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ABSTRACT

Motif discovery for the identification of functional regula-
tory elements underlying gene expression is a challenging
problem. Sequence inspection often provides valuable clues
to discovery of novel motifs (including transcription factor
sites) with uncharacterized function in gene expression. Cou-
pled with the complexity underlying tissue-specific gene ex-
pression, there are several motifs that are putatively respon-
sible for gene expression in a certain cell type. This has im-
portant implications in understanding fundamental biological
processes such as development and disease progression.
In this work we present an approach to the identification

of motifs (not necessarily transcription factors) and examine
its application to several questions in current bioinformatics
research. These motifs are seen to discriminate tissue-specific
genomic regions from those that are not tissue-specific. We
propose the use of directed information for such classifica-
tion constrained feature selection, and then, use the selected
features with a support vector machine (SVM) classifier to
characterize the tissue-specificity of any sequence of inter-
est. This analysis yields several novel interesting motifs that
merit further experimental characterization. The last part of
this paper presents a framework for exploring the relationship
between such discriminatory transcription factor motifs, and
the corresponding tissue-specificity, using both sequence and
expression modalities.

Index Terms— Directed Information, transcriptional reg-
ulation, comparative genomics, tissue-specific genes.

1. INTRODUCTION

Gene expression via transcription involves the generation of
messenger RNA from a DNA template and is a precursor to
the production of protein via translation. Transcription in-
volves the recruitment of transcription factor (TF) proteins at
the gene’s promoter as well as its long-range regulatory ele-
ments (such as enhancers). The computational prediction of
regulatory elements genome-wide, is an interesting research
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question [5]. One approach to this question is to look for se-
quence motifs that are characteristic of tissue-specific gene
expression. Thus, for any given gene, the motif underlying its
expression in one tissue is potentially different from the mo-
tif conferring expression for that very gene in another tissue
type. In this work, we consider the problem of motif dis-
covery in the promoter and enhancer regions related to brain-
specific gene expression.

2. ORGANIZATION

Initially, the set of tissue-specific regulatory regions (promot-
ers and enhancers) are mined for their sequences. In section
3, the methodology for the data processing of these sequences
into motif-sequence correspondencematrices is presented. In
section 4, motif discovery is posed as a feature extraction
problem, the utility of directed information in this framework
is explained, and a metric for normalized directed informa-
tion is proposed. Finally, a support vector machine (SVM)
classifier is designed to discriminate the tissue-specific and
non-specific sequences based on the hexamer motifs selected
using DI (section 6). The paper concludes with results per-
taining to the comparison of DI to MI for feature selection as
well as demonstrates the utility of DI in more general bioin-
formatics problems pertaining to sequence selection.

3. DATA EXTRACTION AND PRE-PROCESSING

TheNovartis foundation tissue-specificity atlas [http://symatlas.gnf.org/ ],
has a compendiumof genes and their corresponding tissues of
expression. Genes have been profiled for expression in about
twenty-five tissues, including adrenal gland, brain, dorsal root
ganglion, spinal chord, testis, pancreas, liver etc. If a gene
is expressed in less than three tissue types, it is annotated
tissue-specific (‘ts’), and if it is expressed in more than 22
tissue types, it is annotated to be non-specific (‘nts’). Based
on this assignment, we find a list of 45 genes that are tissue-
specific as well as have brain expression. For these brain-
specific genes, we extract their promoter sequences from the
ENSEMBL database http://www.ensembl.org/ ], using sequence
2000bp upstream and 1000bp downstream up to the first exon
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relative to the transcriptional start site reported in ENSEMBL
(release 37).
Before proceeding to motif selection, a matrix of motif-

promoter correspondences is created. In this matrix, the counts
of hexamer (six-nucleotide) motif occurrence in the ‘ts’ and
‘nts’ promoters is obtained using sequence parsing. The mo-
tif length of six is not overly restrictive, since it corresponds
to the consensus binding site size of several annotated tran-
scription factor motifs in the TRANSFAC/JASPAR databases.
A Welch t-test is then performed between the relative counts
of each hexamer in the two expression categories (‘ts’ and
‘nts’) and the top 1000 hexamers with p − value ≤ 10−6

are selected. This set of discriminating hexamers is desig-
nated (

−→
H = H1, H2, . . . , H1000). This procedure resulted in

two hexamer-gene co-occurrence matrices, - one for the ‘ts’
(or +1) class of dimension Ntrain,+1 × 1000 and the other
for the ‘nts’ (or −1) class - dimension Ntrain,−1 × 1000.
Here Ntrain,+1 is the matrix of the 45 brain-specific genes.
Ntrain,−1 is the set of ‘nts’ that do not have brain-specific
expression.
In the co-occurrence matrix, let gci,k represent the ab-

solute count of the kth hexamer, k ∈ 1, 2, . . . , M in the ith

gene. Then, for each gene gi, the quantile labeled matrix has
Xi,k = l if gci,[ l−1

K
M ] ≤ gci,k < gci,[ l

K
M ], K = 4. Matri-

ces of dimension Ntrain,+1 × 1001, Ntrain,−1 × 1001 for
the specific and non-specific training samples are now ob-
tained. Each matrix contains the quantile label assignments
for the 1000 hexamers (Xi, i ∈ (1, 2, . . . , 1000)), as stated
above, and the last column has the corresponding class label
(Y = −1/ + 1).
All the above steps, from promoter sequence extraction,

parsing and quantization to obtain hexamer-promoter counts
that are done for the brain-specific genes can be repeated for
the brain-specific enhancers. This dataset is obtained from the
Enhancer Browser [9], and contains 64 sequences that con-
fer brain-specific expression in transgenic animals. Here, the
1000 hexamers discriminating brain-enhancers (+1 set) and a
neutral set (−1), are designated

−→
H’ = H ′

1, H
′

2, . . . , H
′

1000.
As an illustration, we show a representative matrix (Table

1).

Ensembl Gene ID AAAAAA AAATAG Class
ENSG00000155366 1 1 +1
ENSG000001780892 4 3 +1
ENSG00000189171 1 2 -1
ENSG00000168664 4 3 -1
ENSG00000160917 2 1 -1
ENSG00000176749 1 1 -1
ENSG00000006451 3 2 +1

Table 1. The ’motif frequency matrix’ for a set of gene-
promoters. The first column is their ENSEMBL gene identi-
fiers, the next 2 columns are hexamer quantile labels, and the
last column is the corresponding gene’s class label (+1/−1).

4. DIRECTED INFORMATION AND FEATURE
SELECTION

The DI is a measure of the directed dependence between two
vectorsXi = [X1,i, X2,i, . . . Xn,i] and Y = [Y1, Y2, . . . , Yn].
In this case,Xj,i = quantile label for the frequency of hexamer
i ∈ (1, 2, . . . , 1000) in the jth training sequence. Y = [Y1, Y2, . . . , Yn]
are the corresponding class labels (−1, +1). For a block length
N , the DI is given by [7]:

I(XN
i → Y N ) =

N∑
n=1

I(Xn
i ; Yn|Y

n−1) (1)

Using a stationarity assumption over a finite-length memory
of the training samples, a correspondence with the setup in
([7], [12]) can be seen. As already known [1], the mutual
information I(X ; Y ) = H(X)−H(X |Y ), whereH(X) and
H(X |Y ) are the Shannon entropy of X and the conditional
entropy of X given Y , respectively. With this definition of
mutual information, the Directed Information simplifies to,

I(XN → Y N ) =

N∑
n=1

[H(Xn|Y n−1)−H(Xn|Y n)]

=

N∑
n=1

{[H(Xn, Y n−1)−H(Y n−1)]− [H(Xn, Y n)−H(Y n)]}

(2)

Using (2), the Directed information is expressed in terms
of individual and joint entropies of Xn and Y n. This ex-
pression implies the need for higher-order entropy estima-
tion from a moderate sample size. A Voronoi tessellation [8]
based adaptive partitioning of the observation space can han-
dle N = 5/6 without much complexity.
The relationship between MI and DI is given by [7],

DI: I(XN → Y N ) =
∑N

i=1 I(X i; Yi|Y
i−1).

MI: I(XN ; Y N ) =
∑N

i=1 I(XN ; Yi|Y
i−1).

From [12], it is clear that DI resolves the direction of in-
formation transfer (feedback or feedforward). If there is no
feedback/feedforward, I(XN → Y N ) = I(XN ; Y N ).
From the above chain-rule formulations for DI andMI, we

can see that the expression for DI is permutation-variant (i.e.,
the value of the DI is dependent on the ordering of random
variables). Thus, what we find instead is the Ip(X

N → Y N ),
a DI measure for a particular ordering of the N random vari-
ables (r.vs). The DI value for our purpose, I(XN → Y N ) is
an average over all possible sample permutations given by,
I(XN → Y N ) = 1

N !

∑N !
p=1 Ip(X

N → Y N ). For MI, how-
ever, Ip(X

N ; Y N) = I(XN ; Y N ) because,MI is permutation-
invariant (i.e., independent of r.v ordering). As can be read-
ily observed, this problem is combinatorially complex, and
hence, a monte-carlo sampling strategy is used for computing
I(XN → Y N ).
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To select features, we maximize I(XN → Y N ) over the
possible pairs (

−→X , Y ). This feature selection problem for the
ith training instance reduces to identifying which hexamer
(k ∈ (1, 2, . . . , 4096)) has the highest I(Xk → Y ).
The above method is used to estimate the true DI between

a given hexamer and the class label for the entire training
set. Feature selection comprises of finding all those hexam-
ers (Xk) for which I(XN

k → Y N ) is the highest. From
the definition of DI, we know that 0 ≤ I(XN

k → Y N ) ≤
I(XN

k ; Y N ) < ∞. To make a meaningful comparison of the
strengths of association between different hexamers and the
class label, we use a normalized score to rank the DI values.
This normalizedmeasure ρDI should be able to map this large
range ([0,∞]) to [0, 1]. Following [3], an expression for the
normalized DI is given by:
ρI(XN

→Y N ) =
√

1− e−2I(XN→Y N ).
Another point of consideration is to estimate the signifi-

cance of the DI value compared to a null distribution on the
DI value (i.e. what is the chance of finding the DI value by
chance from the series Xi and Y ). This is done using confi-
dence intervals after permutation testing (section: 5).

5. BOOTSTRAPPED CONFIDENCE INTERVALS

In the absence of knowledge of the true distribution of the DI
estimate, an approximate confidence interval for the DI esti-
mate (Î(XN → Y N )), is found using bootstrapping [2]. Den-
sity estimation is based on kernel smoothing over the boot-
strapped samples [10].
The kernel density estimate for the bootstrapped DI (with

n = 1000 samples), Z � ÎB(XN → Y N ) becomes,
f̂h(Z) = 1

nh

∑n

i=1
3
4 [1 − ( zi−z

h
)2]I(

∣∣ zi−z
h

∣∣ ≤ 1) with h ≈

2.67σ̂z and n = 1000. ÎB(XN → Y N ) is obtained by find-
ing the DI for each random permutation of the X , Y series,
and performing this permutation B times. As is the clear
from the above expression, the Epanechnikov kernel is used
for density estimation from the bootstrapped samples. The
choice of the kernel is based on its excellent characteristics -
a compact region of support, the lowest AMISE (asymptotic
mean squared error) and favorable bias-variance tradeoff [10].
We denote the cumulative distribution function (over the

bootstrap samples) of Î(XN → Y N) byF
ÎB(XN

→Y N )(ÎB(XN →

Y N )). Let the mean of the bootstrapped null distribution be
I∗B(XN → Y N ). We denote by t1−α, the (1 − α)th quantile
of this distribution i.e. {t1−α : P ([

ÎB(XN
→Y N )−I∗

B
(XN

→Y N )
σ̂

] ≤

t1−α) = 1 − α}. Since we need the true Î(XN → Y N )
to be significant and close to 1, we need Î(XN → Y N ) ≥
[I∗B(XN → Y N ) + t1−α × σ̂], with σ̂ being the standard er-
ror of the bootstrapped distribution,

σ̂ =

√
[ΣB

b=1
Îb(XN

→Y N )−I∗
B

(XN
→Y N )]2

B−1 ; B is the number of
bootstrap samples.

6. SVM CLASSIFICATION

From the top ′d′ features identified from the ranked list of
features having high DI with the class label, a support vec-
tor machine classifier in these ′d′ dimensions is designed.
A SVM is a hyperplane classifier which operates by find-
ing a maximum margin linear hyperplane to separate two dif-
ferent classes of data in high dimensional (D > d) space.
The training data has Ns(= Ntrain,+1 + Ntrain,−1) pairs
(x1, y1), (x2, y2), . . . , (xNs

, yNs
), with xi ∈ Rd and yi ∈

{−1, +1}.
An SVM is a maximum margin hyperplane classifier in a

non-linearly extended high dimensional space. For extending
the dimensions from d toD > d, a radial basis kernel is used.
The objective is to minimize ||β|| in the hyperplane {x :

f(x) = xT β + β0}, subject to
yi(x

T
i β + β0) ≥ 1− ξi∀i, ξi ≥ 0,

∑
ξi ≤ constant [2].

7. SUMMARY OF OVERALL APPROACH

Here, the term ‘sequence’ can pertain to either brain-specific
promoters or brain-enhancer sequences.

• Parse sequences to obtain hexamer counts for the ‘ts’
and ‘nts’ set. Use preprocessing to create matricesNtrain,+1×
1001 corresponding to the sequences in the ‘ts’ and
‘nts’ sets.

• For the J = 1000 hexamers find I(Xj → Y ) and
I(Xj → Y ) for each of the j ∈ (1, 2, . . . , J) hexam-
ers. Since the goal is to maximize I(Xj → Y ), we can
rank the ρDI values in descending order.

• Find hexamers whose ρDI is 0.05 significant with re-
spect to its bootstrapped null distribution (using kernel
density estimation), and rank the hexamers by decreas-
ing ρDI value. The top ′d′ hexamers in this ranked list
can be used for classifier (SVM) training.

• Train the Support Vector Machine classifier (SVM) on
the top ′d′ features from the ranked DI list. For compar-
ison with the MI based technique, we use the hexamers
which have the top ′d′ MI values. The accuracy of the
trained classifier as a function of the number of features
(d) is plotted, after cross-validation. As we gradually
consider higher ′d′, we move down the ranked list. In
the results below, the misclassification fraction is plot-
ted instead. A fraction of 0.1 corresponds to 10% mis-
classification.

8. RESULTS

DI is used to find discriminating hexamers that underlie brain-
specific expression. The negative training sets are sequences
that are not brain-specific. Results using the MI and DI meth-
ods are given above (Figs. 2 and 4). The plots indicate the
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Fig. 1. GC sequence composition for brain-specific promoters
and housekeeping promoters.
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Fig. 2. Misclassification accuracy for the MI vs. DI case
(brain promoter set). Accuracy of classification is ∼ 0.9 i.e.
93%.

SVM cross-validated misclassification accuracy (ideally 0)
for the data as the number of features using the metric (DI or
MI) is gradually increased. We see that for any given classifi-
cation accuracy, the number of features using DI is less than
the corresponding number of features using MI. This trans-
lates into a lower misclassification rate for DI-based feature
selection. We also observe that as the number of features ′d′
is increased, the performance of MI is the same as DI. This
is expected since, as we gather more features using MI or
DI, the variations in MI/DI ranking are compensated. Several
brain-specific motifs rank high in the DI-based ranking (e.g.:
c-ETS, Elk1, Ahr-ARNT, GTTCCA).
An important point needs to be clarified. Sequence com-

position bias is a confounding factor in the analysis of tissue-
specific and non-specific sequences. It is thus possible that the
motifs that are selected are just GC-rich because of the higher
GC composition of tissue-specific sequences. To avoid this
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Fig. 3. GC sequence composition for brain-specific enhancers
and neutral non-coding regions.
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Fig. 4. Misclassification accuracy for the MI vs. DI case
(brain enhancer set).

problem, the selected sequences are checked for GC-composition
and the box plots for the composition across the samples as
well as the distribution is given in Figs. 1 and 3. These plots
show that the GC content of these sequences are distribution-
ally similar between the ‘ts’ and ‘nts’ sequences (promoters
and enhancers) - thereby avoiding bias.
Some of the top ranking motifs from this dataset are also

shown in Table 2. As indicated by the (*) signed TFs, some of
these discoveredmotifs indeed have documented high expres-
sion in the brain. For example, ELK-1 is involved in neuronal
differentiation [11]. Also, some motifs matching consensus
sites of TEF1 and ETS1 are common to the brain-enhancer
and brain-promoter set. Though this is interesting, an ex-
periment to confirm the enrichment of such transcription fac-
tors in the population of brain-specific regulatory sequences
is necessary.
From the results above, the following observations can be

made:

213



Brain Brain
promoters enhancers

Ahr-ARNT (*) HNF-4 (*)
Tcf11-MafG (*) Nkx
c-ETS (*) AML1
FREAC-4 c-ETS (*)
T3R-alpha1 Elk1 (*)

Table 2. Comparison of high ranking motifs (by DI) across
different data sets. The (*) sign indicates tissue-specific ex-
pression of the corresponding TF gene.

• There is more sequence variability at the promoter since
it has to act in concert with enhancers of different tissue
types.

• Since the enhancer/LRE acts with the promoter to con-
fer expression in only one tissue type, these sequences
are more specific and hence their mining identifies mo-
tifs that are probably more indicative of tissue-specific
expression.

8.1. Quantifying sequence-based TF influence

A very interesting question emerges from the above presented
results. What if one is interested in a motif that is not present
in the above ranked hexamer list for a particular tissue-specific
set? As an example, consider the case for Nurr1, a transcrip-
tion factor which is expressed in brain and has an important
role in central nervous system (CNS) development [4]. In
fact, a variant of its consensus motif - TCCAGA is indeed
in the top ranking hexamer list. The DI based framework
further permits investigation of the directional association of
the Nurr1 motif (TCCAGA) for the discrimination of brain-
specific genes vs. housekeeping genes (Fig. 5). As is ob-
served, Nurr1 has a significant directional influence on the
brain-specific vs. neutral sequence class label. This, in con-
junction with the expression level characteristics of Nurr1,
indicates that the motif TCCAGA is potentially relevant to
make the distinction between brain-specific and neutral se-
quences.

9. CONCLUSIONS

In this work, we have presented a framework for the identifi-
cation of hexamer motifs to discriminate between two kinds
of sequences (tissue-specific promoters or regulatory elements
vs non-specific elements). For this feature selection prob-
lem we proposed the utility of a new metric - the ’directed
information’ (DI). In conjunction with a support vector ma-
chine classifier, this method was shown to outperform the
state-of-the-art methods employing undirected mutual infor-
mation. We also find that only a subset of the discriminating
motifs correlate with known transcription factor motifs and
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Fig. 5. Cumulative Distribution Function for bootstrapped
I(Nurr1 motif:TCCAGA → Y ); Y is the class label (Brain-
specific vs. Housekeeping). True Î(TCCAGA → Y) =
0.9725.

hence might be potentially related to underlying interesting
phenomena governing tissue-specific expression. Finally, we
demonstrate that DI can be used to find the discriminatory
potential of any chosen motif (Nurr1, in this case) between a
set of tissue-specific and non-specific sequences. The supe-
rior performance of the directed-information based variable
selection suggests its utility to more general learning prob-
lems.
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