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Abstract: This work presents a study on dynamics of a circuit with a non-linear coil, 
where loss in iron is also taken into account. A coil model is derived using a state space 
description. The work also includes the development of an application in C# for coil 
dynamics examination, where the implicit RADAU IIA method of various orders is ap-
plied for the purpose of solving non-linear differential equations modelling the non-linear 
coil with loss in iron. 
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1. Non-linear coil 
 
 An iron-core coil has an inductance which depends on the current flowing in the coil and 
as a result it makes the tested coil non-linear. The circuit containing such coil does not comply 
with the principle of superposition, but both Kirchhoff's laws for instantaneous values are 
fulfilled. An equivalent circuit of such a coil is presented in Fig. 1. 
 

 
Fig. 1. Scheme of a non-linear coil with loss in iron 
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 For the coil model from Fig. 1 the following denotations are adopted: 
FeR  is a resistance of equivalent circuit for the loss in iron, 

CuR  is a coil resistance, 
,rL μL  are coil inductances, 

mU  is a coil voltage amplitude, )sin()( ϕω += tUtu m , 
β  is an initial phase supply voltage, 
ω  is a supply voltage ripple .2 fπω =  
 In addition to the above, the characteristics of the coil magnetic circuit, accounting for the 
loss in iron, is assumed to be:  
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where B is the magnetic induction and H  is the magnetic field strength. 
 The variables a1, a2 can be estimated if at least two characteristic points of magnetisation 

,...)2,1(},,{ =iHB ii  are known. For this purpose the following non-linear system of equations 
will be taken into account: 

  0)(arcsh),( 2121 1
=−= ii HaaBaaF i , ),...,2,1( pNi = . (2) 

 In case 2=pN , the set of two non-linear equations is obtained with respect to 1a , 2a , 
which can be solved by e.g. the Newton method. However, in the case where 2>pN , the 
overdetermined system of non-linear equations is yielded, for which a pseudo solution is 
obtained with the chosen method for minimising vector norms )],(),...,,([ 21211 aaFaaF pN . 
 When formulating the coil state equations, as state variables are taken the supply current 

)(ti  and the magnetic flux of the primary coil )(tφ . 
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 The average magnetic induction B  in the core of the coil can be expressed by the state 
variable )(tφ  

  
FeS

B φ= , (4) 

where FeS  is an average cross-section of magnetic circuit. 
 In accordance with the magnetisation characteristic (1) it can be assumed that the average 
magnetic field strength in the core of the coil is as given below: 
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 By virtue of the flow law in the magnetic circuit of the coil: 
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 Under the second Kirchhoff’s law: 
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where 

  )()()( ttiLt rc φφ += , (8) 

is the total magnetic flux of the coil which is the sum of the main flow )(tφ  and the leakage 
flux ).()( tiLt rr =φ  Substituting Equation (2) into Equation (1) gives: 
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and under the first Kirchhoff’s law and the law of the current flow in form of (6) we have: 
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 In accordance with the coil model scheme (Fig. 1) and following the second Kirchhoff’s 
law: 
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 Substituting Equation (11) into Equation (9) the following is obtained: 
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 Substituting formula (10) for the )(tiFe  current into Equations (11) and (12) we obtain: 
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 Accounting for the selection of the state vector (3), the differential Equations (13) can be 
written as: 
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Fig. 2. Interface of the application for study on non-linear coil dynamics 
 

 

Fig. 3. Application’s GUI. The characteristics of the supply voltage and the magnetizing current 
after 0.14 s 
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 For the purpose of the study on non-linear coil dynamics, an application in C# was deve-
loped. The application uses the authors' library for solving differential equations using implicit 
RK methods [1]. The library includes basic implicit methods such as RADAU IIA, Gauss-
Legendre [2] and Lobatto IIIC. The application interface is illustrated in Figs. 2, 3 and 4.  
 

 
Fig. 4. The characteristics of the supply voltage and the magnetizing current after 1.14 s 

 
 

2. Runge-Kutta numerical methods 
 
 Numerical solutions of differential equations for a non-linear coil with losses in iron is  
a well-known problem in the literature. In order to solve the system of non-linear differential 
equations which model the non-linear coil with iron loss, an IRK method (RADAU II A) of 
various orders can be successfully implemented. 
 
2.1. Explicit RK methods (Runge-Kutta) ERK 
 The basis of all the Runge-Kutta methods is the integral expression 
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which is equivalent to the differential Equation (16), for itt > .  
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Substituting ξτ hti += , htt ii +=+1  for t  into Equation (15) one obtains: 
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 In order to determine the integrals in (17), numerous methods can be applied for the pur-
pose of their approximations, relying on replacing them with a sum: 
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where jw  and jc  are, for the given 1≥m , the coefficients dependent on the assumed method 
for integral approximation, with )(hmE being the approximation error. The Runge-Kutta me-
thods belong into the group of the above presented method for integral approximation (18). 
Assuming the denotation )( ii tXX = , the Runge-Kutta methods can be generally described as: 
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where jw are constants. 
 In the class of explicit Runge-Kutta methods, the vectors )(i

jK  can be expressed as:  
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where iii tth −= +1 ; .01 =c  
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 The calculated vectors (20) used for solving the i-th iteration (19) can be applied in the 
task of discrete solution interpolation. Therefore, it is desirable to store these vectors in each 
iteration in form of the following )(iK  matrix: 
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 The integration step is denoted by ih instead of h, because by using the Runge-Kutta 
method it is possible to change the integration step in each iteration. For the fixed order K in 
the Runge-Kutta method, the problem relies on finding the coefficients jlj ac ,  and the num-
bers iw  such that the values Xi defined with relationships (19) and (20) were as close to the 
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exact values as possible (Table 1). 
 

Table 1. Butcher’s table 

0      
c2 a21     

c3 
a31 a32    

. .     

cm am1 am2 … am, m-1  

wm w1 w2  wm-1 wm 
 

2.2. Semi-explicit Runge-Kutta methods 
 An important class of stiff tasks arises when solving the initial-boundary problem for 
partial differential equations with derivatives with respect to time. In the case when discre-
tisation in the form of the difference quotients or the finite element method for spatial vari-
ables is applied for such equations, then as a result a large stiff sparse system of ordinary 
equations is obtained.  
 In the constructions of implicit methods, solutions with the lowest possible numerical 
computation cost are sought. This can be achieved not only through reduction of the appro-
ximation order but also by separation of non-linear equations. If in formula (20) we assume 
ajl = 0 for l > j, the so-called semi-explicit ESDIRK methods (Explicit, Singly Diagonal Im-
plicit Runge-Kutta) can be defined [3].  
 This way the system of non-linear Equations (17) whose dimension is mN will be trans-
formed into m independent systems of non-linear equations, each of size N. 
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 This means that rather than solving a large system of non-linear equations, much more 
convenient and less computationally expensive is to sequentially calculate m systems with N 
unknowns in each integration step.  
 Bearing in mind the use of the standard algorithms for solving non-linear equations, the 
separated Equations (23) are generally rewritten with respect to the unknown vector )(i

jK   
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where the calculation basis has the form: 
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 The system of non-linear Equations (23) is solved with the Newton method, which means 
that the Jacobi matrix )(HJ  is necessary for the solution, enabling linear approximation of  
a vector function (of vector variable) (23).  
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is the Jacobi matrix of the right-hand side of differential Eq. (16), with the calculation basis  
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 Solving the system of linear Equations (27) within the iterative Newton process slows 
down the integration process in the semi-explicit Runge-Kutta methods. The larger the system 
of differential equations is, the more frequently it happens. In the practice of modelling of 
dynamical systems it very frequently occurs that the larger is the differential equation system 
the sparser is the Jacobi matrix ( )t,)( XJ F  in the right-hand side of Equation (16). For large 
sparse systems, generating only non-zero elements of the Jacobi matrix can significantly re-
duce the time of integration. This is possible in the case when a system of ordinary differential 
equations would be specified not only in the form of the vector function ( )t,XF  but also in the 
form of the matrix function 

  ( )
X
XFXJ F

∂
∂= ),(,)( tt ,  

which determines its non-zero elements only. Therefore in the Newton process, which is used 
in the ESDIRK algorithms, the methods for solving sparse linear systems should be imple-
mented.  
 The recent years have brought numerous publications (e.g. [4, 5]) concerning a new sub-
class ESDIRK (Explicit, Singly Diagonal Implicit Runge-Kutta) of the SDIRK method class, 
in which the first stage is explicit, i.e. 011 =a  for 01 =c . The Butcher table for this m-step 
method has the following form: 
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Table 2. m-step ESDIRK method 

0 0 0 0 … 0 0 

2c  21a  λ  0 … 0 0 

3c  31a  32a  λ  … 0 0 

: : : : : : 

1−mc  11−ma  12−ma  13−ma  λ  0 

1 1w  2w  3w  … 1−mw  λ  

w  1w  2w  3w  … 1−mw  λ  
*w  *

1w  *
2w  *

3w  … *
1−mw  *

mw  

 
2.3. Implicit Runge-Kutta methods 
 For any system of differential equations with initial conditions: 

  [ ] 00 )(,),(
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)(d XXXFX == ttt
t
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, (28) 

where )(tX is an N-th dimensional vector at time t and [ ]tt),(XF  is a vector function of the 
vector variable )(tX  and the time parameter t. The implicit Runge-Kutta methods [4-5] have 
the general form: 
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where jw  are constants and the vectors )(i
jK  are as follows:  
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 The Table of Butcher coefficients for the implicit method is as follows (Table 3). 
 The computing process is being carried out in base class constructors of the authors’ 
object-oriented software.  
 In case of implicit methods, the coefficient vectors form a non-linear system of algebraic 
equations. When solving a system of N differential equations these vectors contain N com-
ponents, so for the m-step method the system of Nm non-linear equations will be obtained.  
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Table 3. Butcher table for the implicit method 

c1 a11 a12 … a1,m – 1 a1m 

c2 a21 a22 … a2,m – 1 a2m 

c3 a31 a32 … a3,m – 1 a3m 

… …. … … … … 

cm am1 am2 … am,m – 1 amm 

wm w1 w2  wm – 1 wm 

 
The fact of solving the system of non-linear equations in each integration step means a rela-
tively high cost of numerical computation. 
 In order to solve the system of Equations (30) the Newton method was applied [4]. Solving 
linear equations during the iterative Newton process undoubtedly slows down the integration 
process in the implicit Runge-Kutta methods. This is all the more apparent, the larger is the 
system of differential equations. In the practice of modelling of various systems’ dynamics, it 
happens very often that the larger is the differential equations system the sparser is the Jacobi 
matrix ( )t,)( XJ F of the right-hand side of equation (16). 
 For the implicit m-stage Runge-Kutta methods [6], there are some choices of nodes 

mccc ,....,, 21 for which high orders of the methods can be obtained. As it is well known, the 
Gauss quadrature is of maximum approximation order. Therefore it is advisable to choose 
such nodes mccc ,....,, 21  which make zeros of the quadratic formula of high order. The 
Gauss-Legendre, Radau and Lobatto quadratures enable to obtain the orders of the methods 
2m, 2m-1 and 2m-2, respectively.  
 In the RADAU II algorithm the nodes mccc ,....,, 21 are the zeros of the Legendre poly-
nomial with substitution 1-2x, which ensures that the last node is the end of the integration 
interval 1=mc  

  ( ) smxPxPxP mm

def

m ,...,2,1),21()21( 1
)1( =−+−= − . (32) 

 The jc  time nodes are described with the following equation:  

  ( ) ,,...,2,1,0)1( mjcP jm ==  (33) 

which guarantees that 1=mc so that the last time node is the node equivalent to the right end 
of the integration interval.  
 Zeros of polynomials can be estimated with a method of halving the intervals. The Van-
dermonde matrix V for these coefficients has the following form: 
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 Its inverse matrix V is now obtained: 
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 The knowledge of the inverse matrix 1−V enables, according to the theory of implicit 
Runge-Kutta methods under the simplified condition B(m), to compute the coefficients iw  in 
the Butcher Table: 

  mi
k

vw
m

k
kii ,....,2,1,1

1

==∑
=

. (36) 

 It turns out that the m-stage RADAU IIA method can achieve the order 2m-1. Consider the 
m-stage RADAU IIA formula with the coefficients mccc ,....,, 21 , which satisfy the Equa-
tion (18). The Butcher table [6-7] for the method of RADAU IIA for any m-stages is as below: 
 
 

Table 4. Table for the 3-stage RADAU IIA method of the 5-th order 

10
64 −  

360
6788 −  

1800
61698296 −  

225
632 +−  

 c A  

10
64 +  

1800
61698296 +  

360
6788 −  

225
632 −−  

  Tw  

 
1 

36
616 −  

36
616 +  9

1  
   

 

36
616 −  

36
616 +  9

1  
   

 
 

 Taking into account the stability function Rz for the Runge-Kutta methods it can be proven 
that the RADAU II methods are A-stable [8]. This means that Rz ≤ 1 for all z for which 
Rez ≤ 0. Since the method’s coefficients are generated with a software, Fig. 4 illustrates the 
RADAU IIA method’s stability areas up to the 13th order.  
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Fig. 5. RADAU IIA stability areas for orders 5, 9 and 13 

 
 

3. Conclusions 
 
 Implicit IRK methods can be implemented for higher orders. However, the computation 
costs rapidly increase with the orders, which significantly limits their applications. In the case 
of using other implicit methods (RADAU IIA, Gauss-Legendre, Lobatto) the calculation cost 
is lower but for a large system of differential equations the computation time is also a signi-
ficant barrier. As shown in the example, where the RADAU IIA method has been applied for 
solving the sparse equation system for a non-linear coil, the limitation to only non-zero ele-
ments of the Jacobi matrix in the iterative integration process has led to significant shortening 
of the integration time. Summing up, of a number of Runge-Kutta methods employed to solve 
specific nonlinear differential equations for the considered coil circuit, it is the RADAU IIA 
method that has proven to be most efficient in terms of a relatively low number of iterations 
and low computation times at a prespecified precision of the solution.  
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