce elementary and simple ones, here is a “better” multiplication algorithm that uses

only intermediate results of size 1.

Here the product’s coefficients pk are computed one by one. The degrees of a and b being n

and m respectively, and that of p, n+m, the loop for computing the pk is:

for k := 0, …, n+m do

pk := 0

for i := max{0,k-m}, …, min{n,k} do

pk := pk + ai ⋅ bk-i

21

2.1.4.6 Storage of numbers and polynomials [2]

In many algorithms of computer algebra, intermediate results may get very large although

inputs and outputs are of moderate sizes. For example, in computing greatest common

divisors of polynomials, in integration problems or Gröbner basis computations, intermediate

polynomials of degree 70 are very common for inputs of degree 5 or 6.

To be able to store these objects efficiently, a need for data structures that reflect the

expansion and shrinking of the objects during the computation arises. Arrays have the

drawback of being fixed structures. One has to specify the maximum length of the array

beforehand. A data structure that overcomes this constraint is called list.

Lists are suited for representing objects of variable length because they are not fixed in size.

Of course, practically, we have memory constraints in any computer. But these less severe

than constraints on each data object.

Example:

Consider the polynomial x
5
 + 2x

3
 -x

2
 + 1 represented by the list [[5,1], [3,2], [2,-1], [0,1]].

Then the term 3x
6
 is added. The list becomes: [[6,3], [5,1], …, [0,1]]. An illustration of this

example follows, where L is a pointer to the first element of the list.

After insertion of the term 3x
6
:

This section shall not go deeper than that in implementation techniques. It only introduces

some of the techniques used in symbolic computation systems.

5,1 3,2 2,-1 0,1L

6,3 5,1 3,2 2,-1 0,1 L

22

2.2 THE EUCLIDEAN ALGORITHM

The Euclidean algorithm is basic in computing greatest common divisors (gcds) and

this, in turn, is an extremely frequent operation in any computation in computer algebra.

2.2.1 Basic notions

Definition: Let R be a ring and a, b, c ∈ R. Then c is a greatest common divisor or gcd of a

and b if:

(i) c | a and c | b (c divides both a and b),

(ii) if d | a and d | b, then d | c, for all d ∈ R.

Recall that in a Euclidean domain R, we can divide any a, b ∈ R, b ≠ 0, with quotient q and

remainder r, so that: a = qb + r. The used notation is q = a div b and r = a rem b.

• A unit u ∈ R is any element with a multiplicative inverse v ∈ R, so that uv = 1.

• Two elements a, b are associate if a = ub for a unit b ∈ R, denoted: a ∼ b.

In general, gcds need not be unique. However, all gcds of a and b are precisely the associates

of one of them. As an example, the only units in Z are 1 and -1. The gcds of 12 and 15 in Z

are 3 and -3 which are associates. [1]

2.2.2 The Classical Euclidean Algorithm [1], [2]

The following algorithm computes greatest common divisors in an arbitrary Euclidean

domain.

Input: f, g ∈ R, where R is a Euclidean domain.

Output: gcd of f and g.

r0 := f, r1 := g

i := 1;

while ri ≠ 0 do ri+1 := ri-1 rem ri , i := i+1

return ri-1 .

Example:

Tracing the algorithm with input f = 126 and g = 35 gives

23

i ri-1 ri ri+1 = ri-1 rem ri

1 126 35 21

2 35 21 14

3 21 14 7

4 14 7 0

It is important to note that many algorithms that apply to integers apply to

polynomials as well. The similarity between the two objects was highlighted in the previous

section. Thus, the gcd algorithm is well suited to polynomials with only minor changes.

As mentioned in the previous section, the gcds of two elements of R are associates of

one of them. Now, take R to be Q[x], the ring of polynomials with rational coefficients. It is

noted that Q is a field. Hence every nonzero rational number is a unit (i.e., invertible). As a

result, ua ∼ a in R = Q[x] for all nonzero u ∈ Q and all a ∈ R. In terms of gcds, we have an

infinite number of gcds for f and g ∈ R, all multiples of a certain a ∈ R, among which only

one representative should be chosen.

A reasonable choice is the polynomial with leading coefficient 1. Any polynomial a

can be normalized (leading coefficient = 1) by dividing it by its leading coefficient. It turns

out that, in the polynomial case, the classical Euclidean algorithm should be modified such

that all the remainders ri are normalized. [1]

2.2.3 The Extended Euclidean Algorithm [1], [2]

Putting into consideration the above remark on normalization, the following variant of

the classical Euclidean algorithm, works with normalized remainders and computes, not only

the gcd, but also a representation of it as a linear combination of the inputs.

A function normal(.) is used. For R = Z, normal(a) = |a|, and for R = F[x], normal(a) =

a/lc(a), where lc(.) is the leading coefficient of a (by convention, lc(0) = 1).

Input: f, g ∈ R, (R is a Euclidean domain with normal form).

Output: gcd(f,g), s, t ∈ R, such that sf + tg = gcd(f,g), l as computed below.

a0 := lc(f), r0 := normal(f), s0 := a0
-1

, t0 := 0,

a1 := lc(g), r1 := normal(g), s1 := 0, t1 := a1
-1

;

i := 1;

while ri ≠ 0 do

qi := ri-1 div ri

24

ai+1 := lc(ri-1 rem ri)

ri+1 := normal(ri-1 rem ri)

si+1 := (si-1 - qisi) / ai+1

ti+1 := (ti-1 - qiti) / ai+1

i := i + 1;

l := i - 1;

return ri-1, si-1, ti-1, l.

The variables used in the algorithm are:

l: the Euclidean length of the pair (f,g).

ri: the remainders, qi: the quotients.

si and ti from the i
th

 iteration satisfy: sif + tig = ri for all 0 ≤ i ≤ l+1. In particular, for i = l, the

output of the algorithm, sl and tl satisfy: sf + tg = rl = gcd(f,g). They are called the Bézout

coefficients of f and g. [1]

Example:

(a) R = Z, f = 126, g = 35.

Tracing the algorithm yields the following table.

i qi ai ri si ti

0 1 126 1 0

1 3 1 35 0 1

2 1 1 21 1 -3

3 1 1 14 -1 4

4 2 1 7 2 -7

5 1 0 -5 18

The final result output by the algorithm as read out of row 4 is:

gcd(126,35) = 7 = 2 ⋅ 126 + (-7) ⋅ 35.

(ii) R = Q[x], f = 12x
3
 - 28x

2
 + 20x - 4, g = -12x

2
 + 10x - 2.

The tracing of the algorithm follows.

25

i qi ai ri si ti

0 12 x
3
 - 7/3x

2
 + 5/3x - 1/3 1/12 0

1 x - 3/2 -12 x
2
 - 5/6x + 1/6 0 -12

2 x - 1/2 1/4 x - 1/3 1/3 1/3x - 1/2

3 1 0 -1/3x + 1/6 -1/3x
2
 + 2/3x - 1/3

From row 2, the result is:

gcd(f,g) = x - 1/3 = 1/3 ⋅ (12x
3
 - 28x

2
 + 20x - 4) + (1/3x -1/2)(-12x

2
 + 10x - 2).

2.3 APPLICATIONS OF THE EUCLIDEAN ALGORITHM

Before presenting some of the Euclidean algorithm applications, we review modular

arithmetic first [1]. Moreover, the review is also a prerequisite for the Chinese remainder

algorithm presented in the section that follows.

2.3.1 Modular arithmetic

In modular arithmetic, one computes with remainders arithmetic expressions modulo

some nonzero integer. Taking a number m, two integers a and b are equal modulo m if they

have the same remainder on division by m.

a ≡ b mod m ⇒ m | (a-b), i.e. a-b is divisible by m.

The basic rule for computing with congruences is:

a ≡ b mod m ⇒ a*c ≡ b*c mod m,

where a, b, c ∈ Z and * is one of +, -, ⋅. Using this rule inductively, expressions can be

computed modulo m very efficiently by first reducing all integers modulo m, and then, step

by step, performing an arithmetic expression in Z and immediately reducing the result

modulo m again. In this way, the intermediate results never exceed m
2
.

Examples:

(a) Compute of an expression, efficiently, modulo 7.

20 ⋅ (-89) + 32 ≡ 6⋅2 + 4 ≡ 12 + 4 ≡ 5 + 4 ≡ 9 ≡ 2 mod 7.

(b) Another familiar example from school.

The remainder of a number modulo 9 (or 3) equals the remainder of the sum of its

decimal digits. In particular, a number is divisible by 9 (or 3) if and only if this sum is so.

26

Why does this work? Let a = ∑0≤i<n ai ⋅ 10
i
 be the decimal representation of a ∈ N. Since 10 ≡

1 mod 9 (and mod 3), a ≡ ∑0≤i<n ai ⋅ 1
i
 = ∑0≤i<n ai mod 9.

Modular arithmetic can also be performed with polynomials over a ring R. The

mathematical concept behind modular arithmetic is the residue class ring. If R is a ring (say Z

or F[x]), and m ∈ R, then 〈m〉 = mR = {mr | r ∈ R}, the set of all multiples of m, is the ideal

generated by m. The residue class ring R / mR = R / 〈m〉 = {f + mr | f, r ∈ R} consists of all

residue classes of R / 〈m〉. This is also written Zm for Z / 〈m〉.

For the polynomial case, the simplest nontrivial modulus is a linear polynomial x - u.

For any polynomial f ∈ R[x], and u ∈ R, the polynomial f(x) - f(u) has u as a zero hence is

divisible by (x - u). If we let q = (f(x) - f(u)) / (x - u), then f = q ⋅ (x - u) + f(u). By the

division theorem, f(u) is the remainder of f on division by (x - u). Thus, f ≡ f(u) mod (x - u),

and calculating modulo (x - u) is the same as evaluating at u.

It is common to perform computations modulo polynomials and modulo integers.

Then there are two levels of computation: coefficient operations, which are performed

modulo m in Zm, and polynomial operations, which are performed modulo some polynomial f

∈ Zm[x]. That is we are working in “double” residue class rings of the form Zm[x]/〈f〉.

Computationally, it is equivalent to work with a set of representatives of the elements of

the residue class ring. There are two representations, both useful in specific applications:

• the least non-negative representation {0, 1, …, m - 1}, and

• the symmetric least absolute value representation {a ∈ Z | -m/2 ≤ a ≤ m/2}.

For example, Z / 5Z = Z5 can be represented as {0, 1, 2, 3, 4, 5} or {-2, -1, 0, 1, 2}.

Example:

(4x + 1)(3x
2
 + 2x) = 12x

3
 + 11x

2
 + 2x in Z[x]

(4x + 1)(3x
2
 + 2x) = 2x

3
 + x

2
 + 2x in Z5[x]

Now, division with remainder yields

2x
3
 + x

2
 + 2x = 2⋅(x3

 + 4x) + x
2
 - 6x in Z[x]

2x
3
 + x

2
 + 2x = 2⋅(x3

 + 4x) + x
2
 + 4x in Z5[x]

∴ (4x + 1)(3x
2
 + 2x) ≡ x

2
 + 4x mod (x

3
 + 4x) in Z5[x], or equivalently,

 (4t + 1)(3t
2
 + 2t) = t

2
 + 4t in Z5[x]/ 〈x3

 + 4x〉, where t = x mod x
3
 + 4x.

27

2.3.2 Modular exponentiation

An important tool for modular exponentiation is repeated squaring (or square and

multiply). This technique works in any set with an associative multiplication, but here, it is

used in residue class ring. Modular exponentiation will be required later in computing

modular inverses. Here follows the algorithm.

Input: a ∈ R, a ring with identity, n ∈ N (n ≠ 0)

Output: a
n
 ∈ R.

Find the binary representation of n = 2
k
 + nk-1 ⋅ 2

k
 + … +n1 ⋅ 2 + n0, ni ∈ {0, 1}

b := a;

for i := k-1, k-2, …, 0 do

if ni = 1 then b := b
2
a else b := b

2

return b

This procedure uses log2n squarings plus at most log2n multiplications by a (if the

binary representation of n is all 1’s).

Example:

It is required to compute a
13

. The binary representation of 13 is: 1⋅23
 +1⋅22

 +0⋅2 +1. Tracing

the algorithm yields: a
13

 = ((a
2⋅a)

2
)
2⋅a. If R = Z17 = Z / 〈17〉 and a = 8 mod 17, then the

computation of 8
13

 mod 17 proceeds as follows:

8
13

 ≡ (((8
2
 ⋅ 8)

2
)
2
 ⋅ 8 ≡ (((-4 ⋅ 8)

2
)
2
) ⋅ 8

≡ (2
2
)
2
 ⋅ 8 = 4

2
 ⋅ 8

≡ -1 ⋅ 8 = -8 mod 17.

This is much faster than first evaluating 8
13

 = 549755813888 and then dividing by 17

with remainder.

2.3.3 Modular inverses

All modular arithmetic presented up to now has been addition and multiplication. How

about division and inversion. Do expressions like a
-1

 mod m and a/b mod m make sense? In

what follows two methods for computing modular inverses are presented [1]. By some way

or the other, computing gcds is required.

28

• Euclidean method:

Let R be a Euclidean domain, a, m ∈ R, and S = R / mR. Then a mod m is a unit (i.e. has

an inverse) if and only if gcd(a,m) = 1. In this case, the modular inverse of a mod m can be

computed by means of the extended Euclidean algorithm.

The proof of this statement is by construction, and, in the mean time, it shows how the

inverse is computed.

By definition, a is invertible modulo m ⇔ ∃s ∈ R s.t. sa ≡ 1 mod m

⇔ ∃s,t ∈ R s.t. sa + tm = 1

⇔ gcd(a,m) = 1

Note that km ≡ 0 mod m, for any k ∈ R.

Examples:

(i) Let R = Z, m = 29, and a = 12. Then 12 is invertible mod 29 since gcd(29,12) = 1.

The extended Euclidean algorithm computes 5⋅29 + (-12)⋅12 = 1.

Thus (-12)⋅12 ≡ 17⋅12 ≡ 1 mod 29, hence 17 is the inverse of 12 mod 29.

(ii) Let R = Q[x], m = x
3
 - x + 2, and a = x

2
. The last row in the Euclidean algorithm reads:

(¼x + ½)(x
3
 - x + 2) + (-¼x

2
 - ½x + ¼)x

2
 = 1,

and (-x
2
 - 2x + 1) / 4 is the inverse of x

2
 mod x

3
 - x + 2.

• Fermat’s method:

Let p ∈ N be a prime and a, b ∈ Z. Then the binomial theorem implies that:

(a + b)
p
 = .

2

)1(

)!(!

! 221

0

nppp

p

i

iip bba
pp

bpaaba
ipi

p
++

−

++=

−

−−

=

−

∑ L

For all 0 < i < p, the binomial coefficient is divisible by p, since the numerator (p!) is

and the denominator is not. A surprising consequence is:

(a + b)
p
 ≡ a

p
 + b

p
 mod p. (the “freshman’s dream”).

This property can be used in the proof of the Fermat’s little theorem:

If p∈ N is prime and a ∈ Z, then a
p
 ≡ a mod p. And, if p doesn’t divide a, then a

p-1
 ≡ 1 mod p.

Since computations are performed modulo p, the theorem needs only to be proved for

0 ≤ a ≤ p-1, which is done by induction on a. The case a = 0 is trivial, and for a > 1, we have

a
p
 = ((a - 1) + 1)

p

≡ (a - 1)
p
 + 1

p
 by the “freshman’s dream”

≡ (a - 1) + 1 by the induction hypothesis

≡ a mod p,

29

Since p is prime, gcd(a,p) = 1, hence a is invertible. Multiplying both sides by a
-1

, the

second part of the theorem follows immediately.

Fermat’s theorem, together with repeated squaring, gives us an alternative method to

compute inverses in Zp. Since a
p-2

a = a
p-1

 ≡ 1 mod p, then a
-1

 ≡ a
p-2

 mod p, where a
p-2

 is

computed using repeated squaring.

2.3.4 Linear Diophantine equations [1]

A direct application of the extended Euclidean theorem is the solution of what is

known as linear Diophantine equations.

Let R be a Euclidean domain, a, f, g ∈ R be given. The solution of the linear

Diophantine equation is the pair (s, t) ∈ R
2
 such that:

sf + tg = a.

The existence of a solution and its computation are the subject of the following

theorem and its proof.

Let R be a Euclidean domain, a, f, g ∈ R, and h = gcd(f,g).

(a) The diophantine equation sf + tg = a has a solution (s, t) ∈ R
2
 iff h divides a.

(b) If R = F[x] for a field F, h ≠ 0, the equation is solvable, and deg(f) + deg(g) -

deg(h) > deg(a), then there is a unique solution (s, t) ∈ R
2
 such that deg(s) < deg(g) -

deg(h) and deg(t) < deg(f) - deg(h).

Proof.

(i) If s, t ∈ R satisfy the equation, then gcd(f,g) divides sf + tg and hence a. Conversely,

assume that h = gcd(f,g) divides a. The claim is trivial if h = 0. Otherwise, we can compute

s*, t* ∈ R such that s*f + t*g = h, using the extended Euclidean algorithm. Thus the required

solution is (s, t) = (s*⋅ a/h, t*⋅ a/h).

(ii) For the proof of this part, the extended Euclidean algorithm is presented more concisely.

Assuming all polynomials to be already normalized, with leading coefficients 1, doesn’t

affect their degree. The algorithm follows hereunder for convenience. Simultaneous

assignment statements use the vector form for short. [2]

Input: f, g ∈ R[x].

Output: h, s, t ∈ R[x] such that h = gcd(f,g), and sf + tg = h.

(r0, r1, s0, s1, t0, t1) := (f, g, 1, 0, 0, 1); i := 1;

while ri ≠ 0 do

qi := ri-1 div ri ;

30

(ri+1, si+1, ti+1) := (ri-1, si-1, ti-1) - qi ⋅ (ri, si, ti); %% Same as computing remainders

i := i + 1;

return (ri-1, si-1, ti-1).

Assume the number of the iterations is l. For a degree analysis, note that, obviously,

deg(qi) = deg(ri-1) - deg(ri) for 1 ≤ i ≤ k-1. For k = 2, the claim holds obviously.

If k > 2, then for 2 ≤ i ≤ k-1 we have deg(ri) = deg(r1) - ∑
i
j=2deg(qj) < deg(r1) - ∑2≤j≤i-1deg(qj).

Similarly, deg(si) ≤ ∑2≤j≤i-1deg(qj) and deg(ti) ≤ ∑1≤j≤i-1deg(qj). (Note the index range for ti).

Adding the inequalities, we have: deg(ri) + deg(si) < deg(r1) and deg(ri) + deg(ti) < deg(r1) +

deg(q1). Putting i = k-1, and deg(q1) = deg(r0) - deg(r1) = deg(a) - deg(b), the required result

follows.

2.3.5 Squarefree factorization[2]

By just computing gcds, we can produce a partial solution of the problem of

factorization of polynomials, namely the so-called squarefree factorization.

The algebraic system worked on here is any field F[x1, …, xn], which has the unique

factorization domain property, in that any polynomial in f can be factored into a product of

irreducible polynomials in a unique way. By “unique”, it is meant uniqueness up to ordering

of the factors and multiplication by units. Units of Z are 1 and -1, and those of F are any

nonzero constants. If a = ub for a, b, u ∈ F, where u is a unit, then a and b are associates.

Definitions: A polynomial f(x1, …, xn) in F[x1, …, xn] is squarefree iff every nontrivial factor

g(x1, …, xn) of f (i.e. g not associate of f nor constant) occurs with multiplicity 1 in f.

• The derivative f’ of a polynomial f = ∑0≤i≤n aix
i
 ∈ F[x] is f’ = ∂f /∂x = ∑0≤i≤n iaix

i-1
. It

satisfies the following properties: [1]

(a) Linearity: (f + g)’ = f’ + g’.

(b) Leibniz rule: (f ⋅ g)’ = fg’ + f’g.

There is a simple criterion for deciding squarefreeness, presented in the following theorem.

Let f(x) be a nonzero polynomial in F[x]. Then f(x) is squarefree if and only if gcd(f, f’) = 1.

(Where f’ is the derivative of f).

Proof:

If f(x) is not squarefree, i.e. for some non constant g(x), we have f = g
2
h, then

f’ = 2gg’h + g
2
h’.

So f and f’ have a non trivial gcd, namely g.

31

On the other hand, if f is squarefree, it can be written as f(x) = ∏1≤i≤n fi(x), where the fi are

pairwise relatively prime (i.e. gcd = 1) and irreducible polynomials. Then,

∑ ∏
=

≠

= ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′=′
n

i

n

ij
j

ji
ffxf

1 1

)(.

Now it is easy to see that none of the irreducible factors fi is a divisor of f’, since fi divides all

the terms of f’ except the i
th

. Hence gcd(f, f’) = 1, and this finishes the proof.

The square free factorization problem

The squarefree factorization problem for a polynomial f(x) consists of determining the

squarefree pairwise relatively prime polynomials g1(x), …, gs(x), such that f(x) = ∏1≤i≤s gi(x)
i
.

The method used in the factorization procedures can be summarized as follows.

Let a1 = f and a2 = gcd(a1, a1’). Then,

∑ ∏
=

≠

=

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′=′
n

i

n

ij
j

ji

i

i
ggigxa

1 1

1

1
)(, thus a2(x) = ∏1≤i≤s gi(x)

i-1
 = ∏2≤i≤s gi(x)

i-1
.

And c1 = a1/a2 = ∏1≤i≤s gi(x) contains every squarefree factor exactly once. It is now required

to isolate each squarefree factor. This is performed, one by one, as follows.

Let a3 = gcd(a2, a2’)= ∏3≤i≤s gi(x)
i-2

 as previously, and c2 = a2/a3 = ∏2≤i≤s gi(x). Thus, c2(x)

contains every squarefree factor of multiplicity ≥ 2 exactly once. It is now easy to isolate

g1(x) by noting that g1(x) = c1/c2.

One more iteration summarizes the procedure:

a4 = gcd(a3, a3’)= ∏4≤i≤s gi(x)
i-3

, c3 = a3/a4 = ∏3≤i≤s gi(x). So g2(x) = c2/c3.

The iterations proceed until cs+1(x) = 1.

Algorithm

Input: f(x) ∈ F[x].

Output: g1(x), …, gs(x) ∈ F[x], such that f(x) = ∏1≤i≤s gi(x)
i

a1 := f ; a2 := gcd(a1, a1’); c1 := a1/a2;

a1 := a2; a2 := gcd(a2, a2’); c2 := a1/a2;

g1 := c1/c2;

i := 2;

while c2 ≠ 1 do

32

a1 := a2; a2 := gcd(a2, a2’);

c1 := c2; c2 := a1/a2;

gi := c1/c2;

i := i + 1;

return g1 , …, gs.

Example:

The squarefree factorization of f(x) = x
7
 + x

6
 - x

5
 - x

4
 - x

3
 -x

2
 + x + 1 over Z is:

(x
2
 + 1)(x - 1)

2
(x + 1)

3
.

A tracing of the algorithm yields the same result.

i a1 a2 ci gi

0 x
7
 + x

6
 - x

5
 - x

4
 - x

3
 -x

2
 + x + 1 x

3
 + x

2
 - x - 1 x

4
 - 1 n/a

1 x
3
 + x

2
 - x - 1 x + 1 x

2
 - 1 x

2
 + 1

2 x + 1 1 x + 1 x - 1

3 1 1 1 x + 1

2.3.6 Squarefree partial fraction decomposition [2]

The squarefree partial fraction decomposition is an indirect application of the

Euclidean algorithm. It uses two of its applications, namely the squarefree factorization and

the solution of linear Diophantine equations.

Let p/q be a proper rational function over the field F, i.e., p, q ∈ F[x], gcd(p, q) = 1 and

deg(p) < deg(q). Let q = q1⋅ q2
2
 … qk

k
 be the squarefree factorization of q.

Then, ∑
=

=

k

i

i

i

i

xq

xa

xq

xp

1)(

)(

)(

)(
, deg(ai) < deg(qi

i
), 1 ≤ i ≤ k, ai ∈ F[x], is called the incomplete

squarefree partial fraction decomposition of p/q.

And, ∑∑
= =

=

k

i

i

j
j

i

ij

xq

xb

xq

xp

1 1)(

)(

)(

)(
, deg(bij) < deg(qi), 1 ≤ j ≤ i ≤ k, bij ∈ F[x], is called the (complete)

squarefree partial fraction decomposition of p/q.

The algorithm

The first step is to compute the incomplete decomposition, i.e. the ai’s, since the

algorithm of the previous section can obtain the factorization of the denominator.

33

 The method consists of isolating the partial fractions one by one. Denote the isolated

term by ai / qi
i
 and the rest of the fraction (still not expanded) by ci / di. Then,

i

i

i

i

d

c

q

a

q

a

q

p
+++= L

1

1 , where di-1 = qi+1
i+1

 … qk
k
.

The ai and ci can be determined iteratively as follows.

Initially, the whole fraction is not expanded so that c0 / d0 = p / q. The first iteration reads:

p / q = a1 / q1 + c1 / d1.

Multiplying both sides by q results in: p = a1q2
2
…qk

k
 + c1q1, or, in terms of the algorithm’s

variables: c0 = a1d1 + c1q1. Since deg(a1) < deg(q1) and deg(c1) < deg(d1), this equation can be

solved as a linear Diophantine equation, as presented earlier in the text.

In general, ci-1 / di-1 = p / q - a1 / q1 - … - ai-1 / qi-1
i-1

. Hence the unachieved partial

fraction decomposition can be read at the i
th

 step as: ci-1 / di-1 = ai / qi
i
 + ci / di . Multiplying

both sides by di yields the Diophantine equation: ci-1 = ci ⋅ qi
i
 + ai ⋅ di.

The algorithm follows immediately.

Input: p, q ∈ F[x] such that gcd(p, q) = 1.

Output: a1, …, ak and q1, …, qk such that: p / q = ∑k
i=1(ai / qi

i
), the incomplete squarefree

partial fraction decomposition of p / q.

(q1, …, qk) := Squarefree_Factorization(q);

c0 := p; d0 := q; i := 1;

while i < k do

di := di-1 / qi
i
;

Solve ci-1 = ci ⋅ qi
i
 + ai ⋅ di for ci and ai using the extended Euclidean algorithm;

i := i + 1;

ak := ck-1;

return.

Once the incomplete partial fraction decomposition is obtained, the complete decomposition

results by successive division by qi. Namely, if ai = s ⋅ qi + t, then ai / qi
i
 = s / qi

i-1
 + t / qi

i
.

Example:

3456789

2345678

254723

138918112534

)(

)(

xxxxxxx

xxxxxxxx

xq

xp

+−+−+−

+−+−+−+−

= .

34

The squarefree factorization of q(x) is (3x
2
 - 2x + 1)(x

2
 + 1)

2
x

3
. And the application of the

incomplete squarefree partial fraction decomposition algorithm yields:

3

2

22

3

2

1

)1(

22

123

4

)(

)(

x

xx

x

xx

xx

x

xq

xp +−

+

+

++−

+

+−

= .

By successive division of the numerators by the corresponding qi’s, the complete

decomposition is attained:

322222

111

)1(

23

1123

4

)(

)(

xxxx

x

x

x

xx

x

xq

xp
+

−

++

+

+

+

+

−

+

+−

= .

2.3.7 Integration of rational functions [2]

The integration of rational functions is intimately related to the ideas and algorithms

mentioned above. In fact, the problem is to compute ∫ (p(x) / q(x)) dx, where p, q ∈ Q[x],

gcd(p,q) = 1, and q is monic. From classical calculus, this integral can be solved by

decomposing p / q into its complete partial fraction decomposition, which requires

factorization of q. The result can be expressed as: ∫(p(x) / q(x)) dx = g(x) / q(x) + c1ln(x - a1) +

… + cnln(x - an), where g(x) ∈ Q[x], a1, …, an are the different roots of q in the complex field

C.

However, complete factorization of the denominator, which is relatively expensive,

can be avoided, using instead only its squarefree factors.

First, the squarefree factorization of the denominator is q = f1 ⋅ f2
2
 … fr

r
, where the fi ∈ Q[x]

are squarefree, fr ≠ 1, gcd(fi, fj) = 1 for i ≠ j. Based on this squarefree factorization, the

squarefree partial fraction decomposition of p / q is:

∑∑
= =

+=

r

i

i

j

j

i

ij

f

g
g

xq

xp

1 1

0

)(

)(
= g0 + g11/f1 + g21/f2 + … + gr1/fr + … + grr/fr ,

where g0, gij ∈ Q[x], deg(gij) < deg(fi), for all 1 ≤ j ≤ i ≤ r.

Integrating g0 is trivial, so that the problem remains in integrating the fractions g / f
n
.

First consider the case where n ≥ 2 and note that deg(g) < deg(f) and that f is squarefree. The

computation of ∫ (g / f
n
)

dx is reduced to that of an integral of the form ∫ (h / f

n-1
)

dx, where

deg(h) < deg(f), using the Hermite reduction process.

The reduction proceeds as follows. Since f is squarefree, gcd(f, f’) = 1. Thus, one can

solve the linear Diophantine equation g = c ⋅ f + d ⋅ f’ where deg(c), deg(d) < deg(f). By

integration by parts, the required reduction is achieved.

35

∫

∫∫

∫∫∫∫

−−

−−−

−

−′+
+

−
−=

−

′
+

−
−=

′⋅
+=

′⋅+⋅
=

11

111

1

)1(

)1(

)1()1(

nn

nnn

nnnn

f

ndc

fn

d

fn

d

fn

d

f

c

f

fd

f

c

f

fdfc

f

g

Repeating the reduction process, collecting all the rational partial results and the remaining

integrals, then putting everything over a common denominator, the integration reaches the

form:

∫∫
⋅

+

⋅

+=
−

43421
L

44 344 21
L

*

21

12

32

0

qq

r

r

r
fff

h

fff

g
g

q

p
,

where deg(g) < deg(q) and deg(h) < deg(q*).

The remaining integral ∫ (h / q*) can be computed in the following way:

Let q*(x) = (x - a1)…(x - an), where a1, …, an are the distinct roots of q*. Then

ni
aq

ah
caxcdx

ax

c
dx

xq

xh

i

i

i

n

i

ii

n

i i

i
≤≤

′
=−=

−
=

∗

==

∑∑∫∫ 1 ,
)(

)(
 with ,)ln(

)(*

)(

11

.

Example:

The example of the last section is used. We had:

3456789

2345678

254723

138918112534

)(

)(

xxxxxxx

xxxxxxxx

xq

xp

+−+−+−

+−+−+−+−

= ,

with squarefree partial fraction decomposition

322222

111

)1(

23

1123

4

)(

)(

xxxx

x

x

x

xx

x

xq

xp
+

−

++

+

+

+

+

−

+

+−

= .

Consider the integration of the third term of this decomposition, i.e. ∫
+

+

dx
x

x

22)1(

23
.

First, the Diophantine equation g = c ⋅ f + d ⋅ f’ is solved. By the Euclidean algorithm, one

has: 3x + 2 = 2 ⋅ (x2
 + 1) + (-x + 3/2) ⋅ (2x).

Integration by parts yields

36

∫

∫∫

∫∫∫

+

+

+

−

=

+

−

+

−⋅+−

+

+

=

+

⋅+−

+

+

=

+

+

dx
xx

x

dx
xx

x
dx

x

dx
x

xx
dx

x
dx

x

x

1

1

1

1

1

1

)1()(

1

2

)1(

)2()(

1

2

)1(

23

22

2
3

22

2
3

2

22

2
3

222

The remaining integral can be evaluated as

)(tan)1ln(
2

)1ln(
21

1 1

2
xix

i
ix

i
dx

x

−

=+−−⋅=

+
∫ .

 37

2.4 THE CHINESE REMAINDER ALGORITHM

 As mentioned in [2], the Chinese remainder algorithm enables to solve many

problems in computer algebra by the modular method. The basic idea is to reduce a problem

into several problems modulo different primes, solving the simpler problems modulo the

primes, and then combining the partial solutions by the Chinese remainder algorithm.

Let R be a Euclidean domain. We review here the Chinese remainder problem.

Chinese remainder problem

Given: r1, …, rn
� R (the remainders)

m1, …, mn
� R* (the moduli), pairwise coprime, i.e. gcd(mi , mj) = 1, for 1

�
 i < j

�
 r.

Find: r � R, such that r � r i mod mi for 1
�
 i
�
 n.

Several algorithms can be found in [2]. Concerning this problem, an algorithm given

in [1] is as follows.

Input: r1, …, rn, m1, …, mn
� R (as above).

Output: r � R such that r � r i mod mi for 1
�
 i
�
 n.

m := m1 � m2 … mn , (the product of the moduli);

for i := 1, …, n do

ci := m / mi ;

di := ci
-1 mod mi , by the Euclidean algorithm: di ci + timi = 1;

return r = (�1�i�n ci di r i) mod m.

To prove that this algorithm solves the problem correctly, observe that ci = m / mi is divisible

by mj for j � i. Thus, ci di r i � 0 mod mj for all j� i. Therefore,

�1�i�n ci di r i � cj dj r j � r j mod mj , for all 1
�
 j
�
 n,

as required.

Example:

It is required to find an integer r such that:

r � 3 mod 4, r � 5 mod 7, r � 2 mod 3.

Here R = Z and m = 4 � 7 � 3 = 84.

 38

i mi r i ci = m / mi di = ci
-1 mod mi ci di r i

1 4 3 21 1 63

2 7 5 12 3 180

3 3 2 28 1 56

Hence, r = 63 + 180 + 56 = 299 � 47 mod 84.

2.5 APPLICATIONS OF THE CHINESE REMAINDER ALGORITHM [1]

2.5.1 The interpolation problem

As most computer algebra algorithms seen so far, the Euclidean domain of definition

R can be generalized to the field of polynomials F[x]. Here, the problem is almost unchanged,

except for the addition of the constraint that deg(r i) < deg(mi) for 1
�
 i

�
 n, which yields the

result deg(r) < deg(m).

The special case where the Chinese remainder algorithm is applied to linear moduli,

i.e. all the moduli mi are linear polynomials of the form (x - ui), results in what is known as

the interpolation problem.

Given: u1, …, un
� F (scalars), such that ui � uj for i � j.

r1, …, rn
� F

Find: f(x) � F[x] such that f(ui) = r i , 1
�
 r

�
 n.

First, recall that f(x) � f(u) mod (x - u). This is as such for the following reason. For

any polynomial f � R[x], and u � R, the polynomial f(x) - f(u) has u as a zero hence is

divisible by (x - u). If we let q = (f(x) - f(u)) / (x - u), then f = q � (x - u) + f(u). By the

division theorem, f(u) is the remainder of f on division by (x - u). Thus, f � f(u) mod (x - u),

and calculating modulo (x - u) is the same as evaluating at u. By a similar reasoning, the

inverse of f(x) modulo (x - u), i.e. in F[x]/�x - u�, is f(u)-1.

Applying the Chinese remainder algorithm, the variables take on the following values.

ci = (x - u1) �(x - u2) … (x - ui-1) �(x - ui+1) … (x - un),

di = ci
-1 mod (x - ui) = 1 / [(ui - u1) �(ui - u2) … (ui - ui-1) �(ui - ui+1) … (ui - un)],

Hence, l i = ci � di is the familiar Lagrange interpolant coefficient:

�

�� �
�� n

ij
j ji

j
i uu

ux
l

1

 39

And the solution f(x) = �1�i�n l i r i is nothing more but the Lagrange interpolation polynomial,

satisfying f(ui) = r i , 1
�
 r

�
 n.

2.5.2 Modular algorithms

An important general concept in computer algebra is modular algorithms. It consists

of, rather than solving a problem directly (say over a Euclidean domain R), solving it modulo

several integers mi, where the solutions in the image domains R/�m� are easier, then

combining the results. The Chinese remainder algorithm is an important tool for this purpose.

The basic idea is to solve a problem over the Euclidean domain R by reducing it to several

problems modulo different primes, solving the simpler problems modulo the primes, and then

combining the partial solutions using the mentioned algorithm. In many situations, this

modular method results in algorithms with extremely good complexity behavior [2]. The

following figure illustrates the general scheme for modular algorithms.

Figure 2-2. General scheme for modular algorithms.

In what follows, two applications illustrating this principle are presented.

2.5.3 Modular determinant computation

In what follows, we see how the Chinese remainder algorithm can simplify the

computation of determinants. The problem is to compute the determinant detA � Z of an n �

n matrix A = (aij)1�i,j�n
� Z. It is known from linear algebra that this problem can be solved by

R

R

Modular reduction

Reconstruction

Direct
computation

R / �m�

R / �m�

R / �p1�

R / �p1�

R / �pn�

R / �pn�

� � �

� � �

Modular reduction

Reconstruction

Modular
computation

� � �

 40

means of Gaussian elimination over Q, where the matrix is reduced to an upper triangular

form, then its determinant is the product of the diagonal elements, ai i , 1
�
 i
�
 n.

The problem costs at most 2n3 operations, and this is polynomial time in the input size

of course. But the complexity arises from the intermediate results, numerators and

denominators, which grow exponentially. The cost of one operation, which depends on the

number of digits of its operands, rises unexpectedly. To illustrate this effect, consider the

matrix at the kth stage during the elimination process, and suppose for simplicity that A is not

singular and that no row or column permutations are required. The matrix reaches the

following form.

*

�

*

*

)(k
kka �)(k

kja �
�

�

)(k
ika �)(k

ija �

0

�

�

A star “*” denotes an arbitrary rational number, and the upper diagonal entries are nonzero.

The diagonal element akk
(k) � 0 is the new pivot element, and the entries of the matrix for the

rows k
�
 i
�
 n and the columns k

�
 j
�
 n change according to the formula

ai j
(k+1) = ai j

(k) - (ai k
(k) / ak k

(k))ak j
(k) .

If bk is an upper bound for the absolute value of the numerators and denominators of all ai k
(k),

so that in particular | ai j |
�
 b0 for 1

�
 i,j

�
 n, then, substituting in the formula above, gives the

bounds: bk
�

k

bbb k
kk

4
0

4
2

4
1 242

2 ��� �� �
which is exponential in the input size.

The simplest way to control the intermediate results sizes is to chose a prime p which

is guaranteed to be larger than 2 � | detA | and perform Gaussian elimination on A modulo p.

In this way, it is guaranteed that d � detA mod p falls in the range -p/2 < r < p/2. An upper

bound on the size of the determinant of a matrix is given by Hadamard’s inequality:

| detA |
�
 nn/2bn, where b = max1�i,j�n | ai j | is the maximum absolute value of an entry of A.

 41

Example:

Let ���
�

���
�

�
�

76

54
A . After Gaussian elimination, the matrix has the form ���

�
���
�

� 2/290

54
, so that

detA = -58.

The Hadamard bound |detA|
�
 2172 = 98 is reasonably close to |detA| = 58. We choose a prime

p > 2 � 98, say p = 199, and perform Gaussian elimination modulo 199. The inverse of 4 is 50,

and det(A mod 199) = ���
�

���
�

850

54
det = 141 = -58 in Z199.

There is not much progress using the Hadamard’s bound, specially for large matrices.

The following modular algorithm shows a remarkable improvement.

Input: A = (ai j)1�i,j�n
� Zn�n , with | ai j |

�
 b for all i, j.

Output: detA � Z.

r :=
�
log2(2nn/2bn + 1)� ;

choose r distinct prime numbers m1, …, mr .

for 1
�
 i
�
 r do compute A mod mi .

for 1
�
 i
�
 r do

compute di � detA mod mi using Gaussian elimination over Z / �mi�.
call the Chinese remainder algorithm to compute d � Z s.t. d � di mod mi, for 1

�
 i
�
 r.

return d.

To prove the algorithm works correctly, detA � di mod mi for 1
�
 i

�
 r. Hence, using

the Chinese remainder algorithm, detA � d mod m, where m = m1 � m2 … mr.

Since m 	 2r > 2nn/2bn 	 2 |d|, then actually d = detA.

Example:

Using the same matrix of the previous example, and taking the first four prime

numbers as moduli, the following modular determinants are computed.

detA � 0 mod 2 detA � 2 mod 3

detA � 2 mod 5 detA � -2 mod 7

 42

In this case, m = 2 � 3 � 5 � 7 = 210. The Chinese remainder problem d � di mod mi , 1
�
 i
�
 4

has the solution d � -58 mod 210. Using only the first three primes results in the erroneous

solution d = 2.

A detailed cost analysis can be referred to in [1]. It shows that the modular method

guarantees the running time will always be polynomial, considering word operations.

2.5.4 Partial fraction decomposition

The partial fraction decomposition problem has already been presented as an

application of the Euclidean algorithm. A different approach is presented here where the

Chinese remainder algorithm is used.

Let F be a field, f1, …, fr
� F[x] nonconstant monic and pairwise coprime

polynomials, e1,…, er
� N positive integers, and f = re

r
ee fff
�

21
21 � . For another polynomial g

� F[x] of degree less than n = deg f, the partial fraction decomposition of the rational

function g / f � F[x] with respect to the given factorization of the denominator f is:

r

r

e
r

re

r

r
e

e

f

g

f

g

f

g

f

g

f

g �������� ���� 1

1

1

1

11

1

1 ,

with gij
� F[x] of smaller degree than fi , for all i, j.

The Chinese remainder algorithm is used in a partial solution of the problem by determining

the incomplete partial fraction decomposition

re
r

r
e f

c

f

c

f

g ��� �
1

1

1 ,

with ci
� F[x] and deg ci < ei ! deg fi for all i.

The method is as follows. By multiplying both sides of the incomplete decomposition by the

denominator f, we obtain
��
��

���
rj

e

jr
j

e

j
jj fcfcg

�
1

1 , (2.1)

with unknowns c1, …, cr. For any i " r, each summand with the exception of the i th one is

divisible by ie
if , whence g # ci $j�i

je

jf mod ie
if . Now each fj is relatively prime to fi hence

invertible modulo ie
if , thus

ij e
i

e

j
ij

i ffgc mod

�

�
�

� ,

 43

which together with deg ci < deg ie
if uniquely determines ci . On the other hand, let ci be

defined as above, and let g* be the right hand side in (2.1), then g* is a polynomial of degree

less than n = deg f and g* # g mod ie
if for all i. Now the Chinese remainder algorithm implies

that g*# g mod f, and since both polynomials have degree less than n, they are equal.

It remains to obtain the full partial fraction decomposition from the incomplete one.

Successive division of the obtained ci’s by their respective denominators completes this task.

That is, if ci = q ! fi + r, with deg r < deg fi , then ci / fi
e = q / fi

e-1 + r / fi
e .

Example:

Let
24

23 24

xx

xxx

g

f

�
���

� with partial fraction decomposition
1

1

1

121
2 �

��

�
��

xxxx
, with

respect to the factorization x2(x-1)(x+1). Here, m1 = x2, m2 = x - 1, m3 = x + 1, and f = m1 ! m2 !
m3 . Computing the remainders gives:

r1 = g mod x2 = -x - 2, r2 = g mod x - 1 = 2, r3 = g mod x + 1 = 2.

Then, applying the Chinese remainder algorithm, the terms ij e
i

e

j
ij

i ffgc mod

�

�
�

� are

obtained.

c1 # r1 ! (m/m1)
-1 = (-x -2)(x2 - 1)-1 # (-x - 2)(-1)-1 = x + 2 mod x2,

c2 # r2 ! (m/m2)
-1 = 2(x3 + x2)-1 # 2!2-1 = 1 mod x - 1,

c3 # r3 ! (m/m3)
-1 = 2(x3 - x2)-1 # 2!(-2)-1 = -1 mod x + 1.

Hence, the incomplete decomposition is:

1

1

1

1224
24

23

�
��

�
�

�
��

���

xxx

x

xx

xxx

The complete partial fraction decomposition results from successive division of the first

numerator by its denominator, which gives x + 2 = 1 ! x + 2, thus giving the required result.

2.6 GRÖBNER BASES [1]

In this section, Gröbner bases are presented. These offer an important algorithmic

approach to deal with polynomials in several variables.

2.6.1 Basic definitions and notation

In this section, familiarity with the basic terminology of multivariate polynomials is

required. A short introduction to this material can be found in the section on “polynomial

 44

rings” at the beginning of this thesis. Some of the required material is reviewed in this section

with a different notation that will be useful in this text.

� Let F be a field, R = F[x1, …, xn] a polynomial ring in n variables over F, and f1, …, fs

� R. The polynomials f1, …, fs generate (or form a basis of) the ideal I if:

I = �f1, …, fs� = { �1�i�s qi fi | qi
� R}

� The variety of I is the set:

V(I) = { u � Fn | f(u) = 0
�

f � I} = { u � Fn | f1(u) = … = fs(u) = 0 }

Example:

Let f1 = x2 + y2 - 2 and f2 = y - 1 in R[x, y], and I = �f1, f2�. Then

V(I) = { (u, v) � R2 | u2 + v2 - 2 = v - 1 = 0 } = { (u, 2) � R2 | u2 = 1 } = { (-1, 2), (1, 2) }

is the intersection of the circle V(x2 + y2 - 2) with the line V(y - 1).

� A monomial is an element of R of the form: na
n

aa xxx
�

21
21 � , ai

� N. It is denoted as x�

where the vector & = (a1, …, an)
� N n.

Ordering the terms of multivariate polynomials is essential in dealing with them. Many

techniques are available. Let & = (a1, …, an), ' = (b1, …, bn)
� N n, then, two commonly used

ordering methods, or monomial orders are:
� Lexicographic order: & <lex ' iff for the minimum i such that ai (bi , ai < bi .
� Total lexicographic order: & <tlex ' iff)1�i�n ai

 <)1�i�n bi
 or otherwise, if)1�i�n ai

 =

)1�i�n bi
 then & <lex ' .

Example:

Let f = 4xyz2 + 4x3 - 5y4 + 7xy2z � Q[x, y, z]. Note that x > y > z since x # x1, y # x2, z # x3.

Lexicographic order: f = 4x3 + 7xy2z + 4xyz2 - 5y4.

Total Lexicographic order: f = 7xy2z + 4xyz2 - 5y4 + 4x3.

y

x

V (y - 1)

V (x2 + y2 - 2)

Figure 2-3. A circle and a line in R2.

 45

Let f =)
�
 c
� x�

� R be a nonzero polynomial, and < an ordering technique, then:
� The degree of f, deg(f) = max{ & � N n | c

� (0 } , where max is with respect to <.
� The leading term of f lt(f) = cdeg(f)x

deg(f) � R.

2.6.2 Multinomial division with remainder

Division with remainder, needed in computing Gröbner bases, solves the following problem.

Given a polynomial f and a set of polynomials G = {g1, …, gs}, it is required to express f as

follows

f = q1g1 + … + qsgs + r, q1, …, qs, r
� R

The notation is: r = f rem (g1, …, gs) = r rem G, which is the remainder.

The process of the division is illustrated hereunder by examples. The ordering technique used

will be the lexicographic order.

Example (1):

f = xy2 + 1, g1 = xy + 1, g2 = y + 1.

 xy + 1 y + 1

xy2 + 1 y

-(xy2 + y)

-y + 1 -1

-(-y - 1)

2

The first difference from the univariate division is that there are two divisors instead of one.

The quotient of the leading term got in each step is recorded in the column below the

respective divisor. In the last line, 2 is not divisible by any of the leading terms of g1 or g2,

and the division process stops. Hence f = y ! g1 -1 ! g2 + 2.

The division procedure is not deterministic. The quotients and remainder need not be unique.

 xy + 1 y + 1

xy2 + 1 xy

-(xy2 + xy)

-xy + 1 -x

-(-xy - x)

x + 1

Here, f = 0 ! g1 + (xy - x) ! g2 + (x + 1).

 46

Example (2):

f = x2y + xy2 + y2, g1 = xy - 1, g2 = y2 - 1.

 xy - 1 y2 - 1 r

x2y + xy2 + y2 x

-(x2y - x)

xy2 + x + y2 y

-(xy2 - y)

x + y2 + y x

-x

y2 + y 1

-(y2 - 1)

y + 1

Another difference from the univariate case appears in this example. In the third step, the

leading term x is not divisible by any of the leading terms of g1 or g2. It is moved to the

remainder column and the division process continues further. The result is f = (x + y)!f1 + 1!f2
+ (x + y + 1).

Again, non-determinism may be checked by verifying that f = x!f1 + (x + 1)!f2 + (2x +1).

To make the division process deterministic, one can order the gi’s and always choose the

smallest possible i in each division step.

Example (3):

f = xy2 - x, g1 = xy + 1, g2 = y2 - 1.

Ordering the gi’s in the given order, we get:

 xy + 1 y2 - 1

xy2 - x y

-(xy2 + y)

-x -y

And f = y ! f1 + 0 ! f2 + (-x - y).

However, starting by g2 in the division procedure, f is expressed as f = 0 ! f1 + x ! f2 + 0, so

that f � �g1, g2�, the ideal generated by g1 and g2.

 47

2.6.3 Hilbert’s basis theorem and Gröbner bases

 This section presents most of the material required to compute Gröbner bases. For

conciseness, only definitions and theorems are given without any proofs.

Let R = F[x], the Euclidean domain of univariate polynomials. One can show that �g1, …, gs�
= �gcd(g1, …, gs)�. Dividing f by g with remainder yields q, r � F[x] with f = qg + r and

deg(r) < deg(g). Then f � �g� � r = 0.

Generalizing this property of ideal membership to the case of multivariate polynomials

require first a unique remainder from the division process. As the last example of the

previous section shows, this is not the case. However, this requirement can be realized by

choosing a special basis G for each ideal such that the remainder on division by that basis is

unique. Such a basis is called a Gröbner basis and is defined in this section.
� A monomial ideal I � R is an ideal generated by monomials in R so that there exists a

subset A � N n with I = �xA� = �{ x
�
 | � � A} �.

For � � N n, x
�
 � I � � � � A | x

�
 divides x

�
.

� For any subset G � R different from � and {0}, the set of leading terms of G,

lt(G) = {lt(G) | g � G}.
� Hilbert’s basis theorem

Every ideal I � R = F[x1, …, xn] is finitely generated. More precisely, there exists a finite

subset G � I such that �G� = I and �lt(G)� = �lt(I)�.
A proof of the theorem can be referred to in [1].

� Let < be a monomial order and I � R an ideal. A finite set G � I is a Gröbner basis

for I with respect to < if �G� = I and �lt(G)� = �lt(I)�.
Thus Hilbert’s theorem implies that every ideal in F[x1, …, xn] has a Gröbner basis.

The ideal membership problem can now be solved, as stated earlier. If G is a Gröbner basis

for the ideal I � R with respect to a monomial order <, and f � R, then f � I iff f rem G = 0.

Note that Hilbert’s theorem does not say that every subset G � I that generates I, is such that

�lt(G)� = �lt(I)�. It can happen that �G� = I but �lt(G)� (�lt(I)�. This is illustrated in the

following example.

Example:

Let g = x3 - 2xy, and h = x2y - 2y2 + x � Q[x, y]. The used ordering is <tlex , and G = {g, h}.

Let I = �G�. Then x2 = -yg + xh. and x2 � �lt(I)� but x2 � �lt(G)� = �x3, x2y�.

 48

What happened here is that the linear combination ax
�
g + bx

�
h, (g, h � G and �,� � N n)

yielded a polynomial whose leading term is not divisible by any of lt(G), due to cancellation

of leading terms. When such cancellation occurs, it necessarily comes from S-polynomials.
� Let g, h � R be nonzero, deg(g) = � = (a1, …, an), deg(h) = � = (b1, …, bn), and � =

(max{a1,b1}, …, max{an,bn}). The S-polynomial of g and h is

S(g, h) = (x� / lt(g))g - (x� / lt(h))h.

Since x� / lt(g), x� / lt(h) � R, we have S(g, h) � �g, h�.
Example:

Again, let g = x3 - 2xy, and h = x2y - 2y2 + x � Q[x, y]. Here, � = (3, 0), � = (2, 1), � = (3, 1).

Then, S(g, h) = (x3y/x3)g - (x3y/x2y)h = -x2, the term which caused cancellation in this

example.
� Gröbner basis test

A finite set G = {g1, …, gs} � R is a Gröbner basis of the ideal �G� if and only if:

S(gi , gj) rem (g1, …, gs) = 0 for 1
�
 i
�
 j
�
 s.

Again, [1] presents the proof.

2.6.4 Computation of Gröbner bases

Now, the Gröbner bases may be computed. A simplified version of Buchberger’s

algorithm for computing a Gröbner basis is presented in [1]. The algorithm follows.

Input: f1, …, fs
� R = F[x1, …, xn] and a monomial order <.

Output: Gröbner basis G � R for the ideal I = �f1, …, fs� w.r.t. <, with f1, …, fs
� G.

G := { f1, …, fs}

while true do // infinite loop

U := �

order the elements of G as g1, …, gt

for 1
�
 i < j

�
 t do

r := S(gi , gj) rem (g1, …, gt)

if r � 0 then U := U � { r}

if U = � then return G else G := G � U.

Notes on the complexity of this algorithm are found in [1] and [2]. Earlier mathematicians

mention a doubly exponential upper bound (
n22) in the degrees of polynomials in the basis.

 49

Mayr (1996) was able to provide an exponential space algorithm for computing a Gröbner

basis.

Example:

For the third time, let f1 = x3 - 2xy, and f2 = x2y - 2y2 + x � Q[x, y], with total lexicographic

order <tlex and y <tlex x.

Initially, G = {f1, f2} is not a Gröbner basis since f3 = S(f1, f2) rem (f1, f2) = -x2 (0. Hence f3 is

added to the basis and G = {f1, f2, f3} with S(f1, f2) rem (f1, f2, f3) = 0

Next, S(f1, f3) = 1 ! f1 -(-x) ! f3 = -2xy, then S(f1, f3) rem (f1, f2, f3) = -2xy = f4 .

After adding f4 to the basis, S(f1, f3) rem (f1, f2, f3, f4) = 0.

Now, S(f1, f4) = y ! f1 -(-1/2x2) ! f4 = -2xy2 = y ! f4 so that S(f1, f4) rem (f1, f2, f3, f4) = 0.

But S(f2, f3) = 1 ! f2 -(-y) ! f3 = -2y2 + x, and S(f2, f3) rem (f1, f2, f3, f4) = -2y2 + x = f5.

After adjoining f5 to the basis, one can check that

S(fi, fj) rem (f1, f2, f3, f4, f5) = 0 for 1 " i < j " 5.

Thus {(f1, f2, f3, f4, f5} forms a Gröbner basis.

2.7 APPLICATIONS OF GRÖBNER BASES [1]

A direct application of Gröbner bases is the ideal membership problem. They are also

essential in geometric theorem proving, implicitization problems and for solving systems of

multivariable polynomial equations.

2.7.1 Ideal membership problem

This application is the most natural one and has already been presented in the text. If

G is a Gröbner basis for the ideal I � R with respect to a monomial order <, and f � R, then f
� I if and only if f rem G = 0.

2.7.2 Geometric theorem proving

Geometric theorems can often be formulated in terms of polynomial equations. This is

a kind of problem that can be solved using Gröbner bases. The following example illustrates

how this formulation can help in “automatic” proofs of theorems in geometry.

 50

Example:

 A well-known geometric theorem says that the three medians of a triangle intersect at

one point, and that the intersection point (the center of gravity) trisects each median. Refer to

the figure below.

Figure 2-4. The three medians of a triangle intersect at the center of gravity.

Since the assumptions and the conclusion of the theorem are invariant under

translation, rotation and scaling, it may be assumed that two of the vertices of the triangle are

A = (0, 0) and B = (1, 0), and the third point is C = (x, y) � R2. Then the midpoints of the

three edges BC, AC and AB are P = ((x+1)/2, y/2), Q = (x/2, y/2) and R = (1/2, 0),

respectively.

Let S = (u, v) be the intersection point of the two medians AP and BQ. The condition that S

lies on AP is equivalent to saying that AS and AP have the same slope, so that u/v = (x+1)/y or

f1 = uy – v(x + 1) = 0.

Similarly, the condition that S lies on BQ can be expressed as

f2 = (u – 1)y – v(x – 2) = 0.

Now, the claims are that S lies on the third median CR, or

g1 = –2(u – x)y – (v – y)(1 – 2x) = –2uy – (v – y) + 2vx = 0,

and that S trisects each of the three medians, so that

(u, v) = AS = 2SP = (x + 1 – 2u, y – 2v),

(u – 1, v) = BS = 2SQ = (x – 2u, y – 2v),

(u – x, v – y) = CS = 2SR = (2u – 1, 2v),

or equivalently,

A B

C

P Q

R

S

 51

g2 = 3u – x – 1 = 0 and g3 = 3v – y = 0.

And the theorem is equivalent to “f1 = f2 = 0 � g1 = g2 = g3 = 0”, where f1, f2
� R[u, v, x, y]

are the hypotheses polynomials, and the conclusions yield g1, g2, g3
� R[u, v, x, y].

In general, a geometric problem can be formulated as a set of hypothesis polynomials

f1, …, fs in R[x1, …, xn] and one or several conclusion polynmomials g � R[x1, …, xn] and the

theorem is true if and only if V(f1, …, fs) � V(g). In particular, the theorem can be proved by

showing that g � �f1, …, fs�.
Back to the example, consider the ideal �f1, f2� for which it is required to compute a Gröbner

basis. Using the lexicographic monomial order <lex , and u >lex v > x > y, we have

f1 = uy – vx – v, f2 = uy – vx + 2v – y.

With respect to this monomial order,

S(f1, f2) = f1 – f2 = –3v + y = –g3 (0.
After adding g3 to the basis,

S(f1, g3) rem (f1, f2, g3) = -uy2 - 3v2x - 3v2 rem (f1, f2, g3) = 0,

S(f1, f2) rem (f1, f2, g3) = -uy2 - 3v2x + 6v2 - 3vy rem (f1, f2, g3) = 0.

Thus {f1, f2, g3} is a Gröbner basis, i.e. g3
� �f1, f2�, and the third conclusion is proved. One

can easily show the same for g1 and g2.

2.7.3 Implicitization

Let f1, …, fn
� F[t1, …, tm], and consider the hyperplane V given in parametric form by

x1 = f1(t1, …, tm),

…

xn = fn(t1, …, tm),

so that V can be “explicitly” described as V = { a � Fn | � b � Fm, a = (f1(b), …, fn(b))}. The

task is now to find polynomials g1, …, gs
� F[x1, …, xn] such that V has the “implicit”

representation V = V(I), where I = �g1, …, gs�.
To solve the implicitization problem, consider J = �x1 - f1, …, xn - fn� � F[t1, …, tm, x1, …, xn],

order the variables so that t1 > … > tm > x1 > … > xn, and compute a Gröbner basis G for J

with respect to <lex . Then some g � G will depend only on x1, …, xn. These are candidates

for the gi’s.

Example:

The twisted cubic C is given by the parametric equations

x = t, y = t2, z = t3.

 52

The Gröbner basis J with respect to t > z > y > x is {t - x, z - x3, y - x2}. Thus the

implicitization for C is g1 = y - x2, g2 = z - x3. In fact the curve is the intersection of the two

surfaces g1 and g2 in 3-D space. In the figure below, C is the black bold curve.

Figure 2-5. The twisted cubic (thick line) in R3.

2.7.4 Solving systems of polynomial equations

Given is a system of polynomials f1, …, fm � F[x1, …, xn] and want to find the set of solutions

V = {a � Fn | f1(a) = 0, …, fm(a) = 0}.

The Gröbner basis with respect to lexicographic order and x1 <lex … < xn will often

include some polynomials only containing x1, some only with x1, x2, and so on. These can be

solved by back substitution: first for x1, then for x2, and so on.

Example:

Let f = (y2 + 6)(x - 1) - y(x2 + 1), g = (x2 + 6)(y - 1) - x(y2 + 1), and f, g � C[x, y]. It is required

to find all common roots of the system of polynomial equations f = g = 0.

 53

A Gröbner basis of I = �f, g� w.r.t. lexicographic order <lex and x <lex y consists of f, g, and the

three polynomials

h = -f - g = x2 -5x + y2 - 5y + 12, p = y2x - 5yx + 6x + y3 - 6y2 + 11y - 6,

q = y4 - 6y3 +15y2 - 26y + 24.

The last polynomial contains only the variable y, and, by factoring it, q = (y -2)(y -3)(y2 - y+4)

and hence, V(q) = {2, 3, 1/2 � i (15)/2}.

Substituting y = 2 in h and p, it results that p(x, 2) = 0 for all x. And h(x, 2) = x2 - 5x + 6,

hence two common zeros are (2, 2) and (3, 2). by substituting y = 3 and y = 1/2 � i (
�
15)/2 in

h = p = 0 then solving for x, the other four points can be found:

{(2, 3), (3, 3), (
2

151
,

2

151 ii ��
)}.

2.8 GENERAL APPLICATION AREAS OF COMPUTER ALGEBRA

The three typical steps in mathematical applications are:
� creating a mathematical model for the problem at hand,
� solving the model mathematically, and
� interpreting the solution in the original problem.

Virtually any application where the results are required to be exact or symbolic can be

considered as an application of computer algebra. To mention some fields involved with

symbolic computation, we have:
� Physics: plasma physics, physics of fluids, electron optics, non-linear optics,

molecular physics, electronics.
� Mechanics: celestial mechanics, calculation of orbits, gravitational fields.
� Mathematics: number theory, group theory, computational geometry, numerical

analysis.
� Other areas: chemistry, biology, robotics, and economy.

[Cf.: Richard Liska, http://www-troja.fjfi.cvut.cz/~liska/ca/]

An illustration of a few application areas follows hereunder.

2.8.1 Celestial mechanics

The famous example of Delauny. He calculated the orbit of the moon under the influence

of the sun and a non-spherical earth with a tilted ecliptic. His work took 20 years to complete

 54

and was published in 1867. Recalculation on a small computer in 1970 took only 20 hours of

CPU time, and it showed hand calculations to be correct to 9 decimal places. [1]

2.8.2 Geometric theorem proving

There are several computer algebra approaches to proving theorems in Euclidean geometry

that can be stated as polynomial equations. An example is: "The altitude pedal of the

hypotenuse of a right-angled triangle and the midpoints of the three sides of the triangle are

co-circular."

Figure 2-6. Example of a geometric theorem proving.

The hypotheses of this geometric statement, describing a correct drawing of the

corresponding figure, are polynomial equations in the coordinates of the points in the

figure. The same holds for the conclusion. [2]

Hypotheses:

h1 # 2y3 - y1 = 0 (E is the midpoint of AC),

h2 # (y7 - y3)
2 + (y8)

2 - (y7 - y4)
2 - (y8 - y5)

2 = 0 (EM andFM are equally long),
�

hm # …

Conclusions:

c # (y7 - y3)
2 + (y8)

2 - (y7 - y9)
2 - (y8 - y10)

2 = 0 (EM andHM are equally long),

2.8.3 Computational algebraic geometry

This field includes many applications, among which implicitization and parameterization

only are presented.

There are two standard ways to represent planar curves: parametric and implicit forms. Both

forms have their use, and some problems are modeled using one form or the other. There

exist algorithms that convert one form to the other, as illustrated below.

 55

The tacnode illustrated in the next figure has the implicit equation

f(x, y) = 2x4 - 3x2y + y4 - 2y3 + y2 = 0

Figure 2-7. The tacnode curve.

Computer algebra offers algorithms that convert to and from the parametric equations: [2]

93240162

44
)(,

93240162

296
)(

234

2

234

23

����

�������
����

tttt

tt
ty

tttt

ttt
tx

2.8.4 Robotics

The next figure shows a very simple robot, one-armed with two joints. The arm is fixed at

one end with a joint to a point, say the origin of the Cartesian plane. The other joint in the

middle rotates freely. The distance between the two joints is 2, and the distance from the

second joint to the endpoint is 1. The joint between the two arms is at position (x,y) and the

endpoint at position (z,w).

Furthermore, there is a line mt + c = 0 with some fixed parameters m,c. A simple question is:

can the robot reach the line?

 56

Figure 2-8. A two-segment robot. (3D view and schematic).

The possible positions (x,y,z,w) � R4 of the robot are characterized by the algebraic equations

(x2 + y2) = 4, (z - x)2 + (w - y)2 = 1,

and an answer to the question is either a quadruple (x,y,z,w) satisfying these equations

together with the line equation w = mz + c, or a proof that no such quadruple exists. [2] This

is the kind of problems that can be used with the help of Gröbner bases.

2.8.5 Chemistry

The cyclohexane molecule C6H12 is a hydrocarbon consisting of six carbon atoms connected

to each other in a cycle, and twelve hydrogen atoms, two attached to each carbon atom.

Figure 2-9. The structure formula for cyclohexane and the carbon bonds.

The figures above show the structure formula for the cyclohexane and the orientation given to

the bonds a1, … , a6. The four bonds of one carbon atom (two bonds to adjacent carbon atoms

and two to hydrogen atoms) are arranged in the Euclidean space in the form of a tetrahedron,

with the carbon in the center and its bonds pointing to the four corners. The angle between

C

C

C

C

C

C

H H
H

H

H

H

H H

H

H

H

H

a1

a2
a3

a4

a5a6

(0,0)

(x,y)

(z,w)

(t,mt+c)

 57

any two bonds is cos-1(-1/3). Now, the problem is to determine the conformation (i.e. the

configuration of the molecule) of the cyclohexane.

The unknowns are the orientations of the six bonds in three-space: a1, …, a6
� R3, where ai is

a three-component vector. The following equations are obtained:

.0

,
3

1

,1

621

163221

662211

����

�������

�������

aaa

aaaaaa

aaaaaa

����

�������

�������

The � is the usual scalar product (dot product) of vectors.

These equations can be solved with a computer algebra system, yielding the conformations

observed by chemists and illustrated below. [1]

Figure 2-10. The chair and boat conformations of cyclohexane.

��

Chapter 3: THE IMPLICITIZATION PROBLEM

 In this chapter, we review some of the features of the implicitization problems [10]

[11] [13]. Section 3.1 contains some definitions with a comparison on the use of implicit and

parametric forms. Then, section 3.2 reviews some needed results from algebra, namely

resultants [1] [3] and homogeneous systems of linear equations [27]. Section 3.3 is basic in

this thesis. It reviews some implicitization methods with emphasis on describing some

existing algorithms. Moreover, algorithms are devised when they are not provided in the

literature and afterwards implemented in chapter 4. Finally, newly suggested implicitization

methods are devised and also subsequently implemented in chapter 4. Complexity of

algorithms as related to the mentioned algorithms is addressed.

3.1 INTRODUCTION

3.1.1 Preliminaries [2]

� Algebraic geometry, also known as computational geometry, is the study of geometric

objects defined as the zeros of polynomial equations. Using the algebra of polynomial rings,

many of the techniques in algebraic geometry become computationally feasible.

� For any field F, the n-dimensional affine space over F is defined as:

Fn = {(a1, …, an) | ai � F}.

Thus, F2 is the affine plane over F.

� An affine plane algebraic curve C in F2 is the set of zeros of a polynomial f(x, y) �

F[x, y], i.e.

C = {(a1, a2) | f(a1, a2) = 0, (a1, a2) � F2}.

f is called a defining polynomial of the curve C.

� The affine curve C in F2 defined by the polynomial f(x, y) is called parameterizable,

iff there are functions g(t) and h(t) such that:

a. for almost all (i.e. for all but a finite number of exceptions) t0 � F, (g(t0), h(t0)) is a

point on C,

b. for almost every point (x0, y0) on C, there is a t0 � F such that (x0, y0) = (g(t0), h(t0)).

� The parametric representation of a plane curve is a mapping from the real line

domain (t � R) to the plane domain (x, y) � R2.

��

� The implicitization problem is the process of converting curves and surfaces from

parametric form into implicit form.

3.1.2 Parametric and implicit forms

In geometric modeling and computer aided design systems, curves and surfaces can

be represented either parametrically or implicitly. For example, the unit sphere can be written

as x2 + y2 + z2 – 1 = 0 in implicit form, or written as

22

22

2222 1
1,

1
2,

1
2

ts
tsz

ts
ty

ts
sx

��
��

�
��

�
��

�

in parametric form. Implicit representations of curves and surfaces provide a straightforward

way to detect whether or not a point lies on a curve or surface. Parametric representations of

curves and surfaces are very convenient for shape control and for rendering. Both the

parametric form and the implicit form are important, but many curve and surface design

systems start from parametric representations. Implicitization is thus required to convert the

parametric form into implicit form [10] [13].

Generation of plane curves

To illustrate the usefulness of parametric equations in generating points along curves,

the simple example of the plot of an ellipse is presented. Consider the implicit equation of the

ellipse 4x2 + 9y2 = 36. By expressing y as an explicit equation in x, i.e., 2436
3
1 xy �� , the

ellipse is plotted at regular x-intervals equal to 0.05 using Matlab. Notice that the plot is a

vector of points computed at the various values of x. The discontinuities appear clearly as the

absolute value of the slope of the curve exceeds 1, near x = 2.7. These are due to non-

regularly spaced y-values corresponding to regularly spaced x-values.

��

Figure 3-1. Explicit plot of an ellipse.

In the case of the parametric plot, the generated points are regularly spaced for regularly

spaced t-values resulting in a smoother plot. Intervals of size 0.05 are used here also.

Figure 3-2. Parametric plot of an ellipse.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

��

Generation of plane curves by rolling

In [9], an interesting problem in descriptive geometry is presented, where parametric

representation is the start point.

If a “moving curve” Cm rolls, without slipping, along another “fixed curve” Cf, any

fixed point Q attached to Cm describes a curve � which is known as roulette. In the same

reference, it is shown how the equations of Cm and Cf which generate a certain curve � can be

derived in parametric form, where their parameter is that of the given curve �. Examples of

roulette are the family of cycloid (epicycloid, hypocylcoid, …) and the family of trochoid

(epitrochoid, hypotrochoid, …). It may be valuable to add implicitization analysis to the

resulting roulettes.

The famous cycloid curve, which is the tracing of a point on the circumference of a

circle rolling on a straight line, is given by the parametric equations:

x = a(t - sint), y = a(1 - cost), where a is the radius of the rolling circle

Its plot is shown in the next figure.

 Later, the cycloid is treated from the point of view of implicitization, thus paving the

way for other roulettes to be treated the same way.

Figure 3-3. The cycloid.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

��

Trigonometric curves [11] [12]

A trigonometric curve is a real plane curve where each coordinate is given

parametrically by a trigonometric polynomial, that is, a truncated Fourier series of the form:

�0�k�m akcos(k�) + bksin(k�)

Trigonometric curves arise in various areas of mathematics, physics and engineering.

This class of curves includes numerous classical curves such as limacon of Pascal, cardioid,

trifolium, epicycloid, hypocycloid, etc, as special cases. (Note that some of these curves are

the roulettes mentioned above in the generation of curves by rolling.) They also arise

naturally in numerous areas such as linear differential equations, Fourier analysis, almost

periodic functions (under the name of generalized trigonometric polynomials), representation

of groups (utilizing its periodicity), electrical circuit analysis (Lissajous curves as often

shown on oscilloscopes), fracture mechanics (as the caustic pattern appearing when a

fractured material is shown by a laser beam), etc. The class includes all bounded polynomial

curves (i.e. images of polynomial parameterization with bounded parameter interval). It is a

subset of the class of rational curves (images of rational parameterization).

3.1.3 Variants of implicitization

The most naturally related problem is the reverse problem, namely that of

parameterization of curves, i.e. finding a parametric form of an implicit equation [2].

However, the implicitization problem is itself divided into numerous subproblems, some of

which far from a complete and satisfactory solution.

Several open problems and achievements in this area are presented in [21]. A brief

overview highlights the following research areas:

a) Two-dimensional versus three-dimensional implicitization. A 2-D object is

represented by two functions x(t) and y(t), while a 3-D object requires a third function

z(t).

b) Curves versus surfaces. Parametric representations of curves require functions in only

one parameter. Surfaces are represented by two-parameter functions. The implicitization

of surfaces is still a problem, far from having a complete solution [13].

c) Rational versus trigonometric functions. Rational parametric functions are of the form

of a ratio of two polynomials such as x = f(t)/g(t). Trigonometric functions are the form of

truncated Fourier series presented in the previous section.

�	

3.2 MORE RESULTS FROM ALGEBRA

In the following, some results of algebra are summarized.

3.2.1 Resultants [1] [3]

Let S be a commutative ring with identity. Let A(x) and B(x) � S[x] be univariate

polynomials of respective positive degrees m and n with coefficients in the ring S.

A(x) = amxm + am-1xm-1 + …+ a0, deg(A) = m, and

B(x) = bnxn + bn-1xn-1 + … + b0, deg(B) = n,

� The Sylvester matrix of A(x) and B(x) � S[x], denoted as syl(A, B), is the following

matrix of size (m + n) × (m + n) over S:

syl(A, B)

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

�

01

01

01

01

01

01

bbb

bbb
bbb

aaa

aaa
aaa

nn

nn

nn

mm

mm

mm

��

����

��

��

�

����

�

�

In particular, the first n rows of the Sylvester matrix correspond to the polynomials xn-1 A(x),

xn-2A(x),…, A(x), and the last m rows, to xm-1 B(x), xm-2B(x),…, B(x).

� The resultant of A(x) and B(x), denoted res(A, B), is the determinant of the Sylvester

matrix syl(A, B), and thus is an element of S.

Since syl (B, A) can be obtained by m � n row transpositions, we see that

res(B, A) = det(syl(B, A))

 = (-1) mn det(syl(A, B))

 = (-1)mn res(A, B).

The following properties will be used for some of the subsequent proofs.

n staggered rows of
coefficients of A

m staggered rows of
coefficients of B

�

3.2.1.1 Properties of resultants

Lemma. [3]

Let S be a commutative ring with identity, and A(x) and B(x) � S[x] be univariate

polynomials of respective positive degrees m and n with coefficients in the ring S, then there

exist polynomials T(x) and U(x) � S[x] such that:

A(x) · T(x) + B(x) · U(x) = res (A, B),

where deg(T) < deg(B) = n and deg(U) < deg(A) = m.

Proof.

Consider the Sylvester matrix of A and B:

M = syl(A, B)

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

�

01

01

01

01

01

01

bbb

bbb
bbb

aaa

aaa
aaa

nn

nn

nn

mm

mm

mm

��

����

��

��

�

����

�

�

Let us create a new matrix M � from M by following elementary matrix operations:

1.First, multiply the ith column by xm+n-i and add to the last column of M.

2.All but the last column of M � are the same as those of M.

By definition,

res(A, B) = det(M) = det(M �).

We observe that the matrix M � is as follows:

n rows

m rows

��

syl(A, B)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

�

�

��

�

�

��

�

n

i

i
inn

n

i

im
inn

n

i

im
inn

m

i

i
imm

m

i

in
imm

m

i

in
imm

xbbb

xbbbb

xbbbb

xaaa

xaaaa

xaaaa

0
1

0

2
01

0

1
01

0
1

0

2
01

0

1
01

��

����

��

��

�

����

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

�

�

�

�

�

)(

)(
)(

)(

)(
)(

1

2
01

1
01

1

2
01

1
01

xBbb

xBxbbb
xBxbbb

xAaa

xAxaaa
xAxaaa

nn

m
nn

m
nn

mm

n
mm

n
mm

��

����

��

��

�

����

�

�

Note that since the last column of the matrix M� is simply

,)](),...,(),(),....,([11 Tmn xBxBxxAxAx ��

We can compute the det(M �) explicitly by expanding the determinant with respect to its last

column. We then have the following:

res(A, B) = det(M �)

nmnmnmn
m

nmnnm
n MxBMxBxMxAMxAx

����

�

��

�

�������������� ,,1
1

,,1
1)(...)()(...)(

)...)(()...)((,
1

,1,
1

,1 nmnm
m

nmnnmn
n

nm MxMxBMxMxA
��

�

���

�

�
����������

).()()()(xUxBxTxA ����
Note that the coefficients of T(x) and U(x) are cofactors of the last column of M�, and hence

of M, and are ring elements in S. Clearly,

deg(T) n-1< deg(B) and deg(U) m-1 < deg(A).

n rows

m rows

n rows

m rows

��

Lemma. [3]

 Let S be a unique factorization domain with identity, and A(x) and B(x) be univariate

polynomials of positive degrees with coefficients in S, then res(A, B) = 0 iff A(x) and B(x)

have a common divisor of positive degree.

Proof.

Assume that A(x) and B(x) have a common divisor C(x) of positive degree. Then,

A(x) = C(x) � U(x), deg(U) < deg(A), and

B(x) = C(x) � T(x), deg(T) < deg(B).

Therefore, A(x) � T(x) + B(x) � (-U(x)) = C(x) � T(x) � U(x) - C(x) � T(x) � U(x) = 0.

Thus, there exists polynomials T, U � S[x], with deg(T) < deg(B) and deg(U) < deg(A), such

that A(x) � T(x) + B(x) � U(x) = 0. And, by the previous lemma, res(A, B) = 0.

3.2.1.2 Homomorphisms and Resultants

Let S and S* be commutative rings with identities, and *: SS �� be a ring homomorphism

of S into S*. Note that � induces a ring homomorphism of S[x] into S*[x], also denoted by � ,

as follows:

][*][: xSXS ��

).(...)()(...: 0
1

10
1

1 axaxaaxaxa m
m

m
m

m
m

m
m ��� ������ �

�

�

�
�

Lemma. [3]

 Let �
�

�
m

i

i
i xaxA

0
)(and �

�

�
n

i

i
i xbxB

0
)(be two univariate polynomials over the ring S

with deg(A) = m > 0 and deg(B) = n > 0.

If

mA �))(deg(� and ,))(deg(kB ��),0(nk

Then

)).(),(()()),((bAresaBAres kn
m ���� �� �

Proof.

Let

),(...)()()(* 0
1

1 axaxaAA m
m

m
m ���� ����� �

�
 and

).(...)()()(* 0
1

1 bxbxbBB k
k

k
k ���� ����� �

�

��

Then, M, the Sylvester matrix of A(x) and B(x), is

M = syl(A, B)

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

�

01

01

01

01

01

01

bbb

bbb
bbb

aaa

aaa
aaa

nn

nn

nn

mm

mm

mm

��

����

��

��

�

����

�

�

and M*, the Sylvester matrix of A*(x) and B*(x), is M* = syl(A*, B*)

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

�

)()()(

)()()(
)()()(

)()()(

)()()(
)()()(

01

01

01

01

01

01

bbb

bbb
bbb

aaa

aaa
aaa

kk

kk

kk

mm

mm

mm

���

���

���

���

���

���

��

����

��

��

�

����

�

�

The matrix M* is obtained from M by the following process:

1. First, the matrix,)(M� , is computed by replacing the entry aj by)(ja� (for

all mj 0), and by replacing the entry bj by)(jb� (for all nj 0). By

assumption

0)(...)(1 ���
�kn bb ��

2. Next, from)(M� , the first (n - k) rows and (n - k) columns are deleted,

yielding an (m + k) × (m + k) matrix equal to M* .

Thus,

)(M�

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	

�

���

���

� �

�

*0

)()()(

)()()(

01

01

M

aaa

aaa

mm

mm

�

����

�

Therefore,

n rows

m rows

k rows

m rows

(n - k) rows

(m + k) rows

��

))),((det()),((BAsylBAres �� �

*))(det()())(det(MaM kn
m ��� ��� �

)).,((det()(BAsyla kn
m �� �� �

)).,(()(BAresa kn
m �� �� �

Therefore,

)).,(()()),((BAresaBAres kn
m ��� �� �

� Let S be a commutative ring with an identity, and T
r S�),...,(1 �� be an r-tuple.

Define a ring homomorphism
r��

� ,...,1
, called the evaluation homomorphism, as follows:

SxxS rr
�],...,[: 1,...,1 ��

�

,: 11 ��x

�

.: rrx ��

Note that, if],,...,[),...,(11 rr xxSxxF � then we shall write),...,(1 rF �� for).(,...,1
F

r��
�

The evaluation homomorphism will be used later in subsequent proofs.

3.2.1.3 Multivariable resultants

Let S be a commutative ring with an identity, and

�
�

�
��

m

i
r

i
rrir xxSxxxAxxA

0
1111],,...,[),...,(),...,(and

�
�

�
��

n

i
r

i
rrir xxSxxxBxxB

0
1111],...,[),...,(),...,(

be two polynomials in],...,[1 rxxS of respective positive degrees m and n in xr. Then,

),(BAres
rx

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

�

01

01

01

01

01

01

BBB

BBB
BBB

AAA

AAA
AAA

nn

nn

nn

mm

mm

mm

��

����

��

��

�

����

�

�

n rows

m rows

��

is the resultant of two multivariate polynomials),...,(1 rxxA and),...,(1 rxxB , with respect to

xr.

Lemma. [3]

Let L be an algebraically closed field, and let

),...,(),(11 �
� rx xxCBAres

r

be the resultant of the multivariate polynomials,

�
�

�
��

m

i
r

i
rrir xxLxxxAxxA

0
1111],,...,[),...,(),...,(and

�
�

�
��

n

i
r

i
rrir xxLxxxBxxB

0
1111].,...,[),...,(),...,(

with respect to xr. Then

1. If r
r L�),...,(1 �� is a common zero of),...,(1 rxxA and),...,(1 rxxB , then

0),...,(11 �
�rC �� .

2. Conversely, if 0),...,(11 �
�rC �� , then at least one of the following four

conditions holds:

(a) ,0),...,(...),...,(11011 ���
�� rrm AA ���� or

(b) ,0),...,(...),...,(11011 ���
�� rrn BB ���� or

(c) ,0),...,(),...,(1111 ��
�� rnrm BA ���� or

(d) For some),...,(, 1 rr L ��� � is a common zero of both),...,(1 rxxA and

),...,(1 rxxB

Proof.

(1) Since there exist T and U in],...,[11 �rxxL such that ,CUBTA ���� we have

),...,(11 �rC ��),...,(),...,(),...,(),...,(1111 rrrr UBTA �������� ����

 ,0�

as ,0),...,(),...,(11 �� rr BA ���� by assumption.

(2) Next, assume that 0),...,(11 �
�rC �� , but that conditions (a), (b), and (c) are

not satisfied. Then there are two cases to consider:

1. ,0),...,(11 �
�rmA �� and for some 0),...,(),0(11 �

�rkBnkk ��

 (k is assumed to be the largest such index).

2. ,0),...,(11 �
�rnB �� and for some 0),...,(),0(11 �

�rkAmkk ��

 (k is assumed to be the largest such index).

��

Since res(B, A) = (-1)mn res(A, B) = ± C, cases (1) and (2) are symmetric, and without any

loss of generality, we may only deal with the first case.

Let
11 ,...,

�

�
r��

�� be the evaluation homomorphism defined earlier.

Thus,

)(0 c��

)),((BAres��

)),(),(()(BAresA kn
m ��� �� �

and ,0))(),((�BAres �� since ,0),...,()(11 ��
�rmm AA ���

If k = 0, then mBBAres)())(),((0��� � ,0),...,(110 ��
�

m
rB �� (by assumption).

Hence k > 0 and)(A� and)(B� are of positive degree and have a common divisor of

positive degree, say D(xr). Since L is algebraically closed, D(xr) has at least one zero, say

r� . Therefore,

),(~)(),,...,(11 rrrr xAxDxA ��
�

�� and

),(~)(),,...,(11 rrrr xBxDxB ��
�

��

and),,...,(11 rr ���
�

is a common zero of A and B.

The following properties of linear systems of equations will be used for some of the

subsequent proofs.

3.2.2 Homogeneous systems of linear equations [27]

� The quantities Q1, Q2, …, Qn are said to be linearly dependent if there exists a set of

constants c1, c2, …, cn, at least one of which is different from zero, such that the equation

c1Q1 + c2Q2 + … + cnQn = 0

holds identically.

� The quantities Q1, Q2, …, Qn are said to be linearly independent if they are not

linearly dependent, i.e., if the only linear equation of the form

c1Q1 + c2Q2 + … + cnQn = 0

which they satisfy identically has c1 = c2 = … = cn = 0

Given a system of the form

��

11212111 ... bxaxaxa nn ����

22222111 ... bxaxaxa nn ����

..

mnmnmm bxaxaxa ���� ...2211

where m, the number of equations, is not necessarily equal to n, the number of unknowns. If

at least one of the m quantities bi is different from zero, the system is said to be

nonhomogeneous. If bi = 0 for all values of i, the system is said to be homogeneous. If we

define the matrices

�
�
�
�

�

�

	
	
	
	

�

�

mnmm

n

n

aaa

aaa
aaa

A

�

����

�

�

21

22221

11211

�
�
�
�

�

�

	
	
	
	

�

�

nx

x
x

X
�

2

1

�
�
�
�

�

�

	
	
	
	

�

�

mb

b
b

B
�

2

1

The system can be written in the compact matrix form

AX = B (3.1)

In this form, the matrix A is known as the coefficient matrix of the system, and the matrix

[AB] obtained by adjoining the column matrix B to the coefficient matrix A as an (n + 1)st

column is known as the augmented matrix of the system.

Before proceeding to the question of the existence and determination of solutions of

(3.1), it shall first be proved several important theorems about such solutions on the

assumption that they exist.

Theorem. [27]

If X1 and X2 are two solutions of the homogeneous matrix equation AX = 0, then for

all values of the constants c1 and c2, the vector c1X1 + c2X2 is also a solution of the system of

equations AX = 0.

Proof. By direct substitution we have

0)()()(22112211 ���� XcAXcAXcXcA

0
00

)()(

21

2211

�

����

��

cc
AXcAXc

where the coefficients of c1 and c2 vanish because, by hypothesis, both X1 and X2 are

solutions of AX = 0. Hence c1X1 + c2X2 also satisfies AX = 0, as asserted.

��

Theorem. [27]

If k is the maximum number of linearly independent solution vectors of the system AX

= 0, and if X1, X2,…, Xk are k particular linearly independent solution vectors, then any

solution vector of AX = 0 can be expressed in the form.

c1X1 + c2X2 + … + ckXk

where the ci’s are scalar constants.

Proof. Let k be the maximum number of linearly independent solution vectors of the equation

AX = 0; let X1, X2,…, Xk be a particular set of k linearly independent solution vectors; and let

Xk+1 be any solution vector. If Xk+1 is one of the vectors in the set { X1, X2,…, Xk }, the

assertion of the theorem is obviously true. If Xk+1 is not a member of the set { X1, X2,…, Xk },

then X1, X2,…, Xk , Xk+1 cannot be linearly independent since, by hypothesis, k is the

maximum number of linearly independent solution vectors of AX = 0. Hence, the X’s must

satisfy a linear equation of the form

c1X1 + c2X2 + … + ckXk + ck+1 Xk+1 (3.2)

in which at least one c is different from zero. In fact, ,01 �
�kc for otherwise equation (3.2)

would reduce to

c1X1 + c2X2 + … + ckXk = 0

with at least one of the ci’s different from zero, contrary to the hypothesis that X1, X2,…, Xk

are linearly independent. But if ,01 �
�kc it is clearly possible to solve equation (3.2) for Xk+1

and express it in the form asserted by the theorem.

Because of the property guaranteed by the preceding theorem, a general linear

combination of the maximum number of linearly independent solution vectors of AX = 0 is

usually referred to as a complete solution of AX = 0.

Theorem. [27]

A system of m simultaneous linear equations in n unknowns, AX = B, has a solution if

and only if the coefficient matrix A and the augmented matrix [AB] have the same rank, r.

When solutions exist, the maximum number of independent arbitrary constants in any general

solution, i.e., the maximum number of linearly independent solution vectors of the related

homogeneous system AX = 0, is n – r.

The proof is obtained by applying the well-known Gaussian elimination procedure [27].

�	

3.3 IMPLICITIZATION ALGORITHMS

To this end, we can describe some given implicitization algorithms from the literature

and some newly suggested ones.

3.3.1 Implicitization of rational curves

The brief overview of resultants, presented above, highlighted a major property they

have. Namely, the resultant of two polynomials vanishes if and only if they have a common

root. Resultants are thus used to determine whether or not two polynomials have a common

root, without explicitly solving for the roots of the equations. Sometimes, actually solving for

the common roots might be very expensive or even impossible when the number of common

roots is infinite [13].

To see how resultants arise naturally in the implicitization of rational curves, consider

a rational curve

X = x(t) / w(t), Y = y(t) / w(t),

where x(t), y(t) and w(t) are polynomials. To obtain the implicit representation f(X, Y) = 0,

introduce two auxiliary polynomials in t

X � w(t) - x(t), Y � w(t) - y(t).

By the above mentioned property, the resultant of these two polynomials vanishes if and only

if they have a common root. This happens if and only if there is a common parameter t such

that X � w(t) - x(t) = 0 and Y � w(t) - y(t) = 0 or X = x(t) / w(t) and Y = y(t) / w(t), i.e. the point

(X, Y) is on the curve. So setting the resultant to zero yields the implicit equation of the

parametric curve [10] [13].

Classical resultants are typically represented as determinants whose entries are

polynomials in the coefficients of the original polynomials in the system. For two univariate

polynomials, there are two well-known determinant representations: Sylvester resultants [3]

[13] and Bézout resultants [10] [13]. The Sylvester resultant of two degree-n polynomials

(already mentioned in the previous section) is a 2n × 2n determinant constructed using

Sylvester’s dialytic method. This determinant has lots of zero entries, and the non-zero

entries are simply the coefficients of the two original polynomials. The Bézout resultant

generated from Cayley’s expression, is a more compact n × n determinant whose entries are

more complicated polynomials in the coefficients of the two original polynomials [13].

�

Base points

The major drawback of the resultant method for implicitization is that resultants

vanish identically in the presence of base points. A rational curve or surface is said to have a

base point if its numerators and denominators have a common factor, thus vanish

simultaneously at some parameter value. Tom Sederberg [10] introduced the method of

moving algebraic curves and surfaces to solve the implicitization problem for rational curves

and surfaces with base points [13].

In this section, both methods (resultants and moving lines) are reviewed and

investigated. In the next section, we have devised an algorithm for the method of moving

lines, implemented it using Matlab and tested it for practical examples.

3.3.1.1 The resultant method [10]

The Sylvester resultant of two polynomials has already been viewed in the previous section.

The construction of the Bézout resultant is a bit more complicated but yields a more compact

n × n matrix as opposed to the 2n × 2n Sylvester matrix.

Consider two degree-n polynomials f(t) and g(t)

f(t) = antn + … + a1t + a0 , g(t) = bntn + … + b1t + b0.

Let

fk(t) = antk + … + an-k , gk(t) = bntk + … + bn-k ,

pk+1(t) = gk(t)f(t) - fk(t)g(t), k = 0, …, n - 1.

Since

f(t) = fk(t)tn-k + an-k-1tn-k-1 + … + a1t + a0

g(t) = gk(t)tn-k + bn-k-1tn-k-1 + … + b1t + b0

it follows that p1(t), …, pn(t) are polynomials of degree n - 1 in t. The Bézout resultant of f(t)

and g(t) is the determinant of the coefficients of p1(t), …, pn(t). Explicit formulas for the

entries of the Bézout resultant show that they are quadratic in the coefficients of f(t) and g(t).

These are given in [13] by:

Bi,j = ���k�� (ai-kbj+1+k - bi-kaj+1+k), where � = max(0,i - j) and � = min(i, n - 1 - j).

In [10], it is proved that the Sylvester and Bézout resultant are equivalent up to sign, that is,

det(Bézout) = ± det(Sylvester). Hence, these resultants can be used more efficiently in the

problem of implicitization. The Bézout resultant is used in the method of moving lines [10].

3.3.1.2 The moving lines method [10]

Given a rational curve, X = x(t) / w(t), Y = y(t) / w(t), where

��

x(t) = antn + … + a1t + a0 , y(t) = bntn + … + b1t + b0 , w(t) = dntn + … + d1t + d0 .

By cross multiplication, two degree-n polynomials in t are formed.

X � w(t) - x(t) = (Xdn - an)tn + … + (Xd1 - a1)t + (Xd0 - a0)

Y � w(t) - y(t) = (Ydn - bn)tn + … + (Yd1 - b1)t + (Yd0 - b0)

The Bézout resultant of X � w(t) - x(t) and Y � w(t) - y(t) can be obtained as:

fk(t) = (Xdn - an)tk + … + (Xdn-k - an-k)

gk(t) = (Ydn - bn)tk + … + (Ydn-k - bn-k)

pk+1(t) = gk(t)(Xw(t) - x(t)) - fk(t)(Yw(t) - y(t)), k = 0, …, n - 1.

It follows that p1(t), …, pn(t) are polynomials of degree-n in t as already shown in the analysis

of Bézout resultants. Their coefficients are linear in x and y since these are sums of terms of

the form

(Xdi - ai)(Ydj - bj) - (Xdj - aj)(Ydi - bi) = (bidj - bjdi)X + (ajdi - aidj)Y.

Thus, the pk’s can be written as

p1(t) = L1,n-1(X, Y)tn-1 + … + L1,1(X, Y)t + L1,0(X, Y)

…….

pn(t) = Ln,n-1(X, Y)tn-1 + … + Ln,1(X, Y)t + Ln,0(X, Y)

where the functions Lij(X, Y) are linear in X, Y. The determinant of these coefficients R(X, Y)

= det(Lij(X, Y)) is the Bézout resultant of the polynomials Xw(t) - x(t) and Yw(t) - y(t). Thus,

the implicit equation is R(X, Y) = 0.

Moving lines

The polynomials pk(t) whose coefficients appear in the Bézout resultant can be written in two

forms:

1. as above: Ln-1(X, Y)tn-1 + … + L1(X, Y)t + L0(X, Y),

2. or by collecting the coefficients of X and Y: A(t)X + B(t)Y + C(t),

where A(t), B(t), C(t) are polynomials of degree n - 1 in t.

For each value of t, the second form can be seen as an implicit form of a line in the xy-plane.

Sederberg [10] calls such a line a moving line. A moving line A(t)X + B(t)Y + C(t) is said to

follow a rational curve X = x(t) / w(t), Y = y(t) / w(t) if it vanishes on the curve, i.e., if the line

A(t)x(t) / w(t) + B(t)y(t) / w(t) + C(t) = 0, or equivalently, if

A(t)x(t) + B(t)y(t) + C(t)w(t) = 0, for all values of t.

In what follows, the method of moving lines in implicitization is explained.

��

Methods of moving lines

Case I: No base points.

Given a rational curve X = x(t) / w(t), Y = y(t) / w(t) of degree n, it is required first to

seek all moving lines

Ln-1(X, Y)tn-1 + … + L1(X, Y)t + L0(X, Y) = 0 (3.3)

of degree n - 1 that follow the curve. Since each coefficient Lj(X, Y) is linear in X, Y, equation

(3.3) can be rewritten as

(An-1X + Bn-1Y + Cn-1)tn-1 + … + (A1X + B1Y + C1)t + (A0X + B0Y + C0) = 0 (3.4)

In equation (3.4), there are 3n unknowns-Ak, Bk, Ck, k = 0, …, n-1. We can generate 2n

homogeneous linear equations in these 3n unknowns by substituting for X and Y the rational

functions x(t) / w(t) and y(t) / w(t) and multiplying through by w(t). This yields the equation

(An-1 x(t) + Bn-1 y(t) + Cn-1w(t))tn-1 + … + (A0 x(t)+ B0 y(t) + C0w(t)) = 0 (3.5)

where the left hand side is a polynomial in t of degree 2n-1. For equation (3.4) to represent a

moving line that follows the rational curve, this polynomial must be identically zero. The

vanishing of this polynomial leads to 2n homogeneous linear equations in these 3n

unknowns, which in matrix form can be written as

[x y w … tn-1x tn-1y tn-1w] · [A0 B0 C0 … An-1 Bn-1 Cn-1]T = 0,

where the rows of the coefficient matrix [x y w … tn-1x tn-1y tn-1w] are indexed by the

powers of t and the columns are the coefficients of the polynomials tkx, tky, tkw, k = 0, … , n-1

A homogeneous linear system of 2n equations in 3n unknowns has at least n linearly

independent solutions. Let

p1(t) = L1,n-1(X, Y)tn-1 + … + L1,1(X, Y)t + L1,0(X, Y) = 0

……

pn(t)= Ln,n-1(X, Y)tn-1 + … + Ln,1(X, Y)t + Ln,0(X, Y) = 0

(3.6)

be n linearly independent solutions, and form the matrix R(X, Y) = (Lij(X, Y)). Since Lij(X, Y)

is linear in X and Y, det{R(X, Y)}is a polynomial of degree n in X and Y. Also, det{R(X, Y)}=

0 when X, Y is on the rational curve because by equation (3.6) when X, Y is on the curve, the

columns of R(X, Y)are dependent. Thus, det {R(X, Y)}= 0 is a good candidate for the implicit

equation of the rational curve, since det {R(X, Y)}has the correct degree and vanishes on the

curve. It is next formally proved that as long as we choose the moving lines p1(t), … , pn(t) to

be linearly independent, det{R(X, Y)}= 0 is indeed the implicit equation of the rational curve,

provided that there are no base points.

��

Proof

Both the Sylvester and the Bézout resultants will be used in this proof. First recall that

the rows of the Bézout resultant for the polynomials xw(t) – x(t), yw(t) – y(t) are moving lines

of degree n – 1 that follow the curve. Since when there are no base points the determinant of

the Bézout matrix is the implicit equation of the rational curve, it is known that these rows

must be linearly independent; otherwise this determinant would be identically zero. To prove

that the method of moving lines always works, it is required to show that when there are no

base points, there are never more than n linearly independent moving lines of degree n - 1

that follow a degree n rational curve. Consider then the system of 2n homogeneous linear

equations in 3n unknowns which is to be solved to find the moving lines that follow the

curve. In matrix form these equations are:

[x y w … tn-1x tn-1y tn-1w] · [A0 B0 C0 … An-1 Bn-1 Cn-1]T = 0.

Let C = [x y w … tn-1x tn-1y tn-1w] be the coefficient matrix. To prove that there are never

more that n linearly independent moving lines that follow a degree n rational curve, we must

show that C has rank 2n. To do so, let x*(t) = x(t) + Xt2n, y*(t) = y(t) + Yt2n, w*(t) = w(t) + t2n,

and let S denote the 3n x 3n matrix S = [x* y* tx* ty* … tn-1x* tn-1y* w* tw* … tn-1w*].

Note that C is a submatrix of S with its columns rearranged. But det(S) is the Sylvester

resultant of xw(t) – x(t) and yw(t) – y(t). To prove this assertion, subtract x-column (tkx*) from

column (tkx*) and y-column (tkx*) from column (tkx*), k = 0, … , n-1. This procedure leaves

the determinant unchanged, kills off the x’s and y’s in the rows below the row that is indexed

by t2n-1, and produces the matrix (the * represents arbitrary elements):

��
�
�
�

�

�

��
�
�
�

�

�

���

��

�

matrixIdentity)(matrix0)2(

)()(and)()(
*ofmatrixSylvester)22(

nnnn

tytywtxtxw
nn

whose determinant is indeed just the Sylvester resultant of xw(t) – x(t) and yw(t) – y(t). Since

there are no base points, xw(t) – x(t) and yw(t) – y(t) do not have common roots for arbitrary

values of x and y. therefore the Sylvester resultant of xw(t) – x(t) and yw(t) – y(t) is not

identically zero. Hence det(S) � 0, so the rows of S are linearly independent. Hence the rows

of C must also be linearly independent, so C has rank 2n. Since C has full rank, the number of

linearly independent solutions of equation (3.4) (i.e. the number of linearly independent

moving lines that follow the curve) is exactly n. Thus the rows of the Bézout resultant span

the solution space. Hence there is a constant nonsingular matrix M for which we have R(X, Y)

��

= M � Bézout Matrix. Since M is nonsingular, det(R(X, Y)) = 0 if det(Bézout Matrix) = 0.

Hence det(R(X, Y)) = 0 is indeed the implicit equation of the rational curve.

Case II: Base points present.

Suppose then that X =x(t) / w(t), Y = y(t) / w(t) is a degree n rational curve with r base

points. Then x(t), y(t), w(t) have a common factor c(t) of degree r; that is,

x(t) = c(t)x*(t) y(t) = c(t)y*(t) w(t) = c(t)w*(t)

To apply the method of moving lines, we need to know how many moving lines of degree

n - 1 follow this rational curve. A moving line of degree n – 1 follows a degree n rational

curve when the left-hand side of equation (3.5) is identically zero. Canceling out the common

factor c(t), we obtain

(An-1 x*(t) + Bn-1 y*(t) + Cn-1w*(t))tn-1 + … + (A0 x*(t)+ B0 y*(t) + C0w*(t)) = 0

where the left-hand side is a polynomial of degree 2n – r –1. The vanishing of this

polynomial leads to 2n – r homogeneous linear equations in the 3n unknowns, Ak, Bk, Ck, for

k = 0, … , n-1. Now a linear system of 2n – r homogeneous equations in 3n unknowns has at

least n + r linearly independent solutions. Let

p1(t) = L1, n-1(X, Y)tn-1 + … + L1,1(X, Y)t + L1,0(X, Y) = 0

……

pn+r(t)= Ln+r, n-1(X, Y)tn-1 + … + Ln+r, 1(X, Y)t + Ln+r, 0(X, Y) = 0

be n + r linearly independent solutions, and form the (n + r) � n matrix R(X, Y) = (Lij(X, Y)).

It is required to show how to use the matrix R(X, Y) to recover the implicit equation of the

rational curve. The key idea is to apply Gaussian elimination.

Since pk(t) follows the rational curve, the line pk (0) = Lk,0(X, Y) must pass through the

point (x(0) / w(0), y(0) / w(0)). Therefore the lines Lk,0(X, Y), k = 1, … , n+r, are concurrent,

so any three of these lines are linearly dependent. Thus by Gaussian elimination we can zero

out all but the first two elements in the last column of R(X, Y). Since the rows of this new

matrix are linear combinations of moving lines that follow the curve, these rows are again

moving lines that follow the curve. If we remove the first two rows and last column of this

matrix, then the remaining moving lines have the form

	k (t) = 	k,n-1(X, Y)tn-1 + … + 	k,1(X, Y)t.

Factoring out t, we obtain an (n + r - 2) � (n - 1) matrix of n + r – 2 moving lines of degree

n – 2 that follow the curve. Repeating this Gaussian elimination r times, we arrive at n – r

moving lines of degree n – r – 1 that follow that curve.

��

Let S(X, Y) be the (n - r) � (n - r) matrix generated from R(X, Y) by Gaussian

elimination. Then det(S(X, Y)) = 0 is the implicit equation of the rational curve.

Proof

By construction, the rows of R(x, y) are linearly independent. Since S(x, y) is

generated from R(x, y) by Gaussian elimination, the rows of S(x, y) must also be linearly

independent. Therefore, det(S(x, y)) = 0 must be the implicit equation of the rational curve

given by X =x*(t) / w*(t), Y = y*(t) / w*(t) (with no base points), and hence too the implicit

equation of the original rational curve (with base points).

It seems natural to give a brief note on complexity analysis of the above mentioned

implicitization algorithms.

3.3.1.3 Complexity analysis

The analysis of an algorithm is a measure that relates the size of the input to the time

and space this algorithm requires to execute (and deliver the output) on a particular machine.

To obtain standard measures, several hypothetical machines, on which programs are run,

have been used, such as the Turing machine or RAM machine [28].

In the analysis of implicitization algorithms, however, there is fixed cost of computing the

determinant of a certain matrix, the resultant. So, what interests us most is the time required

to compute the entries of the matrix and, sure before that, the size of the matrix.

The following is an analysis of the methods explained earlier.

1. Sylvester resultant method

The Sylvester matrix takes constant time to build up, since its entries are simply coefficients

of polynomials used without any further processing. However, for n degree parametric input,

the matrix is 2n × 2n.

2. Bézout resultant method [13]

A closed formula for the ijth entry of the Bézout resultant has already been given at the

beginning of this section by

Bi,j = ���k�� (ai-kbj+1+k - bi-kaj+1+k), where � = max(0,i - j) and � = min(i, n - 1 - j).

As a result of symmetry, only the entries Bi,j for which i
 j need to be computed. We have

the formulas:

Bi,j = �0�k�i (ai–kbj+1+k – bi–kaj+1+k), i + j
 n – 1,

Bi,j = �0�k�n–1–j (ai–kbj+1+k – bi–kaj+1+k), i + j > n – 1.

��

Each summand requires two multiplications and on addition. When n is odd, the total number

of multiplications to compute all the Bi,j’s, i
 j, is:

2��0�i��n–1)/2(n – 2i) � �i + 1) + 2��(n+1)/2�j�n–1(n – j) � ��j – n + 1) = (2n3 + 9n2 + 10n + 3)/12,

and the total number of additions is:

�0�i��n–1)/2(n – 2i) � ��i + 1) + �(n+1)/2�j�n–1(2n – 2j – 1) � ��j – n + 1) = (2n3 + 3n2 + 4n + 3)/12.

Similar results hold when n is even. Therefore the method requires O(n3) multiplications and

additions. In [13], M. Zhang has developed a faster technique that requires only O(n2)

additions and multiplications.

3. Moving line method

As shown in the description of the method, the entries of the determinant are computed from

the solution of a 2n × 3n system of equations. This is known to be O(n3) operations. The

moving line method power does not lie in a reduced complexity. It succeeds to solve the

implicitization problem in the presence of base points. It can be generalized also to the

moving conics method and can be also applied to the implicitization of parametric surfaces in

the presence of base points [10] [13].

In the following, other implicitization methods are described.

3.3.2 Implicitization of generalized trigonometric polynomials curves

Consider a plane curve given parametrically by a generalized trigonometric polynomial, that

is x = �1�k�n akcosk�, y = �1�k�n aksink�. It is required to obtain an implicitization of the curve,

i.e. an equation in x and y which captures all the points on the curve, and, if any, only finitely

many more points.

A direct approach that makes use of algorithms already developed for the implicitization of

rational curves is as follows:

1) Rewrite cosk� and sink� as polynomials in cos� and sin�. Using De Moivre’s theorem

of complex numbers, such expressions are found to be:

�

�

�
��

��

�
���

�
�

��

��

��

�����

������

331

4422

sincos
!3

)2)(1(sincossin

sincos
!4

)3)(2)(1(sincos
!2

)1(coscos

kk

kkk

kkkkk

kkkkkkk

2) Parameterize cos� and sin� by the usual rational parameterization of a circle:

22

2

1
2sin ,

1
1cos

t
ty

t
tx

�
��

�
�

�� ��

��

3) Implicitize the rational functions obtained from the preceding step by the

implicitization algorithm for rational functions.

A much simpler and computationally cheaper method, which takes advantage of the

special structure of the problem, is devised in [11].

In the subsequent chapter, we devise an algorithm for this method, implement it on

Matlab and apply it for some practical examples.

Consider a curve given parametrically by

��
��

��
n

k
k

n

k
k kaykax

11
sin , cos �� (3.7)

where Raa n ��,,...,1 and 0�na .

Thus, x + iy = �1�k�n akeik�. Renaming ei� with z, a polynomial F is obtained. Then taking the

complex conjugate of F and multiplying by zn, another polynomial G results:

� � � � ��
�

�

�

��������
n

k

kn
k

n
n

k

k
k zaziyxGzaiyxF

11
 ,

where],,[, zyxCGF � , C being the field of complex numbers.

Let H � C[x, y] be defined by: H = resz (F, G), that is, H is the determinant of the matrix:

�
�
�
�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

nn

nn

nn

nn

nn

nn

aaaa

aaaa
aaaa

aaaa

aaaa
aaaa

110

110

110

011

011

011

�

�����

�

�

�

�����

�

�

,

where a0 = -(x + iy) and � �iyxa ���0 , where the upper bar stands for complex conjugation.

The polynomial H gives an implicitization of the curve defined by the equations (3.7). More

in detail:

� H = 0 captures all the points on the curve. (Containment)

� H = 0 captures, if any, only finitely many more points. (Finite exceptions)

� H is a real polynomial, that is],[yxRH � . (Real)

��

Proof

Let

)}sin()cos(s.t.)(|),{(
11

2
��
��

�������
n

k
k

n

k
k kaykaxRRyxS ��� (parametric),

T = { (x, y) � R2 | H(x, y) = 0 }. (implicit).

1) Containment (S � T): H captures all the points on the curve.

Let (p, q) � S. Then it is required to show that (p, q) � T.

First note that from the definition of S, there must exist Rt � such that

�

�

�

�

�

�

n

k
k

n

k
k

ktaq

ktap

1

1

.sin

cos

By using the elementary fact: ,sincos itetit �� we obtain

�

�

�

�

�

��

��

n

k

ikt
k

n

k

ikt
k

eaiqp

eaiqp

1

1

.

By moving the left hand sides to the right and by multiplying inte to the second equation, we

obtain

�

�

�

��

�

���

����

n

k

tkni
k

n

k

ikt
k

eaeiqp

eaiqp

1

)(int

1

.)(0

)(0

Note that the right hand sides are the polynomials F and G evaluated at p, q, ite . Let r denote
ite . Then, we have

F(p, q, r) = 0

G(p, q, r) = 0

By the properties of multivariable resultants, we immediately have

0),(�qpH .

Thus, .),(Tqp �

2) Finite exceptions (T - S is a finite set): H captures, if any, only finitely many more points.

Now one might wonder whether S = T. Unfortunately this is not true in general, as illustrated

by the following counter example:

�	

.2sinsin2/5 , 2coscos2/5 ���� ���� yx

The associated polynomial H is

.
2
252

4
33

4
33

4
21 422422 xyyxxyx �������

A simple calculation shows that the point (1, 0) is on the curve T given by H = 0, but it is not

on the curve S given by the parametric equations. In fact, in this particular case, we have

T - S = {(1, 0)}.

Observe that the set {(1,0)} is a finite set. Thus one naturally wonders whether T - S is always

a finite set. It is, indeed and the following gives a technical method to check whether H

introduces new points or not.

Let p(r) = �
�

�� ���
n

k

knk
k rrrrra

1

1)1)((� . Then, if the equation p(r) = 0 hasn’t any roots of

nonunit magnitude (i.e. hasn’t any r such that 1�rr), the implicitization method doesn’t

introduce new points. The proof is in [11].

Again for the previous example, n = 2 and p(r) = a2((rr) + 1) + a1 � (1)r. Letting r being real,

we obtain the equation -r2 - 1 + 5/2r = 0, which has nonunit magnitude roots, thus,

introducing new points.

3) Real (H � R[x, y]): H has only real coefficients in spite of the fact that its definition

involves imaginary unit number i.

Let F and G be two polynomials in C[x1, …, xv] such that

��
�

�

�

��
n

k

kn
vk

n

k

k
vk xFGxFF

00
 ,

where Fk � C[x1, …, xv] and kF is the complex conjugate of kF (in the sense that the

coefficients of kF are replaced by their complex conjugates). Let),(GFresH
vx� . Note that

it is dealt here only with a particular case where

zxyxxx ���� 321 ,,,3�

and

�kF
�
�
�

���

�

0for)(
1for

kiyx
kak

But the proved result holds in general.

From the definition of resultant,),(GFresH
vx� , we have:

�

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	

�

�

n

n

n

n

FF

FF
FF

FF

H

��

����

��

��

����

��

0

0

0

0

det

By flipping the matrix left-right (which can be done by n swapping of columns), we obtain

n

n

n

n

n

FF

FF
FF

FF

H)1(det

0

0

0

0

�

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	

�

�

��

����

��

��

����

��

By flipping the matrix top-down (which can be done by n swapping of rows), we obtain

n

n

n

n

n

FF

FF
FF

FF

H 2

0

0

0

0

)1(det �

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	

�

�

��

����

��

��

����

��

Since the conjugate operation commutes with determinant operation, we have

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	

�

�

n

n

n

n

FF

FF
FF

FF

H

��

����

��

��

����

��

0

0

0

0

det

Thus we finally have HH � , hence H is real.

��

Remark

There is no overhead in computing the entries of the 2n × 2n Sylvester resultant used in the

algorithm. In [11], this method is compared to a classical solution method using a Gröbner

basis approach. The comparison is performed using the running time it takes for solving

certain problems on the same machine, operating system and using the same software

package. The ratio is 5 min to 0.3 sec for the new technique of course.

Newly suggested implicitization methods, namely, fixed near implicitization and multiple

near implicitization are described in what follows.

3.3.3 Near implicitization

For computational problems, people usually build models using polynomials systems. For

example, many computer aided design (CAD) and ocmputer aided manufacturing (CAM)

systems use Bézier-Bernstein splines to model mechanical components and assemblies [13].

Even if a model is not a polynomial system, often it may be reduced to a polynomial system

or approximated to a polynomial system. For instance, when a system involves transcendental

functions, we may not be able to solve the system directly. Instead we try to replace these

functions or approximate them with polynomials, say with finite Taylor expansions. The

reason for these reductions and approximations is that a lot is known about working with

polynomial systems.

In this section, we devised what we have called the near implicitization method. Parametric

functions for which a direct method is not available are approximated using Taylor’s

expansion. The resulting polynomial is then implicitized using the algorithm developed for

rational functions.

We had to compromise between the accuracy of the approximation and the execution time of

the algorithm. This has led us to develop two variants of the method: fixed and multiple near

implicitizations.

3.3.3.1. Fixed near implicitization

In this method, Taylor expansion is evaluated around a fixed point. Accuracy is achieved by

expanding more terms. This method is quite simple to implement and to apply to different

curves without modifying the algorithm. It has the disadvantage of generating large

determinants.

��

For n degree rational parametric equations, an n × n determinant is required to obtain the

implicit equation. This is a quadratic increase in the determinant size paid for the increase in

the number of terms of the Taylor’s expansion. In addition, it leads to implicit equations with

a large number of terms, less efficient in their manipulation.

3.3.3.2. Multiple near implicitization

We have to overcome the problem of large determinants, present in the previous method, by

using what we called multiple near implicitization. Here, Taylor expansion uses fewer terms

(thus lower degrees), but is evaluated at several points along the curve to be implicitized. The

end result is a collection of implicit equations, each valid for an interval of the curve. The

price paid for increased accuracy is an added number of determinants to be evaluated.

However, this is much less severe than the overhead with the previous method, since all

determinants are of size n × n, yielding smaller implicit equations.

A bound checking routine is then added against which the (x, y) values are checked to direct

them to the correct implicit equation to be used.

Sample runs at the end of the next section illustrate the comparison between the two methods

for different curves.

��

Chapter 4: IMPLEMENTATION

In this chapter, we devise algorithms for all methods of implicitization mentioned in

the previous chapter, namely, algorithms for the implicitization of parametric rational curves

(in the absence and in the presence of base points), and the implicitization of curves

parameterized by generalized trigonometric polynomials. We have also devised algorithms

for our newly introduced method of near implicitization.

In addition, we have implemented all the previous algorithms using the software

package Matlab. Starting with version 5.1, Matlab has added a toolbox for symbolic

computation. We have benefited from this feature in our implementations, together with the

original capability of the software package to deal with matrices and determinants efficiently.

We have devised and implemented three M-files (the name Matlab uses for its functions),

which when added together may form a Matlab toolbox for implicitization.

4.1 IMPLICITIZATION OF RATIONAL CURVES

4.1.1 Algorithm

The following algorithm computes the implicit equation of a curve defined parametrically

by rational functions. It uses the method of moving lines presented in the previous chapter. It

also combines both the cases of absence and presence of base points.

Algorithm 4.1: Rational implicitization.

Input: x(t), y(t), w(t) � R[t], n (degree of input)

Output: S(x, y) � R[x, y] such that S(x, y) = 0 is the implicit equation of the parametric

equations: x = x(t) / w(t), y = y(t) / w(t).

x := coefficients of x(t); y := coefficients of y(t); w := coefficients of w(t);

construct the 2n × 3n coefficient matrix A by staggering the vectors v, y, w column-wise;

for i := 1, 2, …, k do

 v(i) := vectors spanning the solution space of Av = 0;

num_of_base_points := n – k;

remove base points and create the k × k resultant matrix S with coefficients from v(i);

return det(S);

��

4.1.2 Implementation

This note is intended to reveal some of the mathematical and programming features of the

next function.

1. The function accepts input polynomials in symbolic format (e.g. 3*t^2 + 1) rather

than the usual Matlab convention of vector of coefficients (e.g. [3 0 1]). This is a more

user-friendly format and is less error prone.

2. Variable number of input arguments is supported. A missing denominator value

defaults to 1.

3. Numeric to symbolic conversion is performed within the function thus enabling the

user to enter constants (numeric) for any of the input arguments.

4. The same function has provision for dealing with the case of existence of base points.

Their presence is automatically detected and the implicit equation for the reduced

parametric equations is returned.

5. The output is in symbolic format.

(M-File 1)

function [R] = implicitrat(xt, yt, wt)

%IMPLICITRAT Implicit equation.

% Implicitrat(xt, yt, wt) returns the implicit equation

% of a parametrically defined one.

% R(x,y)=0 is the implicit symbolic equation.

% xt, yt and wt are the symbolic polynomials.

% If wt=1, it need not be input. Enter only xt and yt

% [x=x(t)/w(t) , y=y(t)/w(t)] is the rational parametric form.

t = sym('t'); % define symbolic variable

% Checking number of input parameters

if (nargin < 2) error('Not enough input arguments'); end

if (nargin == 2) wt = 0*t + 1; end

% Checking type of input parameters

if isnumeric(xt) xt = 0*t + xt; end

if isnumeric(yt) yt = 0*t + yt; end

if isnumeric(wt) wt = 0*t + wt; end

% Convert symbolic polynomials to coefficients vector

xn = sym2poly(xt);

��

yn = sym2poly(yt);

w = sym2poly(wt);

n = max([length(xn) length(yn) length(w)])-1; % degree of parametric form

% right align vectors by padding with leading zeros

for i = 1:(n+1-length(xn)) xn = [0 xn]; end;

for i = 1:(n+1-length(yn)) yn = [0 yn]; end;

for i = 1:(n+1-length(w)) w = [0 w]; end;

xn = flipLR(xn)'; % flip left/right

yn = flipLR(yn)'; % (least significant first)

w = flipLR(w)'; % then transpose

A = [xn yn w]; % coefficients matrix whose columns are tx, ty and tw

z = []; % vector that will be used to add zero rows to matrix A

for i = 2:n

 xn = [0;xn]; yn=[0;yn]; w=[0;w]; % shift down one row

 z = [z zeros(1,3)];

 A = [A;z]; % append a zero row

 A = [A xn yn w];

end;

format rat; % Rational format

S = null(A,'r'); % Null space of Ax=0 w.r.t. rational basis

x = sym('x'); y = sym('y'); % define symbolic variables

% Fill the resultant with moving lines

bp = length(S(1,:)) - length(S(:,1))/3; % Number of base points if any

for i = 1:n-bp

 for j = 1:n-bp

 dr(i,j) = S(3*(j-1)+1 , i)*x + S(3*(j-1)+2 , i)*y + S(3*(j-1)+3 , i);

 end

end;

R=det(dr);

format; % Back to default format

% end of implicit function

��

4.1.3 Sample runs

Sample run 1-a: (Circle)
» t=sym('t');

» x=1-t^2;

» y=2*t;

» w=1+t^2;

» pretty(x)

 2
 1 - t
» pretty(y)

 2 t

» pretty(w)

 2
 1 + t
» imp=implicit(x,y,w);

» pretty(imp)

 2 2
 x - 1 + y

Sample run 1-b: (Circle, with base points)

Here, two base points are added by multiplying numerators and denominators by (t + 2)(t +5)
» xt=-t^4-7*t^3-9*t^2+7*t+10;

» yt=2*t^3+14*t^2+20*t;

» wt=t^4+7*t^3+11*t^2+7*t+10;

» r=implicitrat(xt,yt,wt);

» pretty(r)

 2 2
 x - 1 + y

Sample run 1-c: (Circle, with base points)

Base points obtained by multiplying numerators and denominators by (1 + t)(1 - t)
» xt=1-2*t^2+t^4;

» yt=2*t-2*t^3;

» wt=1-t^4;

» pretty(implicitrat(xt,yt,wt))

 2 2
 x - 1 + y

Sample run 2-a:
» x=t^2-1;

» y=t^3-t;

��

» pretty(x)

 2
 t - 1
» pretty(y)

 3
 t - t
» pretty(implicit(x,y))

 2 3 2
 y - x - x

Sample run 2-b: (Previous example with base points)

Numerators and denominators multiplied by (t2 + 1).
» xt=t^4-1;

» yt=t^5-t;

» wt=t^2+1;

» pretty(implicitrat(xt,yt,wt))

 2 3 2
 y - x - x

Sample run 3-a: (Tacnode)
» x=t^3-6*t^2+9*t-2;

» y=t^2-4*t+4;

» w=2*t^4-16*t^3+40*t^2-32*t+9;

» pretty(x)

 3 2
 t - 6 t + 9 t - 2

» pretty(y)

 2
 t - 4 t + 4

» pretty(w)

 4 3 2
 2 t - 16 t + 40 t - 32 t + 9

» pretty(implicit(x,y,w))

 2 3 2 4 4
 3/4 y - 3/2 y - 9/4 y x + 3/4 y + 3/2 x

Sample run 3-b: (Tacnode with base points)

Numerators and denominators multiplied by (t2 - 1).
» xt=t^5-6*t^4+8*t^3+4*t^2-9*t+2;

» yt=t^4-4*t^3+3*t^2+4*t-4;

» wt=2*t^6-16*t^5+38*t^4-16*t^3-31*t^2+32*t-9;

» pretty(implicitrat(xt,yt,wt))

��

 2 4 4 3 2
 - 9/4 y x + 3/4 y + 3/2 x - 3/2 y + 3/4 y

4.2 IMPLICITIZATION OF GENERALIZED TRIGONOMETRIC

POLYNOMIALS CURVES

4.2.1 Algorithm

The following algorithm computes the implicit equation of a curve defined parametrically by

generalized trigonometric functions, using the method mentioned in the previous chapter.

Algorithm 4.2: Implicitization of generalized trigonometric polynomial curves.

Input: a1, a2, …, an � R such that x(t) = � ak coskt, y(t) = � ak sinkt � R[t].

Output: S(x, y) � R[x, y] such that S(x, y) = 0 is the implicit equation of [x(t), y(t)].

a0 = –(x + iy); a0� = –(x – iy);

create matrix S row-wise from the coefficients a0, a0� , a1, …, an as described in the previous

chapter;

return det(S);

4.2.2 Implementation

The function has the following features:

1. The input is in the compact vector of coefficients form.

2. The function uses the built-in imaginary unit i.

3. The output is in symbolic format.

(M-File 2)

function [R] = implicitrig(a)

% Implicitrig Implicit equation

% Implicitrig(a) returns the implicit equation of a generalized

% trigonometric parametric one

% R(x,y) = 0 is the implicit symbolic equation

% [a] is a vector of the coefficients of the parametric

% trigonometric polynomial, such that:

% x(t) = a1 cos(t) + a2 cos(2t) + ... + an cos(nt)

% y(t) = a1 sin(t) + a2 sin(2t) + ... + an sin(nt)

%define symbolic variables x and y and symbolic imaginary unit i

syms x y i;

��

n = length(a); % degree of trigonometric polynomial

a = flipLR(a); % flip left/right - most significant first

a = [a -(x+i*y)]; % add a0

for l = 1:n-1

 a = [a 0]; % add trailing zeros

end;

H = a; % H is the matrix of the resultant

 % initialized with first row

for l = 2:n

 a(end) = []; % rotate right by deleting last zero

 a = [0 a]; % then adding a leading one

 H = [H;a]; % add resulting row to matrix

end;

a = flipLR(a); % flip left/right

a(1) = -(x-i*y) ; % first conjugate row

H = [H;a]; % add to the resultant matrix

for l = 2:n

 a(end) = []; % rotate right by deleting last zero

 a = [0 a]; % then adding a leading one

 H = [H;a]; % add resulting row to matrix

end;

format rat; % rational format

R = expand(det(H)); % fully expand determinant and return the resultant

format; % back to default

% End of file

4.2.3 Sample runs

Sample run 1:

x = 5/2 cos� - cos2�, y = 5/2 sin� - sin2�
» a=[5/2 -1]

a =

 5/2 -1

�	

» R=implicitrig(a);

» pretty(R)

 2 2 4 2 2 4
 - 21/4 + 25/2 x - 33/4 x - 33/4 y + x + 2 x y + y

Sample run 2:

x = cos2� + 2/3 cos3�, y = sin2� + 2/3 sin3�
» a=[0 1 2/3];

» R=implicitrig(a);

» pretty(R)

 80 55 2 55 2 4 2 2 4 2 4
- --- + 8/9 x - -- x - -- y + 10/3 x + 20/3 x y + 10/3 y - 3 y x
 729 27 27

 2 4 6 6
 - 3 x y - y - x

4.3 NEAR IMPLICITIZATION

4.3.1 Algorithms

The following are the algorithms for both methods of near implicitization that we devised in

the previous chapter.

Algorithm 4.3: Fixed near implicitization.

Input: x(t), y(t) � R[t], n, t0.

Output: S(x, y) � R[x, y] such that S(x, y) = 0 is the approximate implicit equation of [x(t),

y(t)] near t0.

x := Taylor expansion of x(t) about t0 using n terms;

y := Taylor expansion of y(t) about t0 using n terms;

S(x, y) := call algorithm 4.1 with x(t) = x and y(t) = y;

return S;

Algorithm 4.4: Multiple near implicitization.

Input: x(t), y(t) � R[t], n, t1, t2, …, tk.

Output: S1(x, y), S2(x, y), …, Sk(x, y) � R[x, y] such that Si(x, y) = 0 are the approximate

implicit equations of [x(t), y(t)] in the neighborhoods of t1, t2, …, tk respectively.

for i := 1, 2, …, k do

�

Si(x, y) := call algorithm 4.3 with x(t), y(t), n and ti ;

return Si , i = 1, 2, …, k.

4.3.2 Implementation

The functions have the following features:

1. Variable number of input arguments supported.

2. Default values for non-initialized arguments are automatically assigned based on

mathematically reasonable values.

Fixed near implicitization
(M-File 3)

function [R] = implicitall(xt,yt,acc,on)

%IMPLICITALL Implicit equation of a parametric one of any form

% implicitall(xt,yt,acc,on): returns the approximate symbolic implicit

% equation based on Taylor approximation of the parametric form

% R(x,y): is the approximate implicit symbolic equation

% xt, yt: are the symbolic input parametric functions for x(t), y(t)

% acc: is the required degree of the Taylor expansion of x(t) and y(t)

% on: is the point around which the expansion occurs

% Check number of input arguments and initialize default values

if (nargin < 2) error('Not enough input arguments')

 elseif (nargin == 2) acc = 5; on = 0;

 elseif (nargin == 3) on = 0;

end

% Taylor expansion of parametric equation

x = Taylor(xt, acc, on);

y = Taylor(yt, acc, on);

% Expand x and y as polynomials in t

x = expand(x)

y = expand(y)

R = implicitrat(x,y); % Call rational implicitization function

% End of file

��

Multiple near implicitization
(M-File 4)

function [R] = multimplicit(xt,yt,acc,on)

% MULTIMPLICIT Implicit equation of a parametric one of any form

% multimplicit(xt,yt,acc,on): returns the approximate symbolic implicit

% equation based on Taylor approximation of the parametric form

% R(x,y): is the vector of approximate implicit symbolic equations

% xt, yt: are the symbolic input parametric functions for x(t), y(t)

% acc: is the required degree of the Taylor expansion of x(t) and y(t)

% on: is the vector of points around which the expansions occurs

% Check number of input arguments and initialize default values

if (nargin < 2) error('Not enough input arguments')

 elseif (nargin == 2) acc = 5; on = 0;

 elseif (nargin == 3) on = 0;

end

for i = 1:length(on)

 R(i) = implicitall(xt,yt,acc,on(i));

end

% End of file

4.3.3 Sample runs

Fixed near implicitization

Sample run 1-a: (Cycloid with degree 4)

x = � - sin�, y = 1 - cos�, 0 � � � ��.

Taylor expansion around � � �, with highest degree = 4.
» syms t

» R=implicitall(t-sin(t),1-cos(t),4,3.14);

» pretty(R)

840772896868853105110332506199351152032106330580561 2
--- x
374144419156711147060143317175368453031918731001856

 222060141882289628844436048817423471426354383723
 + -- x y
 46768052394588893382517914646921056628989841375232

��

 94349903129012137342236522654340624640553 3
 - -- x
 46768052394588893382517914646921056628989841375232

 710887720654449943750293668731389762512962755 2
 + --- x y
 187072209578355573530071658587684226515959365500928

 6974279475880528974036294611768342552386533569 2
 - --- x y
 2923003274661805836407369665432566039311865085952

 243694215173712468735282594055177 2
 + --------------------------------- y
 81129638414606681695789005144064

 2532133830597283526965198372069 3
 + ------------------------------- y
 5070602400912917605986812821504

 18328158037802034791291648551868977
 - ----------------------------------- x
 1298074214633706907132624082305024

 607845660161387512457903284233 6979280796728801
 - -------------------------------- y + ----------------
 40564819207303340847894502572032 1125899906842624

The exact and approximate plots are shown in the figure below.

Figure 4.1. The cycloid: exact and approximated to 4 terms of Taylor’s expansion.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

 Exact parametric

Approximate implicit

��

Sample run 1-b: (Cycloid with degree 6)

x = � - sin�, y = 1 - cos�, 0 � � � ��.

Taylor expansion around � � �, with highest degree = 6.
 /
8777554633625662159850332389278407910466948679202808677417592769788923169 /
 /

 15177100720513508366558296147058741458143803430094840009779784451085189\

 4
 728165691392 x y - 551127200166221713277292771154195728615795616337997\

 /
 2601383308133155603371065 / 75885503602567541832791480735293707290719\
 /

 3 2
 01715047420004889892225542594864082845696 x y - 678984127677786235207\

 /
 9417958927006746693726662934487100287661499706535848670990049 / 37942\
 /

 75180128377091639574036764685364535950857523710002444946112771297432041\

 3
 422848 x y - 138777370746571152166052358820589604902118297516928257543\

 /
 9499830427451512514080503 / 37053468555941182535542715202780130513046\
 /

 2 2
 39509300498049262642688253220148477952 x y

 122840217792264524670540780028298556512253439497946713237619251 3
 - --- x y -
 51422017416287688817342786954917203280710495801049370729644032

 698980797676956676489501280252333032397935995907377706422578421767379/3\

 79427518012837709163957403676468536453595085752371000244494611277129743\

 5
 2041422848 x + 5580548065574520141033060143055391459864738249118011409\

 /
 043804386822845371609398529877 / 948568795032094272909893509191171341\
 /

 3
 133987714380927500611236528192824358010355712 x

 200234172506554630840441624438498487068727499115 3
 + -- y
 89202980794122492566142873090593446023921664

��

 30213064913220738928985208102271119112912508511647720314644393341 2
 + --- x y
 12855504354071922204335696738729300820177623950262342682411008

 14723082675736534469518923359356078310639708169328247322436707 4
 - --- x y
 102844034832575377634685573909834406561420991602098741459288064

 6414566412974927848045468637837460918122413391 5
 + -- y
 356811923176489970264571492362373784095686656

 29842156284798573764470886604119581835898146138396727803885262618523 2
 - -- x
 1645504557321206042154969182557350504982735865633579863348609024

 58154058453452758283946288335517203482676334752012608199259465
 - -- x y
 1606938044258990275541962092341162602522202993782792835301376

 16863324633518754644496080559110419516122174331 2
 + --- y
 5575186299632655785383929568162090376495104

 777527676820742778573036511429845089253512679779
 - -- x
 356811923176489970264571492362373784095686656

 3788329194915960219982727031134376216435727
 + --- y + 54069229193764370880\
 1393796574908163946345982392040522594123776

 /
 918865215549932095611625992034893246173933837393273279719 / 118571099\
 /

 37901178411373668864889641764174846429761593757640456602410304475129446\

 2 3
 4 x y - 3552687238741526362270862949651776278262129923396665874171913\

 /
 913644991570562720302189 / 758855036025675418327914807352937072907190\
 /

 4
 1715047420004889892225542594864082845696 x

 26767478941403054174180015224451741679481247543 4
 + --- y + 499952341654287\
 89202980794122492566142873090593446023921664

 /
 821029427020567066249764779483300058378409625552450209524337552433 /
 /

 29642774844752946028434172162224104410437116074403984394101141506025761\

� ��

 2 168196489045043170104733414807
 187823616 x y - ------------------------------
 154742504910672534362390528

Figure 4.2. The cycloid: exact and approximated to 4 and 6 terms of Taylor’s expansion.

Sample run 2: (Archimedean spiral)

x = � cos�, y = � sin�, 0 � � � �.

Taylor expansion around � � �/2, with highest degree = 4.
» syms t

» R=implicitall(t*cos(t),t*sin(t),4,3.14/2);

» pretty(R)

216708963735762083186737159691953777966243485031 2
-- x
91343852333181432387730302044767688728495783936

 8729652038345735519753946644540160040896085519
 + --- x y
 11417981541647679048466287755595961091061972992

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

 Exact

Approx 4 terms

Approx 6 terms

� ��

 86551222197331528483046595549607505120883217129 3
 + -- x
 182687704666362864775460604089535377456991567872

 135622129864887069635961170422116550756720753309 2
 + -- x y
 182687704666362864775460604089535377456991567872

 4427378773065481239495366403164863481973335327 2
 + --- x y
 11417981541647679048466287755595961091061972992

 205361304062612982716731424655369 2
 + --------------------------------- y
 40564819207303340847894502572032

 2738556671879398956382582417785 3
 + -------------------------------- y
 40564819207303340847894502572032

 56093980003778785405116612813373
 + -------------------------------- x
 20282409603651670423947251286016

 175860795400626713133792848425681 1951784264959249
 - --------------------------------- y + ----------------
 20282409603651670423947251286016 2251799813685248

Figure 4.3. The Archimedean spiral: exact and approximated to 4 terms of Taylor’s expansion.

Multiple near implicitization

Sample run 1: (Cycloid)

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
0

0.5

1

1.5

2

 Exact parametric
 Approximate implicit

� ��

x = � - sin�, y = 1 - cos�, 0 � � � ��.

Taylor expansions around � � �/2 and 3�/2, with highest degree = 4 in both cases.
» R=multimplicit(t-sin(t),1-cos(t),4,[3.14/2,3*3.14/2]);

The first curve is plotted in the interval 0 � � � � ���� ��	
	���� � � � � ��� ��	 ��������

plot is obtained using Matlab.

Figure 4.4. The cycloid implicitized around �/2 and 3�/2 with 4 terms of Taylor’s expansion.

Sample run 2: (Archimedean spiral)

x = � cos�, y = � sin�, 0 � � � �.

Taylor expansion around � � �/4 and 3�/4, with highest degree = 4 in both cases.
» R=multimplicit(t*cos(t),t*sin(t),4,[3.14/4,3*3.14/4]);

The first curve is plotted in the interval 0 � � � �/2 and the second in the interval � � � �

3�/4. The following plot is obtained using Matlab.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

 Exact parametric

Approximate implicit

� ��

Figure 4.5. The Archimedean spiral implicitized around �/4 and 3�/4 with 4 terms of Taylor’s expansion.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
0

0.5

1

1.5

2

 Exact parametric
 Approximate implicit

 104

Chapter 5: CONCLUSION AND FUTURE WORK

“Science is what we understand well enough to explain to a computer. Art is everything else

we do. During the past several years, an important part of mathematics has been transformed

from an Art to a Science. No longer do we need to get a brilliant insight in order to evaluate

sums of binomial coefficients, and many similar formulas that arise frequently in practice.

We can now follow a mechanical procedure and discover the answers quite systematically.”

[Donald Knuth, 1995].

The main purpose of this thesis has been to convey this idea. First, we have briefly reviewed

a wide variety of computer algebra problems and the tools used to automate their solution.

Then, one specific problem, namely that of implicitization of parametric functions, is

investigated in depth. We have searched as many implicitization methods as the literature

provides, devised algorithms for these methods and implemented them using the Matlab

software package.

Additionally, we have tackled the problem when a direct method is not available to deal with

the parametric functions. Our method, which we called near implicitization, approximates the

problem in order to be able to handle it. We have proposed two ways to attack the problem,

compromising between accuracy and running time.

In brief, our algorithms and implementations have the following features:

• We have tried to cover practically all forms of parametrically defined plane curves.

Efficiency was a major concern, but simplicity of the output results was also considered.

• Implementation on a popular software package such as Matlab benefits from its large

“toolbox” and makes our M-files (Matlab functions) available to a wide area of users.

• Most of our implementations accept symbolic input and deliver symbolic results. This

feature illustrates the basic topic of the thesis: computer algebra.

Future work and open points

Our emphasis in the present work was on the implicitization of plane curves. Suggested work

than can be added to ours is proposed hereafter.

• Adding a third dimension and promoting to the implicitization of 3D curves.

• Implementation of more efficient methods, where applicable, such as the method of

moving conics.

• The problem of implicitization of surfaces is still far from a complete solution. This is

an open point where research is taking place.

 105

REFERENCES

[1] Joachim von zur Gathen and Jürgen Gerhard: Modern Computer Algebra. Cambridge

University Press, 1999.

[2] Franz Winkler: Polynomial Algorithms in Computer Algebra. Springer-Verlag, 1996.

[3] Bhubaneswar Mishra: Algorithmic Algebra. Springer-Verlag, 1993.

[4] Franz Winkler: Advances and Problems in Algebraic Computation. Proceedings of the

Vienna Conference, June 1999.

[5] Hesham El-Sayed: An Interactive System for Symbolic Computation. MSc thesis,

Computer Science Dept., Eng. Faculty, Alexandria Univ., 1990.

[6] David M. Burton: Abstract and Linear Algebra. Addison-Wesley Publishing Co.,

1972.

[7] John F. Humphreys: A Course in Group Theory. Oxford University Press, 1996.

[8] Anthony N. Michel and Charles J. Herget: Mathematical Foundations in Engineering

and Science. Prentice-Hall Inc.

[9] Ahmed H. El Sherif: Generation of Plane Curves by Rolling. 1989.

[10] Tom Sederberg, Ron Goldman and Hang Du: Implicitizing Rational Curves by the

Method of Moving Algebraic Curves. J. Symbolic Computation (23), 1997.

[11] Hoon Hong: Implicitization of Curves Parameterized by Generalized Trigonometric

Polynomials. Research Institute for Symbolic Computation, Linz, Austria, 1995.

[12] Hoon Hong and Joseph Schicho: Algorithms for Trigonometric Curves

(Simplification, Implicitization, Parameterization). Research Institute for Symbolic

Computation, Linz, Austria, 1997.

[

1

3

]

Ming Zhang: Topics in Resultants and Implicitization, Ph.D. thesis, Department of

Computer Science, Rice University, 2000.

[14] R. N. Goldman, E. W. Chionh, and M. Zhang: Efficient Implicitization of Rational

Surfaces by Moving Planes. Proceedings of the ASCM, 2000.

[15] R. N. Goldman, E. W. Chionh, and M. Zhang: Fast Computation of the Bezout and

Dixon Resultant Matrices. Submitted to Journal of Applied & Computational

Mathematics.

[16] R. N. Goldman, D. Cox, and M. Zhang: On the Validity of Implicitization by Moving

 106

Quadrics for Rational Surfaces with No Base Points. J. Symbolic Computation (29),

2000.

[17] R. N. Goldman, E. W. Chionh, and M. Zhang: On a Relationship between the Moving

Line and Moving Conic Coefficient Matrices. Computer Aided Geometric Design 16,

1999.

[18] R. N. Goldman, E. W. Chionh and M. Zhang: Transformations and Transitions from

the Sylvester to the Bézout Resultant. Technical report TR99, 1999.

[19] Sandra Licciardi and Teo Mora: Implicitization of Hypersurfaces and Curves by the

Primbasissatz and Basis Conversion. Presented at the Meeting Algebraic Algorithms

for Geometric Reasoning, Linz, 1992.

[20] J. Rafael Sendra and Franz Winkler: Parameterization of Algebraic Curves Over

Optimal Field Extensions. J. Symbolic Computation (23), 1995.

[21] Joseph Schicho: The Parameterization Problem for Algebraic Surfaces. Research

Institute for Symbolic Computation, Linz, Austria, 1999.

[22] Dimitrios Poulakis and Evaggelos Voskos: On the Practical Solution of Genus Zero

Diophantine Equations. J. Symbolic Computation (30), 2000.

[23] Erik Hillgarter: The Classification Problem for Point Symmetries of 2nd Order PDE's

in one Dependent and two Independent Variables, 1999.

[24] Günter Czichowski: Lie Theory of Differential Equations and Computer Algebra.

Seminar Sophus Lie, 1991.

[25] E. Tournier: Computer Algebra and Differential Equations. Cambridge University

Press, 1994.

[26] Wolfram Koepf: The Identification Problem for Transcendental Functions. Konrad-

Zuse-Zentrum für Informationstechnik Berlin (ZIB), 1995.

[27] C. Ray Wylie, William R. Kenan: Advanced Engineering Mathematics. McGraw-Hill,

fourth edition, 1975.

[28] Catherine C. McGeoch: Experimental Analysis of Algorithms. Notices of the

American Mathematical Society (48), 2001.

[29] High Performance Numeric Computation and Visualization Software, Matlab User’s

Guide, 1992.

 107

APPENDIX A: Computer Algebra Systems

The major purpose of a Computer Algebra System is to manipulate a formula symbolically

using the computer. For example, expanding, factorizing, root finding, or simplifying an

algebraic polynomial, are some of the common uses of such systems. However, many

systems have gone far beyond that and also offer other functionalities like numerical

calculation, graphics, and simulations.

Many Computer Algebra Systems are currently available in the market. In what follows, a

brief overview of some of these is presented. For more information, most of the systems

presented have web sites, some publish journals regularly, or even organize conferences and

workshops.

Axiom

AXIOM is a powerful computer algebra system which provides a complete environment for

anyone needing to manipulate and solve mathematical formulae. Its application is wide-

ranging, from pure mathematics research through branches of physics, chemistry, biology and

engineering to financial modelling and cryptography.

Macsyma

Macsyma is a powerful mathematical software package, while remaining ease of use. It

contains facilities for algebra, linear algebra, calculus, numerical analysis, on-line help

system, versatile graphics, and system utilities. Macsyma includes 1,300 executable

demonstrations easily accessible at many points in the help system. Also hypertext

descriptions of 2,900 topics, a browser with 900 topics and commands, and 900 type-in

command templates.

Recent mathematical improvements include enhanced speed in solving linear and algebraic

equations, stochastic mathematics, better evaluation of special functions, and enhanced tensor

analysis. It is smarter about using the algebraic signs of expressions to simplify results.

MAGMA

Magma is a radically new system designed to solve computationally hard problems in

algebra, number theory, geometry and combinatorics. Magma provides a mathematically

 108

rigorous environment for computing with algebraic and geometric objects. The basic design

principles are:

• Algebraic structures and their morphisms as first class objects.

• Language design reflecting the structure of modern algebra.

• Kernel implementation of important structures to achieve outstanding

performance.

• A strong typing scheme derived from modern algebra whereby types correspond

to algebraic structures (magmas) to provide mathematical rigor and clarity.

• Seamless integration of algorithmic and database knowledge.

• Structures supported range across group theory (finitely presented groups,

blackbox groups, abelian groups, soluble groups, permutation groups, matrix groups,

finitely presented semigroups, and characters of finite groups), rings (the integers with

optimized arithmetic, residue class rings, univariate and multivariate polynomial rings,

invariate rings of finite groups, valuation rings), fields (finite fields, quadratic fields, local

fields, cyclotomic fields, number fields, rational function fields, and the rationals),

algebras (group algebras, matrix algebras, finitely presented algebras, associative

algebras, and algebras defined by structure constants), power and Laurent series,vector

spaces, modules, lattices, algebraic geometry (elliptic curves, zero-dimensional varieties),

graphs, incidence structures and designs, finite planes, enumerative combinatorics, and

coding theory.

Maple

Maple V is a powerful mathematical problem-solving and visualization system used world-

wide in education, research, and industry. Its principal strength is its symbolic problem

solving algorithms. Maple V also has a programming language (like Pascal) which allows to

extend the library of 2500+ functions.

Mathematica

Industry leading fully integrated environment for technical and scientific computing. Quick,

accurate, numeric and symbolic computations. Automatic arbitrary precision control for

numeric calculations. Creates fully interactive and customizable technical documents

including editable/evaluable typeset quality formulas, 2-D and 3-D graphics, sound, and

animations.

 109

REDUCE

REDUCE is an interactive program designed for general algebraic computations of interest to

mathematicians, scientists, and engineers.

MuPAD

MuPAD is a system for symbolic and numeric computation, parallel mathematical

programming, and mathematical visualization. It is intended to be a 'general purpose'

computer algebra system. Programming in MuPAD's own programming language is

supported by a comfortable source code debugger. The concept of dynamic modules enables

the user to integrate C/C++ functions as well as complete software packages into MuPAD.

MuPAD has easy-to-use language constructs for parallel programming. A pre-release version

for parallel programming exists for SGI, Sequent, and Sun multiprocessor machines.

Window-based user interfaces for MuPAD exist for the X-Window-System, Apple

Macintosh, and Windows 95/NT.

DERIVE

DERIVE is a symbolic mathematics package which includes: exact arithmetic, factoring,

partial fraction expansion, equation solving, 2D and 3D plots, derivatives, integrals,

differential equations, Taylor and Fourier Series, Laplace Transforms, vectors and matrices.

One drawback of DERIVE is that it cannot be programmed efficiently to perform a given

sequence of operations. However, the lack of this facility is compensated by the ease-of-use

which the menu-driven nature of the package provides, as opposed to a command-driven

computer algebra package, such as MuPad or Reduce.

A more detailed list of available systems can be found at: SAL Computer Algebra Systems -

[http://chpc06.ch.unito.it/linux/A/1/]. Here is an overview:

One) General purpose systems:

Axiom: A computer algebra system with powerful symbolic solver.

bernina: Interactive program with interface to a computer algebra library.

Computer Algebra Kit: Collection of small programs for computer algebra.

 110

CASA: computer algebra software for constructive algebraic geometry in Maple.

CoCoA: a special-purpose system for doing Computations in Commutative Algebra.

DrMath: online symbolic math and computer algebra system.

FELIX: computations in and with algebraic structures and substructures.

FORM: symbolic manipulation for large mathematical problems.

GAMS: a high-level modeling system for mathematical programming problems.

GAP: computational discrete algebra emphasized on group theory.

GiNaC: open framework for symbolic computation within C++.

 GRG: a computer algebra program for differential geometry, gravitation and field theory.

GRTensorII: computer algebra package for differential geometry.

HartMath: a computer algebra program written in Java.

Kalamaris : mathematical package similar to Mathematica.

Interpreter for symbolic manipulation: a simple computer algebra system in C++ or Java.

JACAL: symbolic simplification and manipulation of equations.

lundin.Symbolic Math: Java class library for symbolic differentiation and evaluation.

Macaulay 2: algebraic geometry and commutative algebra.

Macsyma: a powerful and general purpose mathematical tools.

MAGMA: a system for algebra, number theory, geometry and combinatorics.

Maple: numerical computation, symbolic algebra, functions, graphics, programming.

MAS: experimental computer algebra system.

Mathematica: numerical computation, symbolic algebra, functions, graphics, programming.

Mathomatic: artificially intelligent algebraic manipualtor program.

MAXIMA: computer algebra system for symbolic and numerical computations.

Symaxx: a frontend for Maxima computer algebra system.

Mock-Mma: simple mock-up of Mathematica in Common Lisp.

MuPAD: symbolic and numeric computation, parallel programming and visualization.

Punimax: computer algebra system for symbolic and numerical computations.

Reduce: general algebraic computations.

Redten: symbolic algebra package for tensor objects.

Ricci: symbolic tensor computations for differential geometry.

Risa/Asir: experimental computer algebra system with programming libraries.

SACLIB: library of C programs for computer algebra.

SAML: a simple algebraic math library.

 111

SimLab: CLISP code for computer algebra substrate and triangulations of 2D areas.

Singular: a computer algebra system for computing information about singularities.

SISYPHOS: computing in modular group algebras of p-groups.

Software from Symbolic Computation Group: symbolic computation in physics.

text_deriv: a package designed to do simple symbolic derivatives.

Yacas: a small and highly flexible computer algebra language.

Two) Specialized systems:

Algae: a high-level interpreted language for numerical analysis.

AUTOLEV: a symbol manipulation program for analyzing the dynamics of mechanical

systems.

CAM C++ Class Libraries: graphics, matrix/vector and symbolic function classes.

FOAM: computer algebra program for high energy physics.

GNU Calc: an advanced calculator that runs as part of the GNU Emacs environment.

 meditor: a text editor with some symbolic computation capabilities.

Pari/GP: formal computations on recursive types at high speed (CA system in number

theory).

SHEEP: a computer algebra system designed primarily for general relativity.

SIMATH: computer algebra system for number theory.

Simple Lisp: a simple lisp interpreter with symbolic math library for tensors.

Tmath: a Tcl interface to Matlab and Mathematica.

 112

APPENDIX B: History of Symbolic Computation

The primary motivation for the initial development of digital computers was to solve numeric

problems. Because of this tendency for using a computer to solve numeric problems, there

has been a major shift in the technology of applied mathematics. Prior to the existence of

digital computers, numerical analysis was a very tedious subject. With the emergence of

computers, numerical analysis method developed much more and analytic techniques tended

to be ignored. [5]

Even in our days, many mathematicians think there is a division of labor between man and

computer: a person applies the appropriate algebraic transformations to the problem at hand

and, finally, arrives at a program which then can be left to a "number crunching" computer.

However, this is an error. Computers are general-purpose machines that can also be used for

transforming, combining and computing symbolic algebraic expressions. In other words,

computer can not only deal with numbers, but also with abstract symbols representing

mathematical formulas. This fact has been realized much later and is only now gainig

acceptance among mathematicians and engineers. [2]

One cannot exactly determine when the field of computer algebra began, but at least some

cornerstones can be outlined as follows:

• The field originated from the needs of physics researchers.

• The first programs dealing with formulas were written by physicists in order to

save them from performing long, tedious, error prone calculations by hand.

• 1955 - First programs for formula derivation.

• 1965 - First general-purpose computer systems working with algebraic expressions.

• 1975 - A new research field emerged with its own conferences, journals, etc.

• 1990 - General spreading of computer algebra systems into almost all branches of

science.

[Cf.: Richard Liska, http://www-troja.fjfi.cvut.cz/~liska/ca/]

Chronology of computer algebra systems

Brian Evans, [evans@eedsp.gatech.edu] has compiled the following chronology of

computer algebra systems.

 113

System name Year Related systems e-mail address, tel.

ALPAK 1964 ALTRAN (Bell Labs)
ALTRAN 1968 (Bell Labs)
FORMULA (Algol)
FORMAC FORMAC (PL/I) (IBM)
FORMAC (PL/I) (IBM)
MATHLAB (DECUS) 1968 MACSYMA (DEC)

CAMAL
REDUCE 1968 reduce-netlib@rand.org

 MACSYMA 1970 Symbolics Macsyma,
VAXIMA, DOE-
Macsyma, ALJABR,
ParaMacs

(See Below)

SchoonShip 1971 archive.umich.edu (FTP)

muMath 1979 Derive
VAXIMA 1980 (312) 972-7250
SMP 1982 Mathematica NOT ON MARKET
Symbolics MACSYMA 1983 macsyma-service@symbolics.com
DOE-Macsyma 1984 ALJABR gcook@llnl.gov

Maple 1985 wmsi@daisy.waterloo.edu

MathCAD 1985(?) Mathcad 1-800-MATHCAD
Powermath 1985 NOT ON MARKET
REDUCE/PC 1986 reduce-netlib@rand.org

Derive 1988 (Soft Warehouse Inc.)
Mathematica 1988 info@wri.com

Theorist 1988 (415) 543-2252 (Prescience Corp)
PARI 1988(?) ftp to math.ucla.edu

FORM 1989 form@can.nl

MACSYMA/PC 1989 macsyma-service@symbolics.com
ALJABR 1991 aljabr@fpr.com

Mathcad 1991 1-800-MATHCAD
SymbMath 1991 chen@deakin.oz.au
Axiom 1991 (708) 971-2337
ParaMacs 1991 lph@paradigm.com

SIMATH 1992 marc@math.uni-sb.de

	0-cover.pdf
	0-toc.pdf
	1-what.pdf
	2-algebra.pdf
	3-gcd.pdf
	4-cra.pdf
	5-implicit.pdf
	6-implem.pdf
	9-ref.pdf

