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Abstract 

 

In the recent decades, it has been more and more realized that computers are of 

enormous importance for numerical computations. However, these powerful general-purpose 

machines can also be used for transforming, combining and computing symbolic algebraic 

expressions. In other words, computers can not only deal with numbers, but also with abstract 

symbols representing mathematical formulas. This fact has been realized much later and is 

only now gaining acceptance among mathematicians and engineers. [Franz Winkler, 1996]. 

Computer Algebra is that field of computer science and mathematics, where 

computation is performed on symbols representing mathematical objects rather than their 

numeric values. 

 

This thesis attempts to present a definition of computer algebra by means of a survey 

of its main topics, together with its major application areas. The survey includes necessary 

algebraic basics and fundamental algorithms, essential in most computer algebra problems, 

together with some problems that rely heavily on these algorithms. The set of applications, 

presented from a range of fields of engineering and science, although very short, indicates the 

applied nature of computer algebra systems. 

A recent research area, central in most computer algebra software packages and in 

geometric modeling, is the implicitization problem. Curves and surfaces are naturally 

reperesented either parametrically or implicitly. Both forms are important and have their uses, 

but many design systems start from parametric representations. Implicitization is the process 

of converting curevs and surfaces from parametric form into implicit form. 

We have surveyed the problem of implicitization and investigated its currently 

available methods. Algorithms for such methods have been devised, implemented and tested 

for practical examples. In addition, a new method has been devised for curves for which a 

direct method is not available. The new method has been called near implicitization since it 

relies on an approximation of the input problem. Several variants of the method try to 

compromise between accuracy and complexity of the designed algorithms. 

 The problem of implicitization is an active topic where research is still taking place. 

Examples of further research points are included in the conclusion. 
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Chapter 1: INTRODUCTION 

 

In this thesis, we attempt first to answer the question: what is Computer Algebra? The 

answer is extracted from the existing literature [1] [2] [4] [5]. Secondly, a review of some 

computer algebra basics is given. Those reviewed basics are elements of abstract algebra and 

three mathematical objects fundamentally needed, namely, Euclidean algorithm, Chinese 

remainder algorithm and computation of Gröbner bases algorithm. Such objects are needed 

and used to build computer algebra systems (CAS). 

Since polynomial systems have a wide range of applications, in algebraic geometry, 

automated geometric theorem proving, computer aided design (CAD) and computer aided 

manufacturing (CAM) systems, computer graphics, virtual reality and other fields, we picked 

up the problem of implicitization to investigate. 

Algorithms of implicitization are given when not provided in the literature. Other 

algorithms are suggested as well. These are proved and implemented using the software 

package Matlab, with some sample runs to furnish their applicability. 

 

1.1 WHAT IS COMPUTER ALGEBRA? 

 

In this section, we attempt to define the term computer algebra. It is opposed to 

numerical analysis and its uses and limitations are presented. 

 

1.1.1 An attempt at a definition 

Computer Algebra, also known as Symbolic Computation, Algebraic Manipulation or 

Formula Manipulation, is a scientific field in computer science and mathematics, where 

computation is performed on symbols representing mathematical objects rather than their 

numeric values. 

Franz Winkler [2] restates R. Loos' definition made in his introduction to Buchberger 

et al. (1983): "Computer algebra is that part of computer science which designs, analyzes, 

implements, and applies algebraic algorithms". 

Gathen and Gerhard [1] present the following definition: "Computer Algebra is a 

more recent area of computer science where mathematical tools and computer software are 

developed for the exact solutions of equations". 
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In [5], it is stated that the principal function of a Computer Algebra system is the 

rearrangement of data so that the relevant information in it is easier to extract. In the 

implementation of the Computer Algebra System designed in this reference, it is stressed on 

the fact that a symbolic solution of a problem indicates how the solution was reached in terms 

of the symbols constituting the problem, instead of its numeric value. 

 

1.1.2 Algebraic calculations 

Algebraic computation or symbol manipulation or computer algebra is the field of scientific 

computation which develops, analyzes, implements and uses algebraic algorithms. 

Typical features of algebraic computation are: 

• Computation with arbitrary precision numbers--no rounding. 

• Computation with symbols and variables (e.g. x, y). 

• Computation with functions (e.g. sin, cos). 

• Manipulation of formulas. 

• Symbolic operations (differentiation, integration, factorization, etc.)  

As opposed to numerical computation, symbolic computation has the following 

characteristics: 

 

Numerical Computation Symbolic Computation 

Computations with numbers only 

e.g.: 2 + 3 = 5 

Computing in algebraic structures 

(polynomial rings, finite fields, etc…) in 

addition to computing with numbers 

(algebraic number domains). 

e.g.: x + 2x = 3x, 
12

5

4

1

6

1
=+ . 

Approximate results 

e.g.: 0.86602…, cos(3.1415)= -0.999… 

Exact representation of results 

e.g.: 
2

3
, cos(π) = -1 

Numeric results 

e.g.: 1438.0
1

2/1

0 2
=

−

∫ dx
x

x
 

Symbolic results 

e.g.: axdx
ax

x
−=

−

∫
2

2
ln

2

1
 

Numeric evaluation 

e.g.: a
2
-b

2
 = ?? (undefined a,b) 

Symbolic simplification 

e.g.: a
2
-b

2
 = (a-b)(a+b) 
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1.1.3 Why do we need algebraic calculations? 

• There exist algorithms which cannot easily be performed manually with pencil and 

paper (e.g., factorization). 

• Algebraic solutions are usually more compact than a set of numerical solutions; 

algebraic solution gives more direct information about the relationship between the variables 

than figures. 

• From algebraic expressions, one can deduce how changes in the parameters affect the 

result of the computation. As a consequence one can build decision algorithms on computer 

algebra, e.g. for the factorizability of polynomials, the equivalence of algebraic expressions, 

the solvability of certain differential equation problems, the parametrizability of algebraic 

curves 

• Algebraic solutions are always exact, numerical solutions will normally be 

approximates; this can arise from rounding and truncation errors, further errors can creep in 

when the user interpolates data given in tabular form. 

• Computer algebra can save both time and effort in solving a wide range of problems; 

much larger problems can be investigated than by using traditional methods. 

• Computer algebra reduces the need for tables of functions, series and integrals; thus 

avoids errors when using such tables. 

• Traditional teaching of applied mathematics has to involve much time in teaching 

techniques of solution; computer algebra systems tend to produce solutions quickly and 

without errors, so they enable more time to be devoted to studying the properties of the 

solution. Nowadays, there exist many attempts of using computer algebra systems (CAS) in 

computer aided learning (CAL). 

• Using of computer algebra allows also very effective construction of numerical 

algorithms and their semiautomatic programming by code generation, the effectiveness of the 

work and reliability of the results can be strongly increased. 

 

1.1.4 Limitations of Computer Algebra 

The previous sections present computer algebra much more superior than numerical 

analysis. This is not the case, however. Symbolic computation has its limitations and thus 

can't supersede numerical solutions. Some examples of such cases are illustrated hereunder. 
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1. High complexity problems: There are problems for which symbolic computation of an 

exact solution is prohibitively expensive, e.g., the problem of finding the solutions to a 

system of algebraic equations: 

f1(x1, …, xn) = 0, 

… 

fm(x1, …, xn) = 0. 

where the fi's are polynomials with, say, integral coefficients. This is the most natural 

application of Gröbner bases, and they were originally invented for this. Unfortunately, 

computing Gröbner bases is at least exponential in the number of variables n. In fact, Mayr 

proved in 1992 that the Ideal Membership problem (a problem that is reducible to computing 

a Gröbner basis in polynomial time) is EXPonential-SPACE complete, thus EXPTIME [1]. 

 

2. Problems with no symbolic solution: There are many problems that don't have closed form 

or exact symbolic solutions, e.g. differential equations. Symbolic solutions are available for 

only a small class of simple differential equations, such as integration problems and 

homogeneous linear differential equations. However, not much is known concerning 

symbolic algorithms for other types of differential equations, in particular partial differential 

equations [2]. 

 

3. Cumbersome results: Exact solutions may be too complex for the user of Computer 

Algebra System to assess, even for an order of magnitude. This is not a limitation in the usual 

sense of the word, but rather an inconvenience of working only with exact results. 

 

1.2 ALGORITHMIC ALGEBRA 

 

A closely related term to computer algebra is algorithmic algebra. It can be briefly 

defined as the science of developing algorithms for the solution of various problems of 

algebra. In this section, this term is defined in more details, and areas where it is applied are 

presented. 

 

1.2.1 An overview of active topics in algebraic computation 

In the last years, there has been dramatic progress in all areas of algebraic computation. 

Many working mathematicians have access to and actually use algebraic software systems for 
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their research. No end of this development is in sight. As reported in the proceedings of the 

Vienna Conference for Algebraic Computation [4], some of the active topics in this area 

cover the following subjects: 

• Algorithmic methods for indefinite integration. 

• Solutions of systems of algebraic equations. 

• Factorization of polynomials. 

• Geometry of algebraic curves and surfaces: implicitization and parametrization. 

• Algorithmic methods for computing closed form solutions of differential equations 

(this topic is in its infancy; many differential equations are still unsolved symbolically). 

Most of these topics rely heavily on algorithmic algebra defined hereunder. 

 

1.2.2 Algorithmic Algebra 

In his textbook, Algorithmic Algebra, B. Mishra proposes the following definition of 

algorithmic algebra [3]: “[People] who have been instrumental in the rapid growth of 

"algorithmic algebra" (…) are working toward a common goal, namely that of developing an 

algorithmic foundation for various problems in algebra”. 

In the same reference, he discriminates among, somewhat overlapping, four areas of interest 

in this subject: 

• Constructive algebra, “under which an object exists only if we can construct it” as 

opposed to the classical interpretation where “an object exists if its non existence is 

contradictory”. 

• Computational algebra, where one is concerned with the feasibility, complexity and 

implementation of algorithms. 

• Symbolic computation, where the researcher’s goal is to develop algorithms that are 

efficient in practice. 

• Applications, where algorithms are developed to serve specific application areas of 

symbolic computation. 

Most computer algebra algorithms require one, if not more, of the following results from 

algorithmic algebra: 

• Algebraic domains and polynomials. 

• Greatest common divisors: the Euclidean algorithm. 

• Modular computation: the Chinese remainder algorithm. 

• Gröbner bases 
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• Resultants and subresultants. 

 

1.3 ORGANIZATION OF THE THESIS 

 

This work proceeds as follows. 

Chapter 1, Introduction, is an introduction as its name indicates. An attempt to answer 

the question: “what is computer algebra?” is given. A definition of a closely related term, 

algorithmic algebra, is also given. 

Chapter 2, Computer Algebra tools and applications, is a survey of important results 

from algorithmic algebra, used in most computer algebra problems. It starts with an overview 

of algebraic systems, with a special emphasis on polynomials, which are required in most 

computer algebra algorithms. Then, three fundamental algorithms are presented: the 

Euclidean algorithm, the Chinese remainder algorithm and the Gröbner bases computation 

algorithm. Specific applications presented after the discussion of each such computer algebra 

fundamental algorithm cover a wide range of essential problems present in almost every 

computer algebra system. Additional general applications supplemented at the end of the 

chapter cover an even wider range of applications. 

Chapter 3, the implicitization problem, presents the problem and overviews more 

results from algebra required for this specific problem. In addition, it reviews some 

implicitization methods (for rational and trigonometric curves) and suggests newly devised 

ones (near implicitization variants). 

Our work, started at the end of chapter 3, continues in chapter 4, Implementation. 

Algorithms are given for all methods reviewed and suggested in the preceding chapter. These 

algorithms are implemented using the software package Matlab. Several sample runs furnish 

the applicability of these algorithms on practical examples. 

Finally, chapter 5 concludes the thesis and suggests further research points. 
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Chapter 2: COMPUTER ALGEBRA TOOLS AND 

APPLICATIONS 

 

2.1 ALGEBRAIC PRELIMINARIES 

 

This section presents some basic notions used throughout the thesis. For conciseness, 

only definitions and basic facts are introduced, illustrated with examples. Further details and 

proofs can be referred to in the literature [3] [6] [7] [8]. 

Operations on algebraic structures, presented in this section are essential in basic 

computer algebra algorithms, such as the Euclidean algorithm and the Chinese remainder 

algorithm presented later. These algorithms, in turn, are the basis of many computer algebra 

applications, such as the symbolic factorization of polynomials, which serves in the exact 

solution of polynomial equations, partial fraction decomposition, integration of rational 

functions and many other applications. 

Almost every computer algebra algorithm requires dealing with univariate and 

multivariate polynomials. These are also overviewed in the present section. 

 

2.1.1 Sets, functions and operations [6] 

Sets 

A set is any identifiable collection (finite or infinite) of objects of any sort. The 

objects which make up a particular set are called its elements or members. Sets can be 

countable or uncountable. 

The Cartesian product of two sets X and Y is the set of all ordered pairs (tuples) 

whose first entry belongs to X and second entry belongs to Y. 

X × Y = { (x,y) | x ∈ X, y ∈Y} 

Functions 

A function f from X into Y is a subset of X × Y such that: 

∀x ∈ X there is one and only one y ∈ Y such that (x,y) ∈ f. 

X is called the domain of f. Y is called the range of f. 

Operations 

A binary operation * on X is a function of X × X into X. 

Given an operation *, the notation a * b is used for *(a,b). 
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Closure: for an operation * defined on X, and a subset A ⊆ X, it is said that A is closed under 

the operation * if: a * b ∈ A, ∀a,b ∈ A. 

 

2.1.2 Algebraic Systems 

 

An algebraic system is a set S together with operations *1, *2, …, *k defined on it (i.e. 

S is closed under these operations. According to the number of operations, and to certain 

properties which X and *i possess, different types of algebraic systems are defined. 

Identity and inverse 

Let * be an operation on S, and consider the algebraic system {S,*}. 

e ∈ S is an identity element of the system {S,*}if: 

∀x ∈ S, e * x = x * e = x. 

If e is an identity of {S,*}, then x
-1

 ∈ S is called an inverse of x ∈ S, if: 

x
-1

 * x = x * x
-1

 = e. 

Since most of the systems dealt with don’t have more than two operations, it is 

common to use the symbols “+” and “⋅” for *1 and *2. The “⋅” may also be omitted when it is 

implicitly understood to be the operation in the context. Usual notations of the identity 

elements (if any) with respect to “+” and “⋅” can be “0” and “1” respectively. Finally, the 

inverses of x w.r.t. the previous operations will be “-x” and “x
-1

” respectively. 

 

2.1.2.1 Groups [3] 

Definition: A group G is a nonempty set with a binary operation “⋅”  such that: 

1. G is closed under the operation “⋅” : 

∀ a,b ∈ G,   a ⋅ b ∈ G. 

2. The operation “⋅” is associative: 

∀ a,b,c ∈ G,   (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) 

3. G possesses an identity element: 

∃ e ∈ G such that ∀ a ∈ G,  e ⋅ a = a ⋅ e = a. 

4. Every element of G has an inverse:  

∀ a ∈ G, ∃ a
-1

 ∈ G such that: a
-1

 ⋅ a = e. 

If {G, ⋅ } doesn’t possess an identity element, (i.e. only the first two conditions are 

satisfied), the system is called a semigroup. If condition 3 is also satisfied, but not every 

element (or none) is invertible, the system is called a monoid. 



  

9

A group is called an Abelian group if its operation is commutative, i.e.: 

∀ a,b ∈ G,  a ⋅ b = b ⋅ a. 

 

Examples: [7] 

1. The set of n × n matrices with real entries forms an Abelian group under addition, and 

a monoid under multiplication (the identity matrix being the identity element, but a 

singular matrix is not invertible). 

2. Integers under multiplication form a semigroup. 

3. The 3
rd

 roots of the unit: 1, ω and ω
2
 form a finite Abelian group under multiplication. 

This group is also known as a cyclic group, where each element is a power of one 

particular element of the group (Note that ω
3
 = 1). 

 

Definitions: 

• A subgroup H of a group G is a non empty subset of G which is itself a group 

satisfying the four conditions of a group definition. Otherwise stated: 

A subset of a group H ⊆ G is a subgroup if and only if: ∀ a,b ∈ H, a ⋅ b-1
 ∈ H. 

• The product of two subsets H1 and H2 of a group G is: 

H1H2 = {h1 ⋅ h2 | h1∈H1 and h2∈H2}. 

In what follows, it doesn’t matter to omit the “⋅” sign. 

• A left coset of a subgroup H of a group G is defined as: 

aH = {ah | ∀h ∈ H}, where a is any element of G. 

• A right coset is similarly defined as: Ha = {ha | ∀h ∈ H}. 

In particular, if a ∈ H then aH = Ha = H. 

According to Lagrange theorem, the family of (left or right) cosets of a subgroup H of G 

constitutes a partition of G. For finite groups, the number of distinct cosets of H is |G|/|H|, 

where the |⋅| denotes the cardinality of sets. [7] 

• A subgroup H of a group G is called a normal (or self-conjugate) subgroup of G if: 

∀a ∈ G, aH = Ha. 

As a result, every subgroup of an Abelian group is a normal subgroup. 

• The quotient group of a group G with respect to a normal subgroup H is the set: 

G/H = {aH | a ∈ G }, under the operation (xH)⋅(yH) = x⋅yH. 
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This is a set of left cosets, and one can easily prove it is indeed a group, or read the 

proof in either of [3] or [7]. 

Example:  

Consider the Abelian group (Z, +, 0); i.e. the group of integers under addition, with identity 0. 

The multiples of a positive integer m form a subgroup. The cosets are of the form:  

i + mZ = {i + km | k ∈ Z, 0 ≤ i < m } 

Two elements a and b of Z (integers) are congruent modulo m (belong to the same coset) if 

their difference (a-b) is divisible by m. This is denoted as: a ≡ b mod m. 

 

2.1.2.2 Rings and Ideals [3] 

A ring R is a set with two binary operations “+” and “⋅” such that: 

1. R is an Abelian group with respect to addition. It has an identity element 0 and every x 

∈ R has an additive inverse -x. 

2. R is a semigroup with respect to multiplication. 

3. Multiplication is distributive over addition, i.e.: 

∀ a,b,c ∈ R,  a ⋅ ( b + c ) = a⋅b + a⋅c,  and  (a + b) ⋅ c = a⋅c + b⋅c. 

If in addition, R has an identity “1” with respect to “⋅”, then R is a ring with identity. 

If the multiplication operation is commutative, R is a commutative ring. 

The group (R, +, 0) is known as the additive group over the ring R. 

In what follows, the main concern will be for commutative rings with identity, thus they can 

be called just rings. 

Examples: 

1. The set of integers Z, the rational numbers Q and the real numbers R are examples of 

rings with respect to the ordinary addition and multiplication 

2. The set of even numbers forms a ring without identity. 

3. The set of integers modulo m forms a finite ring. [i]m = {i + mk | k ∈ Z}. 

• A subring R’ of a ring R is a nonempty subset of R which is itself a ring satisfying its 

three conditions mentioned above. 

 

• An ideal is a subset of a ring I ⊆ R, which satisfies the following conditions: 

1. I is an additive subgroup of the additive group of R: 

∀ a,b ∈ I,  (a-b) ∈ I. 

2. I is closed under multiplication with ring elements: 
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∀ (a ∈ R, b ∈ I),  ab ∈ I. 

The ideals {0} and R are called improper ideals of R. All other ideals are proper. 

Note that any ideal of R is also a subring of R. The converse is not true. 

Example:  

The set of integers that are divisible by 12 form the ideal I = {12r | r ∈ Z}. 

• A set B ⊆ R generates the ideal I if I = {r1b1+ … +rnbn | ri ∈ R, bi ∈ B}. 

We say that B is a basis or a generating set of the ideal I, and denote it as: 

I = 〈b1, … ,bn〉 

• A Noetherian ring is one in which any ideal has a finite basis. 

 

Definitions: 

• An element x ∈ R is called a zero divisor if there exists y ≠ 0 in R such that xy = 0. (x 

and y need not be distinct). 

• An element x ∈ R is called a unit if there exists y ∈ R such that xy = 1. (The element x 

is thus invertible). 

• A ring R is called an integral domain if it has no nonzero zero divisors. In an integral 

domain, the cancellation law holds: if a ≠ 0 and ab = ac then b = c. 

Thus, in an integral domain, R \ {0} forms a semigroup w.r.t. multiplication. 

• A nonzero nonunit p in an integral domain R is reducible if there are nonunits a, b ∈ 

R such that p = ab, otherwise, p is irreducible. Units are neither reducible nor irreducible. 

• A ring R is called a Unique Factorization Domain (UFD) if every nonzero nonunit 

a∈R can be written as a product of irreducible elements in a unique way up to reordering and 

multiplication by units. [1] 

Example:  

Z is a UFD, and 12 = 2⋅2⋅3 = (-3)⋅2⋅(-2) are both decompositions of 12 into irreducibles. Note 

that the units of Z are 1 and -1, the only integer numbers whose inverses are integers. 

• An integral domain R together with a function d:R →N ∪{-∞} is called a Euclidean 

domain if for all a,b ∈ R, with b ≠ 0, a can be divided by b with remainder, i.e.: 

∀ a,b ∈ R, b ≠ 0, ∃ q,r ∈ R such that a = qb + r and d(r) < d(b). 

q is the quotient and r the remainder. [1] 
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2.1.2.3 Fields and Modules [3] 

• A field F is an integral domain in which every nonzero element is a unit (i.e. 

invertible). Thus a field consists of two Abelian groups with respect to each of its operations: 

the additive group (F, +, 0) and multiplicative group (F \ {0}, ⋅, 1). 

Examples: Familiar examples of fields are the field of rational numbers Q, the field of real 

numbers R and the field of complex numbers C. We have: Q ⊂ R ⊂ C. 

• A subfield E of a field F is a subring which itself is a field. We say E is a subfield of F 

and F is an extension field of E. 

• If R is an integral domain, then F = {a/b | a,b ∈ R, b ≠ 0} is called the field of 

fractions or quotient field of R. The field operations can be defined on representatives of the 

quotient field in the following way: 

a

b

b

a

b

a

b

a

bd

ac

d

c

b

a

bd

bcad

d

c

b

a
=⎟

⎠

⎞
⎜
⎝

⎛−
=−=⋅

+
=+

−1

   ,     ,     ,   

 

Modular arithmetic and finite fields: [2] 

As already introduced in the example on group cosets, but stated here in other words, 

every integer m generates an ideal 〈m〉 in Z. Two integers a, b are congruent modulo m if and 

only if m divides (a - b) or (a - b) ∈ 〈m〉. This is also written as a ≡ b mod m. 

The congruence relation is an equivalence relation which partitions the set of integers 

Z into equivalence classes called residue classes modulo m. The residue classes can be 

represented as: [i]m = {i + mk | k ∈ Z, 0 ≤ i < m}, which can be verbosely stated as the set of 

integers with remainder i when divided by m. 

Now, the set of residue classes forms a finite commutative ring with respect to 

addition and multiplication modulo m illustrated in the example in this section. It is denoted 

as Zm. 

Finally, Zm will be a finite field if and only if m is a prime number. In general, a finite 

field need not have prime cardinality. However, every finite field has cardinality p
n
 for some 

prime p. This field is usually called the Galois field of order p
n
. 

 

Example - (Modular arithmetic): [6] 

Understanding how to compute on the set Zm of congruence classes modulo m is 

crucial for computer algebra algorithms. This is called modular arithmetic. 
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Consider for example Z4. [0]4 denotes the set of integers divisible by 4. [1]4 denotes 

those integers, such as 9 and -3, which have remainder 1 when divided by 4, and so on for the 

classes [2]4 and [3]4. For simplicity, the brackets and subscripts can be omitted. Thus Z4 has 

the following addition and multiplication tables. 

 

+ 0 1 2 3  · 0 1 2 3 

0 0 1 2 3  0 0 0 0 0 

1 1 2 3 0  1 0 1 2 3 

2 2 3 0 1  2 0 2 0 2 

3 3 0 1 2  3 0 3 2 1 

 

Modules: [3] 

Given a ring R, an Abelian group G, and a mapping 

rggr

GGR

a,

: →×μ
 

• We say G is an R-module if, for all r, s ∈ R and x, y ∈ G, the following axioms are 

satisfied: 

r(x + y) = rx + ry, 

(r + s)x = rx + sx, 

(rs)x = r(sx), 

1x = x. 

Thus, an R-module is an additive Abelian group G on which the ring R acts linearly. 

• If R is a field F, then an F-module is said to be an F-vector space. 

 

This section on algebraic systems is concluded with the chart that follows [8], which 

attempts to put into perspective most of the systems considered, together with brief properties 

they have. Note the convention used here, in that a structure “inherits” the properties of its 

“parent”, and only those properties specific to it are indicated. 
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Figure 2-1 Relationship between basic algebraic systems 
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2.1.2.4 Homomorphism [3] 

• Let (R, +R, ⋅R, 0R, 1R) and (S, +S, ⋅S, 0S, 1S) be two rings (commutative with identity). A 

ring homomorphism h is a map from R to S satisfying the conditions: 

h(0R) = 0S , h(1R) = 1S , h(a +R b) = h(a) +S h(b), h(a ⋅R b) = h(a) ⋅S h(b). 

• A homomorphism h is called an isomorphism from R into S iff h is bijective (i.e. 1-1 

and onto).In this case we say that R and S are isomorphic and denote it by R ≅ S. 

• The kernel of a homomorphism h: R → S is defined as: 

ker h = {a ∈ R | h(a) = 0}. 

• The image of a homomorphism h: R → S is defined as: 

im h = {b ∈ S | ∃a ∈ R, h(a) = b}. 

One can easily verify that ker h is an ideal of R. The quotient ring of R with respect to ker h 

has the usual notation: R / ker h. The elements of R / ker h are the cosets of ker h in R, i.e. x + 

ker h. 

Now consider the ring homomorphism  

)(ker

 imker/:

xhhx

hhRf

a+

→

 

Then f is an isomorphism, hence h: R → S induces a ring isomorphism: R / ker h ≅ im h. This 

is known as the homomorphism theorem for rings. 

 

2.1.3 Polynomial Rings [3] 

 

Let S be a ring, and x a symbol called a variable or indeterminate not belonging to S. An 

expression of the form: f(x) = ∑n
i=0 aix

i
 , where ai ∈ S, (n finite) is called a univariate 

polynomial over the ring S, and the ring elements ai are called the coefficients of f. Assume 

that ak = 0 for all k > 0. 

• The leading coefficient of f is an, and a polynomial whose an = 1 is called a monic 

polynomial. 

• Addition and multiplication on the ring of polynomials are defined as follows: 

Let f = ∑i aix
i
 and g = ∑j bjx

j
 , 

f + g = ∑k ckx
k
 ,    where ck = ak + bk , 

f⋅g = ∑k ckx
k
 ,  where ck = ∑n

i=0 aibk-i . 

With the operations defined as shown, it can be verified that the set of polynomials forms a 

commutative ring with zero element 0 and identity element 1. 
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• The polynomial ring thus obtained by adjoining the symbol x to S, is hence denoted 

as: R = S[x]. The variable x is just a placeholder. 

• The degree of a nonzero polynomial f, denoted deg(f), is the highest power of x 

appearing in f. By convention, deg(0) = -∞. 

 

• The ring of multivariate polynomials over S is obtained by adjoining the variables 

x1,… , xn, successively, to S. Then R = S[x1]…[xn] = S[x1, … , xn]. 

To understand this more closely, consider the bivariate polynomials S[x, y]. These can be 

viewed as univariate polynomials in y with coefficients in the ring S[x]. 

Thus R consists of the multivariate polynomials of the form: ∑ae1,…,en x1
e1

…xn
en

. 

• A power product (or monomial) is an element of R of the form: p = x1
e1

…xn
en

, ei ≥ 0. 

• The total degree of the power product is deg(p) = ∑n
i=1 ei. 

• A term consists of a power product together with its coefficient. Thus a polynomial is 

simply a sum of a finite set of terms. 

• The total degree of a multivariate polynomial f is the maximum of the total degrees of 

the monomials in it. 

 

To define an analogous of leading coefficient for multivariate polynomials, an ordering of the 

terms must be defined first. Many ordering techniques are available, among which the 

lexicographic ordering and the total lexicographic ordering. 

Let nn
b

n

bba

n

aa

xxxqxxxp LL

2121

2121
 and == be two power products.  

• We say that p > q according to lexicographic ordering ( p >lex q) if: 

ai ≠ bi for some i, then for the minimum such i, ai > bi . 

• We say that p > q according to total lexicographic ordering ( p >tlex q) if: 

a) deg(p) > deg(q), or else, 

b) in case deg(p) = deg(q), ai ≠ bi for some i, then for the minimum such i, ai > bi 

. 

Examples:  

In the case of polynomials in 4 variables, w, x, y, z, we have: 

(i) According to lexicographic ordering: 

1 < z < z
2
 < …  

< y < yz < … < y
2
 …  

< x < xz < … < xy < … < x
2
 …  
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< w < wz < … < wy < … < wx < … < w
2
 … 

(ii) According to total lexicographic ordering: 

1 < z  < y  < x  < w  < z
2
  < yz  < y

2
  < xz  < xy  < x

2
  < wz  < wy  <  wx < w

2
  … 

 

• The leading term of a polynomial f is the monomial in f whose power product 

(monomial) is largest relative to the chosen ordering. Its coefficient is called the leading 

coefficient. 

Example:  

According to any of the previous ordering methods, the leading term of f = 4xy + y - 5 is 4xy. 

 

2.1.4 Representation of numbers and polynomials [1] 

 

2.1.4.1 Motivation 

One of the basic purposes of computer algebra systems is exact arithmetic. To achieve 

this goal, integers have to be represented exactly, regardless of their size. Computers store 

data in pieces called words. It is common to have machines that use 64-bit words. Then one 

machine word contains a single precision integer between 0 and 2
64

-1. In practice, of course, 

the size of the machine memory bounds the integers that can be represented. But it is 

certainly not acceptable that the word length of the machine limits this size. 

How can we represent integers outside the range {0, …, 2
64

-1}? The answer is to use 

multiprecision integers [1], which are lists of 64-bit words. Such structures are needed to 

represent integers of arbitrary sizes, that can grow “as the need arises” [2]. 

 

2.1.4.2 Positional notation for integers 

A radix-r representation of an integer a with n digits takes the form: 

a = (-1)
s
 ∑0≤i≤n ai ⋅ r

i
, where s, the sign, is 0 or 1, and ai ∈{0, …, r-1}. 

This representation is known as the positional notation. In the case of multiprecision integers 

mentioned earlier, r = 2
64

. This allows of course for sufficiently large numbers to be 

represented, the constraint being to some extent the memory size. 

Example: [2] 

Consider for example the integer 2000014720401, decimal for simplicity. Consider a 

positional number system with basis r = 10000. Then, the previous number would be 

represented by the following list: [+,2,0,1472,401], starting with most significant digits. 
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2.1.4.3 Performing integer arithmetic 

Here is a review of the fundamentals of multiprecision arithmetic by considering the simplest 

operation of addition of two integers of positive sign. In [1], the algorithms of other 

operations are introduced. 

Let a and b be two multiprecision integers: a = ∑0≤i≤n ai ⋅ 2
64i

, b = ∑0≤i≤n bi ⋅ 2
64i

. It is required 

to compute the sum s = ∑0≤i≤n+1 si ⋅ 2
64i

, such that s = a + b. 

First, assume the use of a hypothetical processor that has at its disposal a command for the 

addition of two single word (single precision) integers x and y. The output of the operation is 

a word w plus a carry flag c. This is a special bit in the processor status word which indicates 

whether the result exceeds 2
64

 (the largest representable word integer) or not. The carry flag 

can assume only the values 0 (no overflow) and 1 (overflow). There are also instructions to 

set and clear the flag. 

The key point in the addition of multiprecision integers is that of carry propagation. In the 

worst case, a carry form the addition of the least significant words a0 and b0, may affect the 

addition of an and bn. An example of this case is the addition of a = 2
64(n+1) 

-1 and b = 1. Here 

is the algorithm: 

Input: a, b 

Output: s = a + b. (c represent the carry flag). 

c0 := 0; 

for i := 0, …, n do 

si := ai + bi + ci , ci+1 := 0; 

if si ≥ 2
64

 then si := si - 2
64

, ci+1 := 1; 

sn+1 := cn+1 

return s 

 

Example:  

Let a = 9438, b = 945, and use the radix 10 instead of 2
64

. 

a = 9⋅10
3
 + 4⋅10

2
 + 3⋅10 + 8, b = 9⋅10

2
 + 4⋅10 + 5. 
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i 4 3 2 1 0 

ai  9 4 3 8 

bi  0 9 4 5 

ci 1 1 0 1 0 

si 1 0 3 8 3 

 

Related data types occurring in current processors and software systems are single and 

multiprecision floating point numbers. These represent approximations of real numbers, and 

arithmetic operations are subject to rounding errors, in contrast to arithmetic operations on 

multiprecision integers which are exact. Computation with floating point numbers is the main 

topic of numerical analysis, which is a theme of its own, not discussed in this text. 

 

2.1.4.4 Representation of polynomials 

Recall the definition of a polynomial a ∈ R[x], in the variable x over the ring R. It consists of 

a finite sequence (a0, …, an) of ring elements (the coefficients of a), for some n ∈ N (the 

degree of a). It is written as: a = anx
n
 + … + a1x + a0 . 

The previous representation of polynomials is quite analogous to the positional notation of 

integers introduced in a previous section. A number a has the radix r representation:  

a = anr
n
 + … + a1r+ a0 , with digits a0 , …, an ∈ {0, …, r-1}. 

Furthermore, if we take polynomials over Zr = {0, …, r-1}, the ring of integers modulo r, 

with addition and multiplication modulo r, the representations are similar. This similarity is 

an important point for computer algebra: many algorithms apply to both the integers and 

polynomial cases, with small modifications. 

Thus, polynomials can be represented using arrays whose i
th

 element is ai. This assumes of 

course that a way of representing the coefficients from R exists. 

 

2.1.4.5 Polynomial arithmetic 

Arithmetic algorithms for polynomials are relatively easier than their counterpart for integers. 

The basic distinction lies in the absence of the carry rule in the polynomial case. While the 

low digits have some influence on the high digits in the addition of integers, each term in a 

polynomial is independent of the other. 

In what follows, simple algorithms for addition and multiplication of polynomials are 

presented. More arithmetic on the polynomials may be referred to in [1]. 
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Addition: 

Input: a = ∑0≤i≤n ai ⋅ x
i
, b = ∑0≤i≤n bi ⋅ x

i
 in R[x], where R is a ring. 

Output: s = a + b ∈ R[x]. 

for i := 0, …, n do si := ai + bi ; 

return s 

 

Multiplication: 

The first version of the algorithm mimics the method of multiplication learned in school. 

Note also this is a more general algorithm that lets the two input polynomials be of different 

degrees. 

Input: a = ∑0≤i≤n ai ⋅ x
i
, b = ∑0≤i≤m bi ⋅ x

i
 in R[x], where R is a ring. 

Output: p = a ⋅ b ∈ R[x]. 

for i := 0, …, n do di := aix
i
 ⋅ b; 

return p = ∑0≤i≤m di . 

 

The multiplication aix
i
 ⋅ b is realized as the multiplication of each bj by ai plus a shift by i 

places. The variable x serves just as a placeholder, and there is no arithmetic involved in 

multiplying by x or any powers of it. 

Note also that the previous algorithm is not the “best” for multiplication. One basic drawback 

of a computer implementation of such algorithm is the requirement of storing n+1 

intermediate polynomials with m+1 coefficients each. A way around this is to interleave the 

final addition with the computation of aix
i
 ⋅ b. This uses only a space for the storage of two 

polynomials, i.e. n+m coefficients. 

Although the purpose of this text is not to analyze the efficiency of algorithms, but rather to 

introduce elementary and simple ones, here is a “better” multiplication algorithm that uses 

only intermediate results of size 1. 

Here the product’s coefficients pk are computed one by one. The degrees of a and b being n 

and m respectively, and that of p, n+m, the loop for computing the pk is: 

for k := 0, …, n+m do 

pk := 0 

for i := max{0,k-m}, …, min{n,k} do 

pk := pk + ai  ⋅ bk-i 
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2.1.4.6 Storage of numbers and polynomials [2] 

In many algorithms of computer algebra, intermediate results may get very large although 

inputs and outputs are of moderate sizes. For example, in computing greatest common 

divisors of polynomials, in integration problems or Gröbner basis computations, intermediate 

polynomials of degree 70 are very common for inputs of degree 5 or 6. 

To be able to store these objects efficiently, a need for data structures that reflect the 

expansion and shrinking of the objects during the computation arises. Arrays have the 

drawback of being fixed structures. One has to specify the maximum length of the array 

beforehand. A data structure that overcomes this constraint is called list. 

Lists are suited for representing objects of variable length because they are not fixed in size. 

Of course, practically, we have memory constraints in any computer. But these less severe 

than constraints on each data object. 

Example: 

Consider the polynomial x
5
 + 2x

3
 -x

2
 + 1 represented by the list [[5,1], [3,2], [2,-1], [0,1]]. 

Then the term 3x
6
 is added. The list becomes: [[6,3], [5,1], …, [0,1]]. An illustration of this 

example follows, where L is a pointer to the first element of the list. 

 

 

 

After insertion of the term 3x
6
: 

 

 

 

This section shall not go deeper than that in implementation techniques. It only introduces 

some of the techniques used in symbolic computation systems. 

 

5,1 3,2 2,-1 0,1L  

6,3 5,1 3,2 2,-1 0,1 L  
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2.2 THE EUCLIDEAN ALGORITHM 

 

The Euclidean algorithm is basic in computing greatest common divisors (gcds) and 

this, in turn, is an extremely frequent operation in any computation in computer algebra. 

 

2.2.1 Basic notions 

Definition: Let R be a ring and a, b, c ∈ R. Then c is a greatest common divisor or gcd of a 

and b if: 

(i) c | a and c | b (c divides both a and b), 

(ii) if d | a and d | b, then d | c, for all d ∈ R. 

 

Recall that in a Euclidean domain R, we can divide any a, b ∈ R, b ≠ 0, with quotient q and 

remainder r, so that: a = qb + r. The used notation is q = a div b and r = a rem b. 

• A unit u ∈ R is any element with a multiplicative inverse v ∈ R, so that uv = 1. 

• Two elements a, b are associate if a = ub for a unit b ∈ R, denoted: a ∼ b. 

In general, gcds need not be unique. However, all gcds of a and b are precisely the associates 

of one of them. As an example, the only units in Z are 1 and -1. The gcds of 12 and 15 in Z 

are 3 and -3 which are associates. [1] 

 

2.2.2 The Classical Euclidean Algorithm [1], [2] 

The following algorithm computes greatest common divisors in an arbitrary Euclidean 

domain. 

Input: f, g ∈ R, where R is a Euclidean domain. 

Output: gcd of f and g. 

r0 := f, r1 := g 

i := 1; 

while ri ≠ 0 do ri+1 := ri-1 rem ri , i := i+1 

return ri-1 . 

Example: 

Tracing the algorithm with input f = 126 and g = 35 gives 
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i ri-1 ri ri+1 = ri-1 rem ri 

1 126 35 21 

2 35 21 14 

3 21 14 7 

4 14 7 0 

It is important to note that many algorithms that apply to integers apply to 

polynomials as well. The similarity between the two objects was highlighted in the previous 

section. Thus, the gcd algorithm is well suited to polynomials with only minor changes. 

As mentioned in the previous section, the gcds of two elements of R are associates of 

one of them. Now, take R to be Q[x], the ring of polynomials with rational coefficients. It is 

noted that Q is a field. Hence every nonzero rational number is a unit (i.e., invertible). As a 

result, ua ∼ a in R = Q[x] for all nonzero u ∈ Q and all a ∈ R. In terms of gcds, we have an 

infinite number of gcds for f and g ∈ R, all multiples of a certain a ∈ R, among which only 

one representative should be chosen. 

A reasonable choice is the polynomial with leading coefficient 1. Any polynomial a 

can be normalized (leading coefficient = 1) by dividing it by its leading coefficient. It turns 

out that, in the polynomial case, the classical Euclidean algorithm should be modified such 

that all the remainders ri are normalized. [1] 

 

2.2.3 The Extended Euclidean Algorithm [1], [2] 

Putting into consideration the above remark on normalization, the following variant of 

the classical Euclidean algorithm, works with normalized remainders and computes, not only 

the gcd, but also a representation of it as a linear combination of the inputs. 

A function normal(.) is used. For R = Z, normal(a) = |a|, and for R = F[x], normal(a) = 

a/lc(a), where lc(.) is the leading coefficient of a (by convention, lc(0) = 1).  

 

Input: f, g ∈ R, (R is a Euclidean domain with normal form). 

Output: gcd(f,g), s, t ∈ R, such that sf + tg = gcd(f,g), l as computed below. 

a0 := lc(f),  r0 := normal(f),  s0 := a0
-1

,  t0 := 0, 

a1 := lc(g),  r1 := normal(g),  s1 := 0,  t1 := a1
-1

; 

i := 1; 

while ri ≠ 0 do 

qi := ri-1 div ri 
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ai+1 := lc(ri-1 rem ri) 

ri+1 := normal(ri-1 rem ri) 

si+1 := (si-1 - qisi) / ai+1 

ti+1 := (ti-1 - qiti) / ai+1 

i := i + 1; 

l := i - 1; 

return ri-1, si-1, ti-1, l. 

 

The variables used in the algorithm are: 

l: the Euclidean length of the pair (f,g). 

ri: the remainders,  qi: the quotients. 

si and ti from the i
th

 iteration satisfy: sif + tig = ri for all 0 ≤ i ≤ l+1. In particular, for i = l, the 

output of the algorithm, sl and tl satisfy: sf + tg = rl = gcd(f,g). They are called the Bézout 

coefficients of f and g. [1] 

 

Example: 

(a) R = Z,   f = 126,  g = 35. 

Tracing the algorithm yields the following table. 

i qi ai ri si ti 

0  1 126 1 0

1 3 1 35 0 1

2 1 1 21 1 -3

3 1 1 14 -1 4

4 2 1 7 2 -7

5  1 0 -5 18

The final result output by the algorithm as read out of row 4 is: 

gcd(126,35) = 7 = 2 ⋅ 126 + (-7) ⋅ 35. 

 

(ii)  R = Q[x],  f = 12x
3
 - 28x

2
 + 20x - 4, g = -12x

2
 + 10x - 2. 

The tracing of the algorithm follows. 
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i qi ai ri si ti 

0  12 x
3
 - 7/3x

2
 + 5/3x - 1/3 1/12 0 

1 x - 3/2 -12 x
2
 - 5/6x + 1/6 0 -12 

2 x - 1/2 1/4 x - 1/3 1/3 1/3x - 1/2 

3  1 0 -1/3x + 1/6 -1/3x
2
 + 2/3x - 1/3 

 

From row 2, the result is: 

gcd(f,g) = x - 1/3 = 1/3 ⋅ (12x
3
 - 28x

2
 + 20x - 4) + (1/3x -1/2)(-12x

2
 + 10x - 2). 

 

2.3 APPLICATIONS OF THE EUCLIDEAN ALGORITHM 

 

Before presenting some of the Euclidean algorithm applications, we review modular 

arithmetic first [1]. Moreover, the review is also a prerequisite for the Chinese remainder 

algorithm presented in the section that follows. 

 

2.3.1 Modular arithmetic 

In modular arithmetic, one computes with remainders arithmetic expressions modulo 

some nonzero integer. Taking a number m, two integers a and b are equal modulo m if they 

have the same remainder on division by m. 

a ≡ b mod m ⇒ m | (a-b), i.e. a-b is divisible by m. 

The basic rule for computing with congruences is: 

a ≡ b mod m ⇒ a*c ≡ b*c mod m, 

where a, b, c ∈ Z and * is one of +, -, ⋅. Using this rule inductively, expressions can be 

computed modulo m very efficiently by first reducing all integers modulo m, and then, step 

by step, performing an arithmetic expression in Z and immediately reducing the result 

modulo m again. In this way, the intermediate results never exceed m
2
. 

Examples: 

(a) Compute of an expression, efficiently, modulo 7. 

20 ⋅ (-89) + 32 ≡ 6⋅2 + 4 ≡ 12 + 4 ≡ 5 + 4 ≡ 9 ≡ 2 mod 7. 

(b) Another familiar example from school.  

The remainder of a number modulo 9 (or 3) equals the remainder of the sum of its 

decimal digits. In particular, a number is divisible by 9 (or 3) if and only if this sum is so. 
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Why does this work? Let a = ∑0≤i<n ai ⋅ 10
i
 be the decimal representation of a ∈ N. Since 10 ≡ 

1 mod 9 (and mod 3), a ≡ ∑0≤i<n ai ⋅ 1
i
 = ∑0≤i<n ai mod 9. 

 

Modular arithmetic can also be performed with polynomials over a ring R. The 

mathematical concept behind modular arithmetic is the residue class ring. If R is a ring (say Z 

or F[x]), and m ∈ R, then  〈m〉 = mR = {mr | r ∈ R}, the set of all multiples of m, is the ideal 

generated by m. The residue class ring R / mR = R / 〈m〉 = {f + mr | f, r ∈ R} consists of all 

residue classes of R / 〈m〉. This is also written Zm for Z / 〈m〉. 

For the polynomial case, the simplest nontrivial modulus is a linear polynomial x - u. 

For any polynomial f ∈ R[x], and u ∈ R, the polynomial f(x) - f(u) has u as a zero hence is 

divisible by (x - u). If we let q = ( f(x) - f(u) ) / (x - u), then f = q ⋅ (x - u) + f(u). By the 

division theorem, f(u) is the remainder of f on division by (x - u). Thus, f ≡ f(u) mod (x - u), 

and calculating modulo (x - u) is the same as evaluating at u. 

It is common to perform computations modulo polynomials and modulo integers. 

Then there are two levels of computation: coefficient operations, which are performed 

modulo m in Zm, and polynomial operations, which are performed modulo some polynomial f 

∈ Zm[x]. That is we are working in “double” residue class rings of the form Zm[x]/〈f〉. 

Computationally, it is equivalent to work with a set of representatives of the elements of 

the residue class ring. There are two representations, both useful in specific applications: 

• the least non-negative representation {0, 1, …, m - 1}, and 

• the symmetric least absolute value representation {a ∈ Z | -m/2 ≤ a ≤ m/2}. 

For example, Z / 5Z = Z5 can be represented as {0, 1, 2, 3, 4, 5} or {-2, -1, 0, 1, 2}. 

Example: 

(4x + 1)(3x
2
 + 2x) = 12x

3
 + 11x

2
 + 2x  in Z[x] 

(4x + 1)(3x
2
 + 2x) = 2x

3
 + x

2
 + 2x   in Z5[x] 

Now, division with remainder yields 

2x
3
 + x

2
 + 2x = 2⋅(x3

 + 4x) + x
2
 - 6x   in Z[x] 

2x
3
 + x

2
 + 2x = 2⋅(x3

 + 4x) + x
2
 + 4x   in Z5[x] 

∴ (4x + 1)(3x
2
 + 2x) ≡ x

2
 + 4x mod (x

3
 + 4x) in Z5[x], or equivalently, 

 (4t + 1)(3t
2
 + 2t) = t

2
 + 4t    in Z5[x]/ 〈x3

 + 4x〉, where t = x mod x
3
 + 4x. 
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2.3.2 Modular exponentiation 

An important tool for modular exponentiation is repeated squaring (or square and 

multiply). This technique works in any set with an associative multiplication, but here, it is 

used in residue class ring. Modular exponentiation will be required later in computing 

modular inverses. Here follows the algorithm. 

 

Input: a ∈ R, a ring with identity, n ∈ N (n ≠ 0) 

Output: a
n
 ∈ R. 

Find the binary representation of n = 2
k
 + nk-1 ⋅ 2

k
 + … +n1 ⋅ 2 + n0,  ni ∈ {0, 1} 

b := a; 

for i :=  k-1, k-2, …, 0 do 

if ni = 1 then b := b
2
a else b := b

2
 

return b 

 

This procedure uses log2n squarings plus at most log2n multiplications by a (if the 

binary representation of n is all 1’s). 

Example: 

It is required to compute a
13

. The binary representation of 13 is: 1⋅23
 +1⋅22

 +0⋅2 +1. Tracing 

the algorithm yields: a
13

 = ((a
2⋅a)

2
)
2⋅a. If R = Z17 = Z / 〈17〉 and a = 8 mod 17, then the 

computation of 8
13

 mod 17 proceeds as follows: 

8
13

  ≡ (((8
2
 ⋅ 8)

2
)
2
 ⋅ 8 ≡ (((-4 ⋅ 8)

2
)
2
) ⋅ 8 

≡ (2
2
)
2
 ⋅ 8 = 4

2
 ⋅ 8 

≡ -1 ⋅ 8 = -8 mod 17. 

This is much faster than first evaluating 8
13

 = 549755813888 and then dividing by 17 

with remainder. 

 

2.3.3 Modular inverses 

All modular arithmetic presented up to now has been addition and multiplication. How 

about division and inversion. Do expressions like a
-1

 mod m and a/b mod m make sense? In 

what follows two methods for computing modular inverses are presented [1]. By some way 

or the other, computing gcds is required. 
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• Euclidean method: 

Let R be a Euclidean domain, a, m ∈ R, and S = R / mR. Then a mod m is a unit (i.e. has 

an inverse) if and only if gcd(a,m) = 1. In this case, the modular inverse of a mod m can be 

computed by means of the extended Euclidean algorithm. 

The proof of this statement is by construction, and, in the mean time, it shows how the 

inverse is computed. 

By definition, a is invertible modulo m ⇔ ∃s ∈ R s.t. sa ≡ 1 mod m 

⇔ ∃s,t ∈ R s.t. sa + tm = 1 

⇔ gcd(a,m) = 1 

Note that km ≡ 0 mod m, for any k ∈ R. 

Examples: 

(i)  Let R = Z, m = 29, and a = 12. Then 12 is invertible mod 29 since gcd(29,12) = 1. 

The extended Euclidean algorithm computes 5⋅29 + (-12)⋅12 = 1. 

Thus (-12)⋅12 ≡ 17⋅12 ≡ 1 mod 29, hence 17 is the inverse of 12 mod 29. 

(ii) Let R = Q[x], m = x
3
 - x + 2, and a = x

2
. The last row in the Euclidean algorithm reads: 

(¼x + ½)(x
3
 - x + 2) + (-¼x

2
 - ½x + ¼)x

2
 = 1, 

and (-x
2
 - 2x + 1) / 4 is the inverse of x

2
 mod x

3
 - x + 2. 

 

• Fermat’s method: 

Let p ∈ N be a prime and a, b ∈ Z. Then the binomial theorem implies that: 

(a + b)
p
 = .

2

)1(

)!(!

! 221

0

nppp

p

i

iip bba
pp

bpaaba
ipi

p
++

−

++=

−

−−

=

−

∑ L  

For all 0 < i < p, the binomial coefficient is divisible by p, since the numerator (p!) is 

and the denominator is not. A surprising consequence is: 

(a + b)
p
 ≡ a

p
 + b

p
 mod p. (the “freshman’s dream”). 

This property can be used in the proof of the Fermat’s little theorem: 

If p∈ N is prime and a ∈ Z, then a
p
 ≡ a mod p. And, if p doesn’t divide a, then a

p-1
 ≡ 1 mod p. 

Since computations are performed modulo p, the theorem needs only to be proved for 

0 ≤ a ≤ p-1, which is done by induction on a. The case a = 0 is trivial, and for a > 1, we have 

a
p
 = ((a - 1) + 1)

p
  

≡ (a - 1)
p
 + 1

p
  by the “freshman’s dream” 

≡ (a - 1) + 1  by the induction hypothesis 

≡ a mod p, 
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Since p is prime, gcd(a,p) = 1, hence a is invertible. Multiplying both sides by a
-1

, the 

second part of the theorem follows immediately. 

Fermat’s theorem, together with repeated squaring, gives us an alternative method to 

compute inverses in Zp. Since a
p-2

a = a
p-1

 ≡ 1 mod p, then a
-1

 ≡ a
p-2

 mod p, where a
p-2

 is 

computed using repeated squaring. 

 

2.3.4 Linear Diophantine equations [1] 

A direct application of the extended Euclidean theorem is the solution of what is 

known as linear Diophantine equations. 

Let R be a Euclidean domain, a, f, g ∈ R be given. The solution of the linear 

Diophantine equation is the pair (s, t) ∈ R
2
 such that: 

sf + tg = a. 

The existence of a solution and its computation are the subject of the following 

theorem and its proof. 

Let R be a Euclidean domain, a, f, g ∈ R, and h = gcd(f,g). 

(a) The diophantine equation sf + tg = a has a solution (s, t) ∈ R
2
 iff h divides a. 

(b) If R = F[x] for a field F, h ≠ 0, the equation is solvable, and deg(f) + deg(g) - 

deg(h) > deg(a), then there is a unique solution (s, t) ∈ R
2
 such that deg(s) < deg(g) - 

deg(h) and deg(t) < deg(f) - deg(h). 

Proof.  

(i) If s, t ∈ R satisfy the equation, then gcd(f,g) divides sf + tg and hence a. Conversely, 

assume that h = gcd(f,g) divides a. The claim is trivial if h = 0. Otherwise, we can compute 

s*, t* ∈ R such that s*f + t*g = h, using the extended Euclidean algorithm. Thus the required 

solution is (s, t) = (s*⋅ a/h, t*⋅ a/h). 

(ii) For the proof of this part, the extended Euclidean algorithm is presented more concisely. 

Assuming all polynomials to be already normalized, with leading coefficients 1, doesn’t 

affect their degree. The algorithm follows hereunder for convenience. Simultaneous 

assignment statements use the vector form for short. [2] 

Input: f, g ∈ R[x]. 

Output: h, s, t ∈ R[x] such that h = gcd(f,g), and sf + tg = h. 

(r0, r1, s0, s1, t0, t1) := (f, g, 1, 0, 0, 1);  i := 1; 

while ri ≠ 0 do 

qi := ri-1 div ri ; 
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(ri+1, si+1, ti+1) := (ri-1, si-1, ti-1) - qi ⋅ (ri, si, ti);   %% Same as computing remainders 

i := i + 1; 

return (ri-1, si-1, ti-1). 

Assume the number of the iterations is l. For a degree analysis, note that, obviously, 

deg(qi) = deg(ri-1) - deg(ri) for 1 ≤ i ≤ k-1. For k = 2, the claim holds obviously. 

If k > 2, then for 2 ≤ i ≤ k-1 we have deg(ri) = deg(r1) - ∑
i
j=2deg(qj) < deg(r1) - ∑2≤j≤i-1deg(qj). 

Similarly, deg(si) ≤ ∑2≤j≤i-1deg(qj) and deg(ti) ≤ ∑1≤j≤i-1deg(qj). (Note the index range for ti). 

Adding the inequalities, we have: deg(ri) + deg(si) < deg(r1) and deg(ri) + deg(ti) < deg(r1) + 

deg(q1). Putting i = k-1, and deg(q1) = deg(r0) - deg(r1) = deg(a) - deg(b), the required result 

follows. 

 

2.3.5 Squarefree factorization[2] 

By just computing gcds, we can produce a partial solution of the problem of 

factorization of polynomials, namely the so-called squarefree factorization. 

The algebraic system worked on here is any field F[x1, …, xn], which has the unique 

factorization domain property, in that any polynomial in f can be factored into a product of 

irreducible polynomials in a unique way. By “unique”, it is meant uniqueness up to ordering 

of the factors and multiplication by units. Units of Z are 1 and -1, and those of F are any 

nonzero constants. If a = ub for a, b, u ∈ F, where u is a unit, then a and b are associates. 

Definitions: A polynomial f(x1, …, xn) in F[x1, …, xn] is squarefree iff every nontrivial factor 

g(x1, …, xn) of f (i.e. g not associate of f nor constant) occurs with multiplicity 1 in f. 

• The derivative f’ of a polynomial f = ∑0≤i≤n aix
i
 ∈ F[x] is f’ = ∂f /∂x = ∑0≤i≤n iaix

i-1
. It 

satisfies the following properties: [1] 

(a) Linearity: (f + g)’ = f’ + g’. 

(b) Leibniz rule: (f ⋅ g)’ = fg’ + f’g. 

There is a simple criterion for deciding squarefreeness, presented in the following theorem. 

 

Let f(x) be a nonzero polynomial in F[x]. Then f(x) is squarefree if and only if gcd(f, f’) = 1. 

(Where f’ is the derivative of f). 

Proof: 

If f(x) is not squarefree, i.e. for some non constant g(x), we have f = g
2
h, then 

f’ = 2gg’h + g
2
h’. 

So f and f’ have a non trivial gcd, namely g. 
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On the other hand, if f is squarefree, it can be written as f(x) = ∏1≤i≤n fi(x), where the fi  are 

pairwise relatively prime (i.e. gcd = 1) and irreducible polynomials. Then,  

∑ ∏
=

≠

= ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′=′
n

i

n

ij
j

ji
ffxf

1 1

)( . 

Now it is easy to see that none of the irreducible factors fi is a divisor of f’, since fi divides all 

the terms of f’ except the i
th

. Hence gcd(f, f’) = 1, and this finishes the proof. 

 

The square free factorization problem 

The squarefree factorization problem for a polynomial f(x) consists of determining the 

squarefree pairwise relatively prime polynomials g1(x), …, gs(x), such that f(x) = ∏1≤i≤s gi(x)
i
. 

The method used in the factorization procedures can be summarized as follows. 

Let a1 = f and a2 = gcd(a1, a1’). Then, 

∑ ∏
=

≠

=

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′=′
n

i

n

ij
j

ji

i

i
ggigxa

1 1

1

1
)( , thus a2(x) = ∏1≤i≤s gi(x)

i-1
 = ∏2≤i≤s gi(x)

i-1
. 

And c1 = a1/a2 = ∏1≤i≤s gi(x) contains every squarefree factor exactly once. It is now required 

to isolate each squarefree factor. This is performed, one by one, as follows. 

Let a3 = gcd(a2, a2’)= ∏3≤i≤s gi(x)
i-2

 as previously, and c2 = a2/a3 = ∏2≤i≤s gi(x). Thus, c2(x) 

contains every squarefree factor of multiplicity ≥ 2 exactly once. It is now easy to isolate 

g1(x) by noting that g1(x) = c1/c2. 

One more iteration summarizes the procedure: 

a4 = gcd(a3, a3’)= ∏4≤i≤s gi(x)
i-3

, c3 = a3/a4 = ∏3≤i≤s gi(x). So g2(x) = c2/c3. 

The iterations proceed until cs+1(x) = 1. 

 

Algorithm 

Input: f(x) ∈ F[x]. 

Output: g1(x), …, gs(x) ∈ F[x], such that f(x) = ∏1≤i≤s gi(x)
i
 

a1 := f ;  a2 := gcd(a1, a1’); c1 := a1/a2; 

a1 := a2; a2 := gcd(a2, a2’); c2 := a1/a2; 

g1 := c1/c2; 

i := 2; 

while c2 ≠ 1 do 
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a1 := a2; a2 := gcd(a2, a2’); 

c1 := c2; c2 := a1/a2; 

gi := c1/c2; 

i := i + 1; 

return g1 , …, gs. 

 

Example: 

The squarefree factorization of f(x) = x
7
 + x

6
 - x

5
 - x

4
 - x

3
 -x

2
 + x + 1 over Z is: 

(x
2
 + 1)(x - 1)

2
(x + 1)

3
. 

A tracing of the algorithm yields the same result. 

i a1 a2 ci gi 

0 x
7
 + x

6
 - x

5
 - x

4
 - x

3
 -x

2
 + x + 1 x

3
 + x

2
 - x - 1 x

4
 - 1 n/a 

1 x
3
 + x

2
 - x - 1 x + 1 x

2
 - 1 x

2
 + 1 

2 x + 1 1 x + 1 x - 1 

3 1 1 1 x + 1 

 

2.3.6 Squarefree partial fraction decomposition [2] 

The squarefree partial fraction decomposition is an indirect application of the 

Euclidean algorithm. It uses two of its applications, namely the squarefree factorization and 

the solution of linear Diophantine equations. 

Let p/q be a proper rational function over the field F, i.e., p, q ∈ F[x], gcd(p, q) = 1 and 

deg(p) < deg(q). Let q = q1⋅ q2
2
 … qk

k
 be the squarefree factorization of q. 

Then, ∑
=

=

k

i

i

i

i

xq

xa

xq

xp

1 )(

)(

)(

)(
, deg(ai) < deg(qi

i
), 1 ≤ i ≤ k, ai ∈ F[x], is called the incomplete 

squarefree partial fraction decomposition of p/q. 

And, ∑∑
= =

=

k

i

i

j
j

i

ij

xq

xb

xq

xp

1 1 )(

)(

)(

)(
, deg(bij) < deg(qi), 1 ≤ j ≤ i ≤ k, bij ∈ F[x], is called the (complete) 

squarefree partial fraction decomposition of p/q. 

 

The algorithm 

The first step is to compute the incomplete decomposition, i.e. the ai’s, since the 

algorithm of the previous section can obtain the factorization of the denominator. 
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 The method consists of isolating the partial fractions one by one. Denote the isolated 

term by ai / qi
i
 and the rest of the fraction (still not expanded) by ci / di. Then, 

i

i

i

i

d

c

q

a

q

a

q

p
+++= L

1

1 , where di-1 = qi+1
i+1

 … qk
k
. 

The ai and ci can be determined iteratively as follows. 

Initially, the whole fraction is not expanded so that c0 / d0 = p / q. The first iteration reads:  

p / q = a1 / q1 + c1 / d1. 

Multiplying both sides by q results in: p = a1q2
2
…qk

k
 + c1q1, or, in terms of the algorithm’s 

variables: c0 = a1d1 + c1q1. Since deg(a1) < deg(q1) and deg(c1) < deg(d1), this equation can be 

solved as a linear Diophantine equation, as presented earlier in the text. 

In general, ci-1 / di-1 = p / q - a1 / q1 - … - ai-1 / qi-1
i-1

. Hence the unachieved partial 

fraction decomposition can be read at the i
th

 step as: ci-1 / di-1 = ai / qi
i
 + ci / di . Multiplying 

both sides by di yields the Diophantine equation: ci-1 = ci ⋅ qi
i
 + ai ⋅ di. 

The algorithm follows immediately. 

 

Input: p, q ∈ F[x] such that gcd(p, q) = 1. 

Output: a1, …, ak and q1, …, qk such that: p / q = ∑k
i=1(ai / qi

i
), the incomplete squarefree 

partial fraction decomposition of p / q. 

(q1, …, qk) := Squarefree_Factorization(q); 

c0 := p;  d0 := q;  i := 1; 

while i < k do 

di := di-1 / qi
i
; 

Solve ci-1 = ci ⋅ qi
i
 + ai ⋅ di for ci and ai using the extended Euclidean algorithm; 

i := i + 1; 

ak := ck-1; 

return. 

 

Once the incomplete partial fraction decomposition is obtained, the complete decomposition 

results by successive division by qi. Namely, if ai = s ⋅ qi + t, then ai / qi
i
 = s / qi

i-1
 + t / qi

i
. 

 

Example: 

3456789

2345678

254723

138918112534

)(

)(

xxxxxxx

xxxxxxxx

xq

xp

+−+−+−

+−+−+−+−

= . 
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The squarefree factorization of q(x) is (3x
2
 - 2x + 1)(x

2
 + 1)

2
x

3
. And the application of the 

incomplete squarefree partial fraction decomposition algorithm yields: 

3

2

22

3

2

1

)1(

22

123

4

)(

)(

x

xx

x

xx

xx

x

xq

xp +−

+

+

++−

+

+−

= . 

By successive division of the numerators by the corresponding qi’s, the complete 

decomposition is attained: 

322222

111

)1(

23

1123

4

)(

)(

xxxx

x

x

x

xx

x

xq

xp
+

−

++

+

+

+

+

−

+

+−

= . 

 

2.3.7 Integration of rational functions [2] 

The integration of rational functions is intimately related to the ideas and algorithms 

mentioned above. In fact, the problem is to compute ∫ (p(x) / q(x)) dx, where p, q ∈ Q[x], 

gcd(p,q) = 1, and q is monic. From classical calculus, this integral can be solved by 

decomposing p / q into its complete partial fraction decomposition, which requires 

factorization of q. The result can be expressed as: ∫(p(x) / q(x)) dx = g(x) / q(x) + c1ln(x - a1) + 

… + cnln(x - an), where g(x) ∈ Q[x], a1, …, an are the different roots of q in the complex field 

C. 

However, complete factorization of the denominator, which is relatively expensive, 

can be avoided, using instead only its squarefree factors. 

First, the squarefree factorization of the denominator is q = f1 ⋅ f2
2
  …  fr

r
, where the fi ∈ Q[x] 

are squarefree, fr ≠ 1, gcd(fi, fj) = 1 for i ≠ j. Based on this squarefree factorization, the 

squarefree partial fraction decomposition of p / q is: 

∑∑
= =

+=

r

i
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j

j

i

ij

f

g
g

xq

xp

1 1

0

)(

)(
= g0 + g11/f1 + g21/f2 + … + gr1/fr + … + grr/fr , 

where g0, gij ∈ Q[x], deg(gij) < deg(fi), for all 1 ≤ j ≤ i ≤ r. 

Integrating g0 is trivial, so that the problem remains in integrating the fractions g / f 
n
. 

First consider the case where n ≥ 2 and note that deg(g) < deg(f) and that f is squarefree. The 

computation of ∫ (g / f 
n
)
 
dx is reduced to that of an integral of the form ∫ (h / f 

n-1
)
 
dx, where 

deg(h) < deg(f), using the Hermite reduction process. 

The reduction proceeds as follows. Since f is squarefree, gcd(f, f’) = 1. Thus, one can 

solve the linear Diophantine equation g = c ⋅ f + d ⋅ f’ where deg(c), deg(d) < deg(f). By 

integration by parts, the required reduction is achieved. 
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Repeating the reduction process, collecting all the rational partial results and the remaining 

integrals, then putting everything over a common denominator, the integration reaches the 

form: 

∫∫
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where deg(g) < deg( q ) and deg(h) < deg(q*). 

The remaining integral ∫ (h / q*) can be computed in the following way: 

Let q*(x) = (x - a1)…(x - an), where a1, …, an are the distinct roots of q*. Then  
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Example: 

The example of the last section is used. We had: 
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with squarefree partial fraction decomposition 
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Consider the integration of the third term of this decomposition, i.e. ∫
+

+

dx
x

x

22 )1(

23
. 

First, the Diophantine equation g = c ⋅ f + d ⋅ f’ is solved. By the Euclidean algorithm, one 

has: 3x + 2 = 2 ⋅ (x2
 + 1) + (-x + 3/2) ⋅ (2x). 

Integration by parts yields 
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The remaining integral can be evaluated as 
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2.4 THE CHINESE REMAINDER ALGORITHM  

 

 As mentioned in [2], the Chinese remainder algorithm enables to solve many 

problems in computer algebra by the modular method. The basic idea is to reduce a problem 

into several problems modulo different primes, solving the simpler problems modulo the 

primes, and then combining the partial solutions by the Chinese remainder algorithm. 

Let R be a Euclidean domain. We review here the Chinese remainder problem. 

 

Chinese remainder problem 

Given: r1, …, rn 
�  R (the remainders) 

m1, …, mn 
�  R* (the moduli), pairwise coprime, i.e. gcd(mi , mj) = 1, for 1 

�
 i < j 

�
 r. 

Find: r �  R, such that r � r i mod mi for 1 
�
 i 
�
 n. 

Several algorithms can be found in [2]. Concerning this problem, an algorithm given 

in [1] is as follows. 

 

Input: r1, …, rn, m1, …, mn 
�  R (as above). 

Output: r �  R such that r � r i mod mi for 1 
�
 i 
�
 n. 

m := m1 � m2 … mn , (the product of the moduli); 

for  i := 1, …, n do 

ci := m / mi ; 

di := ci
-1 mod mi ,  by the Euclidean algorithm: di ci + timi = 1; 

return  r = ( �1�i�n ci di r i) mod m. 

 

To prove that this algorithm solves the problem correctly, observe that ci = m / mi is divisible 

by mj for j � i. Thus, ci di r i � 0 mod mj for all j� i. Therefore,  

�1�i�n ci di r i � cj dj r j � r j mod mj , for all 1 
�
 j 
�
 n, 

as required. 

 

Example: 

It is required to find an integer r such that: 

r � 3 mod 4,   r � 5 mod 7,   r � 2 mod 3. 

Here R = Z and m = 4 � 7 � 3 = 84. 
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i mi r i ci = m / mi di = ci
-1 mod mi ci di r i 

1 4 3 21 1 63 

2 7 5 12 3 180 

3 3 2 28 1 56 

Hence, r = 63 + 180 + 56 = 299 � 47 mod 84. 

 

2.5 APPLICATIONS OF THE CHINESE REMAINDER ALGORITHM  [1] 

 

2.5.1 The interpolation problem 

As most computer algebra algorithms seen so far, the Euclidean domain of definition 

R can be generalized to the field of polynomials F[x]. Here, the problem is almost unchanged, 

except for the addition of the constraint that deg(r i) < deg(mi) for 1 
�
 i 

�
 n, which yields the 

result deg(r) < deg(m). 

The special case where the Chinese remainder algorithm is applied to linear moduli, 

i.e. all the moduli mi are linear polynomials of the form (x - ui), results in what is known as 

the interpolation problem. 

Given: u1, …, un 
�  F (scalars), such that ui � uj for i � j. 

r1, …, rn 
�  F 

Find: f(x) �  F[x] such that f(ui) = r i , 1 
�
 r 

�
 n. 

First, recall that f(x) � f(u) mod (x - u). This is as such for the following reason. For 

any polynomial f �  R[x], and u �  R, the polynomial f(x) - f(u) has u as a zero hence is 

divisible by (x - u). If we let q = ( f(x) - f(u) ) / (x - u), then f = q � (x - u) + f(u). By the 

division theorem, f(u) is the remainder of f on division by (x - u). Thus, f � f(u) mod (x - u), 

and calculating modulo (x - u) is the same as evaluating at u. By a similar reasoning, the 

inverse of f(x) modulo (x - u), i.e. in F[x]/�x - u�, is f(u)-1. 

Applying the Chinese remainder algorithm, the variables take on the following values. 

ci = (x - u1) �(x - u2) … (x - ui-1) �(x - ui+1) … (x - un), 

di = ci
-1 mod (x - ui) = 1 / [(ui - u1) �(ui - u2) … (ui - ui-1) �(ui - ui+1) … (ui - un)], 

Hence, l i = ci � di is the familiar Lagrange interpolant coefficient: 

�

�� �
�� n

ij
j ji

j
i uu

ux
l

1
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And the solution f(x) = �1�i�n l i r i is nothing more but the Lagrange interpolation polynomial, 

satisfying f(ui) = r i , 1 
�
 r 

�
 n. 

 

2.5.2 Modular algorithms 

An important general concept in computer algebra is modular algorithms. It consists 

of, rather than solving a problem directly (say over a Euclidean domain R), solving it modulo 

several integers mi, where the solutions in the image domains R/�m� are easier, then 

combining the results. The Chinese remainder algorithm is an important tool for this purpose. 

The basic idea is to solve a problem over the Euclidean domain R by reducing it to several 

problems modulo different primes, solving the simpler problems modulo the primes, and then 

combining the partial solutions using the mentioned algorithm. In many situations, this 

modular method results in algorithms with extremely good complexity behavior [2]. The 

following figure illustrates the general scheme for modular algorithms. 

Figure 2-2. General scheme for modular algorithms. 

 

In what follows, two applications illustrating this principle are presented. 

 

2.5.3 Modular determinant computation 

In what follows, we see how the Chinese remainder algorithm can simplify the 

computation of determinants. The problem is to compute the determinant detA �  Z of an n �  

n matrix A = (aij)1�i,j�n 
�  Z. It is known from linear algebra that this problem can be solved by 
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means of Gaussian elimination over Q, where the matrix is reduced to an upper triangular 

form, then its determinant is the product of the diagonal elements, ai i , 1 
�
 i 
�
 n. 

The problem costs at most 2n3 operations, and this is polynomial time in the input size 

of course. But the complexity arises from the intermediate results, numerators and 

denominators, which grow exponentially. The cost of one operation, which depends on the 

number of digits of its operands, rises unexpectedly. To illustrate this effect, consider the 

matrix at the kth stage during the elimination process, and suppose for simplicity that A is not 

singular and that no row or column permutations are required. The matrix reaches the 

following form. 

*  

 
�

 
* 

*     

)(k
kka  �  )(k

kja  �  
�
  

�
  

)(k
ika  �  )(k

ija  �  

0 

�
  

�
  

 

A star “*” denotes an arbitrary rational number, and the upper diagonal entries are nonzero. 

The diagonal element akk
(k) � 0 is the new pivot element, and the entries of the matrix for the 

rows k 
�
 i 
�
 n and the columns k 

�
 j 
�
 n change according to the formula 

ai j
(k+1) = ai j

(k) - ( ai k
(k) / ak k

(k) )ak j
(k) . 

If bk is an upper bound for the absolute value of the numerators and denominators of all ai k
(k), 

so that in particular | ai j | 
�
 b0 for 1

�
 i,j 

�
 n, then, substituting in the formula above, gives the 

bounds: bk 
�
 

k

bbb k
kk

4
0

4
2

4
1 242

2 ��� �� �
which is exponential in the input size. 

The simplest way to control the intermediate results sizes is to chose a prime p which 

is guaranteed to be larger than 2 �  | detA | and perform Gaussian elimination on A modulo p. 

In this way, it is guaranteed that d � detA mod p falls in the range -p/2 < r < p/2. An upper 

bound on the size of the determinant of a matrix is given by Hadamard’s inequality: 

| detA | 
�
 nn/2bn, where b = max1�i,j�n | ai j | is the maximum absolute value of an entry of A. 
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Example: 

Let ���
�

���
�

�
�

76

54
A . After Gaussian elimination, the matrix has the form ���

�
���
�

� 2/290

54
, so that 

detA = -58. 

The Hadamard bound |detA| 
�
 2172 = 98 is reasonably close to |detA| = 58. We choose a prime 

p > 2 � 98, say p = 199, and perform Gaussian elimination modulo 199. The inverse of 4 is 50, 

and det(A mod 199) = ���
�

���
�

850

54
det  = 141 = -58 in Z199. 

There is not much progress using the Hadamard’s bound, specially for large matrices. 

The following modular algorithm shows a remarkable improvement. 

 

Input: A = (ai j)1�i,j�n 
�  Zn�n , with | ai j | 

�
 b for all i, j. 

Output: detA �  Z. 

r := 
�
log2(2nn/2bn + 1)� ; 

choose r distinct prime numbers m1, …, mr . 

for  1 
�
 i 
�
 r do compute A mod mi . 

for  1 
�
 i 
�
 r do  

compute di � detA mod mi using Gaussian elimination over Z / �mi�. 
call the Chinese remainder algorithm to compute d �  Z s.t. d � di mod mi, for 1 

�
 i 
�
 r. 

return  d. 

 

To prove the algorithm works correctly, detA � di mod mi for 1 
�
 i 

�
 r. Hence, using 

the Chinese remainder algorithm, detA � d mod m, where m = m1 � m2 … mr. 

Since m 	 2r > 2nn/2bn 	 2 |d|, then actually d = detA. 

 

Example: 

Using the same matrix of the previous example, and taking the first four prime 

numbers as moduli, the following modular determinants are computed. 

detA � 0 mod 2 detA � 2 mod 3 

detA � 2 mod 5 detA � -2 mod 7 
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In this case, m = 2 � 3 � 5 � 7 = 210. The Chinese remainder problem d � di mod mi , 1 
�
 i 
�
 4 

has the solution d � -58 mod 210. Using only the first three primes results in the erroneous 

solution d = 2. 

A detailed cost analysis can be referred to in [1]. It shows that the modular method 

guarantees the running time will always be polynomial, considering word operations. 

 

2.5.4 Partial fraction decomposition 

The partial fraction decomposition problem has already been presented as an 

application of the Euclidean algorithm. A different approach is presented here where the 

Chinese remainder algorithm is used. 

Let F be a field, f1, …, fr 
�  F[x] nonconstant monic and pairwise coprime 

polynomials, e1,…, er 
�  N positive integers, and f = re

r
ee fff
�

21
21 � . For another polynomial g 

�  F[x] of degree less than n = deg f, the partial fraction decomposition of the rational 

function g / f �  F[x] with respect to the given factorization of the denominator f is: 

r

r

e
r

re

r

r
e

e

f

g

f

g

f

g

f

g

f

g �������� ���� 1

1

1

1

11

1

1 , 

with gij 
�  F[x] of smaller degree than fi , for all i, j. 

The Chinese remainder algorithm is used in a partial solution of the problem by determining 

the incomplete partial fraction decomposition  

re
r

r
e f

c

f

c

f

g ��� �
1

1

1 , 

with ci 
�  F[x] and deg ci < ei ! deg fi for all i. 

The method is as follows. By multiplying both sides of the incomplete decomposition by the 

denominator f, we obtain 
��
��

���
rj

e

jr
j

e

j
jj fcfcg

�
1

1 ,  (2.1) 

with unknowns c1, …, cr. For any i " r, each summand with the exception of the i th one is 

divisible by ie
if , whence g # ci $j�i

je

jf mod ie
if . Now each fj is relatively prime to fi  hence 

invertible modulo ie
if , thus 

ij e
i

e

j
ij

i ffgc mod

�

�
�

� , 
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which together with deg ci < deg ie
if uniquely determines ci . On the other hand, let ci be 

defined as above, and let g* be the right hand side in (2.1), then g* is a polynomial of degree 

less than n = deg f and g* # g mod ie
if for all i. Now the Chinese remainder algorithm implies 

that g*# g mod f, and since both polynomials have degree less than n, they are equal. 

It remains to obtain the full partial fraction decomposition from the incomplete one. 

Successive division of the obtained ci’s by their respective denominators completes this task. 

That is, if ci = q ! fi + r, with deg r < deg fi , then ci / fi
e = q / fi

e-1 + r / fi
e . 

 

Example: 

Let 
24

23 24

xx

xxx

g

f

�
���

�  with partial fraction decomposition 
1

1

1

121
2 �

��

�
��

xxxx
, with 

respect to the factorization x2(x-1)(x+1). Here, m1 = x2, m2 = x - 1, m3 = x + 1, and f = m1 ! m2 ! 
m3 . Computing the remainders gives: 

r1 = g mod x2 = -x - 2,  r2 = g mod x - 1 = 2,   r3 = g mod x + 1 = 2. 

Then, applying the Chinese remainder algorithm, the terms ij e
i

e

j
ij

i ffgc mod

�

�
�

� are 

obtained. 

c1 # r1 ! (m/m1)
-1  = (-x -2)(x2 - 1)-1 #  (-x - 2)(-1)-1  = x + 2 mod x2, 

c2 # r2 ! (m/m2)
-1  = 2(x3 + x2)-1 #  2!2-1  = 1 mod x - 1, 

c3 # r3 ! (m/m3)
-1  =  2(x3 - x2)-1 #  2!(-2)-1  = -1 mod x + 1. 

Hence, the incomplete decomposition is: 

1

1

1

1224
24

23

�
��

�
�

�
��

���

xxx

x

xx

xxx
 

The complete partial fraction decomposition results from successive division of the first 

numerator by its denominator, which gives x + 2 = 1 ! x + 2, thus giving the required result. 

 

2.6 GRÖBNER BASES [1] 

In this section, Gröbner bases are presented. These offer an important algorithmic 

approach to deal with polynomials in several variables. 

 

2.6.1 Basic definitions and notation 

In this section, familiarity with the basic terminology of multivariate polynomials is 

required. A short introduction to this material can be found in the section on “polynomial 
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rings” at the beginning of this thesis. Some of the required material is reviewed in this section 

with a different notation that will be useful in this text. 

 
� Let F be a field, R = F[x1, …, xn] a polynomial ring in n variables over F, and f1, …, fs 

�  R. The polynomials f1, …, fs generate (or form a basis of) the ideal I if: 

I = �f1, …, fs� = { �1�i�s qi fi | qi 
�  R} 

� The variety of I is the set: 

V(I) = { u �  Fn | f(u) = 0 
�

f �  I} = { u �  Fn | f1(u) = … = fs(u) = 0 } 

Example: 

Let f1 = x2 + y2 - 2 and f2 = y - 1 in R[x, y], and I = �f1, f2�. Then 

V(I) = { (u, v) �  R2 | u2 + v2 - 2 = v - 1 = 0 } = { (u, 2) �  R2 | u2 = 1 } = { (-1, 2), (1, 2) } 

is the intersection of the circle V(x2 + y2 - 2) with the line V(y - 1). 

� A monomial is an element of R of the form: na
n

aa xxx
�

21
21 � , ai 

�  N. It is denoted as x� 

where the vector & = (a1, …, an) 
�  N n. 

Ordering the terms of multivariate polynomials is essential in dealing with them. Many 

techniques are available. Let & = (a1, …, an), ' = (b1, …, bn) 
�  N n, then, two commonly used 

ordering methods, or monomial orders are: 
� Lexicographic order: & <lex '  iff for the minimum i such that ai (  bi , ai < bi . 
� Total lexicographic order: & <tlex '  iff )1�i�n ai

  < )1�i�n bi
  or otherwise, if )1�i�n ai

  = 

)1�i�n bi
  then & <lex ' . 

Example: 

Let f = 4xyz2 + 4x3 - 5y4 + 7xy2z �  Q[x, y, z]. Note that x > y > z since x # x1, y # x2, z # x3. 

Lexicographic order: f = 4x3 + 7xy2z + 4xyz2 - 5y4. 

Total Lexicographic order: f = 7xy2z + 4xyz2 - 5y4 + 4x3. 

 

 
y 

x 

V (y - 1) 

V (x2 + y2 - 2) 

Figure 2-3. A circle and a line in R2. 
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Let f = )
�
 c
� x� 

�  R be a nonzero polynomial, and < an ordering technique, then: 
� The degree of f, deg(f) = max{ & �  N n | c

�  (  0  } ,  where max is with respect to <. 
� The leading term of f lt(f) = cdeg(f)x

deg(f) �  R. 

 

2.6.2 Multinomial division with remainder 

Division with remainder, needed in computing Gröbner bases, solves the following problem. 

Given a polynomial f and a set of polynomials G = {g1, …, gs}, it is required to express f as 

follows 

f = q1g1 + … + qsgs + r, q1, …, qs, r 
�  R 

The notation is: r = f rem (g1, …, gs) = r rem G, which is the remainder. 

The process of the division is illustrated hereunder by examples. The ordering technique used 

will be the lexicographic order. 

Example (1): 

f = xy2 + 1, g1 = xy + 1, g2 = y + 1. 

 xy + 1 y + 1 

xy2 + 1 y  

-(xy2 + y)   

-y + 1  -1 

-(-y - 1)   

2   

The first difference from the univariate division is that there are two divisors instead of one. 

The quotient of the leading term got in each step is recorded in the column below the 

respective divisor. In the last line, 2 is not divisible by any of the leading terms of g1 or g2, 

and the division process stops. Hence f = y !  g1  -1 !  g2 + 2. 

The division procedure is not deterministic. The quotients and remainder need not be unique. 

 xy + 1 y + 1 

xy2 + 1  xy 

-(xy2 + xy)   

-xy + 1  -x 

-(-xy - x)   

x + 1   

Here, f = 0 !  g1 + (xy - x) !  g2 + (x + 1). 
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Example (2): 

f = x2y + xy2 + y2, g1 = xy - 1, g2 = y2 - 1. 

 xy - 1 y2 - 1 r 

x2y + xy2 + y2 x   

-(x2y - x)    

xy2 + x + y2 y   

-(xy2 - y)    

x + y2 + y   x 

-x    

y2 + y  1  

-(y2 - 1)    

y + 1    

Another difference from the univariate case appears in this example. In the third step, the 

leading term x is not divisible by any of the leading terms of g1 or g2. It is moved to the 

remainder column and the division process continues further. The result is f = (x + y)!f1 + 1!f2 
+ (x + y + 1). 

Again, non-determinism may be checked by verifying that f = x!f1 + (x + 1)!f2 + (2x +1). 

To make the division process deterministic, one can order the gi’s and always choose the 

smallest possible i in each division step. 

 

Example (3): 

f = xy2 - x, g1 = xy + 1, g2 = y2 - 1. 

Ordering the gi’s in the given order, we get: 

 xy + 1 y2 - 1 

xy2 - x y  

-(xy2 + y)   

-x -y   

And f = y !  f1 + 0 !  f2 + (-x - y). 

However, starting by g2 in the division procedure, f is expressed as f = 0 !  f1 + x !  f2 + 0, so 

that f �  �g1, g2�, the ideal generated by g1 and g2. 
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2.6.3 Hilbert’s basis theorem and Gröbner bases 

 This section presents most of the material required to compute Gröbner bases. For 

conciseness, only definitions and theorems are given without any proofs. 

Let R = F[x], the Euclidean domain of univariate polynomials. One can show that �g1, …, gs� 
= �gcd(g1, …, gs)�. Dividing f by g with remainder yields q, r �  F[x] with f = qg + r and 

deg(r) < deg(g). Then f �  �g� � r = 0. 

Generalizing this property of ideal membership to the case of multivariate polynomials 

require first a unique remainder from the division process. As the last example of the 

previous section shows, this is not the case. However, this requirement can be realized by 

choosing a special basis G for each ideal such that the remainder on division by that basis is 

unique. Such a basis is called a Gröbner basis and is defined in this section. 
� A monomial ideal I � R is an ideal generated by monomials in R so that there exists a 

subset A � N n with I = �xA� = �{ x
�
 | � �  A} �. 

For � �  N n, x
�
 �  I � �  � �  A | x

�
 divides x

�
. 

� For any subset G � R different from � and {0}, the set of leading terms of G, 

lt(G) = {lt(G) | g �  G}. 
� Hilbert’s basis theorem 

Every ideal I �  R = F[x1, …, xn] is finitely generated. More precisely, there exists a finite 

subset G � I such that �G� = I and �lt(G)� = �lt(I)�. 
A proof of the theorem can be referred to in [1]. 

� Let < be a monomial order and I � R an ideal. A finite set G � I is a Gröbner basis 

for I with respect to < if �G� = I and �lt(G)� = �lt(I)�. 
Thus Hilbert’s theorem implies that every ideal in F[x1, …, xn] has a Gröbner basis.  

The ideal membership problem can now be solved, as stated earlier. If G is a Gröbner basis 

for the ideal I � R with respect to a monomial order <, and f �  R, then f �  I iff f rem G = 0. 

Note that Hilbert’s theorem does not say that every subset G � I that generates I, is such that 

�lt(G)� = �lt(I)�. It can happen that �G� = I but �lt(G)� ( �lt(I)�. This is illustrated in the 

following example. 

Example: 

Let g = x3 - 2xy, and h = x2y - 2y2 + x �  Q[x, y]. The used ordering is <tlex , and G = {g, h}. 

Let I = �G�. Then x2 = -yg + xh. and x2 �  �lt(I)� but x2 �  �lt(G)�  = �x3, x2y�. 
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What happened here is that the linear combination ax
�
g + bx

�
h, (g, h �  G and �,� �  N n) 

yielded a polynomial whose leading term is not divisible by any of lt(G), due to cancellation 

of leading terms. When such cancellation occurs, it necessarily comes from S-polynomials. 
� Let g, h �  R be nonzero, deg(g) = � = (a1, …, an), deg(h) = � = (b1, …, bn), and � = 

(max{a1,b1}, …, max{an,bn}). The S-polynomial of g and h is 

S(g, h) = ( x� / lt(g) )g - ( x� / lt(h) )h. 

Since x� / lt(g), x� / lt(h) �  R, we have S(g, h) �  �g, h�. 
Example: 

Again, let g = x3 - 2xy, and h = x2y - 2y2 + x �  Q[x, y]. Here, � = (3, 0), � = (2, 1), � = (3, 1). 

Then, S(g, h) = (x3y/x3)g - (x3y/x2y)h = -x2, the term which caused cancellation in this 

example. 
� Gröbner basis test 

A finite set G = {g1, …, gs} � R is a Gröbner basis of the ideal �G� if and only if: 

S(gi , gj) rem (g1, …, gs) = 0 for 1 
�
 i 
�
 j 
�
 s. 

Again, [1] presents the proof. 

 

2.6.4 Computation of Gröbner bases 

Now, the Gröbner bases may be computed. A simplified version of Buchberger’s 

algorithm for computing a Gröbner basis is presented in [1]. The algorithm follows. 

 

Input: f1, …, fs 
�  R = F[x1, …, xn] and a monomial order <. 

Output: Gröbner basis G � R for the ideal I = �f1, …, fs� w.r.t. <, with f1, …, fs 
�  G. 

G := { f1, …, fs} 

while true do  // infinite loop 

U := � 

order the elements of G as g1, …, gt 

for  1 
�
 i < j 

�
 t do 

r := S(gi , gj) rem (g1, …, gt) 

if  r � 0 then U := U � { r} 

if  U = � then return  G else G := G � U. 

Notes on the complexity of this algorithm are found in [1] and [2]. Earlier mathematicians 

mention a doubly exponential upper bound (
n22 ) in the degrees of polynomials in the basis. 
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Mayr (1996) was able to provide an exponential space algorithm for computing a Gröbner 

basis. 

Example: 

For the third time, let f1 = x3 - 2xy, and f2 = x2y - 2y2 + x �  Q[x, y], with total lexicographic 

order <tlex and y <tlex x. 

Initially, G = {f1, f2} is not a Gröbner basis since f3 = S(f1, f2) rem (f1, f2) = -x2 (  0.  Hence f3 is 

added to the basis and G = {f1, f2, f3} with S(f1, f2) rem (f1, f2, f3) = 0 

Next, S(f1, f3) = 1 ! f1 -(-x) !  f3 = -2xy, then S(f1, f3) rem (f1, f2, f3) = -2xy = f4 . 

After adding f4 to the basis, S(f1, f3) rem (f1, f2, f3, f4) = 0. 

Now, S(f1, f4) = y ! f1 -(-1/2x2) !  f4 = -2xy2 = y !  f4 so that S(f1, f4) rem (f1, f2, f3, f4) = 0. 

But S(f2, f3) = 1 ! f2 -(-y) !  f3 = -2y2 + x, and S(f2, f3) rem (f1, f2, f3, f4) = -2y2 + x = f5. 

After adjoining f5 to the basis, one can check that  

S(fi, fj) rem (f1, f2, f3, f4, f5) = 0 for 1 " i < j " 5. 

Thus {(f1, f2, f3, f4, f5} forms a Gröbner basis. 

 

2.7 APPLICATIONS OF GRÖBNER BASES [1] 

 

A direct application of Gröbner bases is the ideal membership problem. They are also 

essential in geometric theorem proving, implicitization problems and for solving systems of 

multivariable polynomial equations. 

 

2.7.1 Ideal membership problem 

This application is the most natural one and has already been presented in the text. If 

G is a Gröbner basis for the ideal I � R with respect to a monomial order <, and f �  R, then f 
�  I if and only if f rem G = 0. 

 

2.7.2 Geometric theorem proving 

Geometric theorems can often be formulated in terms of polynomial equations. This is 

a kind of problem that can be solved using Gröbner bases. The following example illustrates 

how this formulation can help in “automatic” proofs of theorems in geometry. 
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Example:  

 

 A well-known geometric theorem says that the three medians of a triangle intersect at 

one point, and that the intersection point (the center of gravity) trisects each median. Refer to 

the figure below. 

Figure 2-4. The three medians of a triangle intersect at the center of gravity. 

 

Since the assumptions and the conclusion of the theorem are invariant under 

translation, rotation and scaling, it may be assumed that two of the vertices of the triangle are 

A = (0, 0) and B = (1, 0), and the third point is C = (x, y) �  R2. Then the midpoints of the 

three edges BC, AC and AB are P = ( (x+1)/2, y/2 ), Q = (x/2, y/2) and R = (1/2, 0), 

respectively. 

Let S = (u, v) be the intersection point of the two medians AP and BQ. The condition that S 

lies on AP is equivalent to saying that AS and AP have the same slope, so that u/v = (x+1)/y or 

f1 = uy – v(x + 1) = 0. 

Similarly, the condition that S lies on BQ can be expressed as 

f2 = (u – 1)y – v(x – 2) = 0. 

Now, the claims are that S lies on the third median CR, or 

g1 = –2(u – x)y – (v – y)(1 – 2x) = –2uy – (v – y) + 2vx = 0, 

and that S trisects each of the three medians, so that 

(u, v) = AS = 2SP = (x + 1 – 2u, y – 2v), 

(u – 1, v) = BS = 2SQ = (x – 2u, y – 2v), 

(u – x, v – y) = CS = 2SR = (2u – 1, 2v), 

or equivalently, 

A B 

C 

P Q 

R 

S 



 51 

g2 = 3u – x – 1 = 0 and g3 = 3v – y = 0. 

And the theorem is equivalent to “f1 = f2 = 0 � g1 = g2 = g3 = 0”, where f1, f2 
�  R[u, v, x, y] 

are the hypotheses polynomials, and the conclusions yield g1, g2, g3 
�  R[u, v, x, y]. 

In general, a geometric problem can be formulated as a set of hypothesis polynomials 

f1, …, fs in R[x1, …, xn] and one or several conclusion polynmomials g �  R[x1, …, xn] and the 

theorem is true if and only if V(f1, …, fs) � V(g). In particular, the theorem can be proved by 

showing that g �  �f1, …, fs�. 
Back to the example, consider the ideal �f1, f2� for which it is required to compute a Gröbner 

basis. Using the lexicographic monomial order <lex , and u >lex v > x > y, we have 

f1 = uy – vx – v,  f2 = uy – vx + 2v – y. 

With respect to this monomial order, 

S(f1, f2) = f1 – f2 = –3v + y = –g3 (  0. 
After adding g3 to the basis, 

S(f1, g3) rem (f1, f2, g3) = -uy2 - 3v2x - 3v2 rem (f1, f2, g3) = 0, 

S(f1, f2) rem (f1, f2, g3) = -uy2 - 3v2x + 6v2 - 3vy rem (f1, f2, g3) = 0. 

Thus {f1, f2, g3} is a Gröbner basis, i.e. g3 
�  �f1, f2�, and the third conclusion is proved. One 

can easily show the same for g1 and g2. 

 

2.7.3 Implicitization 

Let f1, …, fn 
�  F[t1, …, tm], and consider the hyperplane V given in parametric form by 

x1 = f1(t1, …, tm), 

… 

xn = fn(t1, …, tm), 

so that V can be “explicitly” described as V = { a �  Fn | �  b �  Fm, a = (f1(b), …, fn(b))}. The 

task is now to find polynomials g1, …, gs 
�  F[x1, …, xn] such that V has the “implicit” 

representation V = V(I), where I = �g1, …, gs�. 
To solve the implicitization problem, consider J = �x1 - f1, …, xn - fn� � F[t1, …, tm, x1, …, xn], 

order the variables so that t1 > … > tm > x1 > … > xn, and compute a Gröbner basis G for J 

with respect to <lex . Then some g �  G will depend only on x1, …, xn. These are candidates 

for the gi’s. 

Example: 

The twisted cubic C is given by the parametric equations 

x = t,  y = t2,  z = t3. 
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The Gröbner basis J with respect to t > z > y > x is {t - x, z - x3, y - x2}. Thus the 

implicitization for C is g1 = y - x2, g2 = z - x3. In fact the curve is the intersection of the two 

surfaces g1 and g2 in 3-D space. In the figure below, C is the black bold curve. 

Figure 2-5. The twisted cubic (thick line) in R3. 

 

2.7.4 Solving systems of polynomial equations 

Given is a system of polynomials f1, …, fm �  F[x1, …, xn] and want to find the set of solutions 

V = {a �  Fn | f1(a) = 0, …, fm(a) = 0}. 

The Gröbner basis with respect to lexicographic order and x1 <lex … < xn will often 

include some polynomials only containing x1, some only with x1, x2, and so on. These can be 

solved by back substitution: first for x1, then for x2, and so on. 

Example: 

Let f = (y2 + 6)(x - 1) - y(x2 + 1), g = (x2 + 6)(y - 1) - x(y2 + 1), and f, g �  C[x, y]. It is required 

to find all common roots of the system of polynomial equations f = g = 0. 
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A Gröbner basis of I = �f, g� w.r.t. lexicographic order <lex and x <lex y consists of f, g, and the 

three polynomials 

h = -f - g = x2 -5x + y2 - 5y + 12, p = y2x - 5yx + 6x + y3 - 6y2 + 11y - 6, 

q = y4 - 6y3 +15y2 - 26y + 24. 

The last polynomial contains only the variable y, and, by factoring it, q = (y -2)(y -3)(y2 - y+4) 

and hence, V(q) = {2, 3, 1/2 � i ( 15 )/2}. 

Substituting y = 2 in h and p, it results that p(x, 2) = 0 for all x. And h(x, 2) = x2 - 5x + 6, 

hence two common zeros are (2, 2) and (3, 2). by substituting y = 3 and y = 1/2 � i (
�
15)/2 in 

h = p = 0 then solving for x, the other four points can be found: 

{(2, 3), (3, 3), (
2

151
,

2

151 ii ��
)}. 

 

2.8 GENERAL APPLICATION AREAS OF COMPUTER ALGEBRA  

 

The three typical steps in mathematical applications are: 
� creating a mathematical model for the problem at hand, 
� solving the model mathematically, and 
� interpreting the solution in the original problem. 

Virtually any application where the results are required to be exact or symbolic can be 

considered as an application of computer algebra. To mention some fields involved with 

symbolic computation, we have: 
� Physics: plasma physics, physics of fluids, electron optics, non-linear optics, 

molecular physics, electronics. 
� Mechanics: celestial mechanics, calculation of orbits, gravitational fields. 
� Mathematics: number theory, group theory, computational geometry, numerical 

analysis. 
� Other areas: chemistry, biology, robotics, and economy. 

[Cf.: Richard Liska, http://www-troja.fjfi.cvut.cz/~liska/ca/] 

An illustration of a few application areas follows hereunder. 

 

2.8.1 Celestial mechanics 

The famous example of Delauny. He calculated the orbit of the moon under the influence 

of the sun and a non-spherical earth with a tilted ecliptic. His work took 20 years to complete 
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and was published in 1867. Recalculation on a small computer in 1970 took only 20 hours of 

CPU time, and it showed hand calculations to be correct to 9 decimal places. [1] 

 

2.8.2 Geometric theorem proving 

There are several computer algebra approaches to proving theorems in Euclidean geometry 

that can be stated as polynomial equations. An example is: "The altitude pedal of the 

hypotenuse of a right-angled triangle and the midpoints of the three sides of the triangle are 

co-circular."   

Figure 2-6. Example of a geometric theorem proving. 

 

The hypotheses of this geometric statement, describing a correct drawing of the 

corresponding figure, are polynomial equations in the coordinates of the points in the 

figure. The same holds for the conclusion. [2] 

Hypotheses: 

h1 # 2y3 - y1 = 0 (E is the midpoint of AC ), 

h2 # (y7 - y3)
2 + (y8)

2 - (y7 - y4)
2 - (y8 - y5)

2 = 0 (EM andFM are equally long), 
�
 

hm # … 

Conclusions: 

c # (y7 - y3)
2 + (y8)

2 - (y7 - y9)
2 - (y8 - y10)

2 = 0 (EM andHM are equally long), 

 

2.8.3 Computational algebraic geometry 

This field includes many applications, among which implicitization and parameterization 

only are presented. 

There are two standard ways to represent planar curves: parametric and implicit forms. Both 

forms have their use, and some problems are modeled using one form or the other. There 

exist algorithms that convert one form to the other, as illustrated below. 
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The tacnode illustrated in the next figure has the implicit equation 

f(x, y) = 2x4 - 3x2y + y4 - 2y3 + y2 = 0 

 

Figure 2-7. The tacnode curve. 

 

Computer algebra offers algorithms that convert to and from the parametric equations: [2] 
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2.8.4 Robotics 

The next figure shows a very simple robot, one-armed with two joints. The arm is fixed at 

one end with a joint to a point, say the origin of the Cartesian plane. The other joint in the 

middle rotates freely. The distance between the two joints is 2, and the distance from the 

second joint to the endpoint is 1. The joint between the two arms is at position (x,y) and the 

endpoint at position (z,w). 

Furthermore, there is a line mt + c = 0 with some fixed parameters m,c. A simple question is: 

can the robot reach the line? 
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Figure 2-8. A two-segment robot. (3D view and schematic). 

 

The possible positions (x,y,z,w) �  R4 of the robot are characterized by the algebraic equations 

(x2 + y2) = 4, (z - x)2 + (w - y)2 = 1, 

and an answer to the question is either a quadruple (x,y,z,w) satisfying these equations 

together with the line equation w = mz + c, or a proof that no such quadruple exists. [2] This 

is the kind of problems that can be used with the help of Gröbner bases. 

 

2.8.5 Chemistry 

The cyclohexane molecule C6H12 is a hydrocarbon consisting of six carbon atoms connected 

to each other in a cycle, and twelve hydrogen atoms, two attached to each carbon atom. 

 

 

 

 

 

 

 

 

 

Figure 2-9. The structure formula for cyclohexane and the carbon bonds. 

 

The figures above show the structure formula for the cyclohexane and the orientation given to 

the bonds a1, … , a6. The four bonds of one carbon atom (two bonds to adjacent carbon atoms 

and two to hydrogen atoms) are arranged in the Euclidean space in the form of a tetrahedron, 

with the carbon in the center and its bonds pointing to the four corners. The angle between 
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any two bonds is cos-1(-1/3). Now, the problem is to determine the conformation (i.e. the 

configuration of the molecule) of the cyclohexane. 

The unknowns are the orientations of the six bonds in three-space: a1, …, a6 
�  R3, where ai is 

a three-component vector. The following equations are obtained: 

.0                   
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The �  is the usual scalar product (dot product) of vectors. 

These equations can be solved with a computer algebra system, yielding the conformations 

observed by chemists and illustrated below. [1] 

Figure 2-10. The chair and boat conformations of cyclohexane. 
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Chapter 3: THE IMPLICITIZATION PROBLEM 
 

 In this chapter, we review some of the features of the implicitization problems [10] 

[11] [13]. Section 3.1 contains some definitions with a comparison on the use of implicit and 

parametric forms. Then, section 3.2 reviews some needed results from algebra, namely 

resultants [1] [3] and homogeneous systems of linear equations [27]. Section 3.3 is basic in 

this thesis. It reviews some implicitization methods with emphasis on describing some 

existing algorithms. Moreover, algorithms are devised when they are not provided in the 

literature and afterwards implemented in chapter 4. Finally, newly suggested implicitization 

methods are devised and also subsequently implemented in chapter 4. Complexity of 

algorithms as related to the mentioned algorithms is addressed. 

 

3.1 INTRODUCTION 

 

3.1.1 Preliminaries [2] 

�  Algebraic geometry, also known as computational geometry, is the study of geometric 

objects defined as the zeros of polynomial equations. Using the algebra of polynomial rings, 

many of the techniques in algebraic geometry become computationally feasible. 

�  For any field F, the n-dimensional affine space over F is defined as: 

Fn = {(a1, …, an) | ai �  F}. 

Thus, F2 is the affine plane over F. 

�  An affine plane algebraic curve C in F2 is the set of zeros of a polynomial f(x, y) �  

F[x, y], i.e.  

C = {(a1, a2) | f(a1, a2) = 0, (a1, a2) �  F2}. 

f is called a defining polynomial of the curve C. 

�  The affine curve C in F2 defined by the polynomial f(x, y) is called parameterizable, 

iff there are functions g(t) and h(t) such that: 

a. for almost all (i.e. for all but a finite number of exceptions) t0 �  F, (g(t0), h(t0)) is a 

point on C, 

b. for almost every point (x0, y0) on C, there is a t0 �  F such that (x0, y0) = (g(t0), h(t0)). 

�  The parametric representation of a plane curve is a mapping from the real line 

domain (t �  R) to the plane domain (x, y) �  R2. 
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�  The implicitization problem is the process of converting curves and surfaces from 

parametric form into implicit form. 

 

3.1.2 Parametric and implicit forms 

In geometric modeling and computer aided design systems, curves and surfaces can 

be represented either parametrically or implicitly. For example, the unit sphere can be written 

as x2 + y2 + z2 – 1 = 0 in implicit form, or written as  
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in parametric form. Implicit representations of curves and surfaces provide a straightforward 

way to detect whether or not a point lies on a curve or surface. Parametric representations of 

curves and surfaces are very convenient for shape control and for rendering. Both the 

parametric form and the implicit form are important, but many curve and surface design 

systems start from parametric representations. Implicitization is thus required to convert the 

parametric form into implicit form [10] [13]. 

 

Generation of plane curves 

To illustrate the usefulness of parametric equations in generating points along curves, 

the simple example of the plot of an ellipse is presented. Consider the implicit equation of the 

ellipse 4x2 + 9y2 = 36. By expressing y as an explicit equation in x, i.e., 2436
3
1 xy �� , the 

ellipse is plotted at regular x-intervals equal to 0.05 using Matlab. Notice that the plot is a 

vector of points computed at the various values of x. The discontinuities appear clearly as the 

absolute value of the slope of the curve exceeds 1, near x = 2.7. These are due to non-

regularly spaced y-values corresponding to regularly spaced x-values. 
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Figure 3-1. Explicit plot of an ellipse. 
 

In the case of the parametric plot, the generated points are regularly spaced for regularly 

spaced t-values resulting in a smoother plot. Intervals of size 0.05 are used here also. 

 

Figure 3-2. Parametric plot of an ellipse. 
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Generation of plane curves by rolling 

In [9], an interesting problem in descriptive geometry is presented, where parametric 

representation is the start point.  

If a “moving curve” Cm rolls, without slipping, along another “fixed curve” Cf, any 

fixed point Q attached to Cm describes a curve � which is known as roulette. In the same 

reference, it is shown how the equations of Cm and Cf which generate a certain curve � can be 

derived in parametric form, where their parameter is that of the given curve �. Examples of 

roulette are the family of cycloid (epicycloid, hypocylcoid, …) and the family of trochoid 

(epitrochoid, hypotrochoid, …). It may be valuable to add implicitization analysis to the 

resulting roulettes. 

The famous cycloid curve, which is the tracing of a point on the circumference of a 

circle rolling on a straight line, is given by the parametric equations: 

x = a(t - sint),  y = a(1 - cost),  where a is the radius of the rolling circle 

Its plot is shown in the next figure. 

 Later, the cycloid is treated from the point of view of implicitization, thus paving the 

way for other roulettes to be treated the same way. 

Figure 3-3. The cycloid. 
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Trigonometric curves [11] [12] 

A trigonometric curve is a real plane curve where each coordinate is given 

parametrically by a trigonometric polynomial, that is, a truncated Fourier series of the form: 

�0�k�m akcos(k�) + bksin(k�) 

Trigonometric curves arise in various areas of mathematics, physics and engineering. 

This class of curves includes numerous classical curves such as limacon of Pascal, cardioid, 

trifolium, epicycloid, hypocycloid, etc, as special cases. (Note that some of these curves are 

the roulettes mentioned above in the generation of curves by rolling.) They also arise 

naturally in numerous areas such as linear differential equations, Fourier analysis, almost 

periodic functions (under the name of generalized trigonometric polynomials), representation 

of groups (utilizing its periodicity), electrical circuit analysis (Lissajous curves as often 

shown on oscilloscopes), fracture mechanics (as the caustic pattern appearing when a 

fractured material is shown by a laser beam), etc. The class includes all bounded polynomial 

curves (i.e. images of polynomial parameterization with bounded parameter interval). It is a 

subset of the class of rational curves (images of rational parameterization). 

 

3.1.3 Variants of implicitization 

The most naturally related problem is the reverse problem, namely that of 

parameterization of curves, i.e. finding a parametric form of an implicit equation [2]. 

However, the implicitization problem is itself divided into numerous subproblems, some of 

which far from a complete and satisfactory solution. 

Several open problems and achievements in this area are presented in [21]. A brief 

overview highlights the following research areas: 

a) Two-dimensional versus three-dimensional implicitization. A 2-D object is 

represented by two functions x(t) and y(t), while a 3-D object requires a third function 

z(t). 

b) Curves versus surfaces. Parametric representations of curves require functions in only 

one parameter. Surfaces are represented by two-parameter functions. The implicitization 

of surfaces is still a problem, far from having a complete solution [13].  

c) Rational versus trigonometric functions. Rational parametric functions are of the form 

of a ratio of two polynomials such as x = f(t)/g(t). Trigonometric functions are the form of 

truncated Fourier series presented in the previous section. 
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3.2 MORE RESULTS FROM ALGEBRA 
 

In the following, some results of algebra are summarized. 

 

3.2.1 Resultants [1] [3] 

Let S be a commutative ring with identity. Let A(x) and B(x) �  S[x] be univariate 

polynomials of respective positive degrees m and n with coefficients in the ring S. 

A(x) = amxm + am-1xm-1 + …+ a0,       deg(A) = m, and 

B(x) = bnxn + bn-1xn-1 + … + b0,       deg(B) = n, 

�  The Sylvester matrix of A(x) and B(x) �  S[x], denoted as syl(A, B), is the following 

matrix of size (m + n) × (m + n) over S: 

 

syl(A, B) 
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In particular, the first n rows of the Sylvester matrix correspond to the polynomials xn-1 A(x), 

xn-2A(x),…, A(x), and the last m rows, to xm-1 B(x), xm-2B(x),…, B(x). 

�  The resultant of A(x) and B(x), denoted res(A, B), is the determinant of the Sylvester 

matrix syl(A, B), and thus is an element of S. 

Since syl (B, A) can be obtained by m � n row transpositions, we see that  

res(B, A) = det(syl(B, A)) 

                = (-1) mn det(syl(A, B)) 

                = (-1)mn res(A, B). 

 

The following properties will be used for some of the subsequent proofs. 

n staggered rows of 
coefficients of A 

m staggered rows of 
coefficients of B 
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3.2.1.1 Properties of resultants 

Lemma. [3] 

Let S be a commutative ring with identity, and A(x) and B(x) �  S[x] be univariate 

polynomials of respective positive degrees m and n with coefficients in the ring S, then there 

exist polynomials T(x) and U(x) �  S[x] such that: 

A(x) · T(x) + B(x) · U(x) = res (A, B),  

where deg(T) < deg(B) = n and deg(U) < deg(A) = m. 

Proof. 

Consider the Sylvester matrix of A and B: 

 

M = syl(A, B)
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Let us create a new matrix M � from M by following elementary matrix operations: 

1.First, multiply the ith column by xm+n-i and add to the last column of M. 

2.All but the last column of M �  are the same as those of M. 

By definition,  

res(A, B) = det(M) = det( M � ). 

We observe that the matrix M �  is as follows: 

 

n rows 

 
m rows 
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Note that since the last column of the matrix M� is simply 

,)](),...,(),(),....,([ 11 Tmn xBxBxxAxAx ��  

We can compute the det( M � ) explicitly by expanding the determinant with respect to its last 

column. We then have the following: 

res(A, B)  =  det( M � ) 

nmnmnmn
m

nmnnm
n MxBMxBxMxAMxAx
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�������������� ,,1
1

,,1
1 )(...)()(...)(  

)...)(()...)(( ,
1

,1,
1

,1 nmnm
m

nmnnmn
n

nm MxMxBMxMxA
��

�

���

�

�
����������  

).()()()( xUxBxTxA ����  
Note that the coefficients of T(x) and U(x) are cofactors of the last column of M�, and hence 

of M, and are ring elements in S. Clearly,  

deg(T)   n-1< deg(B)  and  deg(U)   m-1 < deg(A). 

n rows 

 
m rows 

n rows 

 
m rows 
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Lemma. [3] 

 Let S be a unique factorization domain with identity, and A(x) and B(x) be univariate 

polynomials of positive degrees with coefficients in S, then res(A, B) = 0 iff A(x) and B(x) 

have a common divisor of positive degree. 

Proof. 

Assume that A(x) and B(x) have a common divisor C(x) of positive degree. Then, 

A(x) = C(x) � U(x),  deg(U) < deg(A), and 

B(x) = C(x) � T(x),  deg(T) < deg(B). 

Therefore, A(x) � T(x) + B(x) � (-U(x)) =  C(x) � T(x) � U(x) - C(x) � T(x) � U(x) = 0. 

Thus, there exists polynomials T, U �  S[x], with deg(T) < deg(B) and deg(U) < deg(A), such 

that A(x) � T(x) + B(x) � U(x) =  0. And, by the previous lemma, res(A, B) = 0. 

 

3.2.1.2 Homomorphisms and Resultants 

Let S and S* be commutative rings with identities, and *: SS �� be a ring homomorphism 

of S into S*. Note that �  induces a ring homomorphism of S[x] into S*[x], also denoted by � , 

as follows: 

][*][: xSXS ��  

   ).(...)()(...: 0
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Lemma. [3] 

 Let �
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�
m
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i
i xaxA

0
)(  and �
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�
n

i

i
i xbxB

0
)( be two univariate polynomials over the ring S 

with deg(A) = m > 0 and deg(B) = n > 0.  

If 
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Then, M, the Sylvester matrix of A(x) and B(x), is 

M = syl(A, B)
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and M*, the Sylvester matrix of A*(x) and B*(x), is M* = syl(A*, B*) 
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The matrix M* is obtained from M by the following process: 

1. First, the matrix, )(M� , is computed by replacing the entry aj by )( ja�  (for 

all mj 0 ), and by replacing the entry bj by )( jb�  (for all nj 0 ). By 

assumption 

0)(...)( 1 ���
�kn bb ��  

2. Next, from )(M� , the first (n - k) rows and (n - k) columns are deleted, 

yielding an  (m + k) × (m + k) matrix equal to M* . 

Thus, 
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Therefore,  

n rows 

 
m rows 

k rows 

 

m rows 

(n - k) rows 

 

(m + k) rows 
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*)).*,(()( BAresa kn
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Therefore, 
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�  Let S be a commutative ring with an identity, and T
r S�),...,( 1 �� be an r-tuple. 

Define a ring homomorphism 
r��

� ,...,1
, called the evaluation homomorphism, as follows: 

SxxS rr
�],...,[: 1,...,1 ��

�  

,: 11 ��x  

�  

.: rrx ��  

Note that, if ],,...,[),...,( 11 rr xxSxxF �  then we shall write ),...,( 1 rF ��    for    ).(,...,1
F

r��
�  

The evaluation homomorphism will be used later in subsequent proofs. 

 

3.2.1.3 Multivariable resultants 

Let S be a commutative ring with an identity, and  

�
�

�
��

m

i
r

i
rrir xxSxxxAxxA

0
1111 ],,...,[),...,(),...,(     and 

�
�

�
��

n

i
r

i
rrir xxSxxxBxxB

0
1111 ],...,[),...,(),...,(  

be two polynomials in ],...,[ 1 rxxS  of respective positive degrees m and n in xr. Then, 
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n rows 

 

m rows 
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is the resultant of two multivariate polynomials ),...,( 1 rxxA  and  ),...,( 1 rxxB , with respect to 

xr. 

Lemma. [3] 

Let L be an algebraically closed field, and let 

),...,(),( 11 �
� rx xxCBAres

r
 

be the resultant of the multivariate polynomials, 
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with respect to xr. Then 

1. If r
r L�),...,( 1 �� is a common zero of ),...,( 1 rxxA  and ),...,( 1 rxxB , then 

0),...,( 11 �
�rC �� . 

2. Conversely, if 0),...,( 11 �
�rC �� , then at least one of the following four 

conditions holds: 

(a)  ,0),...,(...),...,( 11011 ���
�� rrm AA ����   or 

(b)  ,0),...,(...),...,( 11011 ���
�� rrn BB ����   or 

(c)  ,0),...,(),...,( 1111 ��
�� rnrm BA ����   or 

(d) For some ),...,(, 1 rr L ��� � is a common zero of both ),...,( 1 rxxA and 

),...,( 1 rxxB  

Proof. 

(1) Since there exist T and U in  ],...,[ 11 �rxxL  such that ,CUBTA ���� we have  

),...,( 11 �rC �� ),...,(),...,(),...,(),...,( 1111 rrrr UBTA �������� ����  

       ,0�  

as  ,0),...,(),...,( 11 �� rr BA ����  by assumption. 

(2) Next, assume that 0),...,( 11 �
�rC �� , but that conditions (a), (b), and (c) are 

not satisfied. Then there are two cases to consider: 

1. ,0),...,( 11 �
�rmA ��  and for some 0),...,(),0( 11 �

�rkBnkk ��  

    (k is assumed to be the largest such index). 

2. ,0),...,( 11 �
�rnB ��  and for some 0),...,(),0( 11 �

�rkAmkk ��  

    (k is assumed to be the largest such index). 
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Since res(B, A) = (-1)mn res(A, B) = ± C, cases (1) and (2) are symmetric, and without any 

loss of generality, we may only deal with the first case. 

Let 
11 ,...,

�

�
r��

��  be the evaluation homomorphism defined earlier. 

Thus, 

)(0 c��  

)),(( BAres��  

)),(),(()( BAresA kn
m ��� �� �  

and  ,0))(),(( �BAres ��  since  ,0),...,()( 11 ��
�rmm AA ���   

If k = 0, then mBBAres )())(),(( 0��� � ,0),...,( 110 ��
�

m
rB ��  (by assumption). 

Hence k > 0 and )(A�  and )(B�  are of positive degree and have a common divisor of 

positive degree, say D(xr). Since L is algebraically closed, D(xr) has at least one zero, say  

r� . Therefore, 

),(~)(),,...,( 11 rrrr xAxDxA ��
�

��   and 

),(~)(),,...,( 11 rrrr xBxDxB ��
�

��  

and ),,...,( 11 rr ���
�

is a common zero of A and B. 

 

The following properties of linear systems of equations will be used for some of the 

subsequent proofs. 

 

3.2.2 Homogeneous systems of linear equations [27] 

�  The quantities Q1, Q2, …, Qn are said to be linearly dependent if there exists a set of 

constants c1, c2, …, cn, at least one of which is different from zero, such that the equation 

c1Q1 + c2Q2 + … + cnQn = 0 

holds identically. 

�  The quantities Q1, Q2, …, Qn are said to be linearly independent if they are not 

linearly dependent, i.e., if the only linear equation of the form 

c1Q1 + c2Q2 + … + cnQn = 0 

which they satisfy identically has c1 = c2 = … = cn = 0 

 

Given a system of the form  
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11212111 ... bxaxaxa nn ����  

22222111 ... bxaxaxa nn ����  

..............................................  

mnmnmm bxaxaxa ���� ...2211  

 

where m, the number of equations, is not necessarily equal to n, the number of unknowns. If 

at least one of the m quantities bi is different from zero, the system is said to be 

nonhomogeneous. If bi = 0 for all values of i, the system is said to be homogeneous. If we 

define the matrices 
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The system can be written in the compact matrix form  

AX = B   (3.1) 

In this form, the matrix A is known as the coefficient matrix of the system, and the matrix 

[AB] obtained by adjoining the column matrix B to the coefficient matrix A as an (n + 1)st 

column is known as the augmented matrix of the system. 

Before proceeding to the question of the existence and determination of solutions of 

(3.1), it shall first be proved several important theorems about such solutions on the 

assumption that they exist. 

 

Theorem. [27] 

If X1 and X2 are two solutions of the homogeneous matrix equation AX = 0, then for 

all values of the constants c1 and c2, the vector c1X1 + c2X2 is also a solution of the system of 

equations AX = 0. 

Proof.  By direct substitution we have 

0)()()( 22112211 ���� XcAXcAXcXcA  

0
00
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21
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cc
AXcAXc

 

where the coefficients of c1 and c2 vanish because, by hypothesis, both X1 and X2 are 

solutions of AX = 0. Hence c1X1 + c2X2 also satisfies AX = 0, as asserted. 

 



��

Theorem. [27] 

If k is the maximum number of linearly independent solution vectors of the system AX 

= 0, and if X1, X2,…, Xk are k particular linearly independent solution vectors, then any 

solution vector of AX = 0 can be expressed in the form. 

c1X1 + c2X2 + … + ckXk 

where the ci’s are scalar constants. 

 

Proof. Let k be the maximum number of linearly independent solution vectors of the equation 

AX = 0; let X1, X2,…, Xk be a particular set of k linearly independent solution vectors; and let 

Xk+1 be any solution vector. If Xk+1 is one of the vectors in the set { X1, X2,…, Xk }, the 

assertion of the theorem is obviously true. If Xk+1 is not a member of the set { X1, X2,…, Xk }, 

then X1, X2,…, Xk , Xk+1 cannot be linearly independent since, by hypothesis, k is the 

maximum number of linearly independent solution vectors of AX = 0. Hence, the X’s must 

satisfy a linear equation of the form 

c1X1 + c2X2 + … + ckXk + ck+1 Xk+1  (3.2) 

in which at least one c is different from zero. In fact, ,01 �
�kc  for otherwise equation (3.2) 

would reduce to 

c1X1 + c2X2 + … + ckXk = 0 

with at least one of the ci’s different from zero, contrary to the hypothesis that X1, X2,…, Xk 

are linearly independent. But if ,01 �
�kc  it is clearly possible to solve equation (3.2) for Xk+1 

and express it in the form asserted by the theorem.  

Because of the property guaranteed by the preceding theorem, a general linear 

combination of the maximum number of linearly independent solution vectors of AX = 0 is 

usually referred to as a complete solution of AX = 0. 

 

Theorem. [27] 

A system of m simultaneous linear equations in n unknowns, AX = B, has a solution if 

and only if the coefficient matrix A and the augmented matrix [AB] have the same rank, r. 

When solutions exist, the maximum number of independent arbitrary constants in any general 

solution, i.e., the maximum number of linearly independent solution vectors of the related 

homogeneous system AX = 0, is n – r. 

The proof is obtained by applying the well-known Gaussian elimination procedure [27]. 
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3.3 IMPLICITIZATION ALGORITHMS 
 

To this end, we can describe some given implicitization algorithms from the literature 

and some newly suggested ones. 

 

3.3.1 Implicitization of rational curves 

The brief overview of resultants, presented above, highlighted a major property they 

have. Namely, the resultant of two polynomials vanishes if and only if they have a common 

root. Resultants are thus used to determine whether or not two polynomials have a common 

root, without explicitly solving for the roots of the equations. Sometimes, actually solving for 

the common roots might be very expensive or even impossible when the number of common 

roots is infinite [13]. 

To see how resultants arise naturally in the implicitization of rational curves, consider 

a rational curve 

X = x(t) / w(t),  Y = y(t) / w(t), 

where x(t), y(t) and w(t) are polynomials. To obtain the implicit representation f(X, Y) = 0, 

introduce two auxiliary polynomials in t 

X � w(t) - x(t),   Y � w(t) - y(t). 

By the above mentioned property, the resultant of these two polynomials vanishes if and only 

if they have a common root. This happens if and only if there is a common parameter t such 

that X � w(t) - x(t) = 0 and Y � w(t) - y(t) = 0 or X = x(t) / w(t) and Y = y(t) / w(t), i.e. the point 

(X, Y) is on the curve. So setting the resultant to zero yields the implicit equation of the 

parametric curve [10] [13]. 

Classical resultants are typically represented as determinants whose entries are 

polynomials in the coefficients of the original polynomials in the system. For two univariate 

polynomials, there are two well-known determinant representations: Sylvester resultants [3] 

[13] and Bézout resultants [10] [13]. The Sylvester resultant of two degree-n polynomials 

(already mentioned in the previous section) is a 2n × 2n determinant constructed using 

Sylvester’s dialytic method. This determinant has lots of zero entries, and the non-zero 

entries are simply the coefficients of the two original polynomials. The Bézout resultant 

generated from Cayley’s expression, is a more compact n × n determinant whose entries are 

more complicated polynomials in the coefficients of the two original polynomials [13]. 
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Base points 

The major drawback of the resultant method for implicitization is that resultants 

vanish identically in the presence of base points. A rational curve or surface is said to have a 

base point if its numerators and denominators have a common factor, thus vanish 

simultaneously at some parameter value. Tom Sederberg [10] introduced the method of 

moving algebraic curves and surfaces to solve the implicitization problem for rational curves 

and surfaces with base points [13]. 

In this section, both methods (resultants and moving lines) are reviewed and 

investigated. In the next section, we have devised an algorithm for the method of moving 

lines, implemented it using Matlab and tested it for practical examples. 

 

3.3.1.1 The resultant method [10] 

The Sylvester resultant of two polynomials has already been viewed in the previous section. 

The construction of the Bézout resultant is a bit more complicated but yields a more compact 

n × n matrix as opposed to the 2n × 2n Sylvester matrix. 

Consider two degree-n polynomials f(t) and g(t) 

f(t) = antn + … + a1t + a0 ,  g(t) = bntn + … + b1t + b0. 

Let 

fk(t) = antk + … + an-k ,  gk(t) = bntk + … + bn-k , 

pk+1(t) = gk(t)f(t) - fk(t)g(t), k = 0, …, n - 1. 

Since 

f(t) = fk(t)tn-k + an-k-1tn-k-1 + … + a1t + a0 

g(t) = gk(t)tn-k + bn-k-1tn-k-1 + … + b1t + b0 

it follows that p1(t), …, pn(t) are polynomials of degree n - 1 in t. The Bézout resultant of f(t) 

and g(t) is the determinant of the coefficients of p1(t), …, pn(t). Explicit formulas for the 

entries of the Bézout resultant show that they are quadratic in the coefficients of f(t) and g(t). 

These are given in [13] by: 

Bi,j = ���k�� (ai-kbj+1+k - bi-kaj+1+k), where � = max(0,i - j) and � = min(i, n - 1 - j). 

In [10], it is proved that the Sylvester and Bézout resultant are equivalent up to sign, that is, 

det(Bézout) = ± det(Sylvester). Hence, these resultants can be used more efficiently in the 

problem of implicitization. The Bézout resultant is used in the method of moving lines [10]. 

 

3.3.1.2 The moving lines method [10] 

Given a rational curve, X = x(t) / w(t), Y = y(t) / w(t), where 



��

x(t) = antn + … + a1t + a0 , y(t) = bntn + … + b1t + b0 , w(t) = dntn + … + d1t + d0 . 

By cross multiplication, two degree-n polynomials in t are formed. 

X � w(t) - x(t) = (Xdn - an)tn + … + (Xd1 - a1)t + (Xd0 - a0) 

Y � w(t) - y(t) = (Ydn - bn)tn + … + (Yd1 - b1)t + (Yd0 - b0) 

The Bézout resultant of X � w(t) - x(t) and Y � w(t) - y(t) can be obtained as: 

fk(t) = (Xdn - an)tk + … + (Xdn-k - an-k) 

gk(t) = (Ydn - bn)tk + … + (Ydn-k - bn-k) 

pk+1(t) = gk(t)(Xw(t) - x(t)) - fk(t)(Yw(t) - y(t)), k = 0, …, n - 1. 

It follows that p1(t), …, pn(t) are polynomials of degree-n in t as already shown in the analysis 

of Bézout resultants. Their coefficients are linear in x and y since these are sums of terms of 

the form 

(Xdi - ai)(Ydj - bj) - (Xdj - aj)(Ydi - bi) = (bidj - bjdi)X + (ajdi - aidj)Y. 

Thus, the pk’s can be written as 

p1(t) = L1,n-1(X, Y)tn-1 + … + L1,1(X, Y)t + L1,0(X, Y) 

……. 

pn(t) = Ln,n-1(X, Y)tn-1 + … + Ln,1(X, Y)t + Ln,0(X, Y) 

where the functions Lij(X, Y) are linear in X, Y. The determinant of these coefficients R(X, Y) 

= det(Lij(X, Y)) is the Bézout resultant of the polynomials Xw(t) - x(t) and Yw(t) - y(t). Thus, 

the implicit equation is R(X, Y) = 0. 

 

Moving lines 

The polynomials pk(t) whose coefficients appear in the Bézout resultant can be written in two 

forms: 

1. as above: Ln-1(X, Y)tn-1 + … + L1(X, Y)t + L0(X, Y), 

2. or by collecting the coefficients of X and Y: A(t)X + B(t)Y + C(t), 

where A(t), B(t), C(t) are polynomials of degree n - 1 in t. 

For each value of t, the second form can be seen as an implicit form of a line in the xy-plane. 

Sederberg [10] calls such a line a moving line. A moving line A(t)X + B(t)Y + C(t) is said to 

follow a rational curve X = x(t) / w(t), Y = y(t) / w(t) if it vanishes on the curve, i.e., if the line 

A(t)x(t) / w(t) + B(t)y(t) / w(t) + C(t) = 0, or equivalently, if 

A(t)x(t) + B(t)y(t) + C(t)w(t) = 0, for all values of t. 

 

In what follows, the method of moving lines in implicitization is explained. 
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Methods of moving lines 

Case I: No base points. 

Given a rational curve X = x(t) / w(t), Y = y(t) / w(t) of degree n, it is required first to 

seek all moving lines 

Ln-1(X, Y)tn-1 + … + L1(X, Y)t + L0(X, Y) = 0           (3.3) 

of degree n - 1 that follow the curve. Since each coefficient Lj(X, Y) is linear in X, Y, equation 

(3.3) can be rewritten as 

(An-1X + Bn-1Y + Cn-1)tn-1 + … + (A1X + B1Y + C1)t + (A0X + B0Y + C0) = 0               (3.4) 

In equation (3.4), there are 3n unknowns-Ak, Bk, Ck, k = 0, …, n-1. We can generate 2n 

homogeneous linear equations in these 3n unknowns by substituting for X and Y the rational 

functions x(t) / w(t) and y(t) / w(t) and multiplying through by w(t). This yields the equation 

(An-1 x(t) + Bn-1 y(t) + Cn-1w(t))tn-1 + … + (A0 x(t)+ B0 y(t)  + C0w(t)) = 0  (3.5) 

where the left hand side is a polynomial in t of degree 2n-1. For equation (3.4) to represent a 

moving line that follows the rational curve, this polynomial must be identically zero. The 

vanishing of this polynomial leads to 2n homogeneous linear equations in these 3n 

unknowns, which in matrix form can be written as 

[x  y  w … tn-1x  tn-1y  tn-1w]  ·  [A0  B0  C0 … An-1  Bn-1  Cn-1]T = 0, 

where the rows of the coefficient matrix [x  y  w … tn-1x  tn-1y  tn-1w] are indexed by the 

powers of t and the columns are the coefficients of the polynomials tkx, tky, tkw, k = 0, … , n-1 

A homogeneous linear system of 2n equations in 3n unknowns has at least n linearly 

independent solutions. Let  

p1(t) = L1,n-1(X, Y)tn-1 + … + L1,1(X, Y)t + L1,0(X, Y) = 0 

…… 

pn(t)= Ln,n-1(X, Y)tn-1 + … + Ln,1(X, Y)t + Ln,0(X, Y) = 0 

(3.6) 

be n linearly independent solutions, and form the matrix R(X, Y) = (Lij(X, Y)). Since Lij(X, Y) 

is linear in X and Y, det{R(X, Y)}is a polynomial of degree n in X and Y. Also, det{R(X, Y)}= 

0 when X, Y is on the rational curve because by equation (3.6) when X, Y is on the curve, the 

columns of R(X, Y)are dependent. Thus, det {R(X, Y)}= 0 is a good candidate for the implicit 

equation of the rational curve, since det {R(X, Y)}has the correct degree and vanishes on the 

curve. It is next formally proved that as long as we choose the moving lines p1(t), … , pn(t) to 

be linearly independent, det{R(X, Y)}= 0 is indeed the implicit equation of the rational curve, 

provided that there are no base points. 
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Proof 

Both the Sylvester and the Bézout resultants will be used in this proof. First recall that 

the rows of the Bézout resultant for the polynomials xw(t) – x(t), yw(t) – y(t) are moving lines 

of degree n – 1 that follow the curve. Since when there are no base points the determinant of 

the Bézout matrix is the implicit equation of the rational curve, it is known that these rows 

must be linearly independent; otherwise this determinant would be identically zero. To prove 

that the method of moving lines always works, it is required to show that when there are no 

base points, there are never more than n linearly independent moving lines of degree n - 1 

that follow a degree n rational curve. Consider then the system of 2n homogeneous linear 

equations in 3n unknowns which is to be solved to find the moving lines that follow the 

curve. In matrix form these equations are: 

[x  y  w … tn-1x  tn-1y  tn-1w] · [A0  B0  C0 … An-1  Bn-1  Cn-1]T = 0. 

Let C = [x  y  w … tn-1x  tn-1y  tn-1w] be the coefficient matrix. To prove that there are never 

more that n linearly independent moving lines that follow a degree n rational curve, we must 

show that C has rank 2n. To do so, let x*(t) = x(t) + Xt2n, y*(t) = y(t) + Yt2n, w*(t) = w(t) + t2n, 

and let S denote the 3n x 3n matrix S = [x*   y*   tx*  ty*  … tn-1x*  tn-1y*  w*  tw* …  tn-1w*]. 

Note that C is a submatrix of S with its columns rearranged. But det(S) is the Sylvester 

resultant of xw(t) – x(t) and yw(t) – y(t). To prove this assertion, subtract x-column (tkx*) from 

column (tkx*) and y-column (tkx*) from column (tkx*), k = 0, … , n-1. This procedure leaves 

the determinant unchanged, kills off the x’s and y’s in the rows below the row that is indexed 

by  t2n-1, and produces the matrix (the * represents arbitrary elements): 
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whose determinant is indeed just the Sylvester resultant of xw(t) – x(t) and yw(t) – y(t). Since 

there are no base points, xw(t) – x(t) and yw(t) – y(t) do not have common roots for arbitrary 

values of x and y. therefore the Sylvester resultant of xw(t) – x(t) and yw(t) – y(t) is not 

identically zero. Hence det(S) � 0, so the rows of S are linearly independent. Hence the rows 

of C must also be linearly independent, so C has rank 2n. Since C has full rank, the number of 

linearly independent solutions of equation (3.4) (i.e. the number of linearly independent 

moving lines that follow the curve) is exactly n. Thus the rows of the Bézout resultant span 

the solution space. Hence there is a constant nonsingular matrix M for which we have R(X, Y) 
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= M �  Bézout Matrix. Since M is nonsingular, det(R(X, Y)) = 0 if det(Bézout Matrix) = 0. 

Hence det(R(X, Y)) = 0 is indeed the implicit equation of the rational curve. 

 

Case II: Base points present. 

Suppose then that X =x(t) / w(t), Y = y(t) / w(t) is a degree n rational curve with r base 

points. Then x(t), y(t), w(t) have a common factor c(t) of degree r; that is, 

x(t) = c(t)x*(t)    y(t) = c(t)y*(t)    w(t) = c(t)w*(t) 

To apply the method of moving lines, we need to know how many moving lines of degree     

n - 1 follow this rational curve. A moving line of degree n – 1 follows a degree n rational 

curve when the left-hand side of equation (3.5) is identically zero. Canceling out the common 

factor c(t), we obtain 

(An-1 x*(t) + Bn-1 y*(t) + Cn-1w*(t))tn-1 + … + (A0 x*(t)+ B0 y*(t)  + C0w*(t)) = 0                

where the left-hand side is a polynomial of degree 2n – r –1. The vanishing of this 

polynomial leads to 2n – r homogeneous linear equations in the 3n unknowns, Ak, Bk, Ck, for 

k = 0, … , n-1. Now a linear system of 2n – r homogeneous equations in 3n unknowns has at 

least n + r linearly independent solutions. Let  

p1(t) = L1, n-1(X, Y)tn-1 + … + L1,1(X, Y)t + L1,0(X, Y) = 0 

…… 

pn+r(t)= Ln+r, n-1(X, Y)tn-1 + … + Ln+r, 1(X, Y)t + Ln+r, 0(X, Y) = 0 

be n + r linearly independent solutions, and form the (n + r) �  n matrix R(X, Y) = (Lij(X, Y)). 

It is required to show how to use the matrix R(X, Y) to recover the implicit equation of the 

rational curve. The key idea is to apply Gaussian elimination. 

Since pk(t) follows the rational curve, the line pk (0) = Lk,0(X, Y) must pass through the 

point (x(0) / w(0), y(0) / w(0)). Therefore the lines Lk,0(X, Y), k = 1, … , n+r, are concurrent, 

so any three of these lines are linearly dependent. Thus by Gaussian elimination we can zero 

out all but the first two elements in the last column of R(X, Y). Since the rows of this new 

matrix are linear combinations of moving lines that follow the curve, these rows are again 

moving lines that follow the curve. If we remove the first two rows and last column of this 

matrix, then the remaining moving lines have the form 

	k (t) = 	k,n-1(X, Y)tn-1 + … + 	k,1(X, Y)t. 

Factoring out t, we obtain an (n + r - 2) � (n - 1) matrix of n + r – 2 moving lines of degree    

n – 2 that follow the curve. Repeating this Gaussian elimination r times, we arrive at n – r 

moving lines of degree n – r – 1 that follow that curve. 
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Let S(X, Y) be the (n - r) �  (n - r) matrix generated from R(X, Y) by Gaussian 

elimination. Then det(S(X, Y)) = 0 is the implicit equation of the rational curve. 

Proof 

By construction, the rows of R(x, y) are linearly independent. Since S(x, y) is 

generated from R(x, y) by Gaussian elimination, the rows of S(x, y) must also be linearly 

independent. Therefore, det(S(x, y)) = 0 must be the implicit equation of the rational curve 

given by X =x*(t) / w*(t), Y = y*(t) / w*(t) (with no base points), and hence too the implicit 

equation of the original rational curve (with base points). 

 

It seems natural to give a brief note on complexity analysis of the above mentioned 

implicitization algorithms. 

 

3.3.1.3 Complexity analysis 

The analysis of an algorithm is a measure that relates the size of the input to the time 

and space this algorithm requires to execute (and deliver the output) on a particular machine. 

To obtain standard measures, several hypothetical machines, on which programs are run, 

have been used, such as the Turing machine or RAM machine [28]. 

In the analysis of implicitization algorithms, however, there is fixed cost of computing the 

determinant of a certain matrix, the resultant. So, what interests us most is the time required 

to compute the entries of the matrix and, sure before that, the size of the matrix. 

 

The following is an analysis of the methods explained earlier. 

1. Sylvester resultant method 

The Sylvester matrix takes constant time to build up, since its entries are simply coefficients 

of polynomials used without any further processing. However, for n degree parametric input, 

the matrix is 2n × 2n. 

2. Bézout resultant method [13] 

A closed formula for the ijth entry of the Bézout resultant has already been given at the 

beginning of this section by 

Bi,j = ���k�� (ai-kbj+1+k - bi-kaj+1+k), where � = max(0,i - j) and � = min(i, n - 1 - j). 

As a result of symmetry, only the entries Bi,j for which i 
 j need to be computed. We have 

the formulas: 

Bi,j = �0�k�i (ai–kbj+1+k – bi–kaj+1+k), i + j 
 n – 1, 

Bi,j = �0�k�n–1–j (ai–kbj+1+k – bi–kaj+1+k), i + j > n – 1. 
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Each summand requires two multiplications and on addition. When n is odd, the total number 

of multiplications to compute all the Bi,j’s, i 
 j, is: 

2��0�i��n–1)/2(n – 2i) � �i + 1)  +  2��(n+1)/2�j�n–1(n – j) � ��j – n + 1) = (2n3 + 9n2 + 10n + 3)/12, 

and the total number of additions is: 

�0�i��n–1)/2(n – 2i) � ��i + 1)  + �(n+1)/2�j�n–1(2n – 2j – 1) � ��j – n + 1) = (2n3 + 3n2 + 4n + 3)/12. 

Similar results hold when n is even. Therefore the method requires O(n3) multiplications and 

additions. In [13], M. Zhang has developed a faster technique that requires only O(n2) 

additions and multiplications. 

3. Moving line method 

As shown in the description of the method, the entries of the determinant are computed from 

the solution of a 2n × 3n system of equations. This is known to be O(n3) operations. The 

moving line method power does not lie in a reduced complexity. It succeeds to solve the 

implicitization problem in the presence of base points. It can be generalized also to the 

moving conics method and can be also applied to the implicitization of parametric surfaces in 

the presence of base points [10] [13]. 

 

In the following, other implicitization methods are described. 

 

3.3.2 Implicitization of generalized trigonometric polynomials curves 

Consider a plane curve given parametrically by a generalized trigonometric polynomial, that 

is x = �1�k�n akcosk�, y = �1�k�n aksink�. It is required to obtain an implicitization of the curve, 

i.e. an equation in x and y which captures all the points on the curve, and, if any, only finitely 

many more points. 

A direct approach that makes use of algorithms already developed for the implicitization of 

rational curves is as follows: 

1) Rewrite cosk� and sink� as polynomials in cos� and sin�. Using De Moivre’s theorem 

of complex numbers, such expressions are found to be: 
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2) Parameterize cos� and sin� by the usual rational parameterization of a circle: 
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3) Implicitize the rational functions obtained from the preceding step by the 

implicitization algorithm for rational functions. 

A much simpler and computationally cheaper method, which takes advantage of the 

special structure of the problem, is devised in [11]. 

In the subsequent chapter, we devise an algorithm for this method, implement it on 

Matlab and apply it for some practical examples. 

 

Consider a curve given parametrically by 
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sin   ,   cos ��                         (3.7) 

where Raa n ��,,...,1  and 0�na . 

Thus, x + iy = �1�k�n akeik�. Renaming ei� with z, a polynomial F is obtained. Then taking the 

complex conjugate of F and multiplying by zn, another polynomial G results: 
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where ],,[, zyxCGF � , C being the field of complex numbers. 

Let H �  C[x, y] be defined by: H = resz (F, G), that is, H is the determinant of the matrix: 
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where a0 = -(x + iy) and � �iyxa ���0 , where the upper bar stands for complex conjugation. 

The polynomial H gives an implicitization of the curve defined by the equations (3.7). More 

in detail: 

�  H = 0 captures all the points on the curve. (Containment) 

�  H = 0 captures, if any, only finitely many more points. (Finite exceptions) 

�  H is a real polynomial, that is ],[ yxRH � . (Real) 
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Proof 

Let  

)}sin()cos( s.t. )( |),{(
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k kaykaxRRyxS ��� (parametric), 

T = { (x, y) �  R2 | H(x, y) = 0 }. (implicit). 

1) Containment (S � T): H captures all the points on the curve. 

Let (p, q) �  S. Then it is required to show that (p, q) �  T. 

First note that from the definition of S, there must exist Rt �  such that 
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By using the elementary fact: ,sincos itetit ��  we obtain 
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By moving the left hand sides to the right and by multiplying inte  to the second equation, we 

obtain 
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Note that the right hand sides are the polynomials F and G evaluated at p, q, ite . Let r denote 
ite .  Then, we have 

F(p, q, r) = 0 

G(p, q, r) = 0 

By the properties of multivariable resultants, we immediately have 

0),( �qpH . 

Thus, .),( Tqp �  

2) Finite exceptions (T - S is a finite set): H captures, if any, only finitely many more points. 

Now one might wonder whether S = T. Unfortunately this is not true in general, as illustrated 

by the following counter example: 
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The associated polynomial H is 
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A simple calculation shows that the point (1, 0) is on the curve T given by H = 0, but it is not 

on the curve S given by the parametric equations. In fact, in this particular case, we have 

T - S = {(1, 0)}. 

Observe that the set {(1,0)} is a finite set. Thus one naturally wonders whether T - S is always 

a finite set. It is, indeed and the following gives a technical method to check whether H 

introduces new points or not. 

Let p(r) = �
�

�� ���
n

k

knk
k rrrrra

1

1 )1)(( � . Then, if the equation p(r) = 0 hasn’t any roots of 

nonunit magnitude (i.e. hasn’t any r such that 1�rr ), the implicitization method doesn’t 

introduce new points. The proof is in [11]. 

Again for the previous example, n = 2 and p(r) = a2(( rr ) + 1) + a1 �  (1)r. Letting r being real, 

we obtain the equation -r2 - 1 + 5/2r = 0, which has nonunit magnitude roots, thus, 

introducing new points. 

3) Real (H �  R[x, y]): H has only real coefficients in spite of the fact that its definition 

involves imaginary unit number i. 

Let F and G be two polynomials in C[x1, …, xv] such that 
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where Fk �  C[x1, …, xv] and kF  is the complex conjugate of  kF  (in the sense that the 

coefficients of kF are replaced by their complex conjugates). Let ),( GFresH
vx� . Note that 

it is dealt here only with a particular case where  

zxyxxx ���� 321 ,,,3�  

and 
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But the proved result holds in general. 

From the definition of resultant, ),( GFresH
vx� , we have: 
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By flipping the matrix left-right (which can be done by n swapping of columns), we obtain 
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By flipping the matrix top-down (which can be done by n swapping of rows), we obtain 
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Since the conjugate operation commutes with determinant operation, we have 

 

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	




�

�

n

n

n

n

FF

FF
FF

FF

H

��

����

��

��

����

��

0

0

0

0

det  

Thus we finally have HH � , hence H is real. 
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Remark 

There is no overhead in computing the entries of the 2n × 2n Sylvester resultant used in the 

algorithm. In [11], this method is compared to a classical solution method using a Gröbner 

basis approach. The comparison is performed using the running time it takes for solving 

certain problems on the same machine, operating system and using the same software 

package. The ratio is 5 min to 0.3 sec for the new technique of course. 

 

Newly suggested implicitization methods, namely, fixed near implicitization and multiple 

near implicitization are described in what follows. 

 

3.3.3 Near implicitization 

For computational problems, people usually build models using polynomials systems. For 

example, many computer aided design (CAD) and ocmputer aided manufacturing (CAM) 

systems use Bézier-Bernstein splines to model mechanical components and assemblies [13]. 

Even if a model is not a polynomial system, often it may be reduced to a polynomial system 

or approximated to a polynomial system. For instance, when a system involves transcendental 

functions, we may not be able to solve the system directly. Instead we try to replace these 

functions or approximate them with polynomials, say with finite Taylor expansions. The 

reason for these reductions and approximations is that a lot is known about working with 

polynomial systems. 

In this section, we devised what we have called the near implicitization method. Parametric 

functions for which a direct method is not available are approximated using Taylor’s 

expansion. The resulting polynomial is then implicitized using the algorithm developed for 

rational functions. 

We had to compromise between the accuracy of the approximation and the execution time of 

the algorithm. This has led us to develop two variants of the method: fixed and multiple near 

implicitizations. 

 

3.3.3.1. Fixed near implicitization 

In this method, Taylor expansion is evaluated around a fixed point. Accuracy is achieved by 

expanding more terms. This method is quite simple to implement and to apply to different 

curves without modifying the algorithm. It has the disadvantage of generating large 

determinants. 
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For n degree rational parametric equations, an n × n determinant is required to obtain the 

implicit equation. This is a quadratic increase in the determinant size paid for the increase in 

the number of terms of the Taylor’s expansion. In addition, it leads to implicit equations with 

a large number of terms, less efficient in their manipulation. 

 

3.3.3.2. Multiple near implicitization 

We have to overcome the problem of large determinants, present in the previous method, by 

using what we called multiple near implicitization. Here, Taylor expansion uses fewer terms 

(thus lower degrees), but is evaluated at several points along the curve to be implicitized. The 

end result is a collection of implicit equations, each valid for an interval of the curve. The 

price paid for increased accuracy is an added number of determinants to be evaluated. 

However, this is much less severe than the overhead with the previous method, since all 

determinants are of size n × n, yielding smaller implicit equations. 

A bound checking routine is then added against which the (x, y) values are checked to direct 

them to the correct implicit equation to be used. 

 

Sample runs at the end of the next section illustrate the comparison between the two methods 

for different curves. 
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Chapter 4: IMPLEMENTATION 

 

In this chapter, we devise algorithms for all methods of implicitization mentioned in 

the previous chapter, namely, algorithms for the implicitization of parametric rational curves 

(in the absence and in the presence of base points), and the implicitization of curves 

parameterized by generalized trigonometric polynomials. We have also devised algorithms 

for our newly introduced method of near implicitization. 

In addition, we have implemented all the previous algorithms using the software 

package Matlab. Starting with version 5.1, Matlab has added a toolbox for symbolic 

computation. We have benefited from this feature in our implementations, together with the 

original capability of the software package to deal with matrices and determinants efficiently. 

We have devised and implemented three M-files (the name Matlab uses for its functions), 

which when added together may form a Matlab toolbox for implicitization. 

 

4.1 IMPLICITIZATION OF RATIONAL CURVES 
 

4.1.1 Algorithm 

The following algorithm computes the implicit equation of a curve defined parametrically 

by rational functions. It uses the method of moving lines presented in the previous chapter. It 

also combines both the cases of absence and presence of base points. 

Algorithm 4.1: Rational implicitization. 

Input: x(t), y(t), w(t) � R[t], n (degree of input) 

Output: S(x, y) �  R[x, y] such that S(x, y) = 0 is the implicit equation of the parametric 

equations: x = x(t) / w(t), y = y(t) / w(t). 

x := coefficients of x(t); y := coefficients of y(t); w := coefficients of w(t); 

construct the 2n × 3n coefficient matrix A by staggering the vectors v, y, w column-wise; 

for i := 1, 2, …, k do 

 v(i) := vectors spanning the solution space of Av = 0; 

num_of_base_points := n – k; 

remove base points and create the k × k resultant matrix S with coefficients from v(i); 

return det(S); 
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4.1.2 Implementation 

This note is intended to reveal some of the mathematical and programming features of the 

next function. 

1. The function accepts input polynomials in symbolic format (e.g. 3*t^2 + 1) rather 

than the usual Matlab convention of vector of coefficients (e.g. [3 0 1]). This is a more 

user-friendly format and is less error prone. 

2. Variable number of input arguments is supported. A missing denominator value 

defaults to 1. 

3. Numeric to symbolic conversion is performed within the function thus enabling the 

user to enter constants (numeric) for any of the input arguments. 

4. The same function has provision for dealing with the case of existence of base points. 

Their presence is automatically detected and the implicit equation for the reduced 

parametric equations is returned. 

5. The output is in symbolic format. 

 
(M-File 1) 

function [R] = implicitrat(xt, yt, wt) 

%IMPLICITRAT Implicit equation. 

%    Implicitrat(xt, yt, wt) returns the implicit equation  

%    of a parametrically defined one. 

%    R(x,y)=0 is the implicit symbolic equation. 

%    xt, yt and wt are the symbolic polynomials. 

%    If wt=1, it need not be input. Enter only xt and yt 

%    [ x=x(t)/w(t) , y=y(t)/w(t) ] is the rational parametric form. 

 

t = sym('t');  % define symbolic variable 

% Checking number of input parameters 

if (nargin < 2) error('Not enough input arguments'); end 

if (nargin == 2) wt = 0*t + 1; end 

 

% Checking type of input parameters 

if isnumeric(xt) xt = 0*t + xt; end 

if isnumeric(yt) yt = 0*t + yt; end 

if isnumeric(wt) wt = 0*t + wt; end 

 

% Convert symbolic polynomials to coefficients vector 

xn = sym2poly(xt); 
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yn = sym2poly(yt); 

w  = sym2poly(wt); 

 

n = max([length(xn)  length(yn)  length(w)])-1; % degree of parametric form 

% right align vectors by padding with leading zeros 

for i = 1:(n+1-length(xn)) xn = [0 xn]; end; 

for i = 1:(n+1-length(yn)) yn = [0 yn]; end; 

for i = 1:(n+1-length(w )) w  = [0  w]; end; 

 

xn = flipLR(xn)'; % flip left/right  

yn = flipLR(yn)'; % (least significant first) 

w  = flipLR(w)'; % then transpose 

 

A = [xn yn w]; % coefficients matrix whose columns are tx, ty and tw 

z = [];  % vector that will be used to add zero rows to matrix A 

 

for i = 2:n 

  xn = [0;xn]; yn=[0;yn]; w=[0;w]; % shift down one row 

  z = [z zeros(1,3)]; 

  A = [A;z];    % append a zero row 

  A = [A xn yn w]; 

end; 

 

format rat;   % Rational format 

S = null(A,'r');  % Null space of Ax=0 w.r.t. rational basis 

 

x = sym('x'); y = sym('y'); % define symbolic variables 

 

% Fill the resultant with moving lines 

bp = length(S(1,:)) - length(S(:,1))/3;  % Number of base points if any 

for i = 1:n-bp 

  for j = 1:n-bp 

 dr(i,j) = S(3*(j-1)+1 , i)*x + S(3*(j-1)+2 , i)*y + S(3*(j-1)+3 , i); 

  end 

end; 

 

R=det(dr); 

 

format;    % Back to default format 

% end of implicit function 
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4.1.3 Sample runs 

Sample run 1-a: (Circle) 
» t=sym('t'); 

» x=1-t^2; 

» y=2*t; 

» w=1+t^2; 

» pretty(x) 

                                         2 
                                    1 - t 
» pretty(y) 

                                       2 t 

» pretty(w) 

                                         2 
                                    1 + t 
» imp=implicit(x,y,w); 

» pretty(imp) 

                                   2        2 
                                  x  - 1 + y 
 

Sample run 1-b: (Circle, with base points) 

Here, two base points are added by multiplying numerators and denominators by (t + 2)(t +5) 
» xt=-t^4-7*t^3-9*t^2+7*t+10; 

» yt=2*t^3+14*t^2+20*t; 

» wt=t^4+7*t^3+11*t^2+7*t+10; 

 

» r=implicitrat(xt,yt,wt); 

» pretty(r) 

                                   2        2 
                                  x  - 1 + y 
 

Sample run 1-c: (Circle, with base points) 

Base points obtained by multiplying numerators and denominators by (1 + t)(1 - t) 
» xt=1-2*t^2+t^4; 

» yt=2*t-2*t^3; 

» wt=1-t^4; 

 

» pretty(implicitrat(xt,yt,wt)) 

                                   2        2 
                                  x  - 1 + y 
 

Sample run 2-a:  
» x=t^2-1; 

» y=t^3-t; 
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» pretty(x) 

                                     2 
                                    t  - 1 
» pretty(y) 

                                     3 
                                    t  - t 
» pretty(implicit(x,y)) 

                                  2    3    2 
                                 y  - x  - x 

 

Sample run 2-b: (Previous example with base points) 

Numerators and denominators multiplied by (t2 + 1). 
» xt=t^4-1; 

» yt=t^5-t; 

» wt=t^2+1; 

 

» pretty(implicitrat(xt,yt,wt)) 

                                   2    3    2 
                                 y  - x  - x 
 

Sample run 3-a: (Tacnode) 
» x=t^3-6*t^2+9*t-2; 

» y=t^2-4*t+4; 

» w=2*t^4-16*t^3+40*t^2-32*t+9; 

» pretty(x) 

                               3      2 
                              t  - 6 t  + 9 t - 2 
 
» pretty(y) 

                                  2 
                                 t  - 4 t + 4 
 
» pretty(w) 

                           4       3       2 
                        2 t  - 16 t  + 40 t  - 32 t + 9 
 
» pretty(implicit(x,y,w)) 

                      2        3          2        4        4 
                 3/4 y  - 3/2 y  - 9/4 y x  + 3/4 y  + 3/2 x 
 

Sample run 3-b: (Tacnode with base points) 

Numerators and denominators multiplied by (t2 - 1). 
» xt=t^5-6*t^4+8*t^3+4*t^2-9*t+2; 

» yt=t^4-4*t^3+3*t^2+4*t-4; 

» wt=2*t^6-16*t^5+38*t^4-16*t^3-31*t^2+32*t-9; 

 

» pretty(implicitrat(xt,yt,wt)) 
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                         2        4        4        3        2 
                - 9/4 y x  + 3/4 y  + 3/2 x  - 3/2 y  + 3/4 y 
 

4.2 IMPLICITIZATION OF GENERALIZED TRIGONOMETRIC 

POLYNOMIALS CURVES 
 

4.2.1 Algorithm 

The following algorithm computes the implicit equation of a curve defined parametrically by 

generalized trigonometric functions, using the method mentioned in the previous chapter. 

Algorithm 4.2: Implicitization of generalized trigonometric polynomial curves. 

Input: a1, a2, …, an �  R such that x(t) = � ak coskt, y(t) = � ak sinkt �  R[t]. 

Output: S(x, y) �  R[x, y] such that S(x, y) = 0 is the implicit equation of [x(t), y(t)]. 

a0 = –(x + iy);  a0�  = –(x – iy); 

create matrix S row-wise from the coefficients a0, a0� , a1, …, an as described in the previous 

chapter; 

return det(S); 

 

4.2.2 Implementation 

The function has the following features: 

1. The input is in the compact vector of coefficients form. 

2. The function uses the built-in imaginary unit i. 

3. The output is in symbolic format. 

 
(M-File 2) 

function [R] = implicitrig(a) 

% Implicitrig Implicit equation 

%    Implicitrig(a) returns the implicit equation of a generalized 

%    trigonometric parametric one 

%    R(x,y) = 0 is the implicit symbolic equation 

%    [a] is a vector of the coefficients of the parametric 

%    trigonometric polynomial, such that: 

%    x(t) = a1 cos(t) + a2 cos(2t) + ... + an cos(nt) 

%    y(t) = a1 sin(t) + a2 sin(2t) + ... + an sin(nt) 

 

%define symbolic variables x and y and symbolic imaginary unit i 

syms x y i; 
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n = length(a);  % degree of trigonometric polynomial 

 

a = flipLR(a);  % flip left/right - most significant first 

a = [a -(x+i*y)]; % add a0 

for l = 1:n-1 

   a = [a 0];  % add trailing zeros 

end; 

 

H = a;   % H is the matrix of the resultant 

   %  initialized with first row 

for l = 2:n 

   a(end) = [];  % rotate right by deleting last zero 

   a = [0 a];  % then adding a leading one 

   H = [H;a];  % add resulting row to matrix 

end; 

 

a = flipLR(a);  % flip left/right 

a(1) = -(x-i*y) ; % first conjugate row 

H = [H;a];  % add to the resultant matrix 

 

for l = 2:n 

   a(end) = [];  % rotate right by deleting last zero 

   a = [0 a];  % then adding a leading one 

   H = [H;a];  % add resulting row to matrix 

end; 

 

format rat;  % rational format 

R = expand( det(H) ); % fully expand determinant and return the resultant 

format;   % back to default 

 

% End of file 
 

4.2.3 Sample runs 

Sample run 1: 

x = 5/2 cos� - cos2�,   y = 5/2 sin� - sin2� 
» a=[5/2 -1] 

 

a = 

     5/2          -1       
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» R=implicitrig(a); 

» pretty(R) 

                                    2         2    4      2  2    4 
            - 21/4 + 25/2 x - 33/4 x  - 33/4 y  + x  + 2 x  y  + y 

 

Sample run 2: 

x = cos2� + 2/3 cos3�,   y = sin2� + 2/3 sin3� 
» a=[0 1 2/3]; 

» R=implicitrig(a); 

» pretty(R) 

  

  80            55  2   55  2         4         2  2         4      2  4 
- --- + 8/9 x - -- x  - -- y  + 10/3 x  + 20/3 x  y  + 10/3 y  - 3 y  x 
  729           27      27 

 

          2  4    6    6 
     - 3 x  y  - y  - x 

 

4.3 NEAR IMPLICITIZATION 
 

4.3.1 Algorithms 

The following are the algorithms for both methods of near implicitization that we devised in 

the previous chapter. 

Algorithm 4.3: Fixed near implicitization. 

Input: x(t), y(t) �  R[t], n, t0. 

Output: S(x, y) �  R[x, y] such that S(x, y) = 0 is the approximate implicit equation of [x(t), 

y(t)] near t0. 

x := Taylor expansion of x(t) about t0 using n terms; 

y := Taylor expansion of y(t) about t0 using n terms; 

S(x, y) := call algorithm 4.1 with x(t) = x and y(t) = y; 

return S; 

 

Algorithm 4.4: Multiple near implicitization. 

Input: x(t), y(t) �  R[t], n, t1, t2, …, tk. 

Output: S1(x, y), S2(x, y), …, Sk(x, y) �  R[x, y] such that Si(x, y) = 0 are the approximate 

implicit equations of [x(t), y(t)] in the neighborhoods of t1, t2, …, tk respectively. 

for i := 1, 2, …, k do 
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Si(x, y) := call algorithm 4.3 with x(t), y(t), n and ti ; 

return Si , i = 1, 2, …, k. 

 

4.3.2 Implementation 

The functions have the following features: 

1. Variable number of input arguments supported. 

2. Default values for non-initialized arguments are automatically assigned based on 

mathematically reasonable values. 

 

Fixed near implicitization 
(M-File 3) 

function [R] = implicitall(xt,yt,acc,on) 

%IMPLICITALL Implicit equation of a parametric one of any form 

%   implicitall(xt,yt,acc,on): returns the approximate symbolic implicit 

%   equation based on Taylor approximation of the parametric form 

%   R(x,y): is the approximate implicit symbolic equation 

%   xt, yt: are the symbolic input parametric functions for x(t), y(t) 

%   acc: is the required degree of the Taylor expansion of x(t) and y(t) 

%   on: is the point around which the expansion occurs 

 

% Check number of input arguments and initialize default values 

if (nargin < 2) error('Not enough input arguments') 

  elseif (nargin == 2) acc = 5; on = 0; 

  elseif (nargin == 3) on = 0; 

end 

 

% Taylor expansion of parametric equation 

x = Taylor(xt, acc, on); 

y = Taylor(yt, acc, on); 

 

% Expand x and y as polynomials in t 

x = expand(x) 

y = expand(y) 

 

R = implicitrat(x,y);  % Call rational implicitization function 

 

% End of file 
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Multiple near implicitization 
(M-File 4) 

function [R] = multimplicit(xt,yt,acc,on) 

% MULTIMPLICIT Implicit equation of a parametric one of any form 

%   multimplicit(xt,yt,acc,on): returns the approximate symbolic implicit 

%   equation based on Taylor approximation of the parametric form 

%   R(x,y): is the vector of approximate implicit symbolic equations 

%   xt, yt: are the symbolic input parametric functions for x(t), y(t) 

%   acc: is the required degree of the Taylor expansion of x(t) and y(t) 

%   on: is the vector of points around which the expansions occurs 

 

% Check number of input arguments and initialize default values 

if (nargin < 2) error('Not enough input arguments') 

  elseif (nargin == 2) acc = 5; on = 0; 

  elseif (nargin == 3) on = 0; 

end 

 

for i = 1:length(on) 

  R(i) = implicitall(xt,yt,acc,on(i)); 

end 

 

% End of file 
 

4.3.3 Sample runs 

Fixed near implicitization 

Sample run 1-a: (Cycloid with degree 4) 

x = � - sin�, y = 1 - cos�, 0 � � � ��. 

Taylor expansion around � � �, with highest degree = 4. 
» syms t 

» R=implicitall(t-sin(t),1-cos(t),4,3.14); 

» pretty(R) 

  

840772896868853105110332506199351152032106330580561  2 
--------------------------------------------------- x 
374144419156711147060143317175368453031918731001856 

 

        222060141882289628844436048817423471426354383723 
     + -------------------------------------------------- x y 
       46768052394588893382517914646921056628989841375232 
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           94349903129012137342236522654340624640553       3 
     - -------------------------------------------------- x 
       46768052394588893382517914646921056628989841375232 

 

          710887720654449943750293668731389762512962755     2 
     + --------------------------------------------------- x  y 
       187072209578355573530071658587684226515959365500928 

 

        6974279475880528974036294611768342552386533569      2 
     - ------------------------------------------------- x y 
       2923003274661805836407369665432566039311865085952 

 

       243694215173712468735282594055177  2 
     + --------------------------------- y 
       81129638414606681695789005144064 

 

       2532133830597283526965198372069  3 
     + ------------------------------- y 
       5070602400912917605986812821504 

 

       18328158037802034791291648551868977 
     - ----------------------------------- x 
       1298074214633706907132624082305024 

 

        607845660161387512457903284233      6979280796728801 
     - -------------------------------- y + ---------------- 
       40564819207303340847894502572032     1125899906842624 
 

The exact and approximate plots are shown in the figure below. 

Figure 4.1. The cycloid: exact and approximated to 4 terms of Taylor’s expansion. 
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Sample run 1-b: (Cycloid with degree 6) 

x = � - sin�, y = 1 - cos�, 0 � � � ��. 

Taylor expansion around � � �, with highest degree = 6. 
                   / 
8777554633625662159850332389278407910466948679202808677417592769788923169  / 
                                                                          / 

    15177100720513508366558296147058741458143803430094840009779784451085189\ 

 

                  4 
    728165691392 x  y - 551127200166221713277292771154195728615795616337997\ 

 

                                / 
    2601383308133155603371065  /  75885503602567541832791480735293707290719\ 
                              / 

 

                                               3  2 
    01715047420004889892225542594864082845696 x  y  - 678984127677786235207\ 

 

                                                                    / 
    9417958927006746693726662934487100287661499706535848670990049  /  37942\ 
                                                                  / 

    75180128377091639574036764685364535950857523710002444946112771297432041\ 

 

            3 
    422848 x  y - 138777370746571152166052358820589604902118297516928257543\ 

 

                                / 
    9499830427451512514080503  /  37053468555941182535542715202780130513046\ 
                              / 

 

                                            2  2 
    39509300498049262642688253220148477952 x  y 

 

       122840217792264524670540780028298556512253439497946713237619251    3 
     - --------------------------------------------------------------- x y  - 
       51422017416287688817342786954917203280710495801049370729644032 

 

    698980797676956676489501280252333032397935995907377706422578421767379/3\ 

    79427518012837709163957403676468536453595085752371000244494611277129743\ 

 

                5 
    2041422848 x  + 5580548065574520141033060143055391459864738249118011409\ 

 

                                     / 
    043804386822845371609398529877  /  948568795032094272909893509191171341\ 
                                   / 

 

                                                   3 
    133987714380927500611236528192824358010355712 x 

 

       200234172506554630840441624438498487068727499115  3 
     + ------------------------------------------------ y 
         89202980794122492566142873090593446023921664 
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       30213064913220738928985208102271119112912508511647720314644393341    2 
     + ----------------------------------------------------------------- x y 
        12855504354071922204335696738729300820177623950262342682411008 

 

       14723082675736534469518923359356078310639708169328247322436707     4 
     - --------------------------------------------------------------- x y 
       102844034832575377634685573909834406561420991602098741459288064 

 

       6414566412974927848045468637837460918122413391  5 
     + ---------------------------------------------- y 
       356811923176489970264571492362373784095686656 

 

       29842156284798573764470886604119581835898146138396727803885262618523  2 
     - -------------------------------------------------------------------- x 
         1645504557321206042154969182557350504982735865633579863348609024 

 

       58154058453452758283946288335517203482676334752012608199259465 
     - -------------------------------------------------------------- x y 
       1606938044258990275541962092341162602522202993782792835301376 

 

       16863324633518754644496080559110419516122174331  2 
     + ----------------------------------------------- y 
         5575186299632655785383929568162090376495104 

 

       777527676820742778573036511429845089253512679779 
     - ------------------------------------------------ x 
        356811923176489970264571492362373784095686656 

 

       3788329194915960219982727031134376216435727 
     + ------------------------------------------- y + 54069229193764370880\ 
       1393796574908163946345982392040522594123776 

 

                                                                / 
    918865215549932095611625992034893246173933837393273279719  /  118571099\ 
                                                              / 

    37901178411373668864889641764174846429761593757640456602410304475129446\ 

 

       2  3 
    4 x  y  - 3552687238741526362270862949651776278262129923396665874171913\ 

 

                               / 
    913644991570562720302189  /  758855036025675418327914807352937072907190\ 
                             / 

 

                                              4 
    1715047420004889892225542594864082845696 x 

 

       26767478941403054174180015224451741679481247543  4 
     + ----------------------------------------------- y  + 499952341654287\ 
        89202980794122492566142873090593446023921664 

 

                                                                         / 
    821029427020567066249764779483300058378409625552450209524337552433  / 
                                                                       / 

    29642774844752946028434172162224104410437116074403984394101141506025761\ 



� ��

 

               2     168196489045043170104733414807 
    187823616 x  y - ------------------------------ 
                      154742504910672534362390528 

 

 

Figure 4.2. The cycloid: exact and approximated to 4 and 6 terms of Taylor’s expansion. 
 

Sample run 2: (Archimedean spiral) 

x = � cos�, y = � sin�, 0 � � � �. 

Taylor expansion around � � �/2, with highest degree = 4. 
» syms t 

» R=implicitall(t*cos(t),t*sin(t),4,3.14/2); 

» pretty(R) 

  

216708963735762083186737159691953777966243485031  2 
------------------------------------------------ x 
91343852333181432387730302044767688728495783936 

 

       8729652038345735519753946644540160040896085519 
     + ----------------------------------------------- x y 
       11417981541647679048466287755595961091061972992 
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       86551222197331528483046595549607505120883217129   3 
     + ------------------------------------------------ x 
       182687704666362864775460604089535377456991567872 

 

       135622129864887069635961170422116550756720753309  2 
     + ------------------------------------------------ x  y 
       182687704666362864775460604089535377456991567872 

 

       4427378773065481239495366403164863481973335327     2 
     + ----------------------------------------------- x y 
       11417981541647679048466287755595961091061972992 

 

       205361304062612982716731424655369  2 
     + --------------------------------- y 
       40564819207303340847894502572032 

 

       2738556671879398956382582417785   3 
     + -------------------------------- y 
       40564819207303340847894502572032 

 

       56093980003778785405116612813373 
     + -------------------------------- x 
       20282409603651670423947251286016 

 

       175860795400626713133792848425681     1951784264959249 
     - --------------------------------- y + ---------------- 
       20282409603651670423947251286016      2251799813685248 

Figure 4.3. The Archimedean spiral: exact and approximated to 4 terms of Taylor’s expansion. 
 

Multiple near implicitization 

Sample run 1: (Cycloid) 
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x = � - sin�, y = 1 - cos�, 0 � � � ��. 

Taylor expansions around � � �/2 and 3�/2, with highest degree = 4 in both cases. 
» R=multimplicit(t-sin(t),1-cos(t),4,[3.14/2,3*3.14/2]); 

 

The first curve is plotted in the interval 0 � � � � ���� ��	 
	���� �  � � � ��� ��	 ��������

plot is obtained using Matlab. 

Figure 4.4. The cycloid implicitized around �/2 and 3�/2 with 4 terms of Taylor’s expansion. 
 

Sample run 2: (Archimedean spiral) 

x = � cos�, y = � sin�, 0 � � � �. 

Taylor expansion around � � �/4 and 3�/4, with highest degree = 4 in both cases. 
» R=multimplicit(t*cos(t),t*sin(t),4,[3.14/4,3*3.14/4]); 

 

The first curve is plotted in the interval 0 � � � �/2 and the second in the interval � � � �

3�/4. The following plot is obtained using Matlab. 
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Figure 4.5. The Archimedean spiral implicitized around �/4 and 3�/4 with 4 terms of Taylor’s expansion. 
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Chapter 5: CONCLUSION AND FUTURE WORK 

 

“Science is what we understand well enough to explain to a computer. Art is everything else 

we do. During the past several years, an important part of mathematics has been transformed 

from an Art to a Science. No longer do we need to get a brilliant insight in order to evaluate 

sums of binomial coefficients, and many similar formulas that arise frequently in practice. 

We can now follow a mechanical procedure and discover the answers quite systematically.” 

[Donald Knuth, 1995]. 

The main purpose of this thesis has been to convey this idea. First, we have briefly reviewed 

a wide variety of computer algebra problems and the tools used to automate their solution. 

Then, one specific problem, namely that of implicitization of parametric functions, is 

investigated in depth. We have searched as many implicitization methods as the literature 

provides, devised algorithms for these methods and implemented them using the Matlab 

software package. 

Additionally, we have tackled the problem when a direct method is not available to deal with 

the parametric functions. Our method, which we called near implicitization, approximates the 

problem in order to be able to handle it. We have proposed two ways to attack the problem, 

compromising between accuracy and running time. 

In brief, our algorithms and implementations have the following features: 

• We have tried to cover practically all forms of parametrically defined plane curves. 

Efficiency was a major concern, but simplicity of the output results was also considered. 

• Implementation on a popular software package such as Matlab benefits from its large 

“toolbox” and makes our M-files (Matlab functions) available to a wide area of users. 

• Most of our implementations accept symbolic input and deliver symbolic results. This 

feature illustrates the basic topic of the thesis: computer algebra. 

Future work and open points 

Our emphasis in the present work was on the implicitization of plane curves. Suggested work 

than can be added to ours is proposed hereafter. 

• Adding a third dimension and promoting to the implicitization of 3D curves. 

• Implementation of more efficient methods, where applicable, such as the method of 

moving conics. 

• The problem of implicitization of surfaces is still far from a complete solution. This is 

an open point where research is taking place. 
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APPENDIX A: Computer Algebra Systems 

 

The major purpose of a Computer Algebra System is to manipulate a formula symbolically 

using the computer. For example, expanding, factorizing, root finding, or simplifying an 

algebraic polynomial, are some of the common uses of such systems. However, many 

systems have gone far beyond that and also offer other functionalities like numerical 

calculation, graphics, and simulations. 

Many Computer Algebra Systems are currently available in the market. In what follows, a 

brief overview of some of these is presented. For more information, most of the systems 

presented have web sites, some publish journals regularly, or even organize conferences and 

workshops. 

 

Axiom  

AXIOM is a powerful computer algebra system which provides a complete environment for 

anyone needing to manipulate and solve mathematical formulae. Its application is wide-

ranging, from pure mathematics research through branches of physics, chemistry, biology and 

engineering to financial modelling and cryptography.  

 

Macsyma  

Macsyma is a powerful mathematical software package, while remaining ease of use. It 

contains facilities for algebra, linear algebra, calculus, numerical analysis, on-line help 

system, versatile graphics, and system utilities. Macsyma includes 1,300 executable 

demonstrations easily accessible at many points in the help system. Also hypertext 

descriptions of 2,900 topics, a browser with 900 topics and commands, and 900 type-in 

command templates.  

 

Recent mathematical improvements include enhanced speed in solving linear and algebraic 

equations, stochastic mathematics, better evaluation of special functions, and enhanced tensor 

analysis. It is smarter about using the algebraic signs of expressions to simplify results.  

 

MAGMA  

Magma is a radically new system designed to solve computationally hard problems in 

algebra, number theory, geometry and combinatorics. Magma provides a mathematically 
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rigorous environment for computing with algebraic and geometric objects. The basic design 

principles are:  

• Algebraic structures and their morphisms as first class objects.  

• Language design reflecting the structure of modern algebra.  

• Kernel implementation of important structures to achieve outstanding 

performance.  

• A strong typing scheme derived from modern algebra whereby types correspond 

to algebraic structures (magmas) to provide mathematical rigor and clarity.  

• Seamless integration of algorithmic and database knowledge.  

• Structures supported range across group theory (finitely presented groups, 

blackbox groups, abelian groups, soluble groups, permutation groups, matrix groups, 

finitely presented semigroups, and characters of finite groups), rings (the integers with 

optimized arithmetic, residue class rings, univariate and multivariate polynomial rings, 

invariate rings of finite groups, valuation rings), fields (finite fields, quadratic fields, local 

fields, cyclotomic fields, number fields, rational function fields, and the rationals), 

algebras (group algebras, matrix algebras, finitely presented algebras, associative 

algebras, and algebras defined by structure constants), power and Laurent series,vector 

spaces, modules, lattices, algebraic geometry (elliptic curves, zero-dimensional varieties), 

graphs, incidence structures and designs, finite planes, enumerative combinatorics, and 

coding theory.  

 

Maple    

Maple V is a powerful mathematical problem-solving and visualization system used world-

wide in education, research, and industry. Its principal strength is its symbolic problem 

solving algorithms. Maple V also has a programming language (like Pascal) which allows to 

extend the library of 2500+ functions. 

 

Mathematica    

Industry leading fully integrated environment for technical and scientific computing. Quick, 

accurate, numeric and symbolic computations. Automatic arbitrary precision control for 

numeric calculations. Creates fully interactive and customizable technical documents 

including editable/evaluable typeset quality formulas, 2-D and 3-D graphics, sound, and 

animations.  
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REDUCE    

REDUCE is an interactive program designed for general algebraic computations of interest to 

mathematicians, scientists, and engineers.  

 

 

MuPAD  

MuPAD is a system for symbolic and numeric computation, parallel mathematical 

programming, and mathematical visualization. It is intended to be a 'general purpose' 

computer algebra system. Programming in MuPAD's own programming language is 

supported by a comfortable source code debugger. The concept of dynamic modules enables 

the user to integrate C/C++ functions as well as complete software packages into MuPAD. 

MuPAD has easy-to-use language constructs for parallel programming. A pre-release version 

for parallel programming exists for SGI, Sequent, and Sun multiprocessor machines. 

Window-based user interfaces for MuPAD exist for the X-Window-System, Apple 

Macintosh, and Windows 95/NT.  

 

DERIVE 

DERIVE is a symbolic mathematics package which includes: exact arithmetic, factoring, 

partial fraction expansion, equation solving, 2D and 3D plots, derivatives, integrals, 

differential equations, Taylor and Fourier Series, Laplace Transforms, vectors and matrices. 

One drawback of DERIVE is that it cannot be programmed efficiently to perform a given 

sequence of operations. However, the lack of this facility is compensated by the ease-of-use 

which the menu-driven nature of the package provides, as opposed to a command-driven 

computer algebra package, such as MuPad or Reduce. 

 

A more detailed list of available systems can be found at: SAL Computer Algebra Systems - 

[http://chpc06.ch.unito.it/linux/A/1/]. Here is an overview: 

One) General purpose systems: 

 

Axiom:   A computer algebra system with powerful symbolic solver.  

bernina: Interactive program with interface to a computer algebra library.  

Computer Algebra Kit: Collection of small programs for computer algebra.  
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CASA: computer algebra software for constructive algebraic geometry in Maple. 

CoCoA: a special-purpose system for doing Computations in Commutative Algebra.  

DrMath: online symbolic math and computer algebra system.  

FELIX: computations in and with algebraic structures and substructures.  

FORM: symbolic manipulation for large mathematical problems.  

GAMS: a high-level modeling system for mathematical programming problems.  

GAP: computational discrete algebra emphasized on group theory.  

GiNaC: open framework for symbolic computation within C++.  

 GRG: a computer algebra program for differential geometry, gravitation and field theory.  

GRTensorII: computer algebra package for differential geometry.  

HartMath: a computer algebra program written in Java.  

Kalamaris : mathematical package similar to Mathematica.  

Interpreter for symbolic manipulation: a simple computer algebra system in C++ or Java. 

JACAL: symbolic simplification and manipulation of equations.  

lundin.Symbolic Math: Java class library for symbolic differentiation and evaluation.  

Macaulay 2: algebraic geometry and commutative algebra.  

Macsyma: a powerful and general purpose mathematical tools.  

MAGMA: a system for algebra, number theory, geometry and combinatorics.  

Maple: numerical computation, symbolic algebra, functions, graphics, programming.  

MAS: experimental computer algebra system.  

Mathematica: numerical computation, symbolic algebra, functions, graphics, programming.  

Mathomatic: artificially intelligent algebraic manipualtor program.  

MAXIMA: computer algebra system for symbolic and numerical computations.  

Symaxx: a frontend for Maxima computer algebra system.  

Mock-Mma: simple mock-up of Mathematica in Common Lisp.  

MuPAD: symbolic and numeric computation, parallel programming and visualization.  

Punimax: computer algebra system for symbolic and numerical computations.  

Reduce: general algebraic computations.  

Redten: symbolic algebra package for tensor objects.  

Ricci: symbolic tensor computations for differential geometry. 

Risa/Asir: experimental computer algebra system with programming libraries.  

SACLIB: library of C programs for computer algebra.  

SAML: a simple algebraic math library.  
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SimLab: CLISP code for computer algebra substrate and triangulations of 2D areas.  

Singular: a computer algebra system for computing information about singularities.  

SISYPHOS: computing in modular group algebras of p-groups.  

Software from Symbolic Computation Group: symbolic computation in physics.  

text_deriv: a package designed to do simple symbolic derivatives.  

Yacas: a small and highly flexible computer algebra language.  

 

Two) Specialized systems: 

 

Algae: a high-level interpreted language for numerical analysis.  

AUTOLEV: a symbol manipulation program for analyzing the dynamics of mechanical 

systems.  

CAM C++ Class Libraries: graphics, matrix/vector and symbolic function classes.  

FOAM: computer algebra program for high energy physics.  

GNU Calc: an advanced calculator that runs as part of the GNU Emacs environment.  

 meditor: a text editor with some symbolic computation capabilities.  

Pari/GP: formal computations on recursive types at high speed (CA system in number 

theory).  

SHEEP: a computer algebra system designed primarily for general relativity.  

SIMATH: computer algebra system for number theory.  

Simple Lisp:  a simple lisp interpreter with symbolic math library for tensors.  

Tmath: a Tcl interface to Matlab and Mathematica.  
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APPENDIX B: History of Symbolic Computation 

 

The primary motivation for the initial development of digital computers was to solve numeric 

problems. Because of this tendency for using a computer to solve numeric problems, there 

has been a major shift in the technology of applied mathematics. Prior to the existence of 

digital computers, numerical analysis was a very tedious subject. With the emergence of 

computers, numerical analysis method developed much more and analytic techniques tended 

to be ignored. [5] 

Even in our days, many mathematicians think there is a division of labor between man and 

computer: a person applies the appropriate algebraic transformations to the problem at hand 

and, finally, arrives at a program which then can be left to a "number crunching" computer. 

However, this is an error. Computers are general-purpose machines that can also be used for 

transforming, combining and computing symbolic algebraic expressions. In other words, 

computer can not only deal with numbers, but also with abstract symbols representing 

mathematical formulas. This fact has been realized much later and is only now gainig 

acceptance among mathematicians and engineers. [2] 

One cannot exactly determine when the field of computer algebra began, but at least some 

cornerstones can be outlined as follows: 

• The field originated from the needs of physics researchers. 

• The first programs dealing with formulas were written by physicists in order to 

save them from performing long, tedious, error prone calculations by hand. 

• 1955 - First programs for formula derivation. 

• 1965 - First general-purpose computer systems working with algebraic expressions. 

• 1975 - A new research field emerged with its own conferences, journals, etc.  

• 1990 - General spreading of computer algebra systems into almost all branches of 

science. 

[Cf.: Richard Liska, http://www-troja.fjfi.cvut.cz/~liska/ca/] 

Chronology of computer algebra systems 

Brian Evans, [evans@eedsp.gatech.edu] has compiled the following chronology of 

computer algebra systems. 
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System name Year Related systems e-mail address, tel. 

ALPAK              1964 ALTRAN   (Bell Labs) 
ALTRAN             1968  (Bell Labs) 
FORMULA (Algol)    
FORMAC  FORMAC (PL/I) (IBM) 
FORMAC (PL/I)   (IBM) 
MATHLAB (DECUS) 1968 MACSYMA (DEC) 

CAMAL    
REDUCE 1968  reduce-netlib@rand.org 

  MACSYMA  1970 Symbolics Macsyma, 
VAXIMA, DOE-
Macsyma, ALJABR, 
ParaMacs 

(See Below) 

SchoonShip 1971  archive.umich.edu (FTP) 

muMath             1979 Derive  
VAXIMA 1980  (312) 972-7250 
SMP 1982 Mathematica NOT ON MARKET 
Symbolics MACSYMA 1983  macsyma-service@symbolics.com 
DOE-Macsyma 1984 ALJABR gcook@llnl.gov 

Maple 1985  wmsi@daisy.waterloo.edu 

MathCAD 1985(?) Mathcad 1-800-MATHCAD 
Powermath 1985  NOT ON MARKET 
REDUCE/PC 1986  reduce-netlib@rand.org 

Derive 1988  (Soft Warehouse Inc.) 
Mathematica 1988  info@wri.com 

Theorist 1988  (415) 543-2252 (Prescience Corp) 
PARI 1988(?)  ftp to math.ucla.edu 

FORM 1989  form@can.nl 

MACSYMA/PC 1989  macsyma-service@symbolics.com 
ALJABR 1991  aljabr@fpr.com 

Mathcad 1991  1-800-MATHCAD 
SymbMath 1991  chen@deakin.oz.au 
Axiom 1991  (708) 971-2337 
ParaMacs 1991  lph@paradigm.com 

SIMATH 1992  marc@math.uni-sb.de 
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