
An Investigation of Practical Approximate
Nearest Neighbor Algorithms

Ting Liu, Andrew W. Moore, Alexander Gray and Ke Yang
School of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213 USA

{tingliu, awm, agray, yangke}@cs.cmu.edu

Abstract

This paper concerns approximate nearest neighbor searching algorithms,
which have become increasingly important, especially in high dimen-
sional perception areas such as computer vision, with dozens of publica-
tions in recent years. Much of this enthusiasm is due to a successful new
approximate nearest neighbor approach called Locality Sensitive Hash-
ing (LSH). In this paper we ask the question: can earlier spatial data
structure approaches to exact nearest neighbor, such as metric trees, be
altered to provide approximate answers to proximity queries and if so,
how? We introduce a new kind of metric tree that allows overlap: certain
datapoints may appear in both the children of a parent. We also intro-
duce new approximate k-NN search algorithms on this structure. We
show why these structures should be able to exploit the same random-
projection-based approximations that LSH enjoys, but with a simpler al-
gorithm and perhaps with greater efficiency. We then provide a detailed
empirical evaluation on five large, high dimensional datasets which show
up to 31-fold accelerations over LSH. This result holds true throughout
the spectrum of approximation levels.

1 Introduction
The k-nearest-neighbor searching problem is to find the k nearest points in a dataset X ⊂
RD containing n points to a query point q ∈ RD, usually under the Euclidean distance. It
has applications in a wide range of real-world settings, in particular pattern recognition,
machine learning [7] and database querying [11]. Several effective methods exist for this
problem when the dimension D is small (e.g. 1 or 2), such as Voronoi diagrams [26],
or when the dimension is moderate (i.g. up to the 10’s), such as kd-trees [8] and metric
trees. Metric trees [29], or ball-trees [24], so far represent the practical state of the art for
achieving efficiency in the largest dimensionalities possible [22, 6]. However, many real-
world problems are posed with very large dimensionalities which are beyond the capability
of such search structures to achieve sub-linear efficiency, for example in computer vision,
in which each pixel of an image represents a dimension. Thus, the high-dimensional case
is the long-standing frontier of the nearest-neighbor problem.

Approximate searching. One approach to dealing with this apparent intractability has
been to define a different problem, the (1 + ε) approximate k-nearest-neighbor searching
problem, which returns points whose distance from the query is no more than (1+ε) times
the distance of the true kth nearest-neighbor. Further, the problem is often relaxed to only
do this with high probability, and without a certificate property telling the user when it
has failed to do so, nor any guarantee on the actual rank of the distance of the points

returned, which may be arbitrarily far from k [4]. Another commonly used modification to
the problem is to perform the search under the L1 norm rather than L2.

Locality Sensitive Hashing. Several methods of this general nature have been proposed
[17, 18, 12], and locality-sensitive hashing (LSH) [12] has received considerable recent
attention because it was shown that its runtime is independent of the dimension D and
has been put forth as a practical tool [9]. Roughly speaking, a locality sensitive hashing
function has the property that if two points are “close,” then they hash to same bucket
with “high” probability; if they are “far apart,” then they hash to same bucket with “low”
probability. Formally, a function family H = {h : S →U} is (r1,r2, p1, p2)-sensitive, where
r1 < r2, p1 > p2, for distance function D if for any two points p,q ∈ S, the following
properties hold:

1. if p ∈ B(q,r1), then Prh∈H [h(q) = h(p)] ≥ p1, and

2. if p 6∈ B(q,r2), then Prh∈H [h(q) = h(p)] ≤ p2,
where B(q,r) denotes a hypersphere of radius r centered at q. By defining a LSH scheme,
namely a (r,r(1 + ε), p1, p2)-sensitive hash family, the (1 + ε)-NN problem can be solved
by performing a series of hashing and searching within the buckets. See [12, 13] for details.

Applications such as computer vision, e.g. [23, 28] have found (1 + ε) approximation to
be useful, for example when the k-nearest-neighbor search is just one component in a large
system with many parts, each of which can be highly inaccurate. In this paper we explore
the extent to which the most successful exact search structures can be adapted to perform
(1 + ε) approximate high-dimensional searches. A notable previous approach along this
line is a simple modification of kd-trees [3] – ours takes the more powerful metric trees as
a starting point. We next review metric trees, then introduce a variant, known as spill trees.

2 Metric Trees and Spill Trees
2.1 Metric Trees
The metric tree [29, 25, 5] is a data structure that supports efficient nearest neighbor search.
We briefly A metric tree organizes a set of points in a spatial hierarchical manner. It is a
binary tree whose nodes represent a set of points. The root node represents all points, and
the points represented by an internal node v is partitioned into two subsets, represented by
its two children. Formally, if we use N(v) to denote the set of points represented by node
v, and use v.lc and v.rc to denote the left child and the right child of node v, then we have

N(v) = N(v.lc)∪N(v.rc) (1)
/0 = N(v.lc)∩N(v.rc) (2)

for all the non-leaf nodes. At the lowest level, each leaf node contains very few points.

Partitioning. The key to building a metric-tree is how to partition a node v. A typical
way is as follows. We first choose two pivot points from N(v), denoted as v.lpv and v.rpv.
Ideally, v.lpv and v.rpv are chosen so that the distance between them is the largest of all-
pair distances within N(v). More specifically, ||v.lpv−v.rpv|| = maxp1,p2∈N(v) ||p1− p2||.
However, it takes O(n2) time to find the optimal v.lpv and v.rpv. In practice, we resort to a
linear-time heuristic that is still able to find reasonable pivot points.1 After v.lpv and v.rpv
are found, we can go ahead to partition node v.

Here is one possible strategy for partitioning. We first project all the points down to the
vector ~u = ~v.rpv− ~v.lpv, and then find the median point A along ~u. Next, we assign all
the points projected to the left of A to v.lc, and all the points projected to the right of A
to v.rc. We use L to denote the d-1 dimensional plane orthogonal to ~u and goes through
A. It is known as the decision boundary since all points to the left of L belong to v.lc

1Basically, we first randomly pick a point p from v. Then we search for the point that is the
farthest to p and set it to be v.lpv. Next we find a third point that is farthest to v.lpv and set it as v.rpv.

Figure 1: partitioning in a metric tree. Figure 2: partitioning in a spill tree.

and all points to the right of L belong to v.rc (see Figure 1). By using a median point to
split the datapoints, we can ensure that the depth of a metric-tree is logn. However, in our
implementation, we use a mid point (i.e. the point at 1

2 (~v.lpv + ~v.rpv)) instead, since it is
more efficient to compute, and in practice, we can still have a metric tree of depth O(logn).

Each node v also has a hypersphere B, such that all points represented by v fall in the ball
centered at v.center with radius v.r, i.e. we have N(v) ⊆ B(v.center,v.r). Notice that the
balls of the two children nodes are not necessarily disjoint.

Searching. A search on a metric-tree is simply a guided DFS (for simplicity, we assume
that k = 1). The decision boundary L is used to decide which child node to search first. If
the query q is on the left of L, then v.lc is searched first, otherwise, v.rc is searched first. At
all times, the algorithm maintains a “candidate NN”, which is the nearest neighbor it finds
so far while traversing the tree. We call this point x, and denote the distance between q and
x by r. If DFS is about to exploit a node v, but discovers that no member of v can be within
distance r of q, then it prunes this node (i.e., skip searching on this node, along with all its
descendants). This happens whenever ‖v.center− q‖− v.r ≥ r. We call this DFS search
algorithm MT-DFS thereafter.

In practice, the MT-DFS algorithm is very efficient for NN search, and particularly when
the dimension of a dataset is low (say, less than 30). Typically for MT-DFS, we observe
an order of magnitude speed-up over naı̈ve linear scan and other popular data structures
such as SR-trees. However, MT-DFS starts to slow down as the dimension of the datasets
increases. We have found that in practice, metric tree search typically finds a very good NN
candidate quickly, and then spends up to 95% of the time verifying that it is in fact the true
NN. This motivated our new proposed structure, the spill-tree, which is designed to avoid
the cost of exact NN verification.

2.2 Spill-Trees
A spill-tree (sp-tree) is a variant of metric-trees in which the children of a node can “spill
over” onto each other, and contain shared datapoints. The partition procedure of a metric-
tree implies that point-sets of v.lc and v.rc are disjoint: these two sets are separated by the
decision boundary L. In a sp-tree, we change the splitting criteria to allow overlaps between
two children. In other words, some datapoints may belong to both v.lc and v.rc.

We first explain how to split an internal node v. See Figure 2 as an example. Like a metric-
tree, we first choose two pivots v.lpv and v.rpv, and find the decision boundary L that goes
through the mid point A, Next, we define two new separating planes, LL and LR, both of
which are parallel to L and at distance τ from L. Then, all the points to the right of plane
LL belong to the child v.rc, and all the points to the left of plane LR belong to the child v.lc.
Mathematically, we have

N(v.lc) = {x | x ∈ N(v),d(x,LR)+2τ > d(x,LL)} (3)
N(v.rc) = {x | x ∈ N(v),d(x,LL)+2τ > d(x,LR)} (4)

Notice that points fall in the region between LL and LR are shared by v.lc and v.rc. We call
this region the overlapping buffer, and we call τ the overlapping size. For v.lc and v.rc, we
can repeat the splitting procedure, until the number of points within a node is less than a
specific threshold, at which point we stop.

3 Approximate Spill-tree-based Nearest Neighbor Search
It may seem strange that we allow overlapping in sp-trees. The overlapping obviously
makes both the construction and the MT-DFS less efficient than regular metric-trees, since
the points in the overlapping buffer may be searched twice. Nonetheless, the advantage of
sp-trees over metric-trees becomes clear when we perform the defeatist search, an (1+ ε)-
NN search algorithm based on sp-trees.

3.1 Defeatist Search
As we have stated, the MT-DFS algorithm typically spends a large fraction of time back-
tracking to prove a candidate point is the true NN. Based on this observation, a quick
revision would be to descends the metric tree using the decision boundaries at each level
without backtracking, and then output the point x in the first leaf node it visits as the NN of
query q. We call this the defeatist search on a metric-tree. Since the depth of a metric-tree
is O(logn), the complexity of defeatist search is O(logn) per query.

The problem with this approach is very low accuracy. Consider the case where q is very
close to a decision boundary L, then it is almost equally likely that the NN of q is on the
same side of L as on the opposite side of L, and the defeatist search can make a mistake
with probability close to 1/2. In practice, we observe that there exists a non-negligible
fraction of the query points that are close to one of the decision boundaries. Thus the
average accuracy of the defeatist search algorithm is typically unacceptably low, even for
approximate NN search.

This is precisely the place where sp-trees can help: the defeatist search on sp-trees has much
higher accuracy and remains very fast. We first describe the algorithm. For simplicity, we
continue to use the example shown in Figure 2. As before, the decision boundary at node
v is plane L. If a query q is to the left of L, we decide that its nearest neighbor is in v.lc. In
this case, we only search points within N(v.lc), i.e., the points to the left of LR. Conversely,
if q is to the right of L, we only search node v.rc, i.e. points to the right of LL. Notice that
in either case, points in the overlapping buffer are always searched. By introducing this
buffer of size τ, we can greatly reduce the probability of making a wrong decision. To see
this, suppose that q is to the left of L, then the only points eliminated are the one to the right
of plane LR, all of which are at least distance τ away from q.

3.2 Hybrid Sp-Tree Search
One problem with spill-trees is that their depth varies considerably depending on the over-
lapping size τ. If τ = 0, a sp-tree turns back to a metric tree with depth O(logn). On the
other hand, if τ ≥ ||v.rpv− v.lpv||/2, then N(v.lc) = N(v.rc) = N(v). In other words, both
children of node v contain all points of v. In this case, the construction of a sp-tree does
not even terminate and the depth of the sp-tree is ∞.

To solve this problem, we introduce hybrid sp-trees and actually use them in practice. First
we define a balance threshold ρ < 1, which is usually set to 70%. The constructions of
a hybrid sp-tree is similar to that of a sp-tree except the following. For each node v, we
first split the points using the overlapping buffer. However, if either of its children contains
more than ρ fraction of the total points in v, we undo the overlapping splitting. Instead, a
conventional metric-tree partition (without overlapping) is used, and we mark v as a non-
overlapping node. In contrast, all other nodes are marked as overlapping nodes. In this
way, we can ensure that each split reduces the number of points of a node by at least a
constant factor and thus we can maintain the logarithmic depth of the tree.

The NN search on a hybrid sp-tree also becomes a hybrid of the MT-DFS search and the
defeatist search. We only do defeatist search on overlapping nodes, for non-overlapping
nodes, we still do backtracking as MT-DFS search. Notice that we can control the hybrid
by varying τ. If τ = 0, we have a pure sp-tree with defeatist search — very efficient but
not accurate enough; if τ ≥ ||v.rpv− v.lpv||/2, then every node is a non-overlapping node
(due to the balance threshold mechanism) — in this way we get back to the traditional
metric-tree with MT-DFS, which is perfectly accurate but inefficient. By setting τ to be

somewhere in between, we can achieve a balance of efficiency and accuracy. As a general
rule, the greater τ is, the more accurate and the slower the search algorithm becomes.

3.3 Further Efficiency Improvement Using Random Projection
The hybrid sp-tree search algorithm is much more efficient than the traditional MT-DFS
algorithm. However, this speed-up becomes less pronounced when the dimension of a
dataset becomes high (say, over 30). In some sense, the hybrid sp-tree search algorithm
also suffer from the curse of dimensionality, only much less severely than MT-DFS.

However, a well-known technique, namely, random projection is readily available to deal
with the high-dimensional datasets. In particular, the Johnson-Lindenstrauss Lemma [15]
states that one can embed a dataset of n points in a subspace of dimension O(logn) with lit-
tle distortion on the pair-wise distances. Furthermore, the embedding is extremely simple:
one simply picks a random subspace S and project all points to S.

In our (1 + ε)-NN search algorithm, we use random projection as a pre-processing step:
project the datapoints to a subspace of lower dimension, and then do the hybrid sp-
tree search. Both the construction of sp-tree and the search are conducted in the low-
dimensional subspace. Naturally, by doing random projection, we will lose some accuracy.
But we can easily fix this problem by doing multiple rounds of random projections and do-
ing one hybrid sp-tree search for each round. Assume the failure probability of each round
is δ, then by doing L rounds, we drive down this probability to δL.

The core idea of the hash function used in [9] can be viewed as a variant of random projec-
tion.2 Random projection can be used as a pre-processing step in conjunction with other
techniques such as conventional MT-DFSẆe conducted a series of experiments which
show that a modest speed-up is obtained by using random projection with MT-DFS (about
4-fold), but greater (up to 700-fold) speed-up when used with sp-tree search. Due to limited
space these results will appear in the full version of this paper [19].

4 Experimental Results
We report our experimental results based on hybrid sp-tree search on a variety of real-world
datasets, with the number of datapoints ranging from 20,000 to 275,465, and dimensions
from 60 to 3,838. The first two datasets are same as the ones used in [9], where it is
demonstrated that LSH can have a significant speedup over SR-trees.
Aerial Texture feature data contain 275,465 feature vectors of 60 dimensions representing texture

information of large aerial photographs [21, 20].

Corel hist 20,000 histograms (64-dimensional) of color thumbnail-sized images taken from the
COREL STOCK PHOTO library. However, of the 64 dimensions, only 44 of them con-
tain non-zero entries. See [27] for more discussions. We are unable to obtain the original
dataset used in [9] from the authors, and so we reproduced our own version, following their
description. We expect that the two datasets to be almost identical.

Corel uci 68,040 histograms (64-dimensional) of color images from the COREL library. This
dataset differs significantly from Corel hist and is available from the UCI repository [1].

Disk trace 40,000 content traces of disk-write operations, each being a 1 Kilo-Byte block (therefore
having dimension 1,024). The traces are generated from a desktop computer running SuSe
Linux during daily operation.

Galaxy Spectra of 40,000 galaxies from the Sloan Digital Sky Survey, with 4000 dimensions.

Besides the sp-tree search algorithm, we also run a number of other algorithms:
LSH The original LSH implementation used in [9] is not public and we were unable to

obtain it from the authors. So we used our own efficient implementation. Experi-
ments (described later) show that ours is comparable to the one in [9].

Naı̈ve The naı̈ve linear-scan algorithm.

2The Johnson-Lindenstrauss Lemma only works for L2 norm. The “random sampling” done in
the LSH in [9] roughly corresponds to the L1 version of the Johnson-Lindenstrauss Lemma.

SR-tree We use the implementation of SR-trees by Katayama and Satoh [16].

Metric-Tree This is highly optimized k-NN search based on metric trees [29, 22], and
code is publicly available [2].

The experiments are run on a dual-processor AMD Opteron machine of 1.60 GHz with
8 GB RAM. We perform 10-fold cross-validation on all the datasets. We measure the
CPU time and accuracy of each algorithm. Since all the experiments are memory-based
(all the data fit into memory completely), there is no disk access during our experiments.
To measure accuracy, we use the effective distance error [3, 9], which is defined as

E = 1
Q ∑q∈Q

(

dalg
d∗ −1

)

, where dalg is the distance from a query q to the NN found by the

algorithm, and d∗ is the distance from q to the true NN. The sum is taken over all queries.
For the k-NN case where (k > 1), we measure separately the distance ratios between the
closest points found to the nearest neighbor, the 2nd closest one to the 2nd nearest neighbor
and so on, and then take the average. Obviously, for all exact k-NN algorithms, E = 0, for
all approximate algorithms, E ≥ 0.

4.1 The Experiments
First, as a benchmark, we run the Naı̈ve, SR-tree, and the Metric-tree algorithms. All of
them find exact NN. The results are summarized in Table 1.

Table 1: the CPU time of exact SR-tree, Metric-tree, and Naı̈ve search

Algorithm Aerial Corel hist Corel uci Disk trace Galaxy
(%) (k = 1) (k = 10)

Naive 43620 462 465 5460 27050 46760
SR-tree 23450 184 330 3230 n/a n/a

Metric-tree 3650 58.4 91.2 791 19860 6600

All the datasets are rather large, and the metric-tree is consistently the fastest. On the other
hand, the SR-tree implement only has limited speedup over the Naı̈ve algorithm, and it fails
to run on Disk trace and Galaxy, both of which have very high dimensions.

Then, for approximate NN search, we compare sp-tree with three other algorithms: LSH,
traditional Metric-tree and SR-tree. For each algorithm, we measure the CPU time needed
for the error E to be 1%, 2%, 5%, 10% and 20%, respectively. Since Metric-tree and SR-
tree are both designed for exact NN search, we also run them on randomly chosen subsets
of the whole dataset to produce approximate answers. We show the comparison results of
all algorithms for the Aerial and the Corel hist datasets, both for k = 1, in Figure 3. We
also examine the speed-up of sp-tree over other algorithms. In particular, the CPU time and
the speedup of sp-tree search over LSH is summarized in Table 2.

 0

 5000

 10000

 15000

 20000

 25000

 1 2 5 10 20

C
PU

 ti
m

e(
s)

Error (%)

Aerial (D=60, n=275,476, k=1)

Sp-tree
LSH
Metric-tree
SR-tree

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1 2 5 10 20

C
PU

 ti
m

e(
s)

Error (%)

Corel_hist (D=64, n=20,000, k=1)

Sp-tree
LSH
Metric-tree
SR-tree

Figure 3: CPU time (s) vs. Error (%) for selected datasets.

Since we used our own implementation of LSH, we first need to verify that it has com-
parable performance as the one used in [9]. We do so by examining the speedup of both
implementations over SR-tree on the Aerial and Corel hist datasets, with both k = 1 and

Table 2: the CPU time (s) of Sp-tree and its speedup (in parentheses) over LSH

Error Aerial Corel hist Corel uci Disk trace Galaxy
(%) (k = 1) (k = 10)
20 33.5 (31) 1.67 (8.3) 3.27 (6.3) 8.7 (8.0) 13.2 (5.3) 24.9 (5.5)
10 73.2 (27) 2.79 (9.8) 5.83 (7.0) 19.1 (4.9) 43.1 (2.9) 44.2 (7.8)
5 138 (31) 4.5 (11) 9.58 (6.8) 33.1 (4.8) 123 (3.7) 76.9 (11)
2 286 (26) 8 (9.5) 20.6 (4.2) 61.9 (4.4) 502 (2.5) 110 (14)
1 426 (23) 13.5 (6.4) 27.9 (4.1) 105 (4.1) 1590 (3.2) 170 (12)

k = 10 for the latter.3 For the Aerial dataset, in the case where E varies from 10% to 20%,
the speedup of LSH in [9] over SR-tree varies from 4 to 6, and as for our implementation,
the speedup varies from 4.5 to 5.4. For Corel hist, when E ranges from 2% to 20%, in
the case k = 1, the speedups of LSH in [9] ranges from 2 to 7, ours from 2 to 13. In the
case k = 10, the speedup in [9] is from 3 to 12, and ours from 4 to 16. So overall, our
implementation is comparable to, and often outperforms the one in [9].

Perhaps a little surprisingly, the Metric-tree search algorithm (MT-DFS) performs very
well on Aerial and Corel hist datasets. In both cases, when the E is small (1%), MT-
DFS outperforms LSH by a factor of up to 2.7, even though it aims at finding the exact
NN, while LSH only finds an approximate NN. Furthermore, the approximate MT-DFS
algorithm (conventional metric-tree based search using a random subset of the training
data) consistently outperforms LSH across the entire error spectrum on Aerial. We believe
that it is because that in both datasets, the intrinsic dimensions are quite low and thus the
Metric-tree does not suffer from the curse of dimensionality.

For the rest of the datasets, namely, Corel uci, Disk trace, and Galaxy, metric-tree becomes
rather inefficient because of the curse of dimensionality, and LSH becomes competitive.
But in all cases, sp-tree search remains the fastest among all algorithms, frequently achiev-
ing 2 or 3 orders of magnitude in speed-up. Space does not permit a lengthy conclusion, but
the summary of this paper is that there is empirical evidence that with appropriate redesign
of the data structures and search algorithms, spatial data structures remain a useful tool in
the realm of approximate k-NN search.

5 Related Work
The idea of defeastist search, i.e., non-backtracking search, has been explored by various
researchers in different contexts. See, for example, Goldstein and Ramakrishnan [10],
Yianilos [30], and Indyk [14]. The latter also proposed a data structure similar to the spill-
tree, where the decision boundary needs to be aligned with a coordinate and there is no
hybrid version. Indyk proved how this data structure can be used to solve approximate NN
in the L∞ norm.

References

[1] http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.data.html.

[2] http://www.autonlab.org/autonweb/showsoftware/154/.

[3] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for ap-
proximate nearest neighbor searching fixed dimensions. Journal of the ACM, 45(6):891–923,
1998.

[4] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is “nearest neigh-
bor” meaningful? Lecture Notes in Computer Science, 1540:217–235, 1999.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search
in metric spaces. In Proceedings of the 23rd VLDB International Conference, September 1997.

3The comparison in [9] is on disk access while we compare CPU time. So strictly speaking, these
results are not comparable. Nonetheless we expect them to be more or less consistent.

[6] K. Clarkson. Nearest Neighbor Searching in Metric Spaces: Experimental Results for sb(S). ,
2002.

[7] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons,
1973.

[8] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in loga-
rithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–226, September
1977.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hashing. In
Proc 25th VLDB Conference, 1999.

[10] J. Goldstein and R. Ramakrishnan. Constrast Polots and P-Sphere Trees: Speace vs. Time in
Nearest Neighbor Searches. In Proc. 26th VLDB conference, 2000.

[11] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of
the Third ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. Assn for
Computing Machinery, April 1984.

[12] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In STOC, pages 604–613, 1998.

[13] Piotr Indyk. High Dimensional Computational Geometry. PhD. Thesis, 2000.

[14] Piotr Indyk. On approximate nearest neighbors under l∞ norm. J. Comput. Syst. sci., 63(4),
2001.

[15] W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space. Contemp.
Math., 26:189–206, 1984.

[16] Norio Katayama and Shin’ichi Satoh. The SR-tree: an index structure for high-dimensional
nearest neighbor queries. pages 369–380, 1997.

[17] J. Kleinberg. Two Algorithms for Nearest Neighbor Search in High Dimension. In Proceedings
of the Twenty-ninth Annual ACM Symposium on the Theory of Computing, pages 599–608,
1997.

[18] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient Search for Approximate Nearest Neigh-
bors in High Dimensional Spaces. In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, 1998.

[19] T. Liu, A. W. Moore, A. Gray, and Ke. Yang. An investigation of practical approximate nearest
neighbor algorithms (full version). Manuscript in preparation.

[20] B. S. Manjunath. Airphoto dataset, http://vivaldi.ece.ucsb.edu/Manjunath/research.htm.

[21] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of large image data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):837–842, 1996.

[22] A. W. Moore. The Anchors Hierarchy: Using the Triangle Inequality to Survive High-
Dimensional Data. In Twelfth Conference on Uncertainty in Artificial Intelligence. AAAI Press,
2000.

[23] G. Mori, S. Belongie, and J. Malik. Shape contexts enable efficient retrieval of similar shapes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001.

[24] S. M. Omohundro. Efficient Algorithms with Neural Network Behaviour. Journal of Complex
Systems, 1(2):273–347, 1987.

[25] S. M. Omohundro. Bumptrees for Efficient Function, Constraint, and Classification Learning.
In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information
Processing Systems 3. Morgan Kaufmann, 1991.

[26] F. P. Preparata and M. Shamos. Computational Geometry. Springer-Verlag, 1985.

[27] Y. Rubnet, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image
retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

[28] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation with parameter
sensitive hashing. In Proceedings of the International Conference on Computer Vision, 2003.

[29] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information
Processing Letters, 40:175–179, 1991.

[30] P. Yianilos. Excluded middle vantage point forests for nearest neighbor search. In DIMACS
Implementation Challenge, 1999.

