
Spatial Graph Grammars for Graphical
User Interfaces

JUN KONG

The North Dakota State University

and

KANG ZHANG and XIAOQIN ZENG

The University of Texas at Dallas

In a graphical user interface, physical layout and abstract structure are two important aspects of

a graph. This article proposes a new graph grammar formalism which integrates both the spatial

and structural specification mechanisms in a single framework. This formalism is equipped with

a parser that performs in polynomial time with an improved parsing complexity over its nonspa-

tial predecessor, that is, the Reserved Graph Grammar. With the extended expressive power, the

formalism is suitable for many user interface applications. The article presents its application in

adaptive Web design and presentation.

Categories and Subject Descriptors: D.1.7 [Programming Techniques]: Visual Programming;

D.2.2 [Software Engineering]: Design Tools and Techniques—User interfaces; F.4.2 [Mathe-
matical Logic and Formal Languages]: Grammars and Other Rewriting Systems; H.5.2 [In-
formation Interfaces and Presentation]: User Interfaces

General Terms: Human Factors, Languages

Additional Key Words and Phrases: Graph grammars, visual languages, spatial specification, visual

programming, diagram parsing

1. INTRODUCTION

1.1 Background

Visual notations have been used in many disciplines and range from an archi-
tect’s initial design to precise technical communication using rigorously defined

This research was partially supported by the National Science Foundation under grant number

IIS-0218738.

Authors’ addresses: J. Kong, Department of Computer Science and Operations Research, The North

Dakota State University, ND 58105; email: jun.kong@ndsu.edu; K. Zhang, Department of computer

Science, The University of Texas at Dallas, TX 75083; email: kzhang@utdallas.edu; X. Zeng, De-

partment of Computer Science and Engineering, Hohai University, Nanjing 210098, China; email:

xzeng@hhu.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1073-0616/06/0600-0268 $5.00

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006, Pages 268–307.

Spatial Graph Grammars for Graphical User Interfaces • 269

notations [Chok and Marriott 2003] such as Petri nets and flowcharts, etc. As
a natural offspring of string-based formal language theory, graph grammars
provide a well-established foundation [Rozenberg 1997] for visual program-
ming languages (VPLs) and a formal approach to performing computations di-
rectly on visual objects thereby inspiring wide use of visual tools and interfaces.
Capable of visually specifying configurations through graph term-rewriting,
graph grammars have found many applications such as software architectures
[Dean and Cordy 1995] and their evolution [Métayer 1998], pattern recogni-
tion [Blosetin and Schürr 1999], and many others applications [Ehrig et al.
1999a, 1999b; Mens et al. 2002; Bottoni and Minas 2003; Heckel et al. 2003;
Kreowski and Knirsch 2002]. This article focuses on a new graph grammar
formalism which is application-independent and serves as a high-level visual
specification language to interactive designs such as adaptive layout of multi-
media documents [Qiu et al. 2003] and intelligent diagram editors [Chok and
Marriott 2003].

Different from string grammars expressing sentences in sequences of char-
acters, graph grammars are suitable for specifying visual languages expressed
in a multidimensional fashion [Burnett 2006]. In other words, in addition to the
left and right relationships found in a text, graphical objects in a visual program
can hold various spatial relationships such as above and contain, etc. As noted
by Rekers and Schürr [1996], the physical layout and the meaning of a diagram
are two important aspects of a visual sentence. A spatial relations graph (SRG)
explores spatial relationships between pictorial objects while an abstract syn-
tax graph (ASG) provides structural information in a succinct form. The SRG
is geared toward visualization, and the ASG toward interpretation [Rekers and
Schürr 1996]. The distinction between SRGs and ASGs offers different repre-
sentations of the same concept simultaneously [Bardohl et al. 1999].

1.2 Motivation

Developing expressive and intuitive graph grammar formalisms to specify
VPLs has been an active research direction [Rozenberg 1997]. Few researchers,
however, have introduced spatial information to the abstract syntax. Schürr
[1994] proposed a triple graph grammar to specify interdependencies between
graph-like structures at a high level. With one graph grammar specifying
the SRGs and another defining the ASGs, the triple graph grammar main-
tains a loose correspondence between the abstract and spatial aspects of VPLs
by introducing additional edges connecting SRG objects to the correspond-
ing ASG objects [Rekers and Schürr 1996]. Aiming at syntax-directed layouts,
Brandenburg [1995] proposed the layout graph grammar which directly draws
rewriting rules on a plane and generates a desirable layout according to the
spatial relationships defined in rewriting rules.

These approaches explore spatial relationships from the layout perspective
without direct contribution to the interpretation of a graph. Picture description
formalisms, such as the constraint multiset grammar (CMG) [Marriott 1994],
are powerful in interpreting pictures through spatial relationships among vi-
sual objects. Unlike graph grammars, they do not make a strict distinction
between objects (nodes) and relationships (edges). Instead, all needed spatial

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

270 • J. Kong et al.

Fig. 1. A sequence in the XML schema.

or abstract relations are implicitly represented as constraints over attribute
values of objects which may cause side effects that create new relationships to
unknown context elements.

Due to the visual nature of VPLs, we argue that the spatial information
should not only contribute to the representation, but also explicitly and intu-
itively convey structural and semantic information over involved objects. For
example, instead of using attributes to specify an order over a collection of ob-
jects, we can visually specify the order through the spatial relationship between
the involved objects (e.g., the left object has a smaller index than the right one).
Figure 1 demonstrates a sequential specification in the XML schema. With tra-
ditional graph grammars, attributes or extra edges are needed to determine
the sequential order of the elements FirstName and LastName. By introducing
spatial information to the abstract syntax, we can visually specify the sequence
of the elements through their spatial configuration without using an extra edge
or attribute, for example, FirstName should occur before LastName by the de-
fault left-right order. In addition, spatial configurations can be used to spec-
ify sophisticated communications when modeling complex systems. Therefore,
spatial information, when effectively used, can reduce the number of edges and
provide concise representations.

This article presents a spatial graph grammar formalism (SGG) which intro-
duces spatial notions into the abstract syntax and takes both the connectivity
and spatial relationships among objects as the precondition of a graph transfor-
mation. The spatial extension makes the SGG suitable for specifying properties
and semantic information with spatial arrangements and reduces the gap be-
tween the concrete representation of visual languages and the specification of
graph grammars. Furthermore, the spatial specification can be used to narrow
down the search space and derive an efficient parsing algorithm.

1.3 Overview

Computers are increasingly seen not only as computation tools but more as
communication tools [Bottoni et al. 1999]. With intuitive appearances, graphs
popularize visual communications where information is conveyed with a graph-
ical representation between computers and end users. In order to perform a vi-
sual interaction properly, a computer has to understand the information carried
by a graph. We focus on a visual language formalism which provides a formal
basis for graphical specifications. Based on the formalism, computers can au-
tomatically perform visual communication by validating and understanding
user-manipulated graphs.

Figure 2 illustrates the concept of a visual interaction framework based on
the spatial graph grammar formalism. In the form of the SGG, a visual interface

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 271

Fig. 2. Visual interaction framework based on the spatial graph grammar formalism.

developer can specify a set of graphs with valid meanings. Upon a grammatical
specification, a metatool like VisPro [Zhang et al. 2001c] can automatically
generate a graphical environment supporting visual interactions. In the gener-
ated environment, end users can directly communicate with computers by ma-
nipulating graphs. All communicated messages with a graphical appearance
will be validated by the SGG parser. Therefore, based on the SGG, a visual
interface developer uses a metatool to generate a graphical environment which
can be used by end users.

As presented in Figure 2, the fundamental concept is the spatial graph gram-
mar formalism together with its parser, developed from a context-sensitive
graph grammar formalism, the Reserved Graph Grammar (RGG) [Zhang et al.
2001a]. Though the RGG is powerful in specifying structural relationships
among objects, it has no support for describing what a graph looks like. The
spatial graph grammar formalism (SGG) is enhanced from the RGG with a
spatial extension. In general, the new formalism satisfies the following criteria.

—Expressive. Potential spatial relationships can be clearly specified without
sacrificing the expressiveness of structural specifications.

—Flexible. Though tightly coupled with spatial configurations, the structural
part of the grammar can be independently used, just as the original RGG,
without relying on spatial specifications.

The SGG takes spatial notions as language constructs which distinguishes it
from other graph grammar formalisms. Existing graph grammars model struc-
tures through nodes and edges while the SGG further introduces spatial infor-
mation to the abstract syntax. In summary, the technical contributions of this
article are the following.

—The SGG extends the expressive power of the RGG by introducing a spatial
specification mechanism. It provides a high-level language for explicitly ex-
pressing both abstract and spatial relationships within a single grammatical
definition. The expressiveness of the SGG is demonstrated by presenting an
example of specifying adaptive Web interfaces.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

272 • J. Kong et al.

Fig. 3. A node.

—With the help of spatial specifications, the parser of the SGG can narrow
down the search space and thus achieve a better performance than that of
the RGG.

The rest of this article is organized as follows. Section 2 introduces the Re-
served Graph Grammar formalism, the predecessor of the spatial graph gram-
mar formalism. Section 3 presents the spatial relations that can be defined in
the SGG. Section 4 formally defines the SGG formalism. Section 5 analyzes the
parsing time complexity. Section 6 gives a running example, followed by Section
7 that discusses some potential applications using the proposed formalism. Sec-
tion 8 reviews related work, and Section 9 concludes the article and proposes
future research.

2. THE RESERVED GRAPH GRAMMAR FORMALISM

Graph grammars provide a theoretical foundation for visual languages
[Rozenberg 1997]. A graph grammar consists of a set of rewriting rules which
dictate the way to construct a complete graph, usually called a host graph, from
nodes and edges. Graph grammars specify all possible legal interconnections
between individual objects, that is, any edge in a valid graph can be eventually
derived from a sequence of applications of rewriting rules. Conversely, an un-
expected edge signals a violation on the graph grammar. A graph grammar can
be used to glue various components into a complete system.

The Reserved Graph Grammar is a context-sensitive graph grammar for-
malism [Zhang et al. 2001a] which is expressive in specifying various types of
graphs. The RGG formalism is expressed in a node-edge format, similar to the
box-and-line drawings [Allen and Garlan 1994] (or node-link diagrams [Irani
and Ware 2003]) to suit automatic analyses through graph grammars. In an
RGG, nodes are organized into a two-level hierarchy, where a large rectangle
representing the node itself is the first level, and embedded small rectangles
called vertices are the second level. Figure 3 depicts a typical RGG node which
includes various vertices. In a node, each vertex is uniquely identified. A node
can be viewed as a module, a procedure, or a variable, etc., depending on the
design requirement and granularity. A vertex functions as the connecting point
attached to an edge. Edges are used to denote communications or relationships
between nodes.

Based on nodes and edges, the RGG offers a formal approach to specifying
the evolution of graphs. In general, a graph grammar includes a set of rewriting
rules, and each rule consists of two subgraphs, called the left graph and the right
graph. The application of a rule to a host graph, that is, a graph transformation,
replaces a subgraph in the host graph that matches the left (or right) graph of
the rule by the right (or left) graph. The RGG uses the marking technique which
classifies vertices as marked and unmarked ones to address the embedding

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 273

issue, that is, building connections between the replacing of the subgraph and
the surrounding of the replaced subgraph in the host graph. A marked vertex
is identified by a unique integer and preserves its associated edges connected
to nodes outside a replaced subgraph.

The RGG provides a means of associating data to a node in terms of attributes.
An attribute expresses a piece of data related to the object represented by a node
and can be retrieved and evaluated in the process of parsing. Therefore, a graph
represented in RGG notations can be executable.

The RGG is equipped with a deterministic parsing algorithm, called the
selection-free parsing algorithm (SFPA) [Zhang 1998]. A graph grammar must
satisfy the selection-free condition in order to use SFPA. Informally, the
selection-free property ensures that different orders of applications of rewrit-
ing rules produce the same result. We developed an algorithm to automatically
check whether a graph grammar satisfies the selection-free condition [Zhang
et al. 2001a]. Though it is unclear how this condition limits the application
scope, it is interesting to note that even grammars for some complicated graphs
satisfy the condition [Zhang et al. 2001b]. We proved that a failed parsing path
indicates an invalid graph, and thus SFPA is efficient with a polynomial parsing
complexity by only trying one parsing path [Zhang et al. 2001a].

3. SPATIAL RELATIONSHIPS

A graph grammar precisely defines a class of valid configurations at a certain
abstract level. Nodes and edges represent objects and relationships, respec-
tively. Graph grammars have the inherent ability to express visual language in
a multidimensional fashion, and the SGG further incorporates spatial notions
into language constructs. This section introduces spatial relationships that can
be qualitatively defined in the SGG.

A qualitative representation1 of spatial information utilizes discrete quan-
tity space in which distinctions are relevant to the application domain. In other
words, distinctions are only introduced if they are necessary to model some
particular aspects of the domain [Cohn 1997]. Many spatial models have been
proposed to qualitatively represent spatial information from different aspects.
Based on some well-established models, the SGG allows visual interface devel-
opers to specify qualitative spatial information in different application domains.

In general, the description of a scene of objects in space involves spatial
aspects that have an expression both in terms of inherent characteristics of each
object and in the context of other objects [Clementini et al. 1997]. The size and
shape of an object illustrate its own properties while spatial relations express
configurations among distinct spatial objects. Spatial relations, which the SGG
takes as language constructs, can be classified into several types [Pullar and
Egenhofer 1988] including direction relations that describe an order in space,
topological relations that express neighborhood and incidence, and distance
relations such as near and far. Furthermore, alignment relations are introduced
to illustrate projections of two objects on the x/y-axis.

1The term qualitative is widely used in the spatial cognition community, for example, Clementini

et al. [1997]; Cohn [1997]; Cohn and Hazarika [2001]; and Frank [1996].

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

274 • J. Kong et al.

Fig. 4. Topological illustrations.

3.1 Topology

Topology is perhaps the most fundamental aspect of space [Cohn and Hazarika
2001], and topological relations are able to describe all aspects of the scene
which are invariant with respect to common linear transformations (e.g., trans-
lation, rotation) [Clementini et al. 1997]. In the SGG, topological relationships
are defined over objects satisfying the following properties:

—an area connected with no holes; and

—a line that has no self intersections, and is either circular or has only two
endpoints.

By viewing an object λ as a point set, topological relationships are classified ac-
cording to how two objects intersect with each other. In order to express various
intersecting cases, an object is subdivided into the boundary2 and interior, de-
noted as ∂λ and λ◦. Using the dim3 function which determines the dimension of
a point set, Clementini et al. [1993] grouped related cases together and summa-
rized five fundamental and mutually exclusive topological relationships, that is,
touch, in, cross, overlap, and disjoint. Informally, two objects touch each other if
they share common points only on the boundary. One object is in another if the
points of the former are completely contained in the latter. The cross relation-
ship explores the intersecting case between two lines or between a line and an
area. A line crosses another if they have a common internal point; a line crosses
an area if the line penetrates the interior of the area. The overlap relationship
illustrates the intersection between two homogeneous objects, that is, between
a pair of lines or areas. Different from touch and cross, overlap requires the
intersecting part to be of the same dimension as the involved objects. For ex-
ample, two lines overlap each other only if their intersection is a line. Figure 4
illustrates a visual example for each relationship. The five relationships are
formally defined as the following [Clementini et al. 1993]:

—λ1 touches with λ2 iff (λ◦
1 ∩ λ◦

2 = Ø) ∧ (λ1 ∩ λ2 �= Ø);

—λ1 is in λ2 iff (λ◦
1 ∩ λ◦

2 �= Ø) ∧ (λ1 ∩ λ2 = λ1);

—λ1 is cross with λ2 iff dim(λ◦
1 ∩ λ◦

2) = (max(dim(λ◦
1), dim(λ◦

2)) − 1) ∧ (λ1 ∩ λ2 �=
λ1) ∧ (λ1 ∩ λ2 �= λ2);

2The boundary of a point is always empty; the boundary of a line, is empty in the case of a circular

line, while otherwise it is the set of the two separate endpoints; the boundary of an area is the

circular line consisting of all the accumulation points of the area [Clementini et al. 1993].
3S is a general point set, and the dim function is defined as the following [Clementini et al. 1993]:

dim(S) =

⎧⎪⎪⎨
⎪⎪⎩

−1 if S = Ø;

0 if S contains at least a point, and no lines or areas;

1 if S contains at least a line and no areas;

2 if S contains at least an area.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 275

Fig. 5. The first level of granularity.

—λ1 overlaps with λ2 iff (dim(λ◦
1) = dim(λ◦

2) = dim(λ◦
1 ∩ λ◦

2)) ∧ (λ1 ∩ λ2 �= λ1) ∧
(λ1 ∩ λ2 �= λ2);

—λ1 is disjoint with λ2 iff λ1 ∩ λ2 = Ø.

Developers can easily elaborate the five topological relationships to finer
granularities as required by the application. For example, a total of 52 topo-
logical relationships defined in the dimension extended approach can be rep-
resented by the logical conjunction/disjunction of those five basic relationships
[Clementini et al. 1993].

3.2 Direction

In addition to topological relationships, direction relations are another impor-
tant aspect describing spaces where we approximate objects as points. A direc-
tion describes the location of a primary object relative to the reference object and
is viewed as a binary function that maps two points onto one element belonging
to a set of symbolic directions, for example, D4 = {N, E, S, W} or more exten-
sively, D8 = {N, NE, E, SE, S, SW, W, NW}. The SGG adopts the cone-based
approach [Peuquet and Zhan 1987] that partitions a plane into cone-shaped
areas and relates the angular direction between the primary object and the
reference object to the nearest named direction. For example, north may refer
to a cone-shaped region of 45◦ with an axis pointing to the true north in D8.
With a composition table [Frank 1996], one can deduce a new direction from a
pair of known directions.

3.3 Distance

A set of distance relations partitions the space into regions centered on the
reference object. A distance distinction is made by comparing magnitudes of
distances and assigning to a distance an appropriate distance relation. In gen-
eral, at a given granularity, space surrounding a reference object is partitioned
according to a number of totally ordered distance distinctions Q = {q0, q1, . . . ,
qn}, where q0 is the distance closest to the reference object, and qn is the one
farthest away (to infinity) [Hernández et al. 1995]. For example, the first level
of granularity distinguishes close from far as presented in Figure 5, that is,
Q = {close, far}. The two distance relationships divide the plane into two re-
gions where the outer region goes to infinity. Each distance distinction qi is
associated with a distance range δi. If the distance between two objects falls in
δi, they have a distance relationship qi.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

276 • J. Kong et al.

Fig. 6. Alignment relationships.

3.4 Alignment

The comparison of projections of objects on the x/y-axis provides additional
spatial information, and thus alignment relationships are introduced to sup-
plement direction, topology, and distance. Allen [1983] proposed intervals of
time with thirteen relations, which are also applicable in the spatial context.
Ignoring six inverse relations the SGG distinguishes seven types of alignment
relationships, that is, gap, meet, equal, interleaving, middle, left (bottom if in the
vertical direction),and right (top), which are specified either in the vertical di-
rection or in the horizontal direction. The following description only illustrates
alignment relationships in the horizontal direction, and the same principle ap-
plies to those in the vertical direction with x coordinates being replaced by y
coordinates. Gap defines a spatial interval as coinciding with the x-axis direc-
tion that exists between the greatest lower boundary of one object and the least
upper boundary of another; meet defines the greatest lower boundary of one
object that just meets the least upper boundary of another; equal indicates two
objects having the same projection on the x-axis; interleaving means that the
projections of two objects on the x-axis are overlapping; middle denotes the
projection of one object within the range of another object’s projection; left or
right specifies that two objects share the same greatest lower boundary or the
least upper boundary. Figure 6 depicts these relationships.

3.5 Spatial Granularity and Spatial Hierarchy

Different application domains may require different granularities of spatial
relationships. For example, considering the direction aspect, only two distinc-
tions, that is, left and right, are necessary to distinguish a sequential order.
On the other hand, more elaborate distinctions are needed to specify the rel-
ative positions in the application of multimedia layout. Based on the previous
spatial models, developers can define spatial relationships at a granularity
suitable for their domain applications from four aspects, that is, the direction,
topology, distance and alignment. Spatial relationships may not be necessar-
ily orthogonal. For example, an equal relationship (in vertical direction) in the
alignment aspect satisfies the spatial property of the top relationship. In other
words, a top relationship can be derived from an equal relationship. Develop-
ers can, therefore, organize spatial relationships hierarchically. A super type
(e.g., the top relationship) represents general information, while a subtype (e.g.,
the equal relationship) indicates specific information and preserves the spatial
property of the super type. Denoted as r2 ≤ r1, a relationship r1 preserves the
spatial property of another relationship r2 if ∀x, y R1(x,y) → R2(x,y)4, where
R1 and R2 associated with relationships r1 and r2 are two boolean expressions

4In this context, the notation “→” denotes the logic connective of implication.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 277

Fig. 7. Spatial relationships.

for verifying the spatial property between objects x and y . For example, we
can conclude that the equal relationship preserves the top relationship, that
is, top ≤ equal. A textual definition in the form of < x, r, y > represents that
the spatial relationship r is held over two objects, x and y . Associating a list
of such definitions with an RGG rewriting rule, an SGG rule expresses both
spatial and abstract structures.

Developers may design a set of graphical notations to represent spatial rela-
tionships, and every SGG rule can have an equivalent graphical representation
when replacing textual definitions with corresponding graphical notations. We
have previously proposed a set of spatial relationships (as shown in Figure 7
where directed edges denote the hierarchy of spatial relationships) and a corre-
sponding set of graphical notations (as illustrated in Figure 8) for adaptive Web
interfaces [Qiu et al. 2003]. In this set of graphical notations, a node is divided
into nine areas, each except the central area indicating the relative direction
of the node connected to it. Moreover, shapes of boundaries represent various
topological and alignment relationships.

3.6 Syntax-Directed Computation

In the SGG, the application of a rewriting rule may create new objects or adjust
the current spatial configuration. The SGG applies action codes to derive new
spatial properties from current spatial attributes. The syntax-directed compu-
tation supplements qualitative specifications with quantitative information by
manipulating node attributes which record the spatial properties of an object.
Like in the RGG, action codes are associated with rewriting rules and are trig-
gered when a rewriting rule is applied. Writing an action code is like writing a
standard event handler in Java. Action codes are suitable for specifying spatial
reconfigurations in the course of graph transformation. For example, to merge
two objects into a larger one as shown in Figure 9(a), we can associate the
following action code to the rewriting rule in Figure 9(b).

Action(AAMGraph g)
{

R.top = P.top;
R.Left = P.left;

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

278 • J. Kong et al.

Fig. 8. Graphical notations.

Fig. 9. Using action codes to support spatial reconfiguration.

R.height = P.top − Q.bottom;
R.width = P.width;

}

4. SPATIAL GRAPH GRAMMARS AND THEIR LANGUAGES

This section formally defines the spatial graph grammar formalism (SGG), ex-
tended over the Reserved Graph Grammar [Zhang et al. 2001a].

4.1 Preliminaries

In a spatial graph grammar, nodes are used to represent objects. Unlike other
graph grammars, the SGG views a node as a collection of vertices, which denote
the ports connecting to other objects. Therefore, the term node has a different
meaning from the term vertex.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 279

Definition 1. Given a vertex label set �N, a node is a tuple N = 〈 VN, lN,
nameN〉, where VN is a set of vertices, lN : VN → �N is an injective5 function
labeling vertices, and nameN denotes the node label.

The injective function l N in Definition 1 specifies that a vertex in a node is
uniquely identified within a node by its vertex label. For example, the If node
in Figure 3 contains three vertices named by the vertex label set �N = {T, L,
R}. A node label denotes the class of node instances. Nodes with the same label
are made of the same set of vertices.

Denoted as v1 ≈ v2, two vertices v1 and v2 are isomorphic if they have the
same vertex label within nodes of the same node label. Since the SGG organizes
nodes in a two-level hierarchy, comparing two nodes involves not only matching
the node labels, but also verifying if their vertices are isomorphic.

Definition 2. Over two nodes N and N’, the structural isomorphism g:
VN →VN′

is a bijective6 function which preserves the labels of vertices, that
is, satisfying lN′

o g ≈ lN.7 Two nodes are isomorphic, denoted as N ≈ N′, iff they
have structural isomorphism and the same node label.

Definition 3. Over a set of objects O, a spatial signature is a function f : O ×
O → Top × Dir × Dis × Align, where the sets Top, Dir, Dis and Align represent
topological, direction, distance, and alignment relationships, respectively. In
particular, every set has a special element denoted as none8, indicating that
no spatial relationship specified between two objects. f maps a pair of nodes
to a spatial configuration expressed through spatial relationships of the four
spatial aspects.

A spatial signature formally identifies a qualitative spatial representation
which makes up the precondition of a graph transformation with the connec-
tion among nodes. For example, with the right graph of the rewriting rule in
Figure 10(a), we can conclude a spatial signature in Figure 10(b) according to
Definition 3.

Definition 4. A graph is a tuple G := 〈NG, EG, sG, tG, gG〉, where NG is the
set of nodes, EG is the set of edges, NG.VG is the set of vertices constructing NG,
sG: EG →NG. VG and tG:EG →NG.VG are two functions that specify the source
and target points of an edge, gG is the spatial signature defined on the node set
NG.

According to Definition 4, the SGG uses nodes (NG), edges (EG), and a spatial
configuration (gG) to specify the language. More specifically, nodes represent ob-
jects, and edges glue different objects into a complete graph. Furthermore, the
spatial configuration among objects also explicitly contributes to the interpre-
tation of graphs.

5A function f : X → Y is injective if f (x) = f (y) implies x = y .
6A bijective function is a total function that is both injective (one-to-one) and surjective (onto). More

formally, a function f : X → Y is bijective if, for every y in the codomain Y , there is exactly one x
in the domain X with f (x) = y .
7Functions can be combined using the composition operation denoted by o. For f : R → S and

g : S → T , g of is the function with domain R and codomain T such that for all x ∈ R, g of (x) =
g (f (x)).
8The none is the least value in any ordering over a value set.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

280 • J. Kong et al.

Fig. 10. A spatial signature.

Fig. 11. Marked vertices in preserving the context information.

Due to the multidimensional nature of visual languages, the SGG uses the
marking technique [Zhang et al. 2001a] to address the embedding issue, that
is, building connections between a replacing subgraph and the surrounding of
a replaced subgraph. In a rewriting rule, a vertex is marked by postfixing its
label with a unique integer. For example, in the rewriting rule of Figure 11(a),
vertex D of Pics1 is marked, while the vertex N is unmarked. If a vertex v in a
replaced subgraph maps to a marked vertex, v will be preserved during graph
transformation to establish connections between the surrounding of a replaced
subgraph and a new subgraph. For example, Figure 11(b) shows an isomor-
phic subgraph (in the dotted rectangle) corresponding to the right graph of the
rewriting rule in Figure 11(a), and highlights with gray background the ver-
tices mapping to marked vertices. Those highlighted vertices will be preserved
in a graph transformation as shown in Figure 11(c), and the transformed graph
is shown in Figure 11(d).

Definition 5. mark: V→I is a partial and injective function9, where V is
a set of vertices and I is a set of integers. A vertex v is marked if and only if
mark(v) ↓.

9A partial function on a set V is simply a function whose domain is a subset of V . If f is a partial

function on V and v ∈ V , then we write f (v) ↓ and say that f (v) is defined to indicate that v is in

the domain of f . If v is not in the domain of f , we write f (v) ↑ and say that f (v) is undefined.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 281

In the SGG, a marked vertex v1 in the right graph of a rewriting rule has a
counterpart v2 in the left graph. In other words, if v1 in the right graph and v2 in
the left graph are marked with the same integer, they map to the same context
element in a graph transformation. We use the notation v1 ≡ v2 to represent
that the marked vertex v1 in the right graph has the same marking integer as
the marked vertex v2 in the left graph.

Definition 6. A marked graph is a tuple G:= 〈NG, EG, sG, tG, gG, markG〉.
The first five elements are the same as those in Definition 4, and markG is a
marking function.

4.2 Graph and Spatial Morphisms

The basic concepts have been introduced and, this section defines the notion of
comparisons between graphs.

Definition 7. A graph morphism f: G→G’ defines a pair of bijective func-
tions 〈fN: NG→NG′

, fE: EG→EG′ 〉 that satisfy:

(1) sG ≈ sG′
o fE;

(2) fNo absGo sG = absG′
o sG′

ofE;10

(3) tG ≈ tG′
o fE;

(4) fNo absGo tG = absG′
o tG′

o fE.

A graph morphism specifies a mapping of nodes and edges between two
graphs. In Definition 7, the first two requirements state that if an edge e in
the graph G maps to an edge e′ in G ′, the vertex v inside a node n attached to
e in G should be isomorphic to a vertex v′ inside a node n′ attached to e′ in G ′.
The other two requirements illustrate the other connecting point.

Introducing spatial information to the abstract syntax, the comparison of
two graphs involves not only connections between nodes (defined as a graph
morphism in Definition 7), but also spatial configurations (a spatial morphism
in Definition 8). Denoted as s2 ≤ s1, a spatial configuration s1 between a pair of
objects preserves the spatial property of another configuration s2 if every spatial
relationship in s2 is preserved in s1. In order to extract the relationship in each
of the four spatial aspects from a spatial signature of a graph G, we define the
following four high order functions:

P1: O × O × g G→Top; P2: O × O × g G→Dir;
P3: O × O × g G→Dis; P4: O × O × g G→Align.

For example, with the spatial signature in Figure 10, P2 extracts the direction
relationship between two objects, for example, P2(if, Statement1, gG) = NE.

Definition 8. Over graphs G and G ′, a spatial morphism sp: NG→NG′
is a

function that maps nodes between G and G ′ so that the spatial configuration
between any pair of objects in G ′ preserves the spatial properties between the

10With a graph G, the function absG: NG.VG → NG maps each vertex to a node such that the vertex

belongs to the node.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

282 • J. Kong et al.

Fig. 12. The usage of marking technique in graph transformation.

corresponding pair of nodes in G, that is, satisfying ∀n1, n2 ∈ NG: gG(n1,n2) ≤
gG′

(sp(n1), sp(n2)).
Based on graph morphism and spatial morphism, Definition 9 specifies a

redex which denotes in a given graph (i.e., a host graph) a subgraph matching
another given graph.

Definition 9. A subgraph X of a graph H is called a redex of a marked
graph G, denoted as X ∈ Redex (H, G), if and only if

(1) f = 〈fN: NG→NX, fE: EG→EX〉 is a graph morphism between G and X ;

(2) fN also serves as a spatial morphism between G and X ;

(3) ∀v ∈ NG.VG, ∀e’∈EH: (((sH(e’)≈v)∧absH(sH(e’)) = fN(absG(v)))∨((tH(e’)≈ v)∧
abs H(tH(e’)) = fN(absG(v))))∧markG(v) ↑⇒ e’ ∈ EX

The first two conditions state that X and G are isomorphic in structure
and have a spatial morphism. The third condition states that if a vertex in
a rewriting rule is unmarked and maps to a vertex v in the redex of a host
graph, then all edges connected to v should be completely inside the redex.
Figure 12 illustrates the third condition. Assume that a Title node may connect
to multiple Para nodes, while a Para node is allowed to connect to only one Title
node since a title may be followed by several paragraphs but not vice versa.
Such a restriction is easily expressed by marking vertex P of node Title and
leaving T of node Para unmarked in the definition in Figure 12(a). According
to the third condition, the isomorphic graph (enclosed in a dotted rectangle) in
Figure 12(b) is not a redex because vertex T in Para has an edge outside the
subgraph while its isomorphic vertex in the right graph is unmarked. On the
other hand, Figure 12(c) includes a legal redex (enclosed in a dotted rectangle)
because the vertex P of Title has its isomorphic vertex marked in the right
graph and thus allows edges connected outside the subgraph.

4.3 Graph Transformation and Graph Languages

We now proceed to define the graph transformation process. A graph grammar is
made up of a set of rewriting rules called productions. Each production consists
of two graphs, called left graph (L) and right graph (R). When a production
is applied to a host graph, the host graph is said to be transformed by the
application.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 283

Definition 10. A production p: = (L, R) is a pair of marked graphs, that is,
left graph L and right graph R over the same node label set.

Definition 11. Let X in H be the redex of G, that is, X ∈ Redex(H, G). The
transformation from H to H ′ by replacing X with G ′, denoted as H ′ = Tr (H, G,
G’, X), is defined as:

(1) Add G ′ to H;

(2) Find all edges in H such that each edge’s one side, denoted as c1, connects
to a vertex in X isomorphic to a marked vertex in G, and the other side,
denoted as c2, connects to a vertex outside X ;

(3) Redirect c1 to the marked isomorphic vertex in G ′ and keep c2 unchanged;

(4) Delete X from H; and

(5) Set the coordinates and sizes for nodes in G ′ according to the computation
defined in the action code.

A graph transformation in the SGG not only updates the graph configuration
but also computes attributes for spatial evolution. The spatial signature, spatial
morphism, and action code cooperate to complete a process of spatial evolution:

—a spatial signature summarizes the spatial property of a graph;

—working on spatial signatures, a spatial morphism, together with a graph
morphism, makes up the production application condition; and

—an action code calculates the spatial reconfiguration and results in a new
spatial signature.

Based on the definition of graph transformation, the L-application and R-
application can be correspondingly defined as follows.

Definition 12. An L-application of a production p := (L, R) to a graph H
is a transformation H ′ = Tr(H, L, R, X), where X ∈ Redex(H, L), denoted as
H �→X H’.

Definition 13. An R-application of a production p = (L, R) to a graph H
is a transformation H ′ = Tr (H, R, L, X), where X ∈ Redex(H, R), denoted as
H→XH’.

Definition 14. A spatial graph grammar gg is a tuple (A, P, T, N), where
A is an initial graph, P is a set of graph grammar productions, T is a set of
terminal labels, N is a set of nonterminal labels. For ∀p = (L, R) ∈ P and ∀ l∈
T ∪ N:

(1) R �= NULL;

(2) L and R are over the the same label set T ∪ N;

(3) l ∈ Li where Li ⊂ {L0, . . . , Ln} is a global layer set and L0 ∩· · · ∩Ln = NULL;
and

(4) L < R with respect to the following order of graphs: G < G ′ iff ∃i: |G|i <

|G ′|i ∧ ∀ j < i : |G| j = |G ′| j with |G|k defined as |{x∈ G| layer(x) = k}|.
The layering condition imposes an order over node labels, which guarantees

the termination of the parsing process [Rekers and Schürr 1997; Zhang et al.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

284 • J. Kong et al.

2001a]. We follow the approach of Rekers and Schürr [1997] for automatically
computing the layers of labels: layer(x) ≥ layer(y) for any x ∈ p.L and y ∈
p.R, where p.L and p.R represent distinct nodes in the left and right graph of a
production p. This rule determines the assignment of labels to layers completely
under the additional assumption that layer(x) ≥ layer(y) => layer(x) > layer(y)
whenever possible.

We denote the sequence of intermediate derivations H �→X 1 H1, H1 �→X 2

H2, . . . , Hn−1 �→X n Hn as H �→X 1···X n Hn, or simply H �→∗ Hn, where n may be
zero in which case H = Hn.

Definition 15. let gg = (A, P, T, N) be a spatial graph grammar. Its lan-
guage L is defined by L(gg) = {G | A�→*G, where G contains only elements with
terminal labels}.

Starting from an initial graph, iterative applications of productions generate
all graphs belonging to a graph grammar. In other words, a graph grammar de-
fines a visual programming language which consists of a set of visual sentences
manipulated by end users.

This section has defined the spatial graph grammar formalism. Different
from traditional graph grammars that treat spatial relations as uninterpreted
abstract relations [Marriott and Meyer 1997], the SGG introduces spatial no-
tions to the abstract syntax. Extended from the RGG, the SGG allows developers
to integrate structural and spatial relations in a uniform framework. Without
using the extended spatial specifications, the SGG has the same expressive
power as the RGG which has found many applications [Zhang et al. 2001b,
2001c]. A full set of possible graphs defined by an SGG grammar constructs a
language of the grammar. Even for string grammars, it is undecidable whether
an arbitrary context-sensitive grammar produces an empty language or an infi-
nite language [Révész 1983]. Therefore, it is undecidable whether an arbitrary
SGG grammar produces an empty or an infinite language.

5. GRAPH PARSING

The context-sensitive spatial graph grammar formalism has been defined, and
this section presents a parsing algorithm which uses spatial specifications to
narrow down the search space and then analyzes the time complexity.

The parsing process is a sequence of R-applications which is modeled as
recognize-select-execute [Bardohl et al. 1999]. One or more occurrences of a
right graph may exist in the host graph, and the selection will affect the pars-
ing result. Even for the most restricted classes of graph grammars, the mem-
bership problem is NP-hard [Rozenberg and Welzl 1986]. To allow efficient
parsing without backtracking, we are only interested in confluent graph gram-
mars. Informally, the confluence requires that different orders of applications
of productions achieve the same result. Though it is unclear how this condition
limits the application scope, it is interesting to note that even grammars for
some complicated graphs satisfy the condition [Zhang et al. 2001b]. According
to Fischer et al. [1998], many real world applications do not include specifi-
cations requiring backtracking, evidenced by over 1000 pages of specifications
using PROGRES [Schürr et al. 1999]. Figure 13 illustrates a parsing algorithm

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 285

Fig. 13. The parsing algorithm.

for confluent grammars which only tries one parsing path. In other words, if
one parsing path fails, other parsing paths will also fail.

Taking advantage of spatial specifications in productions, the SGG parsing
algorithm sequences objects according to their spatial configurations and thus
narrows down the search space to achieve a better performance than that of
its predecessor, that is, the RGG. The following sections explore the parsing
algorithm in detail.

5.1 Matching Algorithm

Searching for a redex in a host graph becomes the key to the parsing process
when the parser need not care about the application order. Without an order
imposed on objects in the original Reserved Graph Grammar (RGG), searching
for m objects in a host graph G runs in O(m2|G|m) time [Zhang et al. 2001a]. With
the spatial information found in the host graph and productions, we should be
able to narrow down the search space by sequencing objects. Based on spatial
specifications between objects in the right graph of a production, we generate
a sequence, called a pattern sequence. With the same criteria to generate the
pattern sequence, objects in a host graph are sequenced to an ordered list, called
a host sequence. Efficient string-matching techniques are applied to searching
for the pattern sequence in the host sequence, and then a match of the pattern
sequence is extended to a redex.

Figure 14 shows the algorithm FindRedexForR to find a valid redex in a host
graph according to a given production. It proceeds as follows:

(1) encode the objects in the right graph of the production into a sequence, that
is, the pattern sequence;

(2) encode the objects of the host graph into a sequence, that is, the host
sequence;

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

286 • J. Kong et al.

Fig. 14. The FindRedexForR algorithm.

Fig. 15. The Match algorithm.

(3) search for the pattern sequence in the host sequence as illustrated in the
match algorithm in Figure 15.

We first generate a directed acyclic graph (DAG) based on the spatial specifi-
cations of the objects in the right graph of a production, and then search in the
DAG for the path containing the maximal number of nodes. In a DAG, a node
represents an object in the right graph and a directed edge denotes a north-
south or west-east relationship between objects specified in a production. A
DAG denoting north-south/west-east relationship is called V-DAG/H-DAG. As
the first step of FindRedexForR (Figure 14), SequenceRightGraph first gener-
ates a V-DAG and an H-DAG, and then searches for the path with the maximal
number of nodes. The objects in the longest path construct the pattern sequence.
SequenceRightGraph proceeds as follows (the description only illustrates oper-
ations on a V-DAG, and the same principle applies to an H-DAG).

(1) Create nodes for objects in the right graph: each unique object in the right
graph of a production is represented by a node.

(2) Interconnect nodes. In the right graph, if an object is defined locating south-
west, south, or south-east to another object, a directed edge is added to
connect the two corresponding nodes from north to south.

(3) Search for the longest path. Search for the path containing the maximal
number of nodes.

Comparing the two longest paths in the V-DAG and the H-DAG, select
the longer one to construct the pattern sequence. An object in the pattern
sequence is called a pattern object; otherwise, it is a nonpattern object. The
objects in the pattern sequence are arranged in descending order of their

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 287

y-coordinates if the longer path comes from the V-DAG, or in ascending or-
der of their x-coordinates if the longer path comes from the H-DAG. This
article assumes that the origin locates at the left-bottom corner of the
screen, and the y-axis extends to the north, while the x-axis extends to the
east.

The same criterion is applied to sequence the host graph. More specifically,
if the pattern sequence comes from the V-DAG, object a with the largest y-
coordinate is ordered before object b with a smaller y-coordinate in the host
graph (a’s index < b’s index). If two objects have the same y-coordinates,
their order in the host sequence is determined by their x-coordinates, and
the object with a smaller x-coordinate holds a smaller index. On the other
hand, objects in the host graph are sequenced according to x-coordinates if the
pattern sequence is derived from the H-DAG. The coordinate of the central
point is used to represent the physical position of the object in the sequencing
process.

By sequencing host graphs and productions, the problem of searching for a
redex in a host graph becomes that of searching for a pattern sequence in a
host sequence. Once a match is found, we can extend the match to a redex by
incorporating nonpattern objects as processed in the function VerifyNPObject
in Figure 15.

In the Match algorithm in Figure 15, corresponding to a pattern sequence
containing m objects, (m − 1) sets are used to record subsequences of the host
sequence. In particular, each subsequence in the kth (k < m) set satisfies the
following requirement: the subsequence includes k objects, which have a mor-
phism to the first k objects in the pattern sequence. Initially, all sets are empty.
Once a new subsequence is found, it is inserted into a corresponding set. Fur-
thermore, each object of the host sequence maintains a set of pointers, pointing
to the subsequences that include the object. From the first object of the host
sequence, the Match algorithm proceeds as follows:

(1) Assume that the class of the current object a (we treat the type of a node as
its class) takes the ith position in the host sequence and the kth position in
the pattern sequence. Extend every subsequence s in the (k − 1)th set with
object a. If an extended subsequence has a morphism to the first k objects
in the pattern sequence, insert the extended subsequence into the kth set.
When searching for a morphism between an extended subsequence and the
pattern sequence, we only need to check those relationships associated with
object a since other relationships have been verified when s is inserted into
the (k − 1)th set.

(2) If the class of object a can take other positions in a pattern sequence, repeat
Step (1) to investigate other positions.

(3) Move to the next object in the host sequence, and go to Step (1).

(4) Whenever a pattern sequence is found in the host sequence, search the
nonpattern objects in the remaining objects of the host sequence. If the
nonpattern objects and pattern objects have a morphism to the right graph
of a production, a redex made up of nonpattern objects and pattern ones is
found, and a graph transformation is performed.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

288 • J. Kong et al.

Fig. 16. Sequencing the host graph and production.

Fig. 17. A simulation of FindRedexForR.

5.2 An Example

The last section presents the matching algorithm in the SGG by ordering ob-
jects according to their spatial relationships. Based on an order among objects,
we can narrow down the search space and thus perform an efficient matching.
As an example, Figure 16(a) presents a host graph and Figure 16(b) illustrates
a production where subscripts are used to distinguish objects of the same class.
According to north-south relationships defined in the right graph, we can obtain
two paths in the V-DAG, each containing three nodes. Similarly, two paths with
three nodes can be derived from west-east relationships. We choose one of the
four paths as the pattern sequence as shown in Figure 16(c). Correspondingly,
the host sequence is demonstrated in Figure 16(d). The function SequenceIn-
dex (see Figure 14) calculates the positions of a class of objects in the pattern
sequence. In the previous example, the If class holds the first position, and thus
Index(If) = {1}; the positions of the other two classes are shown in Figure 16(e).

Figure 17 traces the execution of Match for the example in Figure 16. Each
object in the host sequence needs to be inspected until a redex has been found.
Initially, all sets are empty. Since the first object of the host sequence can be
mapped to the first object of the pattern sequence, a subsequence containing

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 289

only one object represented as [1] is obtained at the first iteration. Similarly, a
subsequence containing the second object of the host sequence, which is mapped
to the first object of the pattern sequence, is generated and inserted into Set 1
at the second iteration. At the third iteration, extending subsequences in Set 1
with the 3rd object of the host sequence can produce two subsequences, that is,
[1,3] and [2,3]. Since a morphism exists between [2,3] and the first two objects of
the pattern sequence, the subsequence [2,3] is inserted into Set 2. On the other
hand, the subsequence [1,3] fails the structural verification: the production
requires an edge between the first two objects of the pattern sequence, and
such an edge does not exist between the first and third objects of the host
sequence. Therefore, the subsequence [1,3] is discarded. At the fourth iteration,
two subsequences [1,4] and [2,4] are generated by appending the fourth object
to subsequences in Set 1. Since no graph morphism is found between the first
two objects of the pattern sequence and the first and fourth objects of the host
sequence, the subsequence [1,4] is excluded. The subsequence [2,4] is discarded
since the verification of a spatial morphism has failed. At the fifth iteration, still
no new subsequence is obtained. At the sixth iteration, a pattern sequence as
shown in Figure 16(f), which meets both structural and spatial configurations,
is found in the host sequence.

After finding the pattern sequence in the host graph, we need to search for
nonpattern objects, for instance, the statement2 node in the production of the
example presented. The nonpattern object is defined locating south-east and
north-east to the if and endif nodes, which are mapped to the second and sixth
objects in the host sequence. Therefore, only the fourth object or the fifth object
can be a match of the nonpattern object (another pattern object occupies the
third position), which definitely reduces the search space. Since a morphism
between the right graph of the production and the subsequence [2,3,4,6] of the
host sequence exists, a redex is found.

5.3 Parsing Complexity

We now proceed to analyze the parsing complexity of the presented spatial
graph grammar formalism.

In the host sequence of a host graph, a subsequence matching the pattern
sequence of a production is called a quasiredex. If the nonpattern objects in
the production find their matches in the host graph, the nonpattern objects
in the host graph, together with the quasiredex, construct a redex. We first
discuss the theoretical time complexity, and then the complexity of the parsing
algorithm which is, in practice, faster than the theoretical speed.

THEOREM 1. The time complexity of searching for a redex in SGGs is
O(1

m!
(m + n)2|G|m+n) where m and n are the maximal numbers of pattern and

nonpattern objects in the right graphs of all the productions in a grammar.

PROOF. With m pattern objects and n nonpattern objects of a production,
there are O(|G|m

m!
) sequences for a quasiredex (the m-combination) and O(|G|n)

sequences for nonpattern objects (the n-permutation). Each quasiredex requires
O(m2 + n2 + mn) time to identify a morphism. Therefore, the time of searching
for a redex takes O(1

m!
(m2 + n2 + mn)|G|m+n)(≤ O(1

m!
(m + n)2|G|m+n)).

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

290 • J. Kong et al.

In particular, we discuss three special cases:

(1) m = 0. No spatial information is specified in the productions and the SGG
degenerates to the RGG. The time complexity is O(n2|G|n), equal to that of
the RGG [Zhang et al. 2001a].

(2) n = 0. No nonpattern object is specified in the productions, and the time
complexity is O(1

m!
m2|G|m).

(3) m �= 0, n �= 0. The productions include both pattern and nonpattern objects,
and the time complexity is O(1

m!
(m + n)2|G|m+n) (≤O((m + n)2|G|(m+n)).

THEOREM 2. Given a host graph G with a grammar, the time complexity of
FindRedexForR is O(m2|G|2 + k(m + n)2|G|n), m and n are the maximal number
of pattern and nonpattern objects in the right graphs of all the productions in
the grammar, and (k −1) is the number of quasiredexes processed before the first
redex is found.

PROOF. The function SequenceRightGraph converts the right graph of a pro-
duction into a DAG and finds the longest path of the DAG to represent the
pattern sequence. Since there are O((m + n)2) relationships (i.e., edges), Se-
quenceRightGraph runs in O((m + n)2) time.

The function SequenceHostGraph generates a unique sequence from a host
graph, and takes O(|G|lg|G|) to sort the y-coordinates and x-coordinates.

The function match searches for a redex in the host graph. It proceeds as
follows: 1) look for a quasiredex in the host sequence; 2) then identify nonpattern
objects in the host graph. The ith object in the host sequence is paired with each
j th object (j < i). We check whether there exists a morphism between each of
such pairs and its corresponding pair in the right graph. Since an object can be
matched to m positions at most in the pattern sequence, the time complexity of
verification is O(mi) × O(m), i.e., O(m2i). Since there are |G| objects, the time

complexity of searching for a quasiredex is O(
∑|G|

i=1 m2i) = O(m2|G|2). Once a
quasiredex is found, we need to identify nonpattern objects in the host graph,
which takes O((n+m)2) (the time of verifying whether there exists a morphism
between objects in the right graph of a production and their occurrences in the
host graph) by O(|G|n) (the number of sequences of nonpattern objects), that is,
O((m+n)2|G|n). Since there are totally (k − 1) quasiredexes before the first redex
is found, the time complexity of the second step is O(k(m + n)2|G|n). Therefore,
the time complexity of match is O(m2|G|2 + k(m + n)2|G|n).

Consequently, the time complexity of FindRedexForR is O(m2|G|2 + k(m +
n)2|G|n).

It is easy to prove that the time complexity of FindRedexForR is equal to or
less than O(1

m!
(m + n)2|G|m+n).

Case 1. Every right graph in the productions of a graph grammar contains
exactly one node, that is, m + n = 1. Since spatial information is specified
between a pair of nodes, it follows that m = 0 and n = 1. The time complexity
of FindRedexForR is O(|G|), which is equal to the theoretical time complexity.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 291

Case 2. A graph grammar contains at least one production, whose right
graph includes two or more nodes, that is, m + n ≥ 2. It is obvious that k≤ |G|m

m!
.

Therefore, it is true that (m2|G|2+ k(m + n)2| G |n) ≤ 1
m!

(m + n)2|G|m+n.

THEOREM 3. The time complexity of the parsing algorithm for a graph G is
O(m2|G|3 + k(m + n)2|G|n+1), m and n are the maximal number of pattern and
nonpattern objects in the right graphs of all the productions, and (k − 1) is the
number of quasiredexes processed before the first redex is found.

PROOF. We have proven that the total time complexity of FindRedexForR
is O(m2|G|2 + k(m + n)2|G|n). G →∗ A must finish within G.T(p) steps, where
G.T(p) = (2C)p|G| (C represents the maximum possible number of nodes in any
right graph of productions. Full proof for this step can be found in the proof
for the RGG’s parsing complexity [Zhang et al. 2001a]). The time complexity
of the parsing algorithm is therefore (2C)p|G| ∗ O(m2|G|2 + k(m + n)2|G|n) =
O(m2|G|3 + k(m + n)2|G|n+1).

Therefore, due to the additional spatial information available to the parser,
the parsing complexity of the spatial graph grammar is generally lower than
that of its predecessor, i.e., the Reserved Graph Grammar.

6. AN APPLICATION IN ADAPTIVE WEB INTERFACES

We have defined a spatial graph grammar formalism (SGG). With the feature
of integrated spatial and structural specifications, the SGG is distinguished
from other graph grammar formalisms by explicitly introducing layout into
the semantics of graph grammars. The SGG is suitable for applications that
operate on graphical objects. This section demonstrates the use of an SGG
to derive the semantic structure of Web pages, which can potentially impact
many applications such as the adaptive Web interfaces discussed in detail in
the following.

6.1 Background

The popularity of mobile devices, such as PDAs and cellular phones, has caused
a dramatic increase in the diversity of computing devices in use [Myers et al.
2000]. Mobile devices provide a convenient and promising means to access the
Web. Their usage for ubiquitous access to information is, however, seriously lim-
ited by their small screen size [Chen et al. 2003]. Interfaces on mobile devices
cannot typically use the standard desktop model. Because most Web pages are
tailored to personal computers and are not for displaying on mobile devices,
users need to frequently scroll the window to find the content of interest. Due
to the explosive growth of mobile devices, presenting an adaptive view on small
screens has attracted much attention recently. Most researches [Chen et al.
2003; Yang and Zhang 2001] work on visual appearances of Web pages, while
lacking a formal basis. This section introduces a visual approach based on the
formal foundation of the spatial graph grammar formalism (SGG). Our ap-
proach uses the SGG to parse a Web page and generate a semantic structure.
Such a semantic structure hierarchically reveals the composition among blocks

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

292 • J. Kong et al.

of information. Generally, a node at a higher level represents a bigger block of
information which contains information represented by node(s) at a lower level.
Based on the extracted semantic structure, we can split the Web page into sev-
eral sub-pages, which consist of closely related information and are suitable for
viewing on mobile devices. Detecting the semantic structure underlying a Web
page is a technical challenge which is addressed by the application of the SGG.

Buyukkokten et al. [2001] divided a Web page into several semantic textual
units with the help of HTML tags. For example, Tag P indicates the boundary
between two semantic textual units. However, semantically related contents
may be displayed close to each other, while they are far apart in the source
HTML and cannot be grouped together by simply analyzing HTML tags. There-
fore, layout also plays an important role in analyzing a Web page. In general,
a good Web developer often observes some guidelines to render information on
the Web with a comfortable layout, which allows users to catch information of
interest easily. For example, related contents should be presented in a consis-
tent style, and visual cues (e.g., lines and blanks) are used to separate contents
of different topics. These ad hoc guidelines motivate the heuristic approaches
[Chen et al. 2003; Yang and Zhang 2001; Yu et al. 2003] based on the analy-
sis of the visual appearance of a Web page. Those approaches are automatic
and efficient in grouping relevant information but cannot recover the semantic
roles of information blocks from their layout structures. Different from heuris-
tic approaches, the SGG offers a formal approach which takes both the HTML
structure and visual appearance of a Web page into account. Therefore, our ap-
proach not only utilizes the hints hidden under the HTML structure, but also
groups elements which are spatially close when displayed, but far apart in the
source HTML. The grouping is realized through spatial parsing.

Recently, visual language formalisms have been applied to analyzing pat-
terns of Web queries [Zhang et al. 2004]. Given a grammar in the form of a
variant of the attributed multiset grammar [Golin 1991], which specifies com-
monly used Web query patterns, a best-effort parser analyzes a query form by
parsing the spatial arrangement of visual objects inside the form. Without con-
sidering the HTML DOM structure, it is possible for the approach to falsely
combine two visual objects crossing a block-level HTML element (e.g., TR).
Such errors can be avoided in our approach by considering both HTML DOM
structure and visual appearances of a Web page.

6.2 Adaptive Web Interfaces

A Web developer often has a high-level semantic structure in mind when cre-
ating a Web page. Though such a structure usually disappears after the Web
page is constructed and displayed to the user [Chen et al. 2003], cues about
the semantic structure can still be found in the HTML DOM structure and
from its visual appearance. For example, semantically related information is
often enclosed in a common block-level HTML tag (e.g., TABLE), and a topic
name is generally placed on top of the detailed contents. Based on the above
observations, our visual approach to adaptive viewing takes the HTML DOM
structure with the visual appearance of a Web page as input, which is then
parsed by the SGG parser to generate a semantic structure. The generated

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 293

Fig. 18. A visual approach to adaptive viewing on mobile devices.

semantic structure will be extremely useful for meaningful content grouping to
suit different presentation environments. The following example demonstrates
the generation of a semantic structure to suit small screen presentations.

Figure 18 presents our approach in which the extraction module is the kernel.
We go through an example to present a complete picture of an adaptive Web
interface based on the spatial graph grammar formalism and explain the role
of each module in Figure 18.

Consider an example that a museum exhibits its collections online
(www.moma.org). The museum classifies its collections into several categories
maintained by different departments. All departments have a large number of
pages using a common template. Figure 19 illustrates one of the pages from
the department of painting and sculpture. The page consists of a navigation
bar with various hyperlinks on the left side, hyperlinks to all departments in
the middle of the right side, and the painting collections occupying the main
area. The underlying semantic structure, which will be extracted through our
approach, is briefly annotated in Figure 19. Figure 20(a) gives a fragment of
HTML source codes whose corresponding HTML DOM structure is presented
in Figure 20(b) for the Web page in Figure 19. Such a DOM structure, which
includes the spatial information of each node (such as positions) used for spatial
parsing, serves as the input of our approach.

Since some HTML tags, such as TABLE and P , are used not only for lay-
out, but also for content organization [Yu et al. 2003], the HTML DOM struc-
ture provides valuable cues for recovering the underlying semantic structure.
Among the ninety-one tags in HTML 4.0, many of them are just for layout pur-
pose.Taking all the tags into consideration would be disastrous for grammar
developers and cause inefficient parsing. The preprocessing module is designed
to generate a simplified HTML DOM structure by keeping content organization-
related tags (such as TABLE and TR) and removing all other tags. Using the
HTML DOM structure in Figure 20(b), Figure 21 gives a simplified HTML DOM
structure after preprocessing in which the leaf nodes, such as text and picture,
represent single Web objects displayed on the screen.

The extraction module is the key to the whole approach for recovering the
underlying semantic structure which reveals the composition of Web objects.
The extraction process is fundamentally a parsing process guided by a graph
grammar. A derivation sequence, which records the history of production appli-
cations, implies the information organization. Keeping the previous example in
mind, Figure 22 shows the graph grammar that recovers the semantic structure
for a large number of Web pages using a common museum template. Figure 23

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

294 • J. Kong et al.

Fig. 19. A Web page.

presents the corresponding action codes11 associated with productions. Produc-
tion <1> specifies that the Web page consists of four composite Web objects,
that is, Title, NaviBar (Navigation Bar), Menu, and Content. The Title is placed
on the top of the page. The NaviBar is displayed on the left side, while the Menu
and Content, which have a north-south relation, are shown on the right side.
The dotted lines in productions specify the spatial relationships between ob-
jects without an HTML structural relationship. Production <2> abstracts a
single Web object Text, which is enclosed in a P tag inside the BODY tag, to a
composite object Title. Productions 3, 4, and 5 reduce a list of pictures inside a
common TABLE tag to a composite object NaviBar. Productions 6 and 7 define
that a Collection object is made up of a Picture and a Text enclosed in the same
TD tag. Production 8 reduces Collection objects inside a TABLE tag to a Row

11The function CopySpatialProperty (Object O1, Object O2) copies the spatial information, such as

position, from the source object O2 to the destination object O1. The function Merge(Object O1,
Object O2, Object O3) sets the spatial attributes of the Oject O1 with the minimal bounding box

covering both O2 and O3.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 295

Fig. 20. A Fragment of an HTML document and its HTML DOM structure.

Fig. 21. A simplified HTML DOM structure.

object. Production 9 defines the abstraction of a SubTitle object from a single
Web object Text. Productions 10 and 11 illustrate the composition of a Content
object. Productions 12, 13, and 14 present the construction of Menu object.

Applying the graph grammar to the museum Web pages, a sequence of pro-
duction applications derives the semantic structure among Web objects. For
example, Figure 24(a) gives a host graph where a redex to the right graph of
Production 6 is enclosed in a dotted rectangle. The application of Production 6
indicates that objects Illustration and Annotation are composed of single Web
objects Picture and Text, respectively. We can further apply Production 7 to
the graph in Figure 24(b) to derive the composite object Collection from HTML
elements TD and P and objects Illustration and Annotation.

The extraction module generates a derivation sequence which records the
application history of productions and implies the semantic structure of a Web
page. The derivation sequence not only contains Web objects but also HTML
tags. The postprocessing prunes the derivation sequence and generates a clean
semantic structure between Web objects by removing HTML tags, ignoring con-
text information of production application, and removing intermediate nodes.
For example, the Collection object is simply composed of objects Illustration and

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

296 • J. Kong et al.

Fig. 22. A graph grammar extracting semantic structure.

Annotation when we remove the HTML tags. After the postprocessing, a final
semantic structure for the Web page in Figure 19 is given in Figure 25.

The extracted semantic structure is extremely useful in generating adaptive
layout on mobile devices. Based on the extracted semantic structure, related in-
formation, which may not even be displayed adjacent to the original Web page,
can be flexibly grouped together to generate a subpage appropriate for display-
ing on a small screen of mobile devices. For example, the following algorithm

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 297

Fig. 23. Action codes for the graph grammar in Figure 22.

Fig. 24. A sequence of production application.

Fig. 25. The hierarchical structure for the Web page presented in Figure 21.

(Figure 26) can attach an appropriate title to a subpage and use thumbnails as
content indices to support incremental zooming. Alternatively, depending on the
size and browsing capability, we can adapt the algorithm to present contents
in a textual representation which is more suitable for displaying on cellular
phones. Therefore, based on the extracted structure, various layout styles can
be generated for corresponding mobile devices.

We will generate two types of subpages, that is, index pages and display-
ing pages. An index page serves as an index of the contents and is displayed

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

298 • J. Kong et al.

Fig. 26. Splitting algorithm.

as a thumbnail, in which users can click on a block directing them to a cor-
responding subpage with an appropriate content. A displaying page presents
information on mobile devices with a pleasant layout which allows users to read
more details. Each subpage is made up of three parts:

—an appropriate title is placed on the top;

—contents are presented in the main area; and

—a list of icons linking to relevant subpages are displayed at the bottom.

In the extracted structure, nodes with certain types are distinguished as head-
ing elements. A heading element n1 will not generate a separate subpage. In-
stead, it is displayed as a heading in subpages. In the extracted structure in
Figure 25, nodes of types Title, SubTitle, and MTitle are heading elements. Title
serves as the heading for subpages generated from nodes NaviBar, Menu, and
Content, while SubTitle serves as the heading for subpages from Row. In order
to ease browsing, each subpage includes a list of small navigation icons linking
to the subpages of its sibling and parent nodes.

The splitting process starts from the root node of the extracted semantic
structure. If the size of the currently processed node fits on the current viewing
environment, a subpage is generated for displaying; otherwise, we generate an
index subpage and continue to process its child nodes. The procedure proceeds
as in Figure 26.

With the extracted structure in Figure 25, the root node (i.e., Page) generates
an index page with three blocks which link to the subpages generated from its
three child nodes (Page has four child nodes but the Title node is a heading
element which does not generate a subpage). Since Page is the root without
any sibling and parent node, there is no navigation icon in the generated index
page. Then, we proceed to the child nodes of Page. Nodes NaviBar and Menu
correspondingly generate two displaying pages, while node Content generates
an index page due to its large size. Figure 27(a), which is manually produced
according to the parsing result (since the layout part is under development),
presents the subpage of node Content. A title is displayed on the top. The main

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 299

Fig. 27. Page generation based on the extracted structure.

area includes four information blocks linking to the subpages of its child nodes.
The icon on the bottom left links to the subpage of its parent node, and the two
icons on the bottom right link to subpages of its sibling nodes. When clicking on
an information block, the user can go into a corresponding subpage as shown
in Figure 27(b) with zoom-in details in Figure 27(c).

In summary, this section illustrates the application of the spatial graph gram-
mar formalism to adaptive Web interfaces. Unlike other works [Borning et al.
2000; Marriott et al. 2002; Zhang et al. 2005] focusing on designing new Web
pages with adaptive capability, we extend existing Web pages to support adap-
tive layouts based on the spatial graph grammar formalism. To the authors’
best knowledge, our approach represents the first attempt at applying graph
grammars to deriving the semantic structure of Web pages in the context of
adaptive Web interfaces.

7. OTHER APPLICATIONS

The previous section demonstrated a scenario about adaptive Web interfaces
using the spatial graph grammar formalism. This section discusses some other
applications.

A straightforward application of the SGG is the automatic generation of
diagram editors. A diagram editor is tailored to a specific diagram language
and restricted to visual objects which occur in the diagram language [Minas
2002]. Diagram editors have advantages over pure drawing tools by recognizing
the edited diagrams. Two standard interaction modes for diagram editors are
freehand editing and syntax-directed modes. A freehand editing mode allows
the end-users to manipulate the diagram freely during diagram creation. A
parser is necessary to analyze the syntactic structure of the created diagram.
This mode does not automatically preserve the semantics of the diagram during
manipulation. On the other hand, the syntax-directed mode guides the edit-
ing by providing appropriate operations during the diagram construction and
thus enforces a specific order to construct a diagram. This mode does not allow

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

300 • J. Kong et al.

incorrect syntactic structure for intermediate diagrams as the editing process
is guided by a sequence of structural templates [Chok and Marriott 2003].

Another application area is graph drawing [Battista et al. 1999]. The po-
tential applications in graph representation give rise to the research in graph
drawing. The main purpose of graph drawing is to develop an efficient layout
algorithm that can generate a readable and pleasant-looking graph represen-
tation. In different fields, the layout of a graph needs to meet different aesthetic
rules. A layout algorithm has to calculate the geometrical positions of graph ele-
ments carefully according to the whole structure of the graph. A graph grammar
introduces a formal framework to generate a syntax-directed layout by captur-
ing the internal structure. The spatial graph grammar formalism is applicable
to graph layout.

—Provided that a host graph is well-formed in terms of abstract structures, a
hierarchical graph, which denotes a derivation history on the host graph, is
obtained through a parser. Then a syntax-directed layout is directed based on
the hierarchical graph. Therefore, a host graph in the application of graph
drawing only denotes a pure structural configuration without any spatial
information.

—The spatial relationships defined in the productions represent the desirable
layout between constructs in the host graph. In other words, spatial specifi-
cations embedded in the graph grammar form a set of syntax-directed geo-
metrical constraints for corresponding pictorial objects in the host graph.

In summary, the spatial graph grammar formalism serves as both the vi-
sual programming language grammar and the layout grammar. However, de-
scribing the routing of edges with graph grammars is still an open problem
[Brandenburg 1995].

The spatial graph grammar formalism is suitable for semantic analysis. An
effective application of the combined use of abstract and spatial specifications
is the spreadsheet paradigm of visual programming languages [Burnett and
Gottfried 1998; Burnett et al. 2002]. The position of a spreadsheet cell can
determine the semantics of the cell. In many applications, an order over a
set of objects is required to satisfy some semantic constraints. Since an order
between two objects can be visually represented in a two-dimensional graph,
it is natural to encode an order using spatial relationships, and the parser can
verify a predefined sequence over a set of objects.

8. RELATED WORK

To the authors’ knowledge, research on combining both spatial and abstract
specifications in graph grammars has been scarce. The SGG differs from other
graph grammars by introducing spatial information to the abstract syntax.
Layout does not have any meaning in other graph grammars, which is changed
by our approach, in which layout is explicitly represented. The direct represen-
tation of spatial information in productions can make the productions easier
to understand since developers often design rules in a manner similar to their
specified diagrams. Furthermore, the SGG is equipped with a parser which is

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 301

more efficient than its predecessor in using spatial information. The following
description discusses other approaches and compares them with the SGG.

Lakin [1987] presented the concept of spatial parsing and described a type of
grammar for specifying visual programming languages. In particular, the pro-
posed grammatical approach allows the specification of a spatial arrangement
among symbols on the right-hand side. However, the annotated grammars are
not formalized.

Using multisets (i.e., unordered collections) as the underlying data model,
the formalism of Picture Layout Grammars (PLGs) [Golin and Reiss 1989] has
been proposed to define pictures, which are viewed as unordered collections of
visual symbols with attributes containing positional information. Improving on
the PLG, Constraint Multiset Grammar (CMG) [Marriott 1994] is a high-level
framework for the definition of visual programming languages. A production in
a constraint multiset grammar is in a form.

P ::= P1, . . . , Pn, where exist P’1, . . . , P’m where C

This production indicates that the nonterminal symbol P can be rewritten by
the multiset of symbols P1,. . . ,Pn whenever there exist P’1,. . . ,P’m such that the
attributes of all symbols satisfy the constraint C. As a high-level grammatical
specification language, the CMG supports the generation of diagram editors
in the Penguins system [Chok and Marriott 2003]. Taking the specification of
a diagram language as the input, the system automatically generates an in-
cremental diagram parser which interprets diagrams according to the relation-
ships between objects captured by geometrical constraints. In particular, such a
diagram editor combines the best features of the freehand and syntax-directed
modes.

The Relational Grammar extends traditional one-dimensional string lan-
guages to higher dimensions through user-supplied domain relations [Weitz-
man and Wittenburg 1993]. In other words, sentential forms are specified as
multisets of symbols with a set of relations in the symbol set [Wittenburg 1992].
Both the CMG and the Relational Grammar are characterized by generating
or parsing languages according to relational constraints among objects in a
textual form.

The three formalisms just discussed fall into the class of multiset rewriting.
Unlike graph grammars that enforce a strict distinction between objects (nodes)
and relations (edges) [Bardohl et al. 1999], they manipulate all needed spatial
or abstract relationships implicitly through constraints over attribute values of
objects. Furthermore, abstract syntax graphs do not exist as a distinct notion
within their syntax definitions.

Rekers and Schürr [1996] classified the spatial relations graph (SRG) and
abstract syntax graph (ASR). The former is geared towards visualization and
the latter towards interpretation. A triple graph grammar [Schürr 1994], that
is, the coupled graph grammar, is used to build up interdependencies between
SRGs and ASRs. The coupled graph grammar is used to define a diagram editor
[Rekers and Schürr 1996]. The editor updates the layout of a diagram on the
basis of changes in the SRG. Since multiple layouts may exist to satisfy spa-
tial relationships in a SRG, Rekers and Schürr proposed layout editing, which

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

302 • J. Kong et al.

allows users to change the layout with the updated layout still satisfying all
spatial constraints.

In the coupled graph grammar, spatial relationships are defined over picto-
rial objects, while in the SGG, these are specified over abstract objects each of
which is represented by one or several pictorial objects. Consequently, spatial
configurations are specified at a higher level in the SGG than in the coupled
graph grammar. In general, an SGG specification supplemented by internal
layouts of abstract objects identifies the same information as a coupled graph
grammar. Another fundamental difference is that the SGG integrates spatial
and abstract specifications within a single grammar instead of a pair of gram-
mars, and thus the SGG introduces a new concept to high-level specification
languages by supporting definitions of relationships with both edges and spatial
constraints.

DIAGEN is a prototyping tool for creating diagram editors which uses hy-
pergraphs rather than box-and-line graphs as in the SGG, to model various
types of diagrams [Minas 2002]. In the hypergraph model, several distinct at-
tachment areas of a diagram component connect to other diagram components
and establish spatial relationships. In particular, edges in the model are distin-
guished as component edges and relation edges. The former represents diagram
components, and the latter indicates relationships between attachment areas.

Bottoni et al. [1999] introduced the Visual Conditional Attributed Rewriting
(VCARW) system to specify visual interactive systems based on direct manip-
ulation. In an interactive session, images denoting exchanged messages are
materialized and interpreted by the human and the computer. The human in-
terprets an image by recognizing characteristic structures. On the other hand,
the computer uses a set of attributed symbols to capture the meaning of an im-
age. Necessary spatial information, such as the physical position of an object,
is identified through corresponding symbols but does not participate in spatial
transformation.

Brandenburg [1995] presented a layout graph grammar consisting of an
underlying context-free graph grammar and layout specifications. Spatial rela-
tionships are derived according to the drawing of productions. A desirable layout
is achieved by satisfying these constraints. One serious drawback of the ap-
proach is that grids and planar graphs cannot be captured by context-free graph
grammars [Brandenburg 1995]. We described a grammar-based approach for
graph drawing [Zhang and Zhang 2002] in which layout rules are embedded in
the productions of a context-sensitive graph grammar formalism. The spatial
relationship is represented by labels. This approach is suitable for graph draw-
ing of visual programs. These two formalisms only focus on the graph layout.

Of three different approaches to visual languages specification [Marriott
et al. 1998], the logical approach uses mathematic logic to axiomatize the possi-
ble spatial relationships between objects. Meyer [1992] proposed a visual logic
formalism, that is, the Picture Clause Grammar (PCG) which integrates logic
programming with graphical expressions. The PCG introduces visual terms
into logic programming, that is, picture term partially describing the contents
of a picture, and is distinguished by the combination of spatial reasoning
with the expressiveness of graphical communications. Another prominent logic

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 303

approach is based on spatial logic [Haarslev 1998] which is made up of three
components, namely, geometric objects, spatial relations, and description logic
[Brachman and Schmolze 1985]. Capable of describing syntax and semantics of
visual language in a uniform framework, the spatial logic serves as the theory
underlying an object oriented editor, specifically GenEd [Haarslev and Wessel
1996], which can define visual languages such as Petri nets etc. Falling into the
category of grammatical approaches, our work has a different theoretical root
from these logic approaches.

Our work is also related to image retrieval using symbolic descriptions. Due
to the large amount of information associated with images, efficient retrieval
needs suitable representation of spatial information to index image contents.
Chang et al. [1987] proposed 2D symbolic strings to encode spatial relation-
ships between objects as projected along the two coordinate axes. Del Bimbo
et al. [1994] presented a logic-based language for describing the contents of
stored images and specifying queries. The language specializes in the syntax
and the semantics of temporal logic to deal with spatial ordering between the
projections of objects in a scene. Soffer and Samet [1998] presented a pictorial
query specification technique for image databases and addressed the issues of
matching contextual and spatial ambiguity inherent in pictorial queries. Each
query is composed of one or more query images by selecting required objects and
positioning them according to the desired spatial configuration. These image
retrieval techniques have inspired us to develop a precise semantics for spatial
relationships within a grammatical framework.

9. CONCLUSION

Physical layout and abstract structure are two aspects of a graph. This article
has presented a spatial graph grammar formalism which serves both abstract
syntax grammar and layout grammar. As a context-sensitive graph grammar
formalism, it is equipped with a parser that performs in polynomial time with
an improved parsing complexity over its nonspatial predecessor, the Reserved
Graph Grammar. The node-edge representation is very similar to box-and-
line drawings which meet the common practice of software engineers [Métayer
1998]. With the capability of specifying spatial and structural information in
a uniform fashion, the SGG is suitable as the underlying grammar for vari-
ous prototyping tools such as adaptive representations, diagram editors, Web
information transformation, etc.

The SGG treats spatial relationships as language constructs. Therefore, a
spatial arrangement can affect the interpretation of a visual sentence. The
SGG can derive the spatial signature of a host graph according to the positions
of objects (a quantitative representation of spatial information among objects)
in a planar space. The SGG parser verifies such a spatial signature, that is,
a qualitative representation capturing the spatial properties among objects,
against the spatial specifications in a grammar. A graph is a valid visual sen-
tence only if it satisfies both the structural and spatial specifications defined in
a spatial graph grammar.

In the SGG, the application of a production can rearrange the spatial config-
uration of a host graph almost arbitrarily and may cause inconsistent spatial

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

304 • J. Kong et al.

relationships. In order to ensure the integrity of a sequence of transformations,
we need to guarantee a consistent set of spatial specifications defined in a graph
grammar. We recently proposed a graph model to detect directional inconsis-
tency [Kong and Zhang 2003]. However, detecting inconsistency, when incorpo-
rating the other three spatial aspects into the graph model, raises challenging
issues which deserve further investigation.

Writing productions and their action codes to perform visual computing is
not an easy task even for a design expert since it requires a good command of the
graph grammar formalism. It has been the authors’ goal to partially automate
the production authoring from application constraints.

ACKNOWLEDGMENTS

The authors would like to thank the Associate Editor Brad A. Myers and the
anonymous reviewers for their insightful and constructive comments that have
helped us to significantly improve the presentation.

REFERENCES

ALLEN, J. 1983. Maintaining knowledge about temporal intervals. Comm. ACM 26, 832–843.

ALLEN, R. AND GARLAN, D. 1994. Formalizing architectural connection. In Proceedings of the 16th
International Conference on Software Engineering. 71–80.

BARDOHL, R., TAENTZER, G., MINAS, M., AND SCHÜRR, A. 1999. Application of graph transformation to

visual languages. In Handbook on Graph Grammars and Computing by Graph Transformation:
Applications, Languages and Tools. H. Ehrig, G. Engels, H. J. Kreowski, and G. Rozenberg, Eds.

World Scientific, 105–180.

BATTISTA, G. D., EADES, P., TAMASSIA, R., AND TOLLIS, I. G. 1999. Graph Drawing: Algorithms for
the Visualization of Graphs. Prentice-Hall, Englewood Cliffs, NJ.

BLOSETIN, D. AND SCHÜRR, A. 1999. Computing with graphs and graph transformation. Softw.
Practice Exper. 29, 3, 197–217.

BORNING, A., LIN, R. K., AND MARRIOTT, K. 2000. Constraint-based document layout for the web.

Multimedia syst. 8, 3, 177–189.

BOTTONI, P., COSTABILE, M. F., AND MUSSIO, P. 1999. Specification and dialogue control of visual

interaction through visual rewriting systems. ACM Trans. Programm. Lang. Syst. 21, 6, 1077–

1136.

BOTTONI, P. AND MINAS, M. Eds. 2003. Proceedings of the GT-VMT’2002-Graph Transformation
and Visual Modeling Techniques, Electronic Notes in Theoretical Computer Science 72, 3. Else-

vier Science.

BRACHMAN, R. J. AND SCHMOLZE, J. G. 1985. An overview of the KL-ONE knowledge representation

system. Cognitive Science, 171–216.

BRANDENBURG, F. J. 1995. Designing graph drawings by layout graph grammars. In Proceedings
of the International Workshop on Graph Drawing. 416–428.

BURNETT, M. M. AND GOTTFRIED, H. J. 1998. Graphical definitions: Expanding spreadsheet lan-

guages through direct manipulation and gestures. ACM Trans. Comput.-Human Interact. 5, 1,

1–33.

BURNETT, M. M., YANG, S., AND SUMMET, J. 2002. A scalable method for deductive generation in the

spreadsheet paradigm. ACM Trans. Comput.-Human Interact. 9, 4, 253–284.

BURNETT, M. M. 2006. Visual language research bibliography. http://www.cs.orst.edu/

∼burnett/vpl.html.

BUYUKKOKTEN, O., GARCIA-MOLINA, H., AND PAEPCKE, A. 2001. Accordion summarization for end-

game browsing on PDAs and cellular phones. In Proceedings of the ACM SIGCHI’01. 213–

220.

CHANG, S. K., SHI, Q. Y., AND YAN, C. W. 1987. Iconic indexing by 2-D string. IEEE Trans. Patt.
Analy. Machine Intelli. 9, 413–427.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 305

CHEN, Y., MA, W. Y., AND ZHANG, H. J. 2003. Detecting web page structure for adaptive viewing

on small form factor devices. In Proceedings of the International Conference on World Wide Web,

225–233.

CHOK S. S. AND MARRIOTT, K. 2003. Automatic generation of intelligent diagram editors. ACM
Trans. Comput.-Human Interact. 10, 3, 244–276.

CLEMENTINI, E., FELICE, P. D., AND OOSTEROM, P. V. 1993. A small set of formal topological relation-

ships for end-user interaction. In Proceedings of the 3rd International Symposium on Advances
in Spatial Databases. Lecture Notes in Computer Science, vol. 692, 277–295.

CLEMENTINI, E., FELICE, P. D., AND HERNÁNDEZ, D. 1997. Qualitative representation of positional

information. Artificial Intelli. 95, 317–356.

COHN, A. G. 1997. Qualitative spatial representation and reasoning techniques. In Proceedings
of the KI-97. Lecture Notes in Artificial Intelligence, vol. 1303, 1–30.

COHN, A. G. AND HAZARIKA, S. M. 2001. Qualitative spatial representation and reasoning: An

overview. Fundamenta Informaticae 46, 1–2, 1–29.

DEAN, T. R. AND CORDY, J. R. 1995. A syntactic theory of software architecture. IEEE Trans. Soft.
Engin. 21, 4, 302–313.

DEL BIMBO, A., VICARIO, E., AND ZINGONI, D. 1994. A spatial logic for symbolic description of image

contents. J. Visual Lang. Comput. 5, 3, 267–286.

EHRIG, H., ENGELS, G., KREOWSKI, H. J., AND ROZENBERG, G. Eds. 1999a. Handbook on Graph
Grammars and Computing by Graph Transformation: Applications, Languages and Tools. World

Scientific.

EHRIG, H., KREOWSKI, H. J., MONTANARI, U., AND ROZENBERG G. Eds. 1999b. Handbook of Graph
Grammars and Computing by Graph Transformation: Concurrency, Parallelism, and Distribu-
tion. World Scientific.

FISCHER, T., NIERE, J., TORUNSKI, L., AND ZÜNDORF, A. 1998. Story diagrams: A new graph rewrite

language based on the unified modeling language and java. In Proceedings of the Theory and
Application to Graph Transformations. Lecture Notes in Computer Science, vol. 1764, 296–309.

FRANK, A. U. 1996. Qualitative spatial reasoning: cardinal directions as an example. Int. J. Geo-
graph. Inform. Sci. 10, 3, 269–290.

GOLIN, E. J. AND REISS, S. P. 1989. The specification of visual language syntax. In Proceedings of
the IEEE Workshop on Visual Languages. 105–110.

GOLIN, E. J. 1991. Parsing visual languages with picture layout grammars. J. Visual Lang. Com-
put. 4, 2, 371–394.

HAARSLEV, V. AND WESSEL, M. 1996. GenEd–an editor with generic semantics for formal reasoning

about visual notations. In Proceedings of the 1996 IEEE Symposium on Visual Languages. 204–

211.

HAARSLEV, V. 1998. A fully formalized theory for describing visual notations. In Visual Language
Theory. K. Marriott and B. Meyer, Eds. Springer, 261–292.

HECKEL, R., MENS, T., AND WERMELINGER, M. Eds. 2003. In Proceedings of the Workshop on Software
Evolution Through Transformations Toward Uniform Support Throughout the Software Lift-
Cycle. Electronic Notes in Theoretical Computer Science 72, 4. Elsevier Science.

HERNÁNDEZ, D., CLEMENTINI, E., AND FELICE, P. D. 1995. Qualitative distance. In Proceedings of the
Spatial Information Theory: A Theoretical Basis for GIS, Lecture Notes in Computer Science,

vol. 988, 45–58.

IRANI, P. AND WARE, C. 2003. Diagramming information structures using 3D perceptual primi-

tives. ACM Trans. Comput.-Human Interac. 10, 1, 1–19.

KONG, J. AND ZHANG, K. 2003. Graph-based consistency checking in spatial information system. In

Proceedings of the 2003 IEEE Symposium on Visual Languages and Formal Methods. 153–160.

KREOWSKI, H. J. AND KNIRSCH, P. Eds. 2002. In Proceedings of the AGT2002-Applied Graph Trans-
formation.

LAKIN, F. 1987. Visual grammars for visual languages. In Proceedings of the American Association
for Artificial Intelligence. 683–688.

MARRIOTT, K. 1994. Constraint multiset grammars. In Proceedings of the IEEE Symposium on
Visual Languages. 118–125.

MARRIOTT, K. AND MEYER, B. 1997. On the classification of visual languages by grammar hierar-

chies. J. Visual Language Comput. 8, 375–402.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

306 • J. Kong et al.

MARRIOTT, K., MEYER, B., AND WITTENBURG, K. B. 1998. A survey of visual languages specification

and recognition. In Visual Language Theory. K. Marriott and B. Meyer, Eds. Springer, 5–85.

MARRIOTT, K., MEYER, B., AND TARDIF, L. 2002. Fast and efficient client-side adaptability for SVG.

In Proceedings of the World Wide Conference. 496–507.

MENS, T., SCHÜRR, A., AND TAENTZER, G. Eds. 2002. In Proceedings of the GraBaTs 2002-Graph-
Based Tools. Electronic Notes in Theoretical Computer Science 72, 2, Elsevier Science.

MÉTAYER, D. L. 1998. Describing software architecture styles using graph grammars. IEEE
Trans. Soft. Engin. 24, 7, 521–533.

MEYER, B. 1992. Pictures depicting pictures on the specification of visual languages by visual

grammars. In Proceedings of the IEEE Workshop on Visual Languages. 41–47.

MINAS, M. 2002. Concepts and realization of a diagram editor generator based on hypergraph

transformation. Science of Computer Program. 40, 157–180.

MYERS, B., HUDSON, S. E., AND PAUSCH, R. 2000. Past, present, and future of user interface software

tools. ACM Trans. Comput.-Human Interact. 7, 1, 3–28.

PEUQUET, D. AND ZHAN, C. X. 1987. An algorithm to determine the directional relationship between

arbitrarily-shaped polygons in a plane. Patt. Recog. 20, 65–74.

PULLAR, D. AND EGENHOFER, M. 1988. Toward formal definitions of topological relationships. In

Proceedings of the 3rd International Symposium on Spatial Data Handling. 225–241.

QIU, M. K., SONG, G. L., KONG, J., AND ZHANG, K. 2003. Spatial graph grammars for Web information

transformation. In Proceedings of the IEEE Symposium on Visual/Multimedia Languages. 84–

91.

REKERS, J. AND SCHÜRR, A. 1996. A graph based framework for the implementation of visual

environments. In Proceedings of the IEEE Symposium on Visual Languages. 148–155.

REKERS, J. AND SCHÜRR, A. 1997. Defining and parsing visual languages with layered graph gram-

mars. J. Visual Languag. Comput. 8, 1, 27–55.

RÉVÉSZ, G. E. 1983. Introduction to Formal Languages. McGraw-Hill Inc.

ROZENBERG, G. AND WELZL, E. 1986. Boundary NLC graph grammars—basic definitions, normal

forms, and complexity. Info. Control 69, 136–167.

ROZENBERG, G. (Ed.) 1997. Handbook on Graph Grammars and Computing by Graph Transfor-
mation: Foundations. World Scientific.

SCHÜRR, A. 1994. Specification of graph translators with triple graph grammars. In Proceed-
ings of the 20th International Workshop on Graph-Theoretic Concepts in Computer Science. 151–

163.

SCHÜRR, A., WINTER, A. J., AND ZÜNDORF, A. 1999. The PROGRES approach: Language and envi-

ronment. In Handbook on Graph Grammars and Computing by Graph Transformation: Applica-
tions, Languages and Tools. H. Ehrig, G. Engels, H. J. Kreowski, and G. Rozenberg, Eds. World

Scientific, 487–550.

SOFFER, A. AND SAMET, H. 1998. Pictorial query specification for browsing through spatially-

referenced image databases. J. Visual Languag. Comput. 9, 6, 567–596.

WEITZMAN, L. AND WITTENBURG, K. 1993. Relational gramamrs for interactive design. In Proceed-
ings of the IEEE Symposium on Visual Languages. 4–11.

WITTENBURG, K. 1992. Earley-style parsing for relational grammars. In Proceedings of the IEEE
Workshop on Visual Languages. 192–199.

YANG, Y. D. AND ZHANG, H. J. 2001. HTML page analysis based on visual cues. In Proceedings of
the 6th International Conference on Document Analysis and Recognition. 859–864.

YU, S. P., CAI, D., WEN, J. R., AND MA, W. Y. 2003. Improving pseudo-relevance feedback in Web in-

formation retrieval using Web page segmentation. In Proceedings of the International Conference
on World Wide Web. 11–18.

ZHANG, D. Q. 1998. Generation of visual programming languages, Ph.D. Thesis, Macquarie Uni-

versity.

ZHANG, D. Q., ZHANG, K., AND CAO, J. 2001a. A context-sensitive graph grammar formalism for the

specification of visual languages. Comput. J. 44, 3, 187–200.

ZHANG, K., ZHANG, D. Q., AND DENG, Y. 2001b. Graphical transformation of multimedia XML doc-

uments. Ann. Soft. Engin. 12, 1, 119–137.

ZHANG, K., ZHANG, D. Q., AND CAO, J. 2001c. Design, construction, and application of a generic

visual language generation environment. IEEE Trans. Soft. Engin. 27, 4, 289–307.

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

Spatial Graph Grammars for Graphical User Interfaces • 307

ZHANG, K. B. AND ZHANG, K. 2002. Grammar-based approach for a visual programming language

generation system. In Proceedings of the 2th International Conference on Theory and Application
of Diagrams. Lecture Notes in Computer Science, vol. 2317, 106–109.

ZHANG, Z., HE, B., AND CHANG, K. C. C. 2004. Understanding Web query interfaces: Best-effort

parsing with hidden syntax. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 107–118.

ZHANG, K., KONG, J., QIU, M. K., AND SONG, G. L. 2005. Multimedia layout adaptation through

grammatical specifications. ACM/Springer Multimedia Syst. 10, 3, 245–260.

Received January 2004; revised September 2004, March 2005; accepted August 2005 by Brad Myers

ACM Transactions on Computer-Human Interaction, Vol. 13, No. 2, June 2006.

