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Abstract: This work presents a study on dynamics of a circuit with a non-linear coil,
where loss in iron is also taken into account. A coil model is derived using a state space
description. The work also includes the development of an application in C# for coil
dynamics examination, where the implicit RADAU IIA method of various orders is ap-
plied for the purpose of solving non-linear differential equations modelling the non-linear
coil with loss in iron.
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1. Non-linear coil

An iron-core coil has an inductance which depends on the current flowing in the coil and
as a result it makes the tested coil non-linear. The circuit containing such coil does not comply
with the principle of superposition, but both Kirchhoff's laws for instantaneous values are
fulfilled. An equivalent circuit of such a coil is presented in Fig. 1.
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Fig. 1. Scheme of a non-linear coil with loss in iron
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For the coil model from Fig. 1 the following denotations are adopted:
R, is aresistance of equivalent circuit for the loss in iron,

R, is a coil resistance,
L.,L y are coil inductances,
U,, is a coil voltage amplitude, u(¢) = U, sin(wt + @),
B is an initial phase supply voltage,
@ is a supply voltage ripple w =27z f.
In addition to the above, the characteristics of the coil magnetic circuit, accounting for the
loss in iron, is assumed to be:

a, a,

B(H)=a,arcsh(a,H) lub H(B) = Lsh(£] , )]

where B is the magnetic induction and H is the magnetic field strength.

The variables a,, a, can be estimated if at least two characteristic points of magnetisation
{B;,H;},(i=1,2,...) are known. For this purpose the following non-linear system of equations
will be taken into account:

Fi(ay,ay) = B; —ajarcsh(a,H;) =0, (i=12,..N ). )

In case N, =2, the set of two non-linear equations is obtained with respect to a,, a,,
which can be solved by e.g. the Newton method. However, in the case where N, >2, the
overdetermined system of non-linear equations is yielded, for which a pseudo solution is
obtained with the chosen method for minimising vector norms [Fi(ai,a2),..., F, (@1,a2)].

When formulating the coil state equations, as state variables are taken the supply current
i(¢) and the magnetic flux of the primary coil ¢(z).

x (¢ it
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The average magnetic induction B in the core of the coil can be expressed by the state
variable @(¢)
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where Sy, is an average cross-section of magnetic circuit.
In accordance with the magnetisation characteristic (1) it can be assumed that the average
magnetic field strength in the core of the coil is as given below:
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By virtue of the flow law in the magnetic circuit of the coil:

H[SZJZM ~wi, =0. ©)

Under the second Kirchhoff’s law:

. dg. (1)
u(t) =R, i(t)+ W= @)

where
g.()=Li(t)+o(@), ®)

is the total magnetic flux of the coil which is the sum of the main flow ¢(#) and the leakage
flux ¢, (t) = L,i(¢). Substituting Equation (2) into Equation (1) gives:

di (t) d¢)(t)

t)y=Rq,i(t)+L, 9
u(t) = R, i(1) & ©)
and under the first Kirchhoff’s law and the law of the current flow in form of (6) we have:
t
lFe(t)—l(t)—z ) =i@)— [¢( )jlavFe. (10)
SFe

In accordance with the coil model scheme (Fig. 1) and following the second Kirchhoff’s
law:

do (1)

u(t) wd

RFe Fe(t) (11)

Substituting Equation (11) into Equation (9) the following is obtained:

di (t’ ) 4 Roin, (1), (12)

u(t)=Re,i(t)+L,

Substituting formula (10) for the i, (¢) current into Equations (11) and (12) we obtain:

di 1

::l(tt) L’ { (t) RCul(t) RFe|:l(t) (?Se)]lavFe}}
do() _ P() |
P {(r) ” [Spe jlnge}

Accounting for the selection of the state vector (3), the differential Equations (13) can be
written as:

(13)
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dx (1) _ 1

dt
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Fig. 2. Interface of the application for study on non-linear coil dynamics
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Fig. 3. Application’s GUI. The characteristics of the supply voltage and the magnetizing current

after 0.14 s
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For the purpose of the study on non-linear coil dynamics, an application in C# was deve-
loped. The application uses the authors' library for solving differential equations using implicit
RK methods [1]. The library includes basic implicit methods such as RADAU IIA, Gauss-
Legendre [2] and Lobatto IIIC. The application interface is illustrated in Figs. 2, 3 and 4.
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Fig. 4. The characteristics of the supply voltage and the magnetizing current after 1.14 s

2. Runge-Kutta numerical methods

Numerical solutions of differential equations for a non-linear coil with losses in iron is
a well-known problem in the literature. In order to solve the system of non-linear differential
equations which model the non-linear coil with iron loss, an IRK method (RADAU II A) of
various orders can be successfully implemented.

2.1. Explicit RK methods (Runge-Kutta) ERK
The basis of all the Runge-Kutta methods is the integral expression

X(t) =X(t,.)+jF[X(r),r]dr, t>1,, (15)

1

which is equivalent to the differential Equation (16), for ¢ > ¢,

d);ft) “F[X(0).1], X(t))=X,. (16)

Substituting 7 =¢, + h& , t;,y =t; +h for ¢ into Equation (15) one obtains:
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1
X (1) = X (1) +h [ FIXG,+ &)t +Enlag (17)
0

In order to determine the integrals in (17), numerous methods can be applied for the pur-
pose of their approximations, relying on replacing them with a sum:

X(t,) = X(1) +BY wEIX(, +¢ bt +e BV E, (B). (1)
=

where w; and c; are, for the given m =1, the coefficients dependent on the assumed method
for integral approximation, with E,, (%) being the approximation error. The Runge-Kutta me-
thods belong into the group of the above presented method for integral approximation (18).
Assuming the denotation X; = X(z;), the Runge-Kutta methods can be generally described as:

m
X, =Xl.+ijK§.’), (19)
=1

where w; are constants.
In the class of explicit Runge-Kutta methods, the vectors K(j” can be expressed as:

KO =nF[X,,1]

27

A Vi 4 , (20)
K‘(],’)zhl.F Xl.+ZaﬂKgl),ti+cjhi for j>1
=1

where b, =t,,,—t;; ¢, =0.
j-l
cj=2aﬂ for j>1. 21
I=1

The calculated vectors (20) used for solving the i-th iteration (19) can be applied in the
task of discrete solution interpolation. Therefore, it is desirable to store these vectors in each

iteration in form of the following K matrix:

KO [k kY .k
o | KE A R K
K® = 2 || " 22 2N . (22)
(i) () (i) ()
Kl\[/et k]\;etl k]\;etZ k/\;etN

The integration step is denoted by #, instead of %, because by using the Runge-Kutta
method it is possible to change the integration step in each iteration. For the fixed order K in
the Runge-Kutta method, the problem relies on finding the coefficients c;,a; and the num-
bers w; such that the values X; defined with relationships (19) and (20) were as close to the
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exact values as possible (Table 1).

Table 1. Butcher’s table

0
C
2 s
c as as
Cm (2] Am2 (XN am, m-1
m
w Wi wh Win-1 Wn

2.2. Semi-explicit Runge-Kutta methods

An important class of stiff tasks arises when solving the initial-boundary problem for
partial differential equations with derivatives with respect to time. In the case when discre-
tisation in the form of the difference quotients or the finite element method for spatial vari-
ables is applied for such equations, then as a result a large stiff sparse system of ordinary
equations is obtained.

In the constructions of implicit methods, solutions with the lowest possible numerical
computation cost are sought. This can be achieved not only through reduction of the appro-
ximation order but also by separation of non-linear equations. If in formula (20) we assume
a; =0 for [ > j, the so-called semi-explicit ESDIRK methods (Explicit, Singly Diagonal Im-
plicit Runge-Kutta) can be defined [3].

This way the system of non-linear Equations (17) whose dimension is mN will be trans-
formed into m independent systems of non-linear equations, each of size N.

) KO = F[X, +a, KO b+, ],
J-l
b) K\ = F| X, + > a, K +a, Kt +ch | for j=2,....m, (23)
I=1

m
) X,y =X, + > w K
Jj=1

This means that rather than solving a large system of non-linear equations, much more
convenient and less computationally expensive is to sequentially calculate m systems with N
unknowns in each integration step.

Bearing in mind the use of the standard algorithms for solving non-linear equations, the
separated Equations (23) are generally rewritten with respect to the unknown vector KS-”

H(KY)=K" -, F[X+a,;K?,]=0 for j=1,....,m, (24)
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where the calculation basis has the form:
Jj-1 _
X=X,+Y a;K, t=t,+c . (25)
I=1

The system of non-linear Equations (23) is solved with the Newton method, which means
that the Jacobi matrix J™ is necessary for the solution, enabling linear approximation of
a vector function (of vector variable) (23).

J<H)(Y(j))dY(j) - H(Ym)
. : A (26)
YU oy gy W

where

J(y)= 1Y)

F i
oy J( )(X+aij_(/),t), Q@7

i9jj
30 (v, = D,

is the Jacobi matrix of the right-hand side of differential Eq. (16), with the calculation basis
j-1

Y=X,+> a,K{", t=t,+ch,
=1

Solving the system of linear Equations (27) within the iterative Newton process slows
down the integration process in the semi-explicit Runge-Kutta methods. The larger the system
of differential equations is, the more frequently it happens. In the practice of modelling of
dynamical systems it very frequently occurs that the larger is the differential equation system
the sparser is the Jacobi matrix J (F )(X,t) in the right-hand side of Equation (16). For large
sparse systems, generating only non-zero elements of the Jacobi matrix can significantly re-
duce the time of integration. This is possible in the case when a system of ordinary differential
equations would be specified not only in the form of the vector function F(X, t) but also in the
form of the matrix function

s

J(F) (X,t) _ aFa())i,t)

which determines its non-zero elements only. Therefore in the Newton process, which is used
in the ESDIRK algorithms, the methods for solving sparse linear systems should be imple-
mented.

The recent years have brought numerous publications (e.g. [4, 5]) concerning a new sub-
class ESDIRK (Explicit, Singly Diagonal Implicit Runge-Kutta) of the SDIRK method class,
in which the first stage is explicit, i.e. a;; =0 for ¢; =0. The Butcher table for this m-step
method has the following form:

- 10.1515/aee-2016-0038
Downloaded from De Gruyter Online at 09/19/2016 10:51:53AM
via free access



Vol. 85(2016)  Modelling of a non-linear coil with loss in iron using the Runge-Kutta methods 535

Table 2. m-step ESDIRK method

0 0 0 0 0 0
c, a,, A 0 ] 0 0
¢, as, as, A 0 0
cmfl amfll amle amfl3 ﬂ‘ 0
w, w, w, w,, | 4
w Wl WZ W3 Wmfl ﬂ
* * * * * *
w W, W, W, Wit | Wa

2.3. Implicit Runge-Kutta methods
For any system of differential equations with initial conditions:

dift) =F[X@).1], X(t)=X,, .

where X(¢) is an N-th dimensional vector at time ¢ and F[X(t),t] is a vector function of the
vector variable X(#) and the time parameter 7. The implicit Runge-Kutta methods [4-5] have
the general form:

m
_ (@)
Xin=X; +ZWjKjl ; (29)
j=1
where w; are constants and the vectors Ky) are as follows:

KO =1 F| X+ a, Kt +c;h; |, for j=1,.....m, (30)
=1

where h; =t,,, —t,
m
€ =Zaﬂ : €2))

J=1

The Table of Butcher coefficients for the implicit method is as follows (Table 3).

The computing process is being carried out in base class constructors of the authors’
object-oriented software.

In case of implicit methods, the coefficient vectors form a non-linear system of algebraic
equations. When solving a system of N differential equations these vectors contain N com-
ponents, so for the m-step method the system of Nm non-linear equations will be obtained.
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Table 3. Butcher table for the implicit method

Ci ap ap Am-1 Aim

(&) a ax A2m-1 Aoy

C3 asy as azm-1 A3m

Cm Am1 Am2 Apm -1 [
m

w wi ) W -1 W

The fact of solving the system of non-linear equations in each integration step means a rela-
tively high cost of numerical computation.

In order to solve the system of Equations (30) the Newton method was applied [4]. Solving
linear equations during the iterative Newton process undoubtedly slows down the integration
process in the implicit Runge-Kutta methods. This is all the more apparent, the larger is the
system of differential equations. In the practice of modelling of various systems’ dynamics, it
happens very often that the larger is the differential equations system the sparser is the Jacobi
matrix JF )(X,t) of the right-hand side of equation (16).

For the implicit m-stage Runge-Kutta methods [6], there are some choices of nodes
C1,C25....,Cy for which high orders of the methods can be obtained. As it is well known, the
Gauss quadrature is of maximum approximation order. Therefore it is advisable to choose
such nodes c¢j,c,,....,c,, which make zeros of the quadratic formula of high order. The
Gauss-Legendre, Radau and Lobatto quadratures enable to obtain the orders of the methods
2m, 2m-1 and 2m-2, respectively.

In the RADAU II algorithm the nodes ci,c,,....,c, are the zeros of the Legendre poly-
nomial with substitution 1-2x, which ensures that the last node is the end of the integration
interval ¢, =1

def
PO(x)= P, (1-2x)+P, [ (1-2x), m=12,.,5. (32)

The ¢ g time nodes are described with the following equation:
P,,ﬁ”(cj)=0, j=12,..,m, (33)

which guarantees that c,, =1so that the last time node is the node equivalent to the right end
of the integration interval.

Zeros of polynomials can be estimated with a method of halving the intervals. The Van-
dermonde matrix V for these coefficients has the following form:
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U= @) @ (&) - )| (34)

) e e )

Its inverse matrix V is now obtained:

Yii Yi2o 7 Vim
v v e v
_ 21 Vo 2m
v=u'= 7 T T (35)
le Vm2 me

The knowledge of the inverse matrix V™' enables, according to the theory of implicit
Runge-Kutta methods under the simplified condition B(m), to compute the coefficients w; in
the Butcher Table:

m
1
w; = Z"ik P i=1,2,..,m. (36)
P

It turns out that the m-stage RADAU IIA method can achieve the order 2m-1. Consider the
m-stage RADAU IIA formula with the coefficientsc,, ¢,,...., ¢, , which satisfy the Equa-
tion (18). The Butcher table [6-7] for the method of RADAU IIA for any m-stages is as below:

Table 4. Table for the 3-stage RADAU IIA method of the 5-th order

4-6 88— 76 8296 —1696 —2+3/6 c| A4
10 360 1800 225
4++6 8296 +1696 88— 76 —2-36
10 1800 360 225
1 16-6 16+6 1
36 36 9
16-6 16+v6 1
36 36 9

Taking into account the stability function Rz for the Runge-Kutta methods it can be proven
that the RADAU II methods are A-stable [8]. This means that Rz < 1 for all z for which
Rez <0. Since the method’s coefficients are generated with a software, Fig. 4 illustrates the

RADAU IIA method’s stability areas up to the 13" order.
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Im{z)

Re(z)
Fig. 5. RADAU IIA stability areas for orders 5, 9 and 13

3. Conclusions

Implicit IRK methods can be implemented for higher orders. However, the computation
costs rapidly increase with the orders, which significantly limits their applications. In the case
of using other implicit methods (RADAU IIA, Gauss-Legendre, Lobatto) the calculation cost
is lower but for a large system of differential equations the computation time is also a signi-
ficant barrier. As shown in the example, where the RADAU IIA method has been applied for
solving the sparse equation system for a non-linear coil, the limitation to only non-zero ele-
ments of the Jacobi matrix in the iterative integration process has led to significant shortening
of the integration time. Summing up, of a number of Runge-Kutta methods employed to solve
specific nonlinear differential equations for the considered coil circuit, it is the RADAU ITA
method that has proven to be most efficient in terms of a relatively low number of iterations
and low computation times at a prespecified precision of the solution.
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