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Abstract

Visually impaired individuals are a growing segment of our population. However, social constructs

are not always designed with this group of people in mind, making the development of better

electronic accessibility tools essential in order to fulfill their daily needs. Traditionally, such

assistive tools came in the form of expensive, specialized and at times heavy devices which visually

impaired individuals had to independently look after and carry around. The past few years have

witnessed an exponential growth in the computing capabilities and onboard sensing capabilities

of mobile phones making them an ideal candidate for building powerful and diverse applications.

We believe that the mobile phone can help concentrate the main functions of all the various

specialized assistive devices into one, by enabling the rapid and cheap development of simple

and ubiquitous assistive applications. The current thesis describes the design, implementation,

evaluation and user-study based analysis of four different mobile applications, each one of which

helps visually impaired people overcome an everyday accessibility barrier.

Our first system is a simple to operate mobile navigational guide that can help its visually

impaired users repeat paths that were already walked once in any indoor environment. The

system permits the user to construct a virtual topological map across points of interest within

a building by recording the user’s trajectory and walking speed using Wi-Fi and accelerometer

readings. The user can subsequently use the map to navigate previously traveled routes without

any sighted assistance. Our second system, Mobile Brailler, presents several prototype methods

of text entry on a modern touch screen mobile phone that are based on the Braille alphabet and

thus are convenient for visually impaired users. Our third system enables visually impaired users

to leverage the camera of a mobile device to accurately recognize currency bills even if the images
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are partially or highly distorted. The final system enables visually impaired users to determine

whether a pair of clothes, in this case of a tie and a shirt, can be worn together or not, based on

the current social norms of color-matching.
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Chapter 1

Introduction

Much of our social infrastructure is organized with the premise that all members of society have

their full vision. Most countries maintain costly transportation systems which rely mainly, if not

exclusively, on the ability of sighted car owners to drive through an elaborate road network, whilst

urban and rural regions alike are kept adequately lit all throughout the night for the sole benefit

of sighted inhabitants. Given these organizational and financial priorities, the needs of visually

impaired citizens are at times not addressed adequately, a fact which creates several challenges

which visually impaired individuals have to deal with on a daily basis. However, some of the

obstacles encountered by visually impaired people can potentially be overcome through simple

and cheap assistive software which runs on modern mobile phones. In this thesis, we outline four

such mobile accessibility systems that address essential and practical needs of visually impaired

users: (a) A mobile navigational tool which provides visually impaired users with directions

in unknown indoor environments, (b) A mobile Brailler application for visually impaired users

to enter text on touch screens, (c) A system for recognizing currency bills using mobile phone

cameras and (d) A system which can determine which clothes could be worn together by using

the mobile phone’s camera. In this work, we describe the design, implementation and evaluation

of the above systems. We have evaluated two of these systems with visually impaired users and

describe the qualitative and quantitative enhancements of our solutions through detailed user

studies. The underlying theme across all these systems is how to design appropriate smart phone
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based applications which take advantage of the rich array of sensors available on such modern

mobile phones in order to aid visually impaired users to perform such day-to-day tasks.

1.1 Motivation

“There was a time when disabled people had no choice but to ask for help - to rely

on the ’kindness of strangers.’ It was thought to be their lot,” [37].

Visually impaired individuals traditionally relied on the assistance and good will of others for

their everyday needs. This was due to the lack of basic accessibility affordances when carrying

out many daily life activities. Travelling alone was hard or even dangerous due to the lack of

carefully constructed sidewalks, or due to the inaccessibility of public transport, which lacked any

form of audio announcements [6]. This fact made venturing outside one’s familiar place of living

to be only undertaken by the truly adventurous of visually impaired individuals. Meanwhile,

finding one’s way in unknown buildings was impossible due to the lack of Braille signage on

building doors and elevators, in addition to the deficiencies present in safety regulations. This

further exacerbated the mobility difficulties experienced by such individuals solidifying their

social isolation. Any written form of communication was off-limits to blind individuals and

barely usable by partially sighted people, a fact which was detrimental to the education of this

segment of the population. This situation, coupled with a negative social perception about the

abilities of visually impaired individuals, ensured that such persons were more often than not

confined to specialized educational or habitational institutions [73]. The employment market was

especially hostile to such individuals, who were encouraged not to seek employment in the open

market but were protected and nurtured under the auspices of a philanthropic model of social

welfare [44].

In recent decades, social and legal developments have enabled the visually impaired to demand

a more equal position in modern society [84]. Technological improvements have given more

independence to the visually impaired population, overcoming the barriers preventing access

to written text and opening new horizons for enjoyable employment. Electronic devices and

especially personal computers and mobile phones have become carriers of assistive software,

enabling visually impaired users to obtain written material freely, communicate more easily
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with the world outside their own community and perform their job duties effectively [24]. Mobile

phones with powerful processors have become ubiquitous, displacing previous specialized devices.

The rise of the World-Wide Web has especially boosted the access of its visually impaired users

to information which was previously available in print and only via the assistance of sighted

human readers. Furthermore, the widespread availability of free mapping services has enabled

the population of visually impaired people to locate and even explore places of interest before

actually visiting them, removing some of the obstacles to unhindered mobility.

However, even today and after years of progress, the interior of an unfamiliar building seems

like a labyrinth to some visually impaired individuals, who still have to rely on sighted guides

in order to locate a specific room. According to the lawsuit filed by a blind advocate orga-

nization [37], American currency is still inaccessible to blind people as all dollar bills have the

same shape and lack any tactile markings, making daily transactions inconvenient and even risky.

While getting dressed, visually impaired individuals still face dilemmas on what set of clothes

to wear together, since determining which of their clothes match still requires the skillful and

flawless organization of their wardrobe. Finally, even though the mobile phone has provided

many advantages to the visually impaired population, fulfilling their mobility and communica-

tion needs successfully, the arrival of touch screen phones has created new accessibility challenges,

especially in the realm of text-entry. Given that texting is a ubiquitous form of communication,

any such difficulties in entering text on touch screen devices can negatively affect the quality

of social interactions enjoyed by visually impaired individuals. This thesis attempts to provide

an answer to the above four accessibility challenges by designing and subsequently testing four

separate software solutions that can run on a mobile phone. These solutions can help a visually

impaired person navigate in an unknown building, recognize American currency, identify if pairs

of shirts and ties can be worn together and enter text on a touch screen phone.

1.1.1 The Population of Visually Impaired Individuals and Their Daily

Needs

Currently, 2.5 million individuals in the United States are blind or partially sighted [20], which

means that they have an optical acuity of 10% even with corrective lenses. However, with the
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aging of the population, blindness is becoming more and more prevalent [5]. As reported by the

Center for Disease Control and Prevention [20], in the United States “Nineteen percent of persons

70 years of age and older had visual impairments”. In today’s uncertain global financial climate,

this aging of the population of visually impaired users could presumably reduce the availability of

meaningful accommodations. As such senior citizens are not always viewed by everyone as able

and productive members of society, the quantity of employment opportunities and recreational

outlets could also suffer. Regrettably, this assumption is confirmed by the U.S. National Center

for Policy Research for Women and Families [20], which states that “Poverty is a fact of life for

many blind adults, especially older women,” and “Few blind adults receive welfare”. In fact,

visually impaired individuals of all ages are at a disadvantage, given that “Nearly one in five [of

blind individuals] lives in poverty,” and “Only 19 percent are currently employed” [20].

With such a devastating rate of unemployment and the social repercussions that it entails,

large groups of visually impaired individuals might begin to feel negative self esteem [83], pre-

ferring not to leave the security of their home. This in turn could affect the level of social

independence that such individuals may attain, a fact which can negatively impact the develop-

ment of their interpersonal and practical skills. Any deficiencies in a person’s essential skills set

may in its turn result in an even more reduced self esteem. Fortunately, as put forward by works

like the current thesis, software-based assistive solutions may provide such individuals the social

and vocational independence they seek, breaking this vicious circle.

Personally, after interacting with many visually impaired people throughout my life, I have

come to believe that removing only a few everyday accessibility obstacles would go a long way

in drastically altering the social landscape in their favor. These obstacles could be grouped

into three large categories. Firstly, the ability to move around without any assistance is the

top desire of visually impaired people, especially being able to easily travel around their local

town or to find their way in unfamiliar buildings. Fulfilling this need adequately would help

them progress enormously on the road to independence. Their second most important concern

is access to written text including reading road and building signs, reading mail and completing

important documents, such as tax forms. Finally, handling daily tasks, such as effective house

cleaning, cooking and separating clothes for laundry/dressing, is also deemed important. At

least in the realm of employment, these observations are corroborated by a 1999 survey of 176
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visually impaired and low vision individuals which reported that “employment barriers included

attitudes of employers and the general public; transportation problems; and lack of access to

print, adaptive equipment, and accommodations” [13].

1.1.2 A Barrage of Incompatible and Expensive Specialized Gadgets

Each technological solution to a blindness-related problem traditionally came in the form of a

specialized device. For example, the Eureka A4 was one of the first portable personal computers

for the blind [25]. This device offered features such as note-taking and music composition, among

many others, and it was released in 1986. The relatively small market for assistive technologies,

however, meant that few companies would develop for this audience making products very ex-

pensive and creating monopolies. For example, Eureka A4’s price was around $2500, whilst even

today a specialized printer for embossing Braille may cost upwards of $4000 [34]. Meanwhile,

these devices were generally not programmable and thus could not serve as a platform on which

independent software developers could thrive. In order to reduce costs, manufacturers of such

specialized devices may remove user interface components which are necessary for these devices

to be used by fully sighted individuals. For example, the Eureka A4 came with no screen and

with only a Braille keyboard built-in. This may deny blind individuals the ability to ask for help

with their specialized device from a sighted friend, whilst it would be unlikely to find technical

support or servicing from anywhere other than the original manufacturer. This unfamiliarity of

the general public with specialized devices did not only mean increased costs for the visually

impaired user if the device was ever to need repair, but it could also create negative social con-

notations. Such negative perceptions could develop especially among the social circles of young

users, since many of these specialized devices were bulky and lacked any aesthetic appeal. On

the other hand, the cost of incorporating extra assistive features into mainstream products was

high due to the increased cost of electronics design and production. Blind users were viewed as

a special group which was hard to accommodate, was little understood and was thus not seen as

a potential customer. Giving access to mainstream technology as a form of legal requirement or

social responsibility was not in any way mandated and was thus readily ignored. There was also

little market pressure to change this.
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During the 90s, a strong push for building accessibility aids on mainstream personal com-

puters was undertaken. This effort has been successful in creating much widespread assistive

software, the most important of which is the screen reader. Such software, by allowing speech

and Braille access to the computer’s screen, has been extremely successful in work rehabilitation,

[22]. However, such software is still expensive and may cost more than $1000, [22]. Also, it is

not portable and thus cannot solve all the problems of accessing printed text.

More recently, the mobile phone is emerging as a rich unifying platform for assistive software

development. Legal requirements and increased awareness concerning the blind population made

manufacturers of mobile phones [33] start to incorporate accessibility into their devices. Third

party developers [15] stepped-in in order to fill the accessibility gaps of the remaining smart phone

platforms. The arrival of cheap smart phones with a high-resolution camera, an array of other

sensors and text-to-speech enables accessibility solutions to move away from specialized hardware.

Rich programmability allows cheaper development, faster updates and thus the involvement of

smaller software players in the accessibility space.

Despite the above advances, assistive or even accessible mobile phone software development is

still a nascent market. Consequently, visually impaired users face some challenges when operating

their mobile phones. Partially sighted users, for example, may complain about the size of the

letters on the relatively small phone screens, whilst blind users have difficulties finding items

easily on touch screen phones. These challenges, however, do not seem to be an impediment

to mobile phone adoption by the visually impaired. In fact, “people with disabilities continue

to choose commodity phones, even when they are aware of specialized access options”, [39].

This work uses the smart phone as a platform for consolidating and experimenting with a set of

assistive aids.

1.2 Thesis Contributions

This thesis describes the design, implementation, evaluation and user-study based analysis of

four different mobile accessibility applications which are summarized next:

1. Mobile Software for Independent Way-Finding in Indoor Places: Visually im-

paired people have a harder time remembering their way around complex unfamiliar build-
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ings, whilst obtaining the help of a sighted guide is not always possible or desirable. By

sensing the users location and motion, however, mobile phone software can provide navi-

gational assistance in such situations, obviating the need of human guides. We present a

simple to operate mobile navigational guide that uses Wi-Fi and accelerometer sensors to

help the user repeat paths that were already walked once. The system constructs a topolog-

ical map across points of interest within a building based on correlating the users walking

patterns and turns with the Wi-Fi and accelerometer readings. The user can subsequently

use the map to navigate previously traveled routes. Our system requires minimal training

and no pre-existing building maps. Our system uses a combination of gesture and speech

interfaces to make it usable for visually impaired users.

2. Mobile Software for Typing on a Touch Screen Using Braille: For visually impaired

users, existing touch-screen keyboards are cumbersome and time-consuming. We present

several prototype methods of text entry on a modern touch screen mobile phone that are

based on the Braille alphabet and thus are convenient for visually impaired users. We

evaluate the strengths and weaknesses of our Braille-based methods through a user study

with 15 participants. Our results indicate that a spatially-oriented method of entering

Braille using a single finger was preferred since it balances simplicity with accuracy. We

discuss how insights revealed by our user study can help us further refine and improve the

preferred method.

3. Mobile Software for Reliable Cash Identification: Despite the rapidly increasing use

of credit cards and other electronic forms of payment, cash is still widely used for everyday

transactions due to its convenience, perceived security and anonymity. However, the visu-

ally impaired might have a hard time telling each paper bill apart, since, for example, all

dollar bills have the exact same size and, in general, currency bills around the world are not

distinguishable by any tactile markings. We experiment with the use of a broadly available

tool, the camera of a smart-phone, and several methods of classifying SIFT key-points to

recognize partial and even distorted images of paper bills.

4. Mobile Software for Clothes Matching: This part of the work attempts to make a

first step in computationally determining whether a pair of clothes, in this case of a tie and
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a shirt, can be worn together or not, based on the current social norms of color-matching.

Our aim is to give visually impaired persons the ability, using snapshots taken by their

mobile phones, to independently and confidently be able to choose from their wardrobe

which set of clothes they can wear together.
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Chapter 2

Navigating Unfamiliar Indoor

Environments: A Mobile Tool for

Independent Way-Finding

Visually impaired people frequently have a harder time familiarizing themselves with new indoor

environments. The predominantly visually organized society designs spaces in ways that create

barriers to exploration for those without vision. Recalling already traveled routes requires suf-

ficient information about the route to be communicated to and be readily remembered by the

visually impaired person. This includes both having to remember accurate turn-by-turn infor-

mation, as well as specific points of interest on each route, such as a particular office door, in

order to be able to both use them as a point of reference and as a possible destination. However,

this burden of having to build a conceptual map can be potentially alleviated by using a mobile

phone to track the location and the movement of the visually impaired person within a building,

giving navigation assistance upon request.

This work [66] presents the design and implementation of a mobile navigational guide that

uses a combination of Wi-Fi and accelerometer sensor readings with a mobile device to learn and

navigate unknown indoor environments. The navigational guide is designed to enable visually
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impaired users to easily train the system and record new paths between two arbitrary points

within an indoor environment in a single traversal and allows the user to navigate any recorded

path in the future. During the training phase, the system correlates the physical trajectory of

the user with the Wi-Fi and accelerometer sensor readings from the mobile device to construct a

virtual topological map of each path. For navigation, the system infers the user’s current location

in the topological map and uses the Wi-Fi and accelerometer sensors to navigate the user to any

pre-recorded end-point within the environment.

Designing a highly accurate and usable mobile navigational system for visually impaired users

raises several fundamental challenges that this work addresses. First, while a mobile device has a

wide range of sensors including Wi-Fi, accelerometer, camera, GPS and compass that could aid in

navigation, not all of these sensors are suitable for visually impaired users for indoor navigational

purposes. In practice, all these inputs are highly noisy and we outline the shortcomings of these

sensors. Second, the accuracy of the navigational instructions provided to a visually impaired

user in an indoor environment needs to be significantly high. These way-finding instructions,

such as the announcement of turns, need to be accurate both in their content as well as in their

timeliness. They should give ample warning so as to enable visually impaired users to react to

their changing surroundings safely and promptly. Despite the large body of prior work on Wi-

Fi localization [63, 86, 74, 28, 11], existing solutions have exclusively focused on localizational

accuracy and not on navigation, a fact which makes them directly not applicable for the problem

domain. Offering way-finding assistance to a visually impaired user in an unknown building might

not be so much dependent on a perfectly accurate localizer, but on the ability of the system to

compute the optimal route to the user’s destination in real-time, continuously readjusting the

up-coming instructions that would be issued. Third, navigating unfamiliar environments should

require minimal training without any foreknowledge of the environment. In our usage scenario,

we require users to be able to retrace a path with only a single training traversal of the path.

Finally, the system has to be simple and usable by visually impaired users. The total reliance

of a visually impaired person on his senses of hearing and touch, in order to move safely and

successfully inside an unknown building, makes a careful design of the user interface of our

system especially important. This is because the phone’s default touch screen interfaces and

visual interactions cannot be engaged or perceived by a visually impaired user, making the use of
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an audio-based interface essential. In this work, we explore how to minimize audio interactions

by using motion or haptic gestures which minimize the disturbances to the user’s main cognitive

task of sensing his surroundings. The overall contribution of this work is the implementation of a

highly accurate, portable and easy to use indoor navigation system with very minimal training.

Based on a detailed evaluation across multiple different indoor environments as well as a user

study involving nine visually impaired users, we show the following results. First, using a combi-

nation of Wi-Fi and accelerometer readings, our system is able to issue navigational instructions

with an accuracy of less than six feet across a significant fraction of the paths; the worst case

error was less than ten feet. Second, the navigation system could provide almost completely

correct turn instructions within a few feet of the actual turn for almost all the navigation tests;

in the worst case, for one of the paths, a turn was announced roughly 3− 4 feet after the actual

turn was taken. All the participants of the user study were very enthusiastic in using and testing

our system; all of the users expressed willingness in using such a system on their phones. 8 out

of the 9 users expressed happiness in the level of navigational accuracy of the system when issu-

ing turn directions, whilst the dissatisfaction of the single remaining user was based on the fact

that he encountered technical difficulty when initially training the system. Most of the visually

impaired users found our swipe gesture interface coupled with a transparent input overlay (to

filter unnecessary user touches) to be very easy to use. In summary, we believe that this system,

while not perfect, is a significant step forward towards realizing the vision of a usable and highly

accurate mobile navigational indoor guide for visually impaired users.

The main algorithmic and UI contributions of this work are as follows:

• Provides a new Wi-Fi scan similarity measure which is more sensitive in distinguishing

scans separated with differing physical distances than previous approaches.

• Offers a robust method of counting walking steps using a phone’s accelerometer.

• Describes a method of creating a representative topological map of a building floor using

similarities between Wi-Fi scans and distance information from an accelerometer.

• Details how to combine Wi-Fi sensing together with motion information from an accelerom-

eter to improve navigational accuracy and the expressiveness of navigational instructions.
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• Uses swipe gestures, which have a very low attention-grabbing effect, to indicate turns with

a very high accuracy. To prevent users from accidentally invoking touch commands, we also

provide a transparent input overlay to filter user’s touch inputs to only allow our limited

set of input gestures.

The technical workings of our navigational system can be summarized as follows:

From the set of sensors in the mobile phone, we use Wi-Fi scanning and the accelerometer to

“sense” the environment for location and distance information respectively. Wi-Fi scans include

the mac-address of each visible access point and its signal strength, as discussed further in

section 2.3. This information can be used to construct fingerprints which are related to regions

of space, but they cannot tell us how large of a region we are dealing with or whether a user is

moving. So, in addition to Wi-Fi scans, we can use the accelerometer to determine lengths of

such regions and how fast, if at all, the user is walking 2.3. While walking, the user can use swipe

gestures to mark turns and use speech recognition to input labels of nearby landmarks, such as

“Water fountain”, as shown in section 2.5.

The Wi-Fi scans coupled with accelerometer and turn information enable us to construct

a topological map of the floor automatically, as detailed in section 2.4.3. This map partitions

space in a uniform and semantically logical way. Places on the map with quite distinct physical

characteristics, such as those separated by turns, are delineated as such. Also, places marked as

distinct in the same physical region by the system divide the space evenly. The user labels are

then attached to these places, if previously recorded. The use of human labels is more memorable

to a user than physical coordinates as explained in 2.5. Meanwhile, when issuing navigational

instructions, information from the accelerometer is used to adapt the navigational algorithm, in

order to predict the next location of the user. This improves navigational accuracy, in addition

to the wording of the navigational instructions themselves, as demonstrated in section 2.4.4.

During navigation, the system uses text-to-speech as described in section 2.5 to prompt

the user to walk straight or turn at the correct spots. The instructions are enhanced with

distance estimations measured in steps, to help the user virtually sketch out the up-coming part

of the route. Advance warnings are also provided both before turns and before arriving at the

destination. Instructions can optionally be given as vibratory feedback if desired.
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In short, Wi-Fi scans can tell us what locations exist and their topological relationship to one

another. The accelerometer data can give us distances, without which navigational instructions

would be less useful and without which navigational accuracy would suffer. The user can give

names to locations which have a personal meaning and do not feel detached or static, section 2.5.

These names of landmarks are given using the more natural input modality of speech, to prevent

the delays and the inaccessibilities inherent in touch-typing. Turns are marked using fast and

unobtrusive gestures across the phone’s screen.

2.1 Problem Description and Motivation

The high rates of unemployment for visually impaired people, reaching up to about 80% in the

United States [20], indicate that such persons are still, despite recent technological and legal

breakthroughs, not realizing their full potentials. The inaccessibility of buildings has been for

years a major hindrance to the free movement of such individuals, either due to unfriendly

and even at times unsafe design practices, or due to the lack of Braille signage, such as door

labels. The above coupled with the chronic lack of mobility instructors due to the fact that less

and less people decide to follow this arduous profession, exacerbates the mobility difficulties of

such individuals. The result is that many visually impaired people decide to stay in a familiar

environment most of their time, such as their home, and do not actively seek employment or

social opportunities outside it. This is because the lack of information on how to navigate an

unknown building, would make a visually impaired person have to turn to a sighted guide for

assistance, placing a social burden on both the visually impaired individual and the sighted guide.

The following scenario elucidates the issue further.

Consider the case where a visually impaired person visits a new indoor environment (such

as a hotel) with no prior knowledge. A small set of people within the environment initially

volunteer to assist the visually impaired person within the environment to specific end-points of

interest (such as a hotel room or dining room ). However, the visually impaired person wants to

be independent and not have to rely on others beyond a few initial interactions. Our goal is to

provide a mobile navigational guide, which without any foreknowledge of the indoor environment

and with little training, would be able to repeat any part of a route in the building. This system
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should be able to “sense” its surroundings and collect relevant location and motion information,

data which could be used later to determine accurately the location of the user inside the building

and provide navigation instructions to a user-specified destination, like the ones that the user

would have had to remember in the absence of such a system, including informing him on when

a turn or when the destination is approaching.

Designing such a navigation system requires us to address several challenges. Given the

target audience and the problem setting, the system should be highly portable and easy to learn

and use. To work in unknown environments, the system cannot rely on complicated floor maps,

which require a lengthy preparation procedure, [85], building structure models [35] or pre-existing

geographic information systems [53]. The need for portability implies that no heavy equipment,

such as a portable computer, [75], or a costly and hard to set-up server farm, [32], should be

required or even assumed to be available. Existing commercial aids for the visually impaired

are also not as suitable as might be deduced at first glance. This is because such aids might

be expensive while being fragile, or, simply be quite awkward to carry around. Some examples

are ultrasonic canes or laser glasses. At the same time, solutions based on sensitive or heavy

equipment, such as camera glasses, a robotic guide dog [45] or a wearable computer, are also

cumbersome. On the one hand, the above equipment places a burden on the user who now has

to carefully look after such devices given their expense. On the other hand, such specialized

devices may create a non-esthetic appearance for their visually impaired users, who might feel

singled-out.

These constraints lead us to the use of one device, which is nowadays available in every pocket,

the mobile phone. Not only is the mobile phone ubiquitous but it is familiar to the target group

[39], lightweight and above all is equipped with an array of sensors which we can use to our

advantage for effective tracking. Employing the above sensors, however, can be algorithmically

difficult since the sensor readings can be highly erroneous. It has been shown in the literature

numerous times, however, that the signal strength of neighboring Wi-Fi networks can be used to

determine an approximate location of the user without necessarily knowing the topology of the

Wi-Fi beacons, [28, 17, 60]. A significant question that remains is how can we avoid the need

of ready-made floor maps or building models? The solution is to employ the user as the initial

trainer of the system. Given that this operation should be carried out once, we feel that the
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social burden is much lower than having to ask for assistance or reassurance more often. The

costs of acquiring such ready-made maps or models in a lot of buildings are also prohibitively

high and would require specialized skills.

Any electronic navigational aid, however accurate, cannot be the sole mobility guide to a

visually impaired user. This is because many obstacles and other ground anomalies may not be

capture by such a system, even though their detection is essential for a safe mobility. The sen-

sors’ accuracy and computing power required for such an endeavor would be prohibitive, whilst

algorithms for such an accurate steering are yet to be perfected. The physical world’s complexity

creates a moving target for the designers of such systems who cannot certainly anticipate every-

thing that can “go wrong” in a fast-changing environment. In addition, movable furniture and

other humans who might be walking around the vicinity offer additional challenges to an elec-

tronic navigational guide. As a result, current-day commercial navigational systems are limited

to offering turn-by-turn directions.

In fact, visually impaired users make extensive use of hearing and touch in order to explore

their surroundings and identify suitable landmarks which could assist in determining their loca-

tion. Landmarks that could be employed for finding a specific room, for example, could include

the presence of a wall with a certain feel or even the absence of a high obstacle, such as an

open door at a certain point along a corridor. Hence, any electronic navigational aid, however

accurate, cannot be the sole mobility guide and should not over-ride conventional mobility aids,

such as a cane, or overload the information received through the senses of touch and hearing.

2.2 Related Work

Location tracking and movement detection have been the focal-point of a set of bourgeoning ap-

plications. On the location tracking side, chief amongst them are applications providing mapping,

driving directions and social networking services. Other scenarios including Crowd-sourcing (for

vehicular traffic estimation or for gathering location data [70, 2]), for security (such as tracking

of stolen or rogue devices [79], for better scheduling of everyday activities and regulating phone

functions depending on location, such as [36], have been proposed in the literature. Regard-

ing movement detection and measurement, the greatest areas were such techniques have been
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employed are in medical care and fitness [93].

In general and according to the survey carried out in [50], localization systems in the literature

can vary in the way they describe locations using physical coordinates, or, relative or topological

using natural language; the last being the approach followed in this work. The localization

algorithms themselves can be categorized into those which use the signal strength, the signal’s

angle or the time of arrival. The localization unit can either be a transmitter and thus be localized

by various stationary receivers like in sensor networks, or, be a receiver sensing the signals of

several stationary transmitters [50]. Earlier related work used one of sonar, vision and laser

sensing technologies, in both mainstream systems, [86, 74, 59, 14], in addition to systems built

specifically for the visually impaired community, [45]. However, the high cost, the difficulty of

deployment and the high demand of computational resources is problematic for large-scale usage

of such work.

An empirical method for finding the user’s physical coordinates on a map grid using Wi-

Fi signals was proposed in the Microsoft Research RADAR location system [63] and further

extended in works such as [10, 46, 47, 48] and more recently in [11]. In [11] GPS was used

to opportunistically capture physical coordinates at building boundaries which were in turn

used to bootstrap a Wi-Fi signal propagation model which localized indoor Wi-Fi beacons and

devices. However, in our own experiments GPS was not visible at all inside the building, even

at boundaries, and one had to leave the building and wait for some time for the GPS receiver to

return any useful data.

For their location tracking algorithms a number of techniques were proposed, such as prob-

abilistic Bayesian Particle Filters [29], nearest neighbor-based, neural networks [3] and support

vector machines [8]. An accelerometer in conjunction with the Wi-Fi signals is used in [55] to

improve the accuracy and precision of the localizer in an online manner, as well as providing

directionality information. The fact that a user is moving or not (a motion model) is also found

to be important in [58] and to improve the accuracy of a Bayesian Wi-Fi localizer in [4]. In

Simultaneous Localization and Mapping (SLAM) [80], a robot can simultaneously build a map

of its environment while traversing it. This usually requires input from a number of different

sensors with statistically independent errors.

However, the general drawback with the above systems is that they require either a dense
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installation of the Wi-Fi sensors, such as in every office, or a lot of training. Our work proposes

a system which is trained by the user and which does not require having any notion of physical

coordinates, a fact which also eases the semantic labeling of locations. Traditionally, their goal

was to minimize the localization error which was defined in the literature as the mean or median

squared error in Euclidian distance, i.e. the distance between the predicted and the actual

Cartesian coordinates. The reliability of such systems can then be determined using the variance

of the error. However, one may wonder in what way such a description of the error is interpreted

when a localization system is used to aid in navigating a person on a route. Moving correctly on

a route involves making the right turns on time and at the right place, avoiding obstacles while

verifying your location by observing landmarks. All of these requirements are not tested by the

error function used in many traditional localizers and thus a more empirical approach is followed

when evaluating our navigational algorithm.

Concerning the design of a touch-based user interface, [89] describes and evaluates a whole

array of multi-touch gestures which can be used in rich interactive applications. Amongst them is

the “flick” gesture, a long and fast swipe motion across the width of the phone’s screen, which we

also employ. Our system draws on the experience of [38] when attempting to make the phone’s

touch screen accessible. In that paper ten subjects who were blind were given access to the iPhone

for the first time. This was achieved by employing different types of touch gestures depending

on the task. According to [38], these gestures were easy to memorize but hard to confuse with

one another or to accidentally invoke when related to sensitive operations. For example, moving

through a list of items was performed using a flick gesture whilst the more “dangerous” gesture of

activating an item required two fingers to perform. Further, in their comparative analysis between

using an iPhone and a more traditional phone with buttons, [38] found that users expressed more

satisfaction and increased enjoyment when using the former, even though they were faster when

carrying out the tested tasks on the latter. This demonstrates that touch interfaces, given their

novelty, might engage the blind users more than traditional button-based interfaces by arousing

their curiosity.
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2.3 Sensors

In this section we describe the various sensors available on a mobile phone, we detail the obstacles

encountered when attempting to use these sensors for way-finding purposes and we explain our

findings which led us to specifically focus on the Wi-Fi and accelerometer sensors.

2.3.1 Choosing the Right Sensors

Modern smart phones include a variety of sensors, amongst them a Wi-Fi card, an accelerometer,

a compass, a GPS receiver, a camera and a microphone. A Wi-Fi card which, by periodically

scanning for neighboring beacons, can “sense” their signal strength, provides as with an energy

wise cheap albeit a noisy sensor, [42]. Similarly, an accelerometer can be a low-power solution to

“sense” movements, however, its signal is also noisy and contains all the movements that a user’s

body might make, ranging from the minutest shaking of the arm to the abruptness of someone

being pushed, most of which do not represent walking.

Since our system should work indoors the use of a GPS receiver was deemed to be infeasible.

This determination was arrived at after testing which showed that GPS satellites were only

visible outside the building boundaries and at times stable coordinates were returned only after

a considerable amount of time had elapsed in order for the GPS receiver to acquire a fix. This

result rules out the use in our system of the most accurate but power-hungry [42] location

sensor. At the same time, a navigational algorithm which can detect user motion and location

using Wi-Fi signals still cannot determine the directionality of the user without employing a

compass or waiting for the user to move a certain distance before determining the direction in

the map towards which he is walking. Moreover, the usefulness of a compass while constructing a

topological map by the system is apparent as without it the orientation of the whole map would

be absent. However, after attempting to smooth the noisy signal provided by the compasses on

two of our phones, we found that it was not really possible given the sudden jumps and erroneous

information that such a sensor would often provide. An explanation could be the iron structures

and electronic installations in many buildings which provide a high source of interference for these

sensors, coupled with perhaps a low quality of the compasses found in smart phones. Further
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details concerning the experiments on the unsuitability of the GPS and compass can be found at

the end of this section.

2.3.2 Using Wi-Fi Scans

For location estimation, we propose the use of Wi-Fi signals from wireless networks, which are

already ubiquitous in most modern buildings in the Western world, such as apartment houses,

hotels and campuses. The wireless 802.11 functionality is used to sniff nearby wireless beacons.

These measurements of the strength of wireless signals should provide a sufficient fingerprint of

the current location, i.e. given a new scan containing mac-addresses and measurements of their

signal strengths at a point and a list of previously recorded scans, we should be able to find a

rough estimate of the scan neighborhood in the collection of previous scans in which the new scan

lies, with a sufficiently small margin of error. A scan neighborhood of a specific scan includes the

scans which have been recorded close in physical space to that scan. To achieve this we assume

that scans close together in physical space should exhibit similar characteristics, i.e. list a similar

set of beacons with comparable signal strengths. Therefore, a similarity function must be defined

which ranks pairs of scans which list a similar set of beacons with comparable signal strengths

high, whilst scans which have few beacons in common and whose signal strengths are too far

apart are ranked low. Further, any similarity measure should be able to discriminate scans which

are closely located but which are clearly semantically separate via a physical morphology, such

as a turn. The measure should be stable in places with weak beacon signals or diverse beacon

densities.

The difficulty of such an endeavor lies in the fact that “Intrinsic noises in the signals caused

by multi-path, signal fading, and interference make such task challenging”, [42]. Beacons may

“appear” and “disappear” intermittently, especially at the boundaries of buildings and in hallways

with many physical obstacles. Even the human body can cause interference and thus Wi-Fi

signals are expected to differ depending on the number of people currently walking around the

building and how fast they are moving. Even in the simplest case, where a user is standing

still or rotating slowly at a single location, we observed nearly a 20 dB difference between the

maximum and minimum RSSI for a given access point. Given the fluctuations of Wi-Fi signals
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Access Point Min RSSI Max RSSI

AP1 -78 -58

AP2 -91 -71

AP3 -79 -58

AP4 -96 -88

AP5 -92 -81

Table 2.1: Fluctuations of Wi-Fi signals while the user is stationary

at a point, designing a navigation system purely using Wi-Fi signals can lead to high localization

errors. Table 2.1 illustrates the variations in signal strength extracted from a mobile device when

standing still or rotating slowly around a fixed point. What is striking is that the difference

between the minimum and the maximum can be as high as 20 dB which is a factor of 100

difference at the receive power levels.

To illustrate the poor localization accuracy obtained by using only Wi-Fi signals, we consid-

ered an indoor testbed with 23 Wi-Fi access points and ran four standard localization algorithms

from the research literature: weighted k-Nearest Neighbors (kNN), linear ridge regression, kernel

regression and neural networks. We trained these algorithms across multiple spots within the

floor and tested it for random locations within the floor. We considered the basic versions of these

algorithms and also optimized the parameters for our settings and found the minimum localiza-

tion error was 10.2 feet while the unoptimized versions had a much higher error as illustrated

in Table 2.2. Despite attempting to exhaustively fine-tune the various parameters of our neural

network, the localization error was consistently over 16 feet. Similarly, kernel regression did not

offer substantial differentiation over the other approaches. Finally, we unsuccessfully attempted

to combine a neural network with our best performer, weighted k-Nearest Neighbor. Essentially,

we used the neural network as a mechanism of producing extra artificial neighbors which were

then fed to the weighted kNN algorithm.

A further complication which arises when developing software which probes the phone’s Wi-

Fi card for neighboring Wi-Fi beacons is that their signal strength, or RSSI, is represented in a

vendor specific way. The RSSI is a value of one byte in length, denoting the signal strength for
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Method Average Error (feet)

Weighted kNN (unoptimized) 19.2

Ridge regression (unoptimized) 22

Weighted kNN (optimized) 10.2

Ridge regression (optimized) 14.4

Table 2.2: Localization error of standard algorithms

each visible Wi-Fi access point. However, the range, sign and scale of this value is not defined

in a common standard and so some phone platforms represent RSSI in decibels whilst others in

an even more arbitrary way.

2.3.3 Efforts to Smooth Compass Data

In our system, we originally attempted to employ the phone’s compass to determine the user’s

orientation and thereby automatically mark the turns on a route. As a magnetic sensor, the

compass can be very sensitive to fluctuations in the magnetic field caused by the proximity of

metallic objects, electronic equipment and building infrastructure.

After the phones software has stored the compass readings, post-processing was carried out in

order to remove noise. A moving window of readings is taken over the whole set of readings and

the value at the mid-point of the window is replaced by the median of the whole window. After

experimentation, we chose a window size of five. The window is then shifted one position forward

and the process repeated. This helps to smooth the otherwise very jittery compass readings.

However, the meaning of the term median is not clearly defined over compass readings, which

by definition are given in degrees. Thus, we have to define a circular median which can work

over degree values. This is because there is no notion of greater than or less than in the realm of

angles. This can clearly be seen by asking oneself, what is the median of 0, 5 and 355 degrees.

The mathematically defined median = 5. But clearly the correct answer should be 0. After

placing all our angle values on a circle, the circular median is thus defined by first finding the

arc of the circle which is mostly covered by our angle values, i.e. by excluding from the circle the

region which consists of the largest difference between all pairs of our angle values. This circular
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median is then used in the above moving window filter, which we call, the circular median filter.

The second post-processing step acts to sharpen the difference in compass readings at the

routes turns. This is for the sake of other algorithms which are used in other parts of our code-

base, where we wish to be able to detect turns in the recorded route relatively fast. This is

impossible if every time we wish to find all the turns in a routes graph, we were forced to use

sophisticated turn detection logic which would try to locate all gradual changes in orientation

and interpret them as turns of the right direction. Thus, our post-processing, using a moving

window like the circular median filter above, finds all the turns and sharpens or moves further

apart the orientations of the compass readings at each turn. One can say that this step removes

compass noise caused by turning. This is achieved by finding the difference in degrees between

consecutive compass readings and summing a moving window over these differences. One expects

such a sum to be close to 0, if the differences in consecutive compass readings are due to noise.

Otherwise, if the sum of differences is over a threshold, e.g. 60 degrees, a turn should be detected.

The peaks amongst the resulting sums of the windows of differences, therefore, are the turns. So,

the remaining compass readings in the window of readings where the peak has been detected are

moved further apart by adding or subtracting a value proportional to the amount of the actual

turn.

However, as is clearly visible in the following graph 2.1, the user’s orientation returned by

our compass has retained many of its Deviations from the expected orientation, even after being

filtered through the above algorithm.

2.3.4 Attempting to Employ GPS

In [11], opportunistic GPS at the boundaries of a building has been successfully employed to

provide the grounding physical coordinates to a mathematical model of Wi-Fi signal propagation,

which could in turn compute the physical coordinates of the user. However, the Android phones

that we tested regularly did not yield any GPS readings within our indoor settings as we observed

the GPS signal only sparingly within building boundaries. Using other phones such as a Windows

phone 7, while we were able to localize to within a building, different readings within the building

yielded overlapping results; the northern portion of the building mapped to the southern portion
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Figure 2.1: Expected, actual and filtered compass angles

and vice versa. Hence, we could not use GPS to even accurately distinguish between two corners

of a building. GPS data captured from a laptop also yielded highly inaccurate results.

2.3.5 Reasons Against Using the Camera and the Microphone

In Surround Sense [1], many built-in sensors commonly found on mobile phones, such as the mi-

crophone, the camera and the accelerometer are used to measure the ambient sound, the lighting

and color patterns and characteristic movements in a place in order to produce a fingerprint. It

has been shown that this fingerprint can topologically identify a location, such as a shop or a

cafeteria with an accuracy of 87%. However, in our case the use of the camera and the microphone

were excluded because of mostly instability and privacy concerns.

A camera can only record what the user is pointing at. It would be infeasible to force the user

to have to continuously point the camera at a source of more accurate location information, such

as the patterns found on the floor, because a user would want to have free control of the position of

his mobile phone and also because our subjects are visually impaired and thus it would be harder

for them to continuously have to focus the camera at an exact target in a stable manner. On the

other hand, taking opportunistic snapshots by the camera when the phone is pointed at the right

direction automatically as in [1] is not guaranteed to capture the required information. Overall,

it is questionable to what extent, for example, floor patterns can distinguish places which are
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anyway located on the same floor as in our problem. In the same vein, microphone data cannot

be stable enough to delineate between locations on the same floor to the same fine-grain extend

as Wi-Fi, especially when taking into consideration that sound conditions in many places, e.g.

classrooms, may change depending on the time-of-day and the current function performed in that

vicinity, e.g. if a lesson is currently taking place. Finally, capturing camera and microphone data

is a sensitive issue with privacy implications, which cannot be alleviated by simply algorithmic

means, as even the possibility of such a violation might discourage potential users regardless of

any algorithmically designed assurances to the contrary.

2.4 System Design

In this section, we describe how our navigational system builds a topological map of an indoor

route using Wi-Fi and accelerometer measurements. We begin by detailing how to compare the

Wi-Fi scans in a spatially meaningful manner and how to use the accelerometer sensor readings

for counting the number of steps walked, before we outline our map construction algorithm.

2.4.1 Choosing a Wi-Fi Similarity Measure

Determining an approximation of the physical distance between two Wi-Fi scans is essential for

building a navigational system. We tested a number of Wi-Fi similarity functions, two of which

are shown in figure 2.2. Our functions represent the two Input Wi-Fi scans which are to be

compared as two sparse vectors. Each vector maps every MAC-address visible at any one of the

two scans to its corresponding Received Signal Strength Indicator (RSSI) value at the specific

scan. Since most MAC-addresses are not visible at any given location, we assign to them an RSSI

value of 0, a fact which accounts for the vectors’ sparseness. Using the change in the visibility

of Wi-Fi beacons and the change in RSSIs at each scan as the measure of differentiation, the

similarity functions compute their costs as follows:

1. Dice Coefficient: Given two Wi-Fi scans,

finds the number of measurements coming from the same source (having the same Mac-

address) and divides two times this value by the total number of RSSIs from both scans.
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Tanimoto(x, y) =
x · y

||x||2 + ||y||2 − x · y

RBFσ(x, y) = exp
(
−||x− y||2

σ2

)

Figure 2.2: Similarity function definitions

2. Cosine Similarity Measure: Given two Wi-Fi scans, finds the RSSIs which do not come

from the same source, finds their dot-product and divides by their norms.

3. Tanimoto Similarity Measure: Finds the RSSIs which come from the same source,

calculates their dot-product and divides by the norms of the two vectors squared minus the

dot product.

4. Radial Basis Similarity Measure (RBF): Given two collections of Wi-Fi measure-

ments, finds the RSSIDs which come from the same source and creates a normal distribu-

tion with mean equals the average of the squared element-wise differences between the RSSI

values, times by their mean, and a width (variance) parameter determined experimentally

to be 50.

The last two measures have proven the most capable in separating signal vectors from different

locations apart as it can be seen in the following graph 2.3:

The graph 2.3 plots for both the RBF and the Tanimoto similarity measures, the average

similarity between scans of 22 paths which are at the specified distance apart. We can see that,

as the distance between the two scans is increased, the RBF similarity measure decays much more

rapidly than the Tanimoto measure which does not react quickly enough to distance changes.

This makes the RBF measure more reliable, even for scans which are only a small distance apart.

2.4.2 Counting the User’s Steps Using the Accelerometer

In order to improve our navigational algorithm, it was necessary to furnish it with information on

the user’s movements. For example, the algorithm needs to be aware when the user is stationary

and when the user is walking, and, be able to have at minimum some kind of notion of walking

speed. Given that modern smart-phones come equipped with 3-axes accelerometers, it was
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Figure 2.3: Spatial specificity of RBF and Tanimoto similarity measures

decided that a step-counter could be build employing these sensors which would fulfill the above

needs.

Accelerometer readings, however, can fluctuate rapidly, regardless of the phone’s model or

manufacturer. A mobile user can potentially point the phone in any direction while on the move,

making it difficult to compute the vertical axis of acceleration which could be used to count the

number of steps that the user has walked. Simple actions such as rotating a phone can cause

significant variations in the accelerometer readings across the three axes of measurements. In this

section, we show how we can clean accelerometer measurements to provide a reasonable measure

of the distance traversed by the user.

Our goals for the pedometer were that it should be relatively accurate, work on-line, do

not consume excessive processor time or power slowing down the remaining of the navigational

algorithm, do not require foot-mounted equipment or extra devices and not require a training

phase. Accelerometer signals, especially those produced in a mobile phone, are usually noisy and

sometimes unreliable. They are also not expected to provide data at a very high rate, more than

perhaps 20 readings per second. Our algorithm, therefore, should operate with noisy input and

be able to detect steps even with a small number of such inputs.

Unfortunately, algorithms found in previous work could not be used as is because they were
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not designed with our specific goals in mine. The pedometer described in [93] requires a foot-

mounted device to be present, for example, whereas the pedometer in our study should work in a

mobile phone which might be placed at any position on the body. Since our pedometer needs to

work on-line, the algorithm described in [49] where a fast Furrier Transform is used to discover

the periodicity of steps in accelerometer signals could not be used due to the expensive processing

requirements of FFT. Due to the different modes and styles of walking amongst various activities

and individuals, a set threshold in accelerometer magnitude for detecting steps [57] could not be

used, even if such a threshold has been found experimentally. Finally, the on-line nature of our

algorithm precluded the use of any techniques with a training phase when determining any step

detection thresholds, such as the one described in [31].

Instead, our pedometer algorithm works as follows:

1. An array of accelerometer measurements is continuously filled-up from the phone’s ac-

celerometer sensors. The size of the array is currently kept at 70. Once the array has been

completely filled-up,, a snapshot is taken and it is examined to find and count the number

of steps taken on a separate thread. At the same time, the original array is emptied and

the process of filling-up the array is repeated in parallel.

2. The three axes of the accelerometer readings are smoothed independently by applying an

exponential convolution by multiplying the whole of the readings array with a moving win-

dow of length five, containing coefficients giving exponentially lower weight to neighboring

readings.

3. To find which of the three axes is the perpendicular one and thus the one containing step

information, the variance of the three axes is computed independently and the axis having

the largest variance is kept whilst the remaining data is discarded.

4. The derivative of the chosen axes is calculated and the readings of that axis are multiplied

by this derivative to produce an array of magnified readings in order to smooth out noise.

5. The tenth and ninetieth percentiles of the magnified readings are computed, as it was

discovered experimentally that peaks lie above and below these values respectively.
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6. Both positive and negative peaks in the magnified readings are detected and counted. A

peak is a reading which is above the high percentile value calculated above and below

the low percentile value. Also, a peak has to be 0.65 times higher or lower than all its

neighboring readings in the intervals down to and up to the previous and next peaks. In

addition, peaks have to occur within at least a distance of ten readings from one another.

7. All sequential distances between each positive and between each negative peak are com-

puted. The variance of these distances between the positive peaks is compared to the

variance of the distances between the negative peaks. The peaks which have the smaller

variance are the ones deemed to contain step information, since a lower variance of the

distances signifies a more periodic signal. The number of those peaks is equivalent to the

number of steps taken.

The above pedometer algorithm is designed so as to meet our previously stated goals of

accuracy and efficiency. For example, the size of the array of recorded accelerometer readings

is large enough to ensure a quite accurate step count, but it is small enough to enable on-line

computation of the peaks without large delays between each pedometer update. The size is also

kept at a value which should not affect performance when performing array operations on the

readings array. The exponential convolution ensures that the signal is filtered so that outliers

and noise are removed as far as possible. It is also a very simple and fast operation to perform.

Meanwhile, rather than a more complicated approach using a computationally expensive method

of principle component analysis, finding the axis with the largest variance is very fast and can

thus be performed in real-time. This procedure provides an easy way to determine the axis of

acceleration with the greatest movement and so isolate the axis in which step information is

most likely to be present. In addition, multiplying with the derivative weakens the low-frequency

components whilst magnifying the high-frequency components from the large slopes, most of

which should represent actual steps. This removes more noise in the input signal. Similarly, by

calculating and using percentiles as cut-off values for finding peaks, our algorithm does not rely

on a pre-determined cut-off value and can thus adapt more easily to different walking styles by

relying on the actual data to guide its decisions. As a result, a training phase is not needed.

By ensuring that peaks are a specific distance apart, which in our case translates to around 0.5
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Figure 2.4: Steps counted on the accelerometer signal

seconds, the peak detection algorithm avoids over-counting steps thereby avoiding more of the

problems of a very noisy signal. The fact that peaks have to be by a certain factor above or below

all their neighbors also tackles more of the noise issue by eliminating local peaks. Rather than

squaring or taking the absolute value of the readings, our approach of looking at the positive and

negative peaks separately and choosing which one is authoritative regarding the number of steps

taken, does not suffer from the fact that positive peaks mixed with negative peaks may actually

over-count the number of steps as some of the peaks may be counted twice, both as positive and

as negative peaks. In our observations, we have seen that usually peaks of one of the signs are

informative, whilst the peaks of the opposite sign are usually too sparse and noisy. Choosing the

right sign, therefore, removes such noisy input.

From the above graph 2.4 we can see that the pedometer algorithm ignores sudden or spurious

jumps in the accelerometer signal but is quite accurate when counting the actual steps walked

by a test subject.

29



2.4.3 Map Construction

According to [19], “humans do not appear to derive accurate cognitive maps from path integration

to guide navigation but, instead, depend on landmarks when they are available”. In other words,

humans do not take into account Euclidian distance or angles when navigating but the previously

encountered landmarks. Our map construction should therefore enable the user to easily mark

places that he finds of interest, in addition to the route’s turns. For them to be effective, such

annotations should only cover a region of space large enough to accommodate a sufficient location

context so that the user could identify it, but not too large so that it would encompass multiple

semantically disparate places.

Our novelty is that Wi-Fi and accelerometer data from previously visited locations are laid

out in a topological map and not, as traditionally done, in a Cartesian grid. This means that a

single path is broken up into a number of segments called nodes, each one housing a collection

of Wi-Fi scans representing a particular contiguous region of space. The approximate length of

each node is also measured using the number of steps walked at that particular region of space

as estimated by the accelerometer data. This approach, frees our localization module from the

burden of requiring extensive floor maps, which are in any case difficult to come by. Training

and labeling of the topological map can be carried out directly by the user, by simply taking note

and thus labeling turns and landmarks while traversing a route for the first time. Employing a

topological map makes its nodes more amenable to labeling as described above, but also provides

us with an interesting experimental query: Can we achieve higher accuracy of navigation on a

more course-grained representation of space than the traditional way of using a thickly covered

grid?

While navigating an already recorded path, the user’s approximate location could be deter-

mined by comparing the sensory data present on the previously constructed topological map with

the current sensory input. In this approach, the grouping of scans into nodes can improve local-

izational accuracy. This is because given a single scan representing the user’s current location, it

is more accurate to identify the similarity, and thus the physical proximity, of this scan to a group

of other scans representing a region of space, i.e. a node on a topological map, than to unrelated

pairs of other single scans scattered around the space. Given the high level usage scenario of the

30



system, using a single scan for tracking and navigation is essential as Wi-Fi scan probes take

around 0.7 or more seconds on all of our test phones. Waiting instead to get a window of scans,

would slow down tracking considerably making way-finding less safe and effective.

Segmentation Algorithm

As summarized previously, in order to train the system, the user walks a path and along the way

marks all turns and records labels for any landmarks, such as “Door to the Cafeteria”. During

this phase, the system scans for Wi-Fi networks logging their mac-addresses and signal strengths,

every around 0.7 seconds which was the fastest rate achievable on our mobile devices. At the

same time, it counts the number of steps being walked. After the path has been travelled, the

segmentation algorithm splits the Wi-Fi scans into sequential collections of map nodes using the

step count information as a parameter. Edges are created in the map between nodes labeled with

turn indicators based on the turns that the user has marked along the path.

For the segmentation algorithm to be effective it should work fast and should not struggle

to scale, as the number of Wi-Fi scans is dramatically increased. This is because a path can

be from tens of scans in length to hundreds, and splitting them into map nodes should at most

take a cubic time in the number of scans so that it does not discourage potential users of the

algorithm. Our solution meets this challenge by using a dynamic programming approach which

tries to minimize a cost function over all the set of possible sequential scan splits. More formally,

given an existing sequential split of scans into nodes up to scan i, it attempts to find the next

split which will minimize the node creation cost function of node i + 1 to j, where j can be from

i + minNodeLength to i + maxNodeLength. This meets the cubic complexity requirement of

our goals. Defining a cost function over a sequential split of scans can be done easily by observing

that:

1. Scans within a node should have a high mutual similarity (intra-node similarity) but should

exhibit a relatively low similarity with the scans of neighboring nodes (inter-node similar-

ity). Finding sequential groupings of scans which improve intra-node similarity whilst

decreasing inter-node similarity should, therefore, be preferred.

2. A node with turns amongst its scans should be less desirable than a node with no or less
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turns inside it.

3. Nodes above a certain length (cut-off value) should be less preferred as their length in-

creases. This is to penalize longer nodes, whilst the cut-off value exists to prevent very

small nodes of getting a lower penalty. The pedometer measurements taken during train-

ing could be used as the measure of the length of each node.

4. Nodes containing scans with a higher variance in their similarities should be discouraged,

whilst nodes containing scans with a smaller variance should be preferred.

To find the similarity amongst the scans of one node or between the collections of scans of

neighboring nodes, the previously developed Radial Basis Similarity Measure can be used, by

taking the average similarity of all pairs between the scans of the single node or of each pair of

scans coming from each of the two neighboring nodes. The exponential function can be used

to make the scale of the five above costs (intra-node, inter-node, turn, length and variance), be

comparable. To further calibrate the algorithm we could also use a cut-off value below which the

diminishing effects of the intra-node similarity on the magnitude of the cost are not considered.

The sum of the above five costs can be weighed and thus empirically tested to find a cost function

which with attain the right balance amongst them.

Our evaluation criterion is the fact that Wi-Fi readings taken while standing stationary should

be grouped into a single node, whilst scans taken along a path should be split into nodes which

cover the space in an evenly manner and which do not encompass turns inside them. In other

words, we should show that maps are stable and only have a single node in them when the

user is not moving. They should contain multiple relatively small but not minute nodes when

representing a long path with separate nodes at each side of every turn.

Sensitivity analysis of the above cost weight parameters shows that the intra-node similar-

ity and the turn cost are the most important in creating a map meeting the above evaluation

conditions. In addition, it was determined that both the intra-node similarity and the turn cost

should be weighed equally and thus were assigned the same weight of 1.0. Finally, the cut-off

value of the intra-node similarity was empirically set to 0.7.
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2.4.4 Navigation

Provided that the user has traversed the same path once in the past, our navigational system

should determine a user’s location, find the best path to a destination, and give meaningful

instructions along that path. While attempting to navigate an already constructed map, the

system must track its belief about the users current location on that map. We utilize the Bayesian

filtering framework, well described by Fox et. al. [21], to integrate our estimate of the signal

distribution at each location with a model of how much the signal distribution changes as a

person walks for a particular number of steps.

Bayesian Filtering

Different sensors provide different inputs and different resolutions. They can never be completely

exact and might be noisy. So, a mathematical technique has to be used to deal with the issues

arising out of these complexities. In our case, this technique has to also be probabilistic, given the

complex propagation characteristics of the Wi-Fi signals which cannot be modeled accurately. A

Bayesian Filter can provide a statistical view of location tolerant to noise.

Formally, we observe a sequence of Wi-Fi scans s(1), s(2), . . . , s(t) and maintain a time-varying

belief vector Bel(x(t)) which is the probability of the state x(t) conditioned on all sensor data

available at time t. Bel(x(t) = i) designates our belief that the user is at map node i after we

have received a signal vector s(t). This Bayesian filtering framework includes two components:

the perceptual model and the system dynamics.

1. The perceptual model encodes the probability of obtaining sensor input s given being at

node location i. In our case it represents the signal distribution at each map node and

describes the likelihood of making the observation s given that we “believe” that we are at

x(t). We implement this model by normalizing the distribution of similarities between all

the nodes in the map and the current scan observation, similarities which are computed

using the RBF similarity function, to create a distribution over nodes.

2. The transition probabilities, or system dynamics, encodes the change in the belief over time

in the absence of sensor data. In our case, it captures the spatial connectivity of map nodes
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and how the system’s state changes as the user walks. Nodes which are closer in the map

have higher probabilities of transitioning from one to the other and nodes which are far

away have lower probabilities. These distances are embedded in the node information as

captured by the pedometer while training.

Localization tracking happens iteratively as signal vectors are received and used to refine

the systems belief vector. Transition probabilities should reflect or at least be comparable to

the probabilities of reaching node j from node i within one step. However, when the user has

not changed nodes, i.e. when still walking within the bounds of a single node, the probability

of staying within that node should be smaller for shorter nodes and larger for longer nodes. In

other words, the transition probability between two nodes should be inversely proportional to the

distance between them, whilst the probability of transitioning between a node and itself should

be proportional to the node’s length. To calculate transition probabilities the following reasoning

is followed:

1. We first observe that since paths are essentially a chain of nodes, there are two ways of

leaving a certain node once the user has entered it:, i.e., by walking forward or by walking

backwards to the two nodes adjacent to it. If the node is divided into s steps, then there

are 2 ∗ s choices of movements that a user can take within one step. Only two of these will

lead the user out of the node.

2. The probability of staying at a node is defined as nodeLength−1 / nodeLen, where nodeLength

is the number of steps in that node.

3. The probability of leaving a node should then be defined as 1− theprobabilityofstaying.

4. Given a path of nodes i1, i2, . . . , in, to reach node in from node i1, one should leave nodes

i1 to i(n − 1) and stay at node in. So, the probability of reaching node in from i1 should

be the product of the probabilities of leaving nodes i1 to i(n−1), times the probability of

staying at node in.

Calculating the next belief involves simply multiplying the transition probabilities with the

previous belief in order to account for the effect of user movement. Then, and having received
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Room No. 312 311 310 309 308 307 306 305 304 303 302 301 Destination

Node 1 2 1 3 5 4 6 7 9 10 14 13 16

Table 2.3: Node numbers adjacent to rooms in a long corridor

Room No. 312 311 310 309 308 307 306 305 304 303 302 301 Destination

Node 1 2 2 2 5 7 7 10 12 14 14 13 16

Table 2.4: Node numbers after using current nodes buffer in same corridor

a new Wi-Fi scan from the environment, this result is multiplied with the probabilities of the

conceptual model, i.e. with the probabilities of being at each node given the new scan. This final

result is the new belief.

The Stabilizing Effects of a Current Nodes’ Buffer

A fundamental deciding factor when employing a Bayesian Filter is the requirement to handle

noisy and unstable sensory inputs. However, in our experiments we have observed that despite

this precaution, the estimate of the current node is at times unstable, jumping from one map

node to another, even jumping among nodes that are not close together in space as is visible in

the following table 2.3:

To prevent jitter in the estimate, we propose the use of a current nodes’ buffer of size three.

When a new location is determined it is added to the buffer, displacing the older entry. When

the system is requested to find the user’s current location, it does not simply return the current

estimate, but the estimate having the majority in the current nodes’ buffer. If no estimate is

repeated more than once and thus there is no majority, the previous estimate is returned until a

majority is attained. This has a smoothing effect on the returned estimates, whilst eliminating

erroneous estimates due to noise. The following table shows the majority node in the current

nodes’ buffer along the same path shown above, indicating that most of the erroneous estimates

were avoided 2.4:
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Improving Wi-Fi Navigation Using Motion Estimation

While providing navigational instructions, it may be beneficial to combine the feedback from the

surrounding Wi-Fi signals together with the current step count provided from the accelerometer,

in order to create a more stable and accurate navigational algorithm. As discussed above the

two components of a topological Bayesian Filter are the sensory input, in our case provided by

the Wi-Fi signals, and the transition probabilities, in our case calculated by the relative lengths

of each node. However, it cannot be assumed that these probabilities remain stable as the user

walks, since movement towards a specific direction should make the departure from a certain

node and the arrival at another one more certain than the probability of being at any other

node.

To incorporate pedometer input in the transition probabilities, we simply raise the transition

matrix to the power of the number of steps taken between our previous and the current estimate.

This is because each transition probability is calculated in such a way to represent the likelihood

of making the given transition if the user takes one step. To incorporate a notion of walking in

the transition probabilities we do the following:

1. We determine the possible movements made by the user. We do this by keeping a history

of the previous probabilities of being at each node and comparing them with the current

ones. We do this for all pairs of nodes. If the probability of being at node i has decreased

and the probability of being at node j has increased between the previous and the current

probabilities, we could assume that the user might have moved from node i to j. Similarly,

if the opposite has happened and the probability of being at node i has increased whilst the

probability at node j has decreased, then we say that it is not likely that the user would

have moved from node i to node j.

2. Given the above findings, we compute the geometric mean between the previous probability

at node i and the current probability at node j. We do this in order to prevent noise

drastically influencing our results.

3. We then multiply the current transition probability from node i to node j with the calcu-

lated geometric mean, if we had found in step one that it is likely that the user has moved
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from node i to node j. Alternatively, if it is more likely that the user has not moved from

node i to j, we multiply by 1− thegeometricmean calculated in step two.

Generating Navigational Instructions by Using a Step Horizon

Taking the majority location from the Current Nodes’ Buffer, the system calculates the shortest

path to the destination. The system then gives the user appropriate instructions to walk toward

map nodes further down the shortest path. Navigational instructions are derived using the length

and directionality of map edges.

Certainly, instructing a user to turn after the actual turn, even if the instruction comes

very close to the actual correct position is certainly a serious bug in the navigational algorithm.

However, even if the instruction to turn or the acknowledgement that the user has arrived at his

destination comes at the exact position where the turn or where the destination is to be found,

this also does not make for a good user experience. A user needs to know beforehand that a

turn is coming up so that he will plan ahead, especially when the user is visually impaired. This

heads-up should come accompanied with an estimate of the number of steps required to reach

the announced turn, landmark or destination.

In our system, this is achieved by means of a step horizon. The navigational algorithm, when

deciding which instruction to issue, uses the current direction of motion of the user to predict

along the path to the destination, if there is a turn or another important point of reference

after a certain number of steps ahead, currently twelve. If a turn is detected on the path to the

destination which falls within at most the above number of steps, it is pre-announced together

with the number of steps required to reach it. The same for a reference point, such as the

destination.

2.5 Usability and the User Interface

The interface of the navigational system provides the user with the option to either record a new

route or to be guided toward a previously recorded destination. If the user wishes to construct

a new route, they must merely walk toward some destination while the device passively samples

wireless signal strengths and counts the user’s steps along the way. Explicit user input is, however,
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(a) (b) (c)

Figure 2.5: System interface: (a) Initial menu (b) Recording a path (c) Selecting a route

required at any turns along the path and for annotating landmarks.

Figure 2.5 shows the main menu of the application and the most important functions are

“Record new path” and “Navigate to”. When navigating the application’s menu, the user uses

a simple screen reader to read the menu and choose the appropriate option. We use a screen

reader only in situations where the user is stationary. We do not use the screen reader when the

user is in motion, such as while recording new paths or navigating to a destination.

In [38], most visually impaired users expressed their frustration and anxiety when using

a touch-based phone since they could accidentally invoke a command unintentionally. In our

system, we prevent this by placing a transparent input overlay covering the entire application

surface, which filters the user’s touch inputs allowing only scrolling and turn instruction gestures.

Next, we discuss the user interface for recording new paths and navigating to a prerecorded

destination.

2.5.1 Recording a New Path

Upon choosing to capture a new path, the application asks for the path’s name which is the user-

identifiable label for the path. While the user is walking along a new path, the mobile device

records the relevant sensory information. A key feature of the UI presented when recording a

new path is to allow the user to explicitly mark turns on the path.
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2.5.2 Signifying Turns by Using Rotation

A navigational system must interact with the user in a modality suitable for that user’s needs.

One important restriction when designing an interface for the visually impaired is that the con-

tinuous use of a screen reader is undesirable due to the already important role of the sense of

hearing in obstacle avoidance. Secondly, the availability of advanced sensors, such as accelerom-

eters, only on the most expensive mobile phones together with the fact that almost all of these

phones are touch input based, limits our choices of input methods.

As shown in Section 2.3, the compass was insufficient to accurately capture turns in a path.

Originally, our interface used a novel idea of indicating turns which involved flipping the phone

90 degrees to the left or to the right. If the user wished to indicate a left turn, he would

rotate the phone 90 degrees to the left and conversely if he wished to turn to the right. These

motion gestures were used both when recording a new route and during navigating a recorded

route. In this way the user did not have to interact at all with the phone’s touch screen. However,

during our experimentations and as demonstrated in section 2.3, we subsequently determined that

Wi-Fi signals fluctuate substantially, even when simply turning the phone at a single location.

Consequently, we decided to abandon this input mode of rotation gestures and develop a solution

that makes good use of the phone’s already available touch screen.

2.5.3 Indicating Turns by Using Swipes

In our subsequent iteration of the user interface we employ the phones touch screen as a mecha-

nism for indicating turns. If the user wishes to turn left, they simply swipe left along the screen,

after which the phone vibrates to signal its acknowledgement of the turn and optionally issues a

text-to-speech output. For turning right, the user swipes right along the width of the screen and

a similar but distinct vibration is issued together with optionally a speech output. These swipes

have a quite natural character, are easy to perform and very hard to the phone to misinterpret

since they are horizontal and cannot take the place of any swipes that could be misunderstood

as indicating scrolling. To further prevent accidental swipes, the phone is programmed to accept

only swipes which are above a certain threshold in length. The speed of a swipe could also be

used to filter erroneous gestures, however, in our initial testing this was not found to be neces-
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sary. During recording or navigating a route the phone’s touch screen is also kept blank of any

other interactive touch controls and only displays informative text for the benefit of the sighted

assistant if required. Other interactions are carried out using the phone’s standard application

menu which can easily be accessed via a special button at the bottom of the screen.

The source location, the final destination, and any landmarks along the way are all optionally

labeled using speech recognition. The speech recognition engine is provided by the phone’s

operating system and we use it here without any modifications.

2.5.4 Navigation

When using the system to navigate towards a known location, the user must select a desired

destination from the systems database of recorded paths. It is acceptable here to temporarily

make use of the screen reader, since the user will not be walking a route that he has not even

started. The system then infers the users most likely location along the recorded path and issues

walking commands such as Go straight for 20 steps, Turn left after 5 steps, etc.

Again, since it is preferable to not use the screen reader while walking we also have devised a

small set of vibratory commands which are easy to learn. For example, one long vibration signals

that the user should continue walking straight, whereas three short vibrations indicate that the

user has arrived at their destination.

2.6 Evaluating Navigational Quality

In this section we evaluate the navigational accuracy of our system. First we determine how our

topological-based Wi-Fi localizer compares to traditional Wi-Fi localization approaches. Then,

we perform a case study with the help of a totally blind individual who was asked to walk

a number of paths on different indoor locations while we were observing the accuracy of the

system’s instructions. This study with only a single blind individual was undertaken so that

we could examine our system’s practical performance, including carefully analyzing its accuracy

and its usability, in the greatest depth possible. We also wished to do this before embarking on

a larger study so that we could flesh out any technical issues still remaining. The next section

takes this effort to its ultimate conclusion by performing a much larger user study with many
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more visually impaired participants in order to gain multiple insides from a more diverse subject

group.

2.6.1 Evaluating Localizational Accuracy on Straight Paths

Localizational accuracy is how much the user’s physical location, as reported by the navigational

system, deviates from his true location at that moment. Calculating localization accuracy is

informative as it enables us to compare our system’s performance to that of traditional Wi-

Fi localization algorithms found in previous work. Since our navigational system does not use

physical locations, accuracy has to be determined based on our map’s topological nodes. On the

one hand, determining the localizational accuracy of our navigational system depends on how

well our map construction algorithm 2.4.3 breaks-up physical space into topological nodes which

are representative of the building’s physical characteristics. On the other hand, during navigation

it depends on how accurately and quickly are incoming Wi-Fi scan probes are matched to the

corresponding topological node to which they are physically closest. So, to calculate localizational

accuracy, we can compare the user’s current node as reported by the system while navigating a

path, with the actual node that the user is currently in. To determine the actual node that a

user is currently in, we can use pre-determined points in physical space which are situated within

each node and use these points to find out where on our map the user should currently be.

In our case, a rough estimate of where in physical space each node starts and ends is discovered

by laying out and marking on the floor a complete Cartesian grid. More specifically, we have

divided the third floor of our main departmental building into a grid consisting of six units in

the x-axis and ten units in the y-axis. Each x-axis unit is equal to nine feet and two inches and

each y-axis unit is ten feet. We have devised this uneven arrangement of grid cells so as to be

able to cover the whole floor in a practical manner, i.e. have grid lines correspond as much as

possible with walls or centers of corridors.

While recording a new path, we walk on our path normally until reaching the point on the

floor at which we have covered exactly 1 axis unit, either in the x or in the y direction. Then,

we note down the corresponding identifier of the Wi-Fi scan that is currently being recorded at

that location. Afterwards, when the map with the topological nodes has been constructed, we
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determine which Wi-Fi scans each node contains and therefore we can discover roughly around

which region of physical space each node is situated. We can do this by interpolating from the

locations of the scans we had just noted down in order to find out the approximate locations of

all the scans on the recorded path.

When the user navigates the path for a second time, we use sticky tape to mark on the floor

where each node starts and where it ends and we then use a measuring tape to determine each

node’s actual length. In a similar manner as above, we record the node number the system

is currently reporting when crossing any of our grid lines. By assuming that each node as a

straight line of equidistant segments, each one corresponding to each of the node’s scans, we can

determine the approximate physical location of each Wi-Fi scan during navigating. In this way,

we compute to what extend the estimated location of each scan during path recording matches

with the estimated location of the same scan during navigating the same path.

Using the above methodology, we walked twelve paths on the third floor and recorded the

locations of scans at each grid line while the phone was recording Wi-Fi and accelerometer

data. We then walked the same paths disabling the pedometer and the transition model of our

navigational algorithm so that it would not positively affect in any way the results of the Wi-

Fi localizer. The localizational accuracy is determined by finding the mean Euclidian distance

between the approximate physical locations of each scan estimated while recording each path

and the location of the same scans estimated while navigating. The results are shown in the

following graphs 2.6 where green lines represent the expected physical distance of each scan from

the starting-point of its path, whilst blue lines represent the actual distance:

As can be seen from the above graph 2.6, our topological localizer achieved similar accuracy

to previous work, i.e. around a mean of 3.6 feet. Even though we depict only straight paths, we

nevertheless attempted to calculate the localizational accuracy of paths with more complicated

shapes too. However, it is difficult to determine the approximate location in space where a node’s

scan is situated, when a topological node is not a straight line but can span a wider region of

space. Inherently, our topological localizer works on a very different concept from traditional

localizers, making direct comparisons beyond the straight line case non-trivial and even unfair.
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Path 1 Path 2

Path 3 Path 4

Figure 2.6: Expected vs. actual physical distance of each scan from start of path
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2.6.2 Measuring Navigational Accuracy

Navigational accuracy encompasses the effectiveness of all aspects of the navigational algorithm

when guiding a user on a path. Not only the navigational instructions “straight, left, right, etc”

should be correct but they should come at the correct time, neither to early nor too late, and the

same with the pre-announcement of turns and the arrival to the destination. Thus, it is not easy

to come up with a uniform and objective measure of navigational accuracy given the subjectivity

involved when defining when the “correct time” is.

The best way to handle the above problem is to observe the system in its actual intended

usage, i.e. test the system by having a visually impaired individual try out the system by first

recording some paths with the assistance of a visual guide and then figuring out if the same

individual can navigate the recorded paths without going the wrong way or taking the wrong

turn. In our case, we decided to adopt this approach but make it stricter by also recording when

the announcement of a turn or the arrival to the destination did not come at the exact point

upon which the turn or the destination were reached.

We used an Android Nexus 1 phone for our experiments and the user was a totally blind

user who is 29 years old with prior experience using mobile devices and speech interfaces for the

blind. We tested our system across multiple floors in two separate buildings: A and B. We report

our results across 23 separate paths across four different floors in buildings A and B. The two

floors in building A had an identical layout while the two floors in building B had a very different

layout. We chose these 2 identical floors to be able to check whether our navigational system

was consistent and reliable in its navigational instructions if the Wi-Fi signals were to change

slightly. The lists of Wi-Fi networks across the two buildings are also significantly different.

Within the same building, the Wi-Fi networks also showed very different RSSI characteristics

across different floors. We specifically chose paths which the user did not have much familiarity.

The chosen paths ranged in complexity from the simple straight path, to paths with some turns

at the end, to paths with a U-shape or to those with multiple turns in both directions from one

side of the building to the other resembling an H-shape. Each path was traversed exactly once

and was retested at different times after the training phase (to eliminate time-biases).

Tables 2.5 and 2.6 show the accuracy of our navigation system measured across two metrics:
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Correct -2ft. -3ft. -4ft. -5ft. -6ft. -7ft. -8ft. +2ft. Total Paths

22 2 3 3 3 1 1 3 1 39

Table 2.5: Accuracy of turn instructions

turn instructions and destination announcements. Here, again, the main take-away message is

that the accuracy of our navigation system is extremely high with median error rates less than

1− 2 feet in most cases. The user of the system also observed very few navigational inaccuracies

across all the paths. From table 2.5, we see that from the 39 “Turn left/right” instructions, 22

of them or around 56% were issued to the user upon arriving at the exact physical location of

the turn or upon waiting at that intersection for some seconds without taking the turn. A total

of eleven turn instructions (around 28%) were issued a little bit early, ranging from two feet in

advanced to five feet. This is a very short distance in length and also includes the distance of

around one to two feet required for the user’s body to enter the actual region of the intersection.

In addition, five turn instructions (around 13%) were given at an even earlier location from

the actual turn, as they were issued six to eight feet in advance of the intersection. However,

given that many turns were pre-announced by our system before the actual “Turn left/right”

instructions were given, the visually impaired user was expecting to find the turn in his route

anyway. This makes the occasional turn instruction which mistakenly comes even six to eight

feet in advance, not to be a problem in our experiments. Only one turn instruction was given

after having to walk into the turn, but even in this case, the error was negligible (2 − 3 feet)

that the user did not perceive it as an error. From table 2.6, we observe that on 18 out of the

23 paths or around 78% of them, the announcement of the destination took place at the correct

location. Only around two announcements took place 2 − 4 feet before the actual destination

in advance. In addition, two announcements were given 8 − 10 feet in advance of the actual

destination’s location. Finally, on one path, the destination was not announced at all but the

system correctly indicated that the destination would be arrived at in “1 step”. Together, these

results demonstrate the high navigational accuracy of our system with very minimal training.

When interacting with our user interface, the blind user did not encounter any difficulties. The

disabling of the phone’s touch gestures, except of the menu activation taps and of the scrolling
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Correct -3ft. -4ft. -8ft. -10ft. +1ft. Total Paths

18 1 1 1 1 1 23

Table 2.6: Accuracy of destination announcements

and turn flick gestures, successfully prevented any accidental user touches to be interpreted as

a command to the application or to the Android OS. The flick gestures used to indicate turns

taken by the user were also totally accurate, as they were interpreted correctly on all 23 of our

paths and the user needed no training and experienced no delay when using them. Finally, the

application’s menus were easy to learn to use even with the admittedly simplistic built-in screen

reader.

Despite the high noise of the Wi-Fi signals and the difficulty of localization accuracy as

demonstrated in the high amount of training required in previous work, our system seems to be

highly accurate for navigational purposes. This is because only on two paths the announcement

of a turn or the arrival to the destination came after the fact, i.e. after taking the turn or

bypassing the destination. These are the only times when our visually impaired user might have

been lost in an unknown environment.

2.6.3 Observations

From the above results, the key algorithmic observation is that the weight placed on the tran-

sitional model of the Bayesian filter creates a trade-off between announcing instructions a bit

early, or having to wait a bit before the instruction is announced. In other words, we can make

the system too sensitive so that it will jump to nodes ahead faster or make it slower to adjust

and create some delays. In this test run of the system, it appears that the right balance was

achieved. However, in our second building there were no mistakes concerning having to wait for

some seconds at a turn or the destination and there were almost no turns announced in advance.

Whilst with the same system, in our first building, there were a few delays. So, an adjustment

to the system’s weight parameters might not be simple to perform as the parameters seem to be

based on the characteristics of the buildings Wi-Fi.

Detecting that the user has arrived at a turn or the destination is exclusively based on reaching
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the node at the specific turn or the final node of the route respectively. This somewhat inflexible

approach can explain the fact that one of the arrivals to the destination was never announced,

since the final node in the map for that route seems to have never been entered. A reason for

this issue might be the relatively small length of the node in question, a fact which would make

the Wi-Fi signature of that node in the map weak. Future experimentations should perhaps lead

to an improved method of constructing maps in such a way to avoid any such problems.

2.7 Evaluating the System through a User Study

In this section, we summarize the design of our user study and give an overview of the demo-

graphic characteristics of our participants. Then, we list the users’ impressions of our system

and group them into pertinent categories based on which aspect of our navigational system they

are related to. We give special emphasis to the system’s strengths and weaknesses that the study

participants have also chosen to concentrate on. Finally, we analyze the responses given by our

study participants together with the observed system accuracy during the user study, to come

up with a main list of improvements that should be undertaken as part of future work.

2.7.1 Study Design and Evaluation Methodology

We recruited nine visually impaired participants from the New York City area to take part in

our user study to test our navigational system. Almost all of our participants were totally blind

and only one out of the nine was partially sighted. This was a desirable user sample as totally

blind individuals are the ones who would benefit the most from an indoor navigational system,

whilst at the same time we did not want to exclude the feedback of the partially sighted from

our study. There was variety in the sample concerning the time of onset of blindness, as a slight

majority of the study participants were congenitally blind whilst the rest had lost their sight

later in life. Our sample encompassed individuals of both younger and older ages, as well as both

people who had used a navigational aid before and others who had never used one. Three of

our participants were relatively young as their ages did not surpass the age of 30. Another three

were in their fifties, whilst we had two participants who had an age of 60 and above. Our user

sample included both novices as well as experts in the use of navigational systems, as five of the
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Characteristic Yes No

Age < 50? 4 5

Totally blind? 8 1

Blind since birth? 5 4

Uses touch screen phone? 5 4

Used a navigational aid before? 4 5

Table 2.7: Demographics of the user participants

participants had never before employed such a system, whilst four of them were already familiar

with a GPS-based navigational system. In fact three out of the four had in the past tried or were

currently using outdoor GPS-based software solutions that were specifically manufactured for the

visually impaired. Since our system ran on a touch screen phone which requires a different mode

of user interaction than a traditional keypad phone, we enquired whether our users had ever used

such a device before. A slight minority of the people involved in our study had never used a

touch screen phone before, whilst the rest were familiar with such a mode of user interaction. A

summary of these characteristics of our participants are listed in the table below 2.7.

The software was tested on an Android-based phone. At the start of each session, each

participant was given an overview of the navigational system, including an explanation of the

software’s operation. If required, users were allowed to familiarize themselves with the touch

screen and to practice the particular swipes for marking turns. Each participant was asked to

walk a number of paths in the same building in order to record them. The aim of this training

phase was for the user to get a first feel of the route and for the turns to be marked in the

system using the touch gestures. For this, the interviewer would guide the user on the paths to

be recorded by either allowing the user to hold him by the arm, or by having the user follow him

in a safe distance, depending on the user’s preference. After the routes were recorded and the

topological map constructed by the software, each participant was requested to walk each path

alone, while being guided by the navigational system. The interviewer would stay beside the

user of following him/her at a safe distance, while observing the performance of the navigational

system. The user was expected to follow any directions that the system would provide to him/her
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and the interviewer would only intervene if the user had veered sufficiently off course.

After all the paths had been walked, the impressions of each participant concerning the system

were recorded using a questionnaire containing both quantitative and qualitative questions. A

set of the quantitative questions tried to measure each user’s satisfaction with the accuracy, the

simplicity, the responsiveness and the safety of the system on a scale from 1 to 4, where 1 means

“Strongly disagree” and 4 means “Strongly agree”. Another set of similarly structured questions

enquired if the users had found the system to be easy to learn, a useful mobility aid and if they

were willing to use it on their own phone. On the other hand, the quantitative questions were

open-ended and prompted the users to respond with a few sentences concerning the parts of the

system they liked, disliked and list any additional features they wished to be added to it. At

the end of each session, the person conducting the interview would enter detailed notes on what

took place during each path walk, both during recording and when navigating. The interviewer

would also write down any important detail or fact that was observed during the user’s use of

the system and which the participant had omitted to mention as part of the responses given to

the open-ended questions.

The paths walked were almost the same for eight out of the nine users. These were four

paths on the third floor of our main departmental building. This simple experimental design

was preferred, as some participants felt more comfortable with the surroundings than others and

as we did not wish to burden any group of participants unnecessarily. Some users for example,

took longer to walk certain more complicated paths and most disliked having to switch floors.

Furthermore, we did not want to use different experimental designs for different groups of users,

due to the small size of our user sample.

All four paths included two turns each. Two of these paths were H-shaped and involved asking

the user to walk from one corner of the building to the diametrically opposite one, starting from

a classroom and arriving at an office at each respective corner. One path involved walking in a

U-shape along the same side of the building. The last path required the system starting from

one side of the building to direct the user to a specific office at the other side, three quarters of

the way down a corridor. The last path was designed to test the ability of the system to direct

a user to a specific door.

One of the participants was asked to walk the same four paths on the fourth floor of the same
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building. This floor has an identical layout as the third floor. The experiment was undertaken in

order to compare the behavior of the system on two separate floors having possibly different Wi-

Fi topologies but an identical layout. Additionally, one other participant, after having walked the

four same paths on the third floor, was asked to move to the thirteenth floor for walking another

two paths, in order to test the system in a more open space. This is because the thirteenth floor

houses the department’s cafeteria, a trickier place to walk around, due to the place featuring a

large sitting area. One of the paths tested the system by guiding the study participant from the

elevator through the cafeteria to a classroom and by helping him find a particular chair. This

chair was not easy to find, as it was situated two rows before the back of the classroom and

towards the middle of that row of seats. Another path involved getting to the same classroom

chair through another route which avoided the cafeteria.

2.7.2 Study Results

This section summarizes the results of our user study. On the whole, they demonstrate a naviga-

tional system which features sufficient accuracy to be used on short routes with limited complexity

but which may behave inconsistently at times due to Wi-Fi fluctuations.

Walked Routes and Navigational Accuracy

For most users, the system gave correct instructions at the right locations. For the turns, sufficient

advanced warning was given and the instruction to turn was usually issued very close to the exact

location where the turn was located. The direction of the turn was usually reported correctly,

unless the user had swiped the wrong way when marking the turn during the training phase,

2.7.2. However, out of the four paths that most users had walked, there was usually at least

one turn or one arrival to the destination which was announced 5 − 6 steps off, or in a few

isolated cases as much as ten feet in advance. For example, once the system instructed one of

the participants to “Walk straight for 19 steps” and then turn right, whilst the turn was actually

after 21 steps. Another time the system told the same participant to walk seven steps and reach

the destination, whilst the destination was after five steps instead. For two of the participants,

the second turn on the one of the H-shaped paths was not announced unless the user had turn
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a little towards the corridor at the start of which the turn was located. In the most egregious of

cases, the arrival to the destination on the U-shaped path was announced 17 to 20 feet before

the actual destination but the user was able to realize and correct the inaccuracy easily. When

trying to locate a specific office door, the system usually directed our participants to another

office which is right next to the office in question. However, these two office doors are right next

to one another with only a wall’s width in separation. Most users could realize this error using

their sense of touch. The reliability of the system suffered somewhat when we tried to make it

locate a particular chair at the back of a classroom on the thirteenth floor. Although a chair

close to the target one, i.e. one row in front and two chairs to the left was repeatedly identified

instead, the directions taking you to that particular chair were at times confused. For example,

while the user was in the classroom the system would decide along the way to the chair that

the user had arrived at their destination, to immediately change its mind to tell the user to

turn the correct way towards the row where the chair was located. On the other hand, the path

through the cafeteria did not pose any difficulties to the system. Overall, however, this handful

of inaccuracies concerned only a small part of the traversed routes. As can be deduced by the

ratings the participants gave our system, its general accuracy was sufficient for the tested routes,

a fact also reflected in the users’ comments and enthusiasm.

Questionnaire Responses

As depicted in the table 2.8, the individuals taking part in our user study rated our navigational

system on a scale of one to four, by responding to a set of short questions, such as: “Is the system

simple to operate?” For each question the table shows the number of users who chose each rating

1− 4, i.e. from “Strongly disagree” to “Strongly agree”. These questions could be grouped into

three categories. The first category, made up of the first two questions, attempts to measure

the accuracy of the navigational system when announcing turns and arrivals to the destination.

As can be seen in 2.8, the participants were overall relatively satisfied with the accuracy of the

navigational system, as for both questions there was only one user who rated the system with

a rating of two. However, whilst for the accuracy of the turns the users appeared to be divided

between “Agree” and “Strongly agree”, for the announcement of the destinations two thirds of

the participants showed a strong approval.
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Is the system... Strongly Disagree Agree Strongly mean ± std

disagree agree

Accurate when 0 1 4 4 3.33 ± 0.71

announcing turns?

Accurate when 0 1 2 6 3.56 ± 0.73

announcing the destination?

Simple to operate? 0 0 3 6 3.67 ± 0.5

Fast and responsive? 0 1 2 6 3.56 ± 0.73

Easy to learn? 0 0 3 6 3.67 ± 0.5

Safe to walk alone using it? 0 1 2 6 3.56 ± 0.73

A useful navigational aid? 0 0 3 6 3.67 ± 0.5

Something you would 0 0 2 7 3.78 ± 0.44

use on your phone?

Table 2.8: User ratings of the navigational system

The second category included the next three questions which aim to evaluate the user interface

aspects of the navigational system. It can be observed that the great majority of the participants

were in strong agreement that the system was simple to operate and easy to learn, whilst the

responsiveness of the system received a slightly lower rating by only one participant. The final

category of three questions targeted the general picture that the participants had obtained from

the use of the system. From these questions, the first asked the users to express the level of

safety they felt when they were walking by following the system’s guidance. From the responses,

it can be seen that most users felt safe when relying on the system’s guidance, as eight out of the

nine participants chose a rating of three and above. The participants also found the system to

be a very useful navigational aid that would help them navigate more independently in indoor

environments, a fact that was partly supported by the very positive responses accompanying the

next question. The participants’ enthusiasm about the system was further demonstrated with

the final question which asked the users if they were willing to use the navigational system on

their own phone in the future, a question to which an even larger majority strongly ascended.
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Discussion and Future Work

During this user study a set of nine participants were asked to walk mostly the same four paths

on the third floor of our building. This was to compare if the results were the same among

different users. We found that Wi-Fi interference makes repetitions of the same experiment give

somewhat different results. This difference is very small and it concerns the exact points on each

route where the directions are being issued. However, finding a particular door or a specific seat in

a classroom when it is your specific destination might be important in some navigation scenarios.

Even though our system would direct users to the correct destination by approximately a meter

of accuracy, this might not be enough if a neighboring door or seat is near enough as to make

the user accidentally knock on the wrong door or seat in somebody else’s chair. For example, on

the thirteenth floor of our building, the reliability of the system went somewhat down when we

tried to make it locate a particular chair at the back of a classroom.

Nevertheless, our users generally praised the idea of implementing such a type of navigational

aid, a system which they could see as necessary and useful in their own lives. They were enthu-

siastic about the whole project, a fact discernible from some of the responses provided to the

open-ended questions of our questionnaire. For example, three of our participants when asked

what they enjoyed most about the navigational system expressed their sentiments as follows:

“I think it is a great thing.” “I think it is an excellent idea.” “I liked everything, I think it

was great.” Others when so far as to suggest that our system could be a viable addition to the

existing GPS products which work only outdoors: “I love it. You have to commercialize it. So

many people will benefit from it.” “It is more accurate than the other GPS systems I am using

for outdoors.” Some users even described previous bad experiences they themselves had when

walking around unfamiliar buildings. One particular user said that he enjoyed going on cruises

relatively often, but the lack of a secure method of finding his way independently around the

ship made it difficult for him to have the best experience. A navigational system like ours, the

user suggested, would fulfill this need of independent mobility. This idea of the participant could

work, provided of course that Wi-Fi networks would be visible on board.

Concerning the users impressions from the actual usage of the system, Participants found

it capable and functional. They described it as relatively accurate when giving directions: “It
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was mostly accurate on the position of the turns and the arrivals to the destination.” “It just

needs some minor tweaks. It terms of accuracy now it is off by around a meter.” Some users

requested that our system does not limit itself to indoor places. They suggested that we should

start exploring the possibility of making our system work both indoors and outdoors. We believe

that this desire stems from the fact that visually impaired users would prefer to have an all-in-one

solution that could attend to their way-finding needs both when inside and outside buildings. “It

is good indoors but it should be good outdoors as well.” One user suggested that we use existing

building maps where they are provided by the building owner or a third party mapping service,

such as the electronic maps available for some shopping centers and airports. “And these are

the places where such a navigational system would be useful, like I want to find my way to an

airport gate or to a train platform.” Similarly, two individuals proposed that the system should

be enhanced so that it could warn them of any obstacles that might be on their path or of any

abnormalities found on the ground in front of them. The former was interested in knowing if

there were any permanent large objects blocking his way on the path, whilst the latter was more

anxious to be informed whether the ground had changed or was safe to walk on: “Sometimes

in the middle of the lobby they may have something like a sculpture or a fountain. How would

the system navigate you around obstacles like those?” “Could it pick out different things on the

floor like the floor is wet or slippery or ’There is a carpet in front of you in five steps’. Could

it tell you if there is debris on the floor?” Perhaps we could accomplish this extra functionality

by employing the phone’s camera, making use of another widely available sensor, but further

research would certainly be required in order to meet this goal.

The fact that the system was keeping its users continuously up to date on their progress

through the path by announcing node numbers was considered helpful: “I liked the fact that it

made you aware when it was working, through continuous speech feedback.” Some users expressed

dislike though, during the few times when the system was giving them directions that were quickly

changing in a short distance. This rapid change of mind concerning the current user’s position

could take place when the sensory input was such that as to make the system oscillate between

a set of different map nodes quickly. Since our system employs a probabilistic model to calculate

the current location in order to provide appropriate directions to the user, it could conceivably

be programmed to also calculate a confidence measure for the current location estimate. Then,

54



when trying to calculate the user’s current location, the current estimate could be chosen to be

the current location only if the confidence measure is above a certain threshold. However, during

our experimentations, it was not possible to come up with a reliable threshold which would filter

out uncertain location estimates but which would not fail to update the user’s location when

he/she has actually moved. As a participant of our user study has suggested though, we could

instead surface this confidence measure together with each instruction we issue to the user. An

additional piece of user interface could be provided through which the user be given an indication

on how accurate the current instruction is. Alternatively, an instruction could be modified in

such a way to reflect this uncertainty, e.g. “Walk straight for nine to twelve steps”.

In the same vein, the presence of landmark information in the topological map could help

make our navigational instructions to the user richer. As proposed by one of our participants,

the system could use the provided landmark information to enhance the directions it provides

by appending the user-provided landmark names directly to the end of specific instructions. For

example, “Walk straight until you reach the conference room door”, or, “Turn right at the Water

Fountain”. Where, “Conference room Door” and “Water Fountain” are names of bookmarked

landmarks. So, instead of providing only steps counts and turn directions, we should provide

enhanced instructions like the above.

Some users strongly wished to increase the frequency of updating the step instructions: “The

time lag between walking a number of steps and the system actually letting you know the updated

number of steps to a turn or to the destination.” “It was lagging a bit behind. It couldn’t keep

up pace with my walking.” A participant suggested that we could probably achieve this by

shortening the length of each of the map’s nodes, i.e. changing the topological map to be more

fine-grained: “Perhaps divide the path into shorter sections so that (A) it will update the step

announcements much sooner and (B) if it misses a section, the mistake wouldn’t be that large.”

However, shortening the length of each topological node would be a double-edged sword, as it

might make accuracy suffer instead. The fewer number of Wi-Fi scans that would be available per

topological node could make matching them with live Wi-Fi sensory data to be harder. A proper

way of achieving this is to use the pedometer during navigation in order to get an indication of

the distance that the user has already travelled within a certain node. This estimate should then

be subtracted from the number of steps that the user is asked to walk. Additionally, one of the
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participants was obsessed with the accuracy of the step count reported in each of the instructions.

Once, the system instructed him to “Walk straight for 19 steps” and then turn right, whilst the

turn was actually after 21 steps. Another time the system told him to walk seven steps and reach

the destination, whilst the destination was after five steps instead. He was annoyed about that

and he said that if the system is not extremely accurate when reporting the number of steps that

are to be walked, he could not consider it a safe system because he may walk into danger. The

reason is that the algorithm of counting steps is too coarse-grained to allow itself to be calibrated

for users with different walking strides, such as for people with different heights: “The steps were

not very accurate because suppose I am taller than you I would be making less steps than you.

How do you calibrate that?” Others found the step counter not as accurate as they would have

wished: “I wasn’t feeling secure because of the limitations in recognizing the step count. It was

good but off.” In the future, perhaps announcing distances in meters or in feet would remove the

one size fits all approach of the current step counter: “If you give distances in feet or meters it

will remove the variability of the step measure.”

Currently, there is no way in our system for the user to correct an error in a path while it is

being recorded, by deleting say sections from it and re-recording them. Additionally, there is no

user interface enabling users to add landmarks or change turn directions after a path has been

entered into the system. A participant proposed that we implement an on-line way of correcting

mistakes while recording a new path: “You want to be able to delete on the go, while being guided

the first time. Like create a system where you can pause, delete previous path sections, continue,

etc.” A related improvement should also be considered, whereby users are able to virtually browse

and explore all the recorded paths without moving away from the comforts of their armchairs,

making corrections if necessary. Such a feature would not only permit the correction of mistakes

but would also help the users to familiarize themselves with the recorded routes better, allowing

them to memorize these routes more easily.

A weakness that the users wanted to be remedied was the fact that the system as designed

does not work across multiple floors. This means that if a route is started on one floor, it cannot

finish on another floor. This is because we have not tested this scenario to ensure that Wi-Fi

signals could be a sufficient method of determining the floor on which a user is currently being

located: “How will it know on which floor you are ... say if you are on thirteenth or on the
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twelfth ... I mean there is only a short ceiling between the floors ... how will it know?” In the

future, more instructions need to be programmed into the system and the topological map may

need to be augmented in order to handle stairs and elevators. Our pedometer algorithm may

require modifications, as one of our participants shrewdly observed: “If I am taking an escalator

or the stairs, it wouldn’t calculate the right number of steps. If you are taking stairs and you

are on an escalator there is no body movement and even if you are taking ordinary stairs, there

is very little horizontal distance change but a lot of change in the vertical distance. How would

the system accommodate that?”

Another important disadvantage of our system that was brought to the foreground by some

users was the fact that the system is not able to provide corrective action and assist users who

have veered off the recorded route to get back onto that route: “What if you get off your path.

How would the system find which way you are now facing? And how would the system help you

come back on the right path?” However, without access to the whole of the building’s floor map

or without a way to join already walked paths in order to try and construct such a floor map,

it would be difficult to provide any corrective action similar to the one describe by the following

participant: “If it overshoots your destination or a turn by some distance, would it say that

you have to go back two steps for example?” Nevertheless, one of the participants commended

the fact that the system could start or continue navigating from any arbitrary location of the

recorded path and adapt its instructions accordingly: “I also like that it recalculated the road

depending on your current location.”

A possible way to help the user get back on the right path was put forward by a participant

who explained that the system could try and calculate the distance that the user is away from

the prescribed path and provide the user with this information. Since the system does not use a

compass, the participant mentioned, it cannot give directions to re-orient the user on the right

path, but it could at least give the user some estimate of how far he/she is from the path. The

systems inability to put a user back on the correct path is due to the fact that the system does

not have the new location the user has mistakenly walked to in its database and so it would

match the new location to some totally irrelevant place on the recorded path. In this case, i.e.

when the probability of being at any one node is too low, the system should switch to another

mode where it would just calculate the distance that the user is from the right path and just
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give him/her this information, since it cannot provide any other form of directions. This solution

was thought by the participant to be a sufficient alternative given our constraints. Implementing

this idea though will require us to find a way to calculate approximate distances between a set of

known Wi-Fi measurements belonging to a particular path and some unseen Wi-Fi measurements

outside the path.

Guiding a user around an unfamiliar building accurately necessitates the use of precise lan-

guage when formulating instructions. This is even more essential in buildings which feature

corridors with complicated junctions, corners which do not make right angles or large hallways.

However, our system can only issue turn instructions which ask the user to make a full 90 degree

turn. As it was observed by one of our study participants, our set of instructions needs to be

enriched in order for the system to be more useful in the above situations: “... we need to figure

out a system where the turns are not all 90 degree angles. ... Perhaps ’Turn slightly to the

right’, etc.?” Similarly, walking a route in reverse from the direction it had been recorded seems

to require more testing as observed by one of our participants. The biggest issues were that the

system could not figure out the orientation of the user correctly every time and that the first node

of the path, i.e. the destination since we were walking the path in reverse, was not identified,

perhaps due to the fact that it was too small. Therefore, appropriate measures must be taken to

ensure that all nodes that could serve as the destination are sufficiently large in order to allow

matching by the navigational algorithm. We should also try to find a way to tell the direction a

user is facing from their motion, since we cannot rely on the phone’s compass.

Concerning our user interface, participants’ comments were directed at both capabilities of

our system to provide navigational instructions using synthetic speech as well as using vibratory

feedback. Currently the system repeats instructions using text-to-speech more than once if the

user does not move to another node after five seconds. It was suggested that if the current

instruction was a repetition of an instruction which had already been given to the user, we

should add the word “repeat” to it. Meanwhile, after discussing the matter with some of our

participants, it became clear that a number of them wished us to make the system work with voice

commands in addition to the current functionality of marking landmarks with speech recognition.

In fact, speech recognition functionality might not be necessary after all when recording landmark

names, as recording the actual speech utterance directly in an audio file might be sufficient. This
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is because the names of the landmarks are not searched textually in any way but they are

presented as a list from which the user is asked to select a destination. This list can simply be

made up of a selection of the original pieces of audio recorded using the user’s voice for each

landmark. In this way, no Internet connection would be needed as is the case now for the speech

recognition service to work.

“Initially I did not know which vibrations corresponded to which turn or to which instruction.”

This revelation by a particular study participant made us realize that perhaps our vibration

patterns were not distinctive enough to be easily remembered. Even though we have tried

varying both the number and the length of each vibration among different instructions, we only

varied the number of the vibrations between the “Turn left” and “Turn right” instructions. Also,

after talking to a number of our participants, we discovered that they did not always notice the

vibrations, when both speech and vibratory feedback were turned on. In the future, we should

improve the vibratory feedback given after each user action to be distinctive for each command

and turn vibratory feedback on by default for all directions given to the user, as in the current

implementation vibratory feedback had to be enabled by each user.

While our user study was under way, we determined that our user interface should be modified

in order to make the swiping gesture more resilient so that wrong turn directions will not be

recorded. This need arose in the case of one of our user study participants where, the system was

mostly accurate in its navigation instructions except that 3 out of the 8 turns were announced

the opposite direction. This is the first time we had experienced this issue which makes it very

plausible that during training the user just did not swipe the correct way causing these errors.

In the future, the system should also be altered to give speech feedback when swiping to mark a

turn in addition to vibratory feedback, as one of the participants had complained about the lack

of such feedback: “Make it tell you which way you have swiped when indicating a turn so that

you are sure that you have not swiped the wrong way.”

Finally, more haptic gestures could be added to the system in such a way to make the use

of the phone’s screen reader even more redundant, or for enabling additional usage scenarios.

For example, we envisioned above the virtual exploration of recorded routes by the user before

actually walking them. This scenario might be useful for learning and experimentation purposes.

In summary, even though described as simplistic, the users praised the algorithmically more
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complex facets of our system. These facets include the system’s ability to discover their approx-

imate location within a route they had previously walked and its ability to count the number

of steps they had taken. In any case, an algorithmically strong navigational system which also

presents a simple to operate user interface, was the design approach we had aimed for. One user

specifically stressed that the fact that the system is “programmed” by the actual end-user and

does not rely on pre-constructed maps is a positive aspect. The user was perhaps alluding to the

freedom that our approach provides, namely the ability to employ the system in any building

with visible Wi-Fi hotspots without previously involving the building’s owner in the mapping

process. In general, however, for the users’ enthusiasm to last, we have to prove to them that the

system could be accurate in many more settings and situations than currently tested. Our users

need to get more time familiarizing themselves with the system and for us to let them train it

and use it for some hours on various paths, in order to be able to provide us with more holistic

opinions.

In future work, an automatic calibration of the system’s weight parameters according to the

characteristics of the buildings Wi-Fi might improve accuracy even more. Also, detecting that

the user has arrived at a turn or the destination is exclusively based on reaching the node at the

specific turn or the final node of the route respectively. This somewhat inflexible approach can

explain the fact that in our original case study one of the arrivals to the destination was never

announced, since the final node in the map for that route seems to have never been entered.

A reason for this issue might be the relatively small length of the node in question. Future

experiments should perhaps lead to an improved method of constructing maps in such a way to

avoid any such problems.

2.8 Summary

This work has presented a practical and useful navigational aid, which can remind visually

impaired people how to independently find their way on any route they had previously traversed

once when using sighted assistance. Its minimalistic gesture-base interface has made it simple

to operate even while holding a cane or trying to listen to environmental sounds. Despite the

high noise of the Wi-Fi signals and the high amount of training required in previous work, our
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system seems to be very accurate for navigational purposes. From the 23 paths tested in our

original case study, only in one path the announcement of a turn came after taking the turn itself,

making it the only time our totally blind user might have been lost in an unknown environment.

Similarly, based on our detailed user study with nine visually impaired users, we found that eight

out of the nine users found our system very easy to use and could successfully navigate different

paths in an indoor environment. Overall, we believe that this system, while not perfect, provides

a significant step forward towards realizing the vision of a mobile navigational indoor guide for

visually impaired users.
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Chapter 3

Typing on a Touchscreen Using

Braille: A Mobile Tool for Fast

Communication

The fast and widespread adoption of mobile phones which use only a touch screen for input has

created several accessibility challenges for visually impaired individuals. These challenges include

navigating a primarily visual user interface, finding numeric buttons to enter phone numbers and

typing text on a purely visual keyboard.

Improving interface navigability for visually impaired users has been dealt with in [39] through

a set of gestures which allow the user to move around the UI controls and listen to their contents.

Commercial implementations of this interface now exist [33]. However, concerning text entry,

blind users are still forced to use the built-in on-screen keyboard. Even though this keyboard

may be able to speak the character above which the user’s finger is located, typing using this

method is time consuming and error-prone. Letters on such keyboards are tiny and are placed

too close to one another due to the constrained screen size and so the plethora of touch targets

makes typing slow to the point of frustration.

In previous work [26, 7, 23, 76, 56] researchers have tried to tackle this issue by proposing a
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set of new input methods, some of which use the Braille alphabet. In most cases, the new method

of entering text was compared with a standard QWERTY implementation on a touch screen and

found to be superior. However, the various Braille-based input methods have not been compared

systematically and empirically so that their individual advantages and disadvantages could be

analyzed in detail. In this paper, we put the Braille system of writing under our microscope and

ask the question: Given that we have to design a Braille input method, what would be the best

way that such a method would be implemented? We do this by proposing a set of four Braille

input methods augmented with a small set of editing gestures. We compare our methods along

with one existing method from the literature [78] in a usability study.

By testing a set of diverse input methods, we are able to explore the solution space from

different angles and elicit different feedback from different groups of users who might be attracted

or served best by different methods. Even though this need to cater to the wide diversity of the

blind population when typing on a touch screen has been previously recognized in the literature

[62], this diversity has not been directly used to guide the design of future input methods. Further,

instead of proposing a set of potentially numerous and separate input methods each one to be

used by a different group of visually impaired individuals, the current work takes a different

approach: We rely on the data collected during our user study to guide us in improving the

Braille input method that our users preferred the most.

Previous work [41] has shown that visually impaired users are not as accurate when performing

touch gestures compared to sighted individuals. This makes it all the more important that a

Braille input method should be able to produce text with as few mistakes as possible while

relying on noisy touch input. Also, most visually impaired individuals may employ canes or

guide dogs as mobility aids in their everyday life. This makes it hard to touch-type on a mobile

phone while one of your hands is otherwise occupied, making the existence of a single handed

input method essential. Unlike related research in this area, both of the above factors have been

taken into consideration when designing our Braille input methods.
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3.1 Problem Description and Motivation

Creating a successful touch keyboard is complicated, as it involves much more than simply

drawing a pictorial representation of a physical keyboard on a touch screen. One reason for this

extra complexity is that with an on-screen keyboard, users are unable to touch-type like on a

physical keyboard. Finding the next character to enter is a more involved mental process, as it

requires the visual identification of the target letter before directing a finger to touch it. Compare

this to a physical keyboard on which users who have learned to touch-type can locate and acquire

letter targets with no conscious effort. Indeed, totally blind individuals can train themselves to

become extremely fast typists on a physical keyboard, taking advantage of touch-typing. Similar

to sighted typists, experienced blind typists can locate characters on physical keyboards without

having to exert any mental effort when locating each key as their fingers “automatically” jump to

it. However, given the narrow width of a touch screen and the lack of any physical markings, it is

impossible for any user to place all of his/her fingers on a touch keyboard or let alone keep them

at a constant and pre-determined location for a long time without drifting, in order to touch-

type. Also, since touch screen phones are mobile devices which are most often in use while on the

go, one hand is often occupied just by holding the phone and cannot be used for touch-typing.

Whilst the lack of a touch-typing ability on touch keyboards is not as detrimental for sighted

users typing speed, it can negatively affect the typing rate of blind individuals enormously. This

is because without the immediacy of visual feedback, blind individuals are forced to painfully

explore the screen by slowly moving a finger over the region surrounding the target letter, until

it has finally been located.

Touch keyboards are usually known to suffer from a low hit-rate. This means that once the

target character has been located, it is very easy to accidentally tap a nearby character instead

of the desired one due to the close proximity of the touch targets on the seemingly tiny phone

screen. This issue, which affects both sighted and visually impaired users of touch keyboards,

can be more aggravating to the latter group though, who after mistakenly activating a nearby

character and after lifting their fingers from the screen, need to repeat the agonizingly slow

exploration again from the beginning in order to find and acquire the correct character.

To compensate for the above problems of the lack of touch-typing and of the low hit-rate on
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touch keyboards, software developers have added extra algorithmic sophistication which can pre-

dict what users are intending to type from what they actually type. These prediction algorithms

can then auto-correct on the fly the users erroneous virtual key touches and output the text

that most closely matches the users intentions, as they have been perceived by the algorithm.

These auto-correcting features of touch keyboards though, might be disabled by blind or visually

impaired users, as they often require the user to make a choice between different suggestions of

corrected text while typing. These suggestions can interrupt the normal flow of selecting and

activating character targets or may appear at unexpected times, confusing the visually impaired

user who is forced to listen more carefully to the speech output from his/her mobile phone in

order to identify their arrival. Indeed, similar to the fact that sighted users must continuously

glance at the phones screen while typing on a touch keyboard, visually impaired individuals need

to continuously and attentively listen to the phones screen reader when entering text. Paying

attention to the phones synthetic speech output is vital as screen readers are often programmed

to echo each individual character and/or word typed enabling the visually impaired user to verify

the correctness of his/her input. This need forces especially blind individuals to have to continu-

ously hold the phone close to their heads, in order to use the touch keyboard while being present

in a noisy environment or simply in order to maintain their confidentiality. For example, sending

a text message during a meeting might need to be done quietly and discreetly, i.e. with limited

intrusions by the phone’s screen reader and without having to extensively expose the phone into

view. A more intuitive method of entering text is therefore essential in order to ease the above

pain-points experienced by such users.

A possible solution to the challenge posed to the blind community by the inability to efficiently

type on touch screen phones can be the use of a new input method based on the Braille alphabet.

The Braille system of writing represents each letter or numeral as one or more Braille cells. Each

Braille cell is a pattern made up from a possible set of six dots all of which appear at very

specific cell locations. This makes the number of the possible touch targets extremely small and

their placement very predictable compared to a touch keyboard. Similarly, the six Braille dots

appear in two columns of three dots each, an arrangement which, compared to the proximity of

the virtual keys on the touch keyboard, makes it much harder to accidentally touch the wrong

target. Figuring out the most preferred approach of entering Braille on a touch screen can be a

65



challenge of its own though. Obviously, the proposed Braille method should be fast to use and

at least easy to adapt to for a person who is familiar with Braille. However, the proposed Braille

input method should also prevent the user from making mistakes through spurious or accidental

touches, should keep as few of the users fingers as possible occupied to enable comfortably holding

the device while on the move and should permit the user to effortlessly type without having to

continuously hold the phone close to his/her ear in order to verify every action taken. In fact,

it would be ideal if such an input method would, with practice, become second-hand nature to

the user, who would then enter text without having to continuously maintain a heightened level

attention, similar to the automatized manner in which other daily tasks, such as driving, are

performed.

3.2 The Challenge of Using a Touch Screen as an Input

Device

Having decided on developing a Braille input method, we have to now discuss how we can use

effectively the only relevant input device available to us on modern mobile phones, i.e. the touch

screen. Since the early days of the availability of touch screens, there have been efforts to make

it accessible to visually impaired individuals. Turning a device which was visual in nature into

a tool that the blind community could also use has been, and still is, a challenging riddle for

the research community and the industry alike. In general, when attempting to make the touch

screens available on modern smart phones accessible, four distinct approaches of finding and

activating user interface elements have been proposed:

1. Linearly move amongst items one by one, where a set of simple swipe gestures are used to

move a virtual cursor through the applications UI elements in the order they appear on

screen. This is one of the techniques employed on the iPhone [33] and although a potentially

time consuming method on screens with many items, it is very simple to perform. It can

also be easily adapted to most application interaction scenarios. In addition, navigating

the user interface linearly is the preferred method employed by the visually impaired when

interacting with a desktop computer. One way of possibly implementing our Braille input
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method could be to have the user move through the six dots and choose the ones required

for each Braille pattern that the user wishes to enter. Repeating this procedure for every

Braille pattern to be entered though, would be extremely tedious and thus undesirable.

2. Use parts of the screen as special hot regions, where usually the screen corners are des-

ignated as having a special meaning. These hot regions are usually chosen to be easy to

memorize or are marked by a tactile sign. The screen corners are especially preferred as

that they can be located by blind individuals quickly and reliably [41]. By tapping or

double-tapping these special screen regions in a specific order, different commands are per-

formed. For example, on some ATM machines tapping the bottom-left corner of the touch

screen moves a virtual cursor to the next on-screen UI element, whilst tapping the bottom-

right corner activates the current item. The Mobile Speak screen reader [15] employs this

approach. Even though this method is simple to learn and operate, it would seem that

the full potential of using a touch screen is not realized as most of its surface area would

be unused. When using this approach for our Braille input method, the designated hot

regions act as simple virtual buttons and the potential of having rich spatial interactions

as afforded by the presence of the touch screen is ignored.

3. Allow the user to explore the screen, reading each UI element as the user’s finger moves over

it and providing a different gesture for activating the touched element. This is an easy to

implement approach which is currently used by the iPhone among other devices. However,

exploring the screen can be extremely slow, especially if there are no auditory guides to

help you locate the numerous UI elements scattered around it. In a recent study [40],

this challenge of searching among a great number of targets became particularly evident

as researchers tried to tackle the inaccessibility which still plagues large touch screens

such as those used at public kiosks. However, given that our Braille input method would

require only 6 items each one representing each Braille dot to be present on screen, an

implementation based on screen exploration might be viable.

4. Use specialized gestures for different commands, where a different single or multitouch

gesture is assigned to a different command in the user interface. This technique would

allow for a rich repertoire of gesture interactions but at the cost of a steeper learning curve.
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However, starting from the premise that the Braille Alphabet is a familiar form of written

communication within the visually impaired community, the above learning curve should

be minimal. Although blind users are able to perform more complicated gestures than

sighted users [41], their accuracy suffers. This is because such individuals prefer a guide

(screen edge) or an immovable starting-point (screen corner) to be part of the gesture.

Entering Braille, however, should not be time-consuming and so our Braille system should

pick simple and intuitive gestures involving at most two fingers.

Given the above analysis, it might be beneficial to design a set of Braille input methods each of

which would take advantage of a different touch interaction approach. In this work [65], we design

one Braille input method which takes advantage of the spatial placement of Braille dots, another

which emphasizes screen exploration and two which use intuitive gestures to enter each row of a

Braille cell. A method which relies on the ability of the touch screen to be used spatially would

permit us to effectively make use of the total surface area available to us on this input device.

It would also appeal to blind users’ familiarity with Braille, as it would provide a one-to-one

mapping between each Braille pattern and the way that it is input. On the other hand, methods

which employ a set of simple stationary gestures can be more robust as such gestures can be

readily distinguished from one another regardless of the phone’s orientation, making the margin

of error really small. Additionally, a method which encourages painless exploration of the screen

would enable users to learn the system more easily, as well as allowing them to ensure that their

input is correct before being submitted, preventing an unnecessary type/undo cycle. Ultimately,

the different interaction approaches, including the emphasis each one gives to a different design

tenant, i.e. familiarity, robustness and painless screen exploration [7], are compared against one

another in a user study.

3.3 Previous Work

A variety of mechanical devices featuring physical keyboards have been employed for typing

Braille over the years and in different parts of the world. Most of these keyboards make use

of the technique of cording, whereby the user presses one or more keys at the same time to

create a Braille pattern. The use of the same technique for typing using the Braille alphabet
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has previously been proposed in [12], where a pair of specialized gloves were used as the input

device to the computer. These gloves were equipped with a set of special regions under each

finger, which were made up of a pressure-sensitive material, each one acting as a virtual key. By

applying pressure to one or more of these regions at the same time, all the dot combinations

making up the Braille Alphabet could be entered. However, as designed, the material making up

these pressure-sensitive regions made the gloves relatively bulky [12].

Instead of using a specialized input device, the use of various forms of stylus strokes or gestures

for writing text on a touch screen was explored in [82, 72]. In [82], each letter was represented

with a set of Graffiti-based strokes, which the users were required to learn. To ease the learning

process, the strokes making up each letter were made to resemble the general shape of the letter

itself, but were drawn using only straight lines and in a manner similar to a geometric shape. In

the Quikwrite system [72], groups of different letters of the alphabet were separated into different

screen regions. Users had to first select the group containing the desired letter and then choose

the actual letter from that group. However, both of the above stroke-based techniques either

require the blind individual to learn the shape of the actual print letters or to quickly navigate

a possibly crowded screen and find precise targets. It is unlikely that most totally blind people

will have learned the shapes of the letters of the English alphabet while at school and attempts

to entice them to do this just for the use of a novel text-entry system might not bear fruit.

A system using the eight compass directions of North, Northeast, etc., was proposed in [92].

In this system, the user would gesture from the center of an imaginary circle towards any of

the eight compass directions in order to select the character which was uniquely mapped onto

that direction. Three such imaginary circles of letters where available and the user would switch

between them by varying the delay between touching the screen and performing the actual

directional gesture. Using gestures instead of having to explore the screen in order to locate and

activate specific targets, certainly makes for a friendlier mode of interaction for visually impaired

users. However, precisely gesturing towards a very specific direction, especially while being on the

move, might be hard as the phone would not be always held with exactly the same orientation.

A faster way of switching between the three different circles of letters without having to wait for

a pre-determined delay might also be desirable.

The familiarity of most users with the placement of the number keys on a standard telephone
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keypad, in addition to the standard association of specific letters to each number, was taken

advantage of in [78]. In this work, the touch screen was divided into nine virtual keys, representing

the first nine numbers of a telephone keypad. Characters were entered by tapping the virtual key

representing the number associated with the desired character multiple times, until the desired

character had been selected. Even though the static and well-known positions of the nine numbers

on the touch screen made this approach easy to learn, the fact that each number had to be tapped

more than once could enable the user’s finger to drift, tapping a nearby number accidentally.

Previous attempts have enabled blind users to select letters by moving a virtual cursor around

the alphabet [26] or type by selecting letters from eight standard character groupings using a two-

level hierarchy [7]. Specifically, a swipe towards the left or towards the right was used in [26] to

move a virtual cursor backwards and forwards through all the letters of the alphabet respectively,

whilst locating letters faster was accomplished by an upwards or a downwards swipe which would

move only among the vowels. However, since words do not usually have letters which are close

in alphabetical order to one another, the procedure of having to continuously jump from one

place of the alphabet to another would be agonizingly slow. Even the five vowels are not equally

spaced out over the alphabet to be used as adequate anchors and so employing the shortcut

for moving among the vowels when trying to reach a particular letter might not be sufficient to

speed the text-entry process up. The use of a two-level hierarchy for selecting characters was

proposed in [7], where the screen was divided into eight segments. Each segment was assigned

a list of characters, like the numbers on a telephone keypad. The user could explore the screen

using one finger and when a particular segment would be touched, the characters assigned to that

segment would be spoken. Touching using a second finger would activate that character group,

whereby the user was able to select in a similar manner the desired character from a list arranged

alphabetically from the top of the screen downwards. Compared with a direct, spatially-oriented

Braille input method, however, a possible weakness with the above method is that the two-level

hierarchy coupled with the fact that a split-tap gesture is always needed to select a screen target

might unacceptably slow down each character’s entry.

In [23, 76] typing Braille on a smart phone’s touch screen similar to the way that Braille is

entered on a mechanical Brailler was demonstrated. However, this method requires the use of at

least three fingers from each hand, making holding the phone with the remaining fingers difficult
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and allowing for spurious touches. The use of a set of gestures in order to enter each Braille

character row-by-row has been proposed in [56]. Despite the fact that this approach is similar to

one of our Braille input methods discussed below 3.4.1, our method is different in the sense that

it was designed to be used single-handed, a common usage scenario. Contrary to the method in

[56] which includes gestures requiring three fingers, our corresponding method can be used on

phones with narrower screens or on phones which do not support more than two simultaneous

touches, a limitation which unfortunately is present on various devices.

The diversity of the population of visually impaired users and its effects on the usage of touch

screen input methods has been identified in [62]. The authors found that the age, the time of

onset of blindness, as well as the cognitive and spatial abilities of the individual can play a role

in the speed and accuracy of using various input methods that had been described previously

in the literature. However, the authors did not try to design an improved input method but

proposed that all text entry methods should be available in order to fulfill the needs of different

users. Additionally, the authors did not compare different Braille input techniques in order to

discover if the relative slowness determined in the Braille input method they used could be in

any way remedied.

In contrast, various Braille input techniques were described in [16]. However, their usage was

not thoroughly evaluated and the relationships between the different methods not investigated to

the point of deriving guidelines to assist in creating an improved Braille input method. Finally,

a common weakness of most of the above solutions is that little emphasis was given on methods

for editing or navigating already entered text.

3.4 System Design

This section describes the implementation of the four Braille input methods we have devised.

An additional fifth method which is derived from research encountered in the literature [78, 7]

and which we have included in our application for comparison purposes is also presented. For

all the methods, we detail the complete user experience they offer, i.e. how the user is supposed

to interact with each method and how the system responds to the user’s touches. For the first

of our Braille-based methods, we emphasize the algorithm we developed in order to improve the
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Main screen Application’s menu Menu cont.

Figure 3.1: Screenshots of interface

accuracy of that particular method. Finally, the editing and navigation gestures available in our

Brailler application are described.

3.4.1 A Variety of Input Methods

As already discussed 3.1, instead of having to learn a new system of touches or swipes, our system

aims to use the Braille Alphabet, solving the memorization problem of other approaches. In our

system the touch screen is used as the surface where Braille characters are entered, making our

implementation able to run on most modern smart phones. To permit editing and review of

entered text, we have also implemented a set of simple directional gestures which act as the

space, backspace and arrow keys.

On initial load, the system shows a Braille cell where dots can be tapped using one finger to

form a Braille pattern 3.1. Once touched, Braille patterns are interpreted and the corresponding

letter of the English alphabet is typed in a standard text box. To erase a character, the user can

swipe left with one finger. Activating the menu offers the user the ability to switch amongst the

various ways of entering Braille, such as a thumb-based or a single-handed method, described

below. An extra input method which employs the first nine numbers of the telephone keypad

is also offered, in addition to the ability to hide the edit box in which the actual characters are

typed.

The input methods offered are listed next. As previously discussed 3.2, each one was designed
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with a different design tenant in mind.

1. One-Finger: This method was designed with user familiarity in mind. Each Braille dot is

selected spatially on a virtual three-by-two grid by tapping. Each time a dot is tapped, the

software speaks the dot’s number. After a specific short interval has passed without any

screen touches, the entered dots are interpreted and the resultant character is typed.

This method allows the user to effectively “sketch out” the character he or she wishes to

enter using Braille. The interval before the entered dots are interpreted is calibrated to be

short enough to make this input method appear natural to a blind Braillist, but long enough

to allow a character with multiple dots to be entered without mistakes. Even though the

dots are placed on a visual grid, our algorithm does not rely on the user having to touch

the exact locations where dots are visually present, but can intelligently deduce the entered

character by the overall shape of the tapped locations.

More specifically, when using this method, a depiction of an empty Braille cell appears

on the phone’s screen and Braille dots light up when touched. This is for the benefit of

the partially-sighted. Users are expected to select each dot making up the Braille pattern

they desire by touching it. However, after analyzing a set of touches for various Braille

patterns 3.2, we realize that touches corresponding to each Braille dot were not always in

the designated rectangular region for that dot. This suggested that a better approach of

interpreting Braille dots from a list of touch locations should be devised. To fix this, our

algorithm tries to find the Braille pattern which most closely resembles the shape of the

touch locations. It enumerates all the possible Braille patterns whose dots centers are at the

visible predetermined screen locations and finds the one that has the minimum Euclidian

distance from all of the touch locations.

2. Split-Tap: This method emphasizes painless exploration of the on-screen content. Each

dot is selected spatially as above but not by single taps. Instead the user moves a finger

around the screen until he or she hears the desired dot number. Then, the user places a

second finger on the screen to select it. After selecting all the dots making up the desired

character, the user finishes entering the character by lifting up the first finger. As soon as

the finger is lifted, text-to-speech is again used to speak the character just typed.
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Figure 3.2: Distribution of touches for each dot

By confirming each dot before being selected, this method should also help the user to be

more accurate when entering Braille. To achieve this accuracy, however, it is apparent that

typing speed is somewhat sacrificed. Ultimately, a user study should decide whether this

sacrifice of speed is worth the additional accuracy.

3. Two-Finger: To facilitate single handed text entry, we allow the ability to input a Braille

character one row at a time. For each character the user taps each row of the Braille cell

individually using the following gestures: If a row contains both dots, then two fingers are

tapped. Otherwise the corresponding left or right dots are tapped. If a row has no dots,

then a downward gesture is performed with both fingers. The remaining three fingers are

used to hold the phone. Before the last row has been entered, the user can swipe upwards

using two fingers to a previous row and correct it in case of error. Corrections can be

performed using the same gestures for entering dots, which when repeated for a second

time on the same row, erase their corresponding dots. After selecting the dots of each row,

the system uses text-to-speech to speak out the numbers of the dots selected. Similarly,

after erasing a set of dots for a specific row, their numbers are spoken with the word “off”

appended to them.

This method together with the next one were designed in order to enable a more robust

text-entry technique, which would not depend on how the user is holding the phone or

where exactly the user would have to touch, but on simpler to distinguish touch patterns,

such as whether the user is touching with the left or with the right finger.
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4. Thumb-Typing: To allow the user to hold the phone more securely with one hand, a method

of typing only using the thumb is proposed. Given the popularity of using the thumb by

many individuals to type on touch screens, it was hoped that this method would be deemed

familiar by most. The Braille pattern is also entered row-by-row as in the previous method.

The thumb is tapped in the vicinity of the top-left quadrant of the screen to indicate that

the left dot in the current row is selected and it is tapped towards the top-right quadrant

to indicate that the right dot is selected. To select both dots in a row, the thumb bends

in a natural manner and taps in the bottom-half of the screen. To leave a row empty, the

thumb swipes down. Previous rows of the Braille cell could also be revisited and edited by

swiping up, as in the previous method.

5. Nine-Digit: We implemented a combination of the methods detailed in [78, 7] but with a

slight twist to prevent accidental touches arising out of the need to accurately tap multiple

times on a single target. The numbers 1 to 9 with their corresponding letters appear in a

standard telephone keypad formation. Instead of the user having to tap a number multiple

times in order to get to the desired letter, however, the user chooses first a number and

then taps one of its letters from a list arranged horizontally. The user can also explore

the positions of the nine numbers and, once a number has been selected, the position of

its letters, by moving a finger around the screen without lifting it, similar to the approach

adopted in [7]. Once the finger is lifted or a second tap with another finger is performed,

the number or character which was last touched is selected.

Obviously, given the great familiarity of most users with the telephone keypad, the place-

ment of the nine numbers should be predictable. Their locations should be easy to find

using the screen’s edges and corners as guides. Also, instead of each number occupying a re-

gion of screen real-estate commensurate to its shape, the screen is equally divided into nine

rectangles and each number can be activated by touching anywhere within its correspond-

ing rectangle. The above design decisions should decrease the need for screen exploration

to a minimum. Also, for most numbers which have three corresponding characters, these

characters are arranged so that each one virtually takes up an entire column. So, tapping

anywhere on the left side of the screen would activate the first character, tapping towards
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the middle the second one and touching anywhere close to the right edge of the screen the

third. For numbers with more than three characters, the last one takes up the whole of

the bottom half of the screen, whilst the top half is divided into three columns as before.

This arrangement is very practical as the top half of the screen is easier to reach than the

bottom and so mistakenly activating the fourth character should be difficult. In the same

manner as in [7], a leftward swipe performed after having selected a number, cancels the

selection.

3.4.2 Gestures for Navigation and Editing

Most related work has left the all essential editing functionality out of their implementations. In

contrast, we have defined four directional swipes which can be used as follows: For all methods,

a space character can be entered using a rightward swipe, whilst a leftward one is used for

backspace. Similarly, moving the editing cursor left and right character-by-character through the

entered text is enabled by swiping upwards and downwards respectively, except when using the

Thumb-Typing method, where a two-finger up and down swipe is used instead. While moving

the cursor, the letter to the right of the cursor is always spoken. When the backspace gesture is

performed, the character being erased is also announced, but in a higher pitch.

3.5 Evaluating the System through a User Study

3.5.1 Study Design and Evaluation Methodology

Many attempts at designing new input methods have tried to evaluate their design choices only

through the use of relatively dry metrics such as typing accuracy and speed. Even though we take

such quantitative measurements into consideration and whilst they are important as an overall

evaluation of the text-entry system, we feel that they cannot tell the whole story as it is hard to

derive the causes which are responsible for producing them. Research studies concentrating on

these metrics do not find enough time to present many alternative prototype implementations to

users simultaneously, so as to permit them to compare and contrast amongst an array of choices

at once.
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In this work, we carried out a user study which included 15 visually impaired participants

from the greater New York City area 3.1. The software was tested on an Android-based phone.

For each of the participants, we gave them a short training time to familiarize themselves with

each input method. This training phase could include a description of each input technique,

its various gestures and idiosyncrasies, such as a listing of the dot locations which could be

tapped and the expected verbal announcements that would be heard. Not all users managed to

complete this training for all five input methods. Some users who required more training would

be asked to enter some letters of the English alphabet, or some short words if necessary, in order

to familiarize themselves with the input method being tested. After the training phase, we told

our users that we would begin recording their touches and their entered text in order to discover

any shortcomings and bugs of the system, and not in order to evaluate their own typing skills.

The subjects were then given randomly chosen phrases from a standard phrase set, which they

were asked to type. The users were asked to answer a questionnaire with the same quantitative

and open-ended questions for each input method. The quantitative questions asked the users

to rate on a scale of 1 to 4 how easy each method was to use, how easy it was to learn, and

how likely they would be to use it in the future. The open-ended questions prompted the users

to give more details about what they liked and disliked about each method and their responses

were recorded verbatim. At the end of each session, the person conducting the interview would

enter detailed notes on what was deduced from the participant’s expressed feelings and thought

processes when employing the system. For example, any difficulties that the user had encountered

in understanding and using each method would be described, in addition to any suggestions on

how such difficulties arose and how they should be overcome.

As can be seen from the above protocol, during our user study, we engaged our participants

into a verbal dialog, in addition to collecting standard touch and timing log data. As a result,

we do not only passively witness the outcome of testing our different input methods, but we

also try to glean the reasons behind the participants actions, exposing their underlining mental

processes.

Our age representation appears to include both younger and older individuals. Around two

thirds of our participants were totally blind whilst the rest were legally blind. The group of

totally blind persons includes some users who had extremely limited vision, e.g. they could see
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Characteristic Yes No

Age < 50? 6 9

Totally blind? 11 4

Blind since birth? 7 8

Uses touch screen phone? 7 8

Uses screen reader on phone? 8 7

Knows Braille well? 12 3

Table 3.1: The user participants

light direction or some shadows, but who could not make any use of such vision in any way. Also,

persons with blindness only in one eye but with total vision in the other were not considered to

be visually impaired. We observe that all of our participants have used at least a phone with a

numeric keypad, even though three of them are using it without any accessibility support at all.

Around half of our participants have experience with a touch screen phone and almost an equal

number have used a dedicated mobile screen reader. What was surprising was that around the

remaining half of our participants had only used the basic built-in text-to-speech support that

comes with some phones. This support is very limited and is usually provided in order to assist

hands-free driving and, in general, is not present for the benefit of visually impaired users.

3.5.2 Study Results

In this section, the overall usefulness of each of the five input methods as expressed by our study

participants and their suggestions for improvements are listed. From the results, the One-Finger

method comes out to be the most preferred and the simplest to learn; whilst some often voiced

requests concerned the support of abbreviated (Grade Two) Braille and of more advanced editing

commands. In addition to categorizing and detailing the users’ feedback for each input method,

we try to give an overview of the perceptions of our users by dividing them into two groups

representing separate attitude trends and evaluate how these trends match with our original

design tenants 3.2 of familiarity, robustness and painless exploration.

Generally, almost all of the participants who owned a touch screen phone found our system to
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be easier, more intuitive and more desirable for them to use than their phones’ touch keyboard.

Those participants who did not know Braille very well considered our system to be an excellent

vehicle through which they could learn it quickly.

“I did not need to go around searching for the letter like with QUERTY touch keyboard.”

“I liked it because it was interesting for me to learn something new. (Meaning to learn

Braille.) I thought Braille was very complicated but it is not.”

None of the participants said though that entering Braille using a touch screen would be more

desirable than using a device with physical buttons. However, given the current hardware trends,

such devices would be all the more difficult to find in the market.

“I think having keys and buttons, something that you can feel would be easier.”

Comparing Amongst Input Methods

The One-Finger method was judged to be the simplest, the most intuitive and the most preferred,

followed by the Nine-Digit method. The One-Finger method was described as very natural and

requiring no training, whilst a negative aspect of the Nine-Digit method was the difficulty of its

two-step process for letter selection.

An isolated group of users enjoyed the Two-Finger method very much and believed that it was

a clever idea. However, most disliked its row-by-row input and the way it forced you to hold the

phone, a result that we personally found very surprising. The Split-Tap method was perceived

as being more accurate but much slower, causing frustration. The Thumb-Typing method was

generally not understood or its gestures were found to be hard to perform.

On a scale of 1 to 4, the following table 3.2 lists the mean and standard deviations for each

rating across each input method:

For the One-Finger method, there appears to be a correlation between the user’s age and

the average typing speed for each Braille pattern 3.3. Older users complete Braille patterns

faster than younger ones. This indicates that a possible improvement to the One-Finger method

would be to dynamically adjust the algorithmic parameters (such as the interpretation delay) to

accommodate different ages.
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Method Easy to learn Likely to use

One-Finger (n=15) 3.6 ± 0.63 3.53 ± 0.92

Split-Tap (n=12) 3.17 ± 0.72 2.75 ± 0.97

Two-Finger (n=12) 2.58 ± 1 2.5 ± 1

Thumb-Typing (n=6) 2 ± 1.26 1.83 ± 1.33

Nine-Digit (n=15) 3.067 ± 0.97 2.47 ± 1.13

Table 3.2: User ratings of input methods

Figure 3.3: Completion time increases with age
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Comparing Between User Groups

Our user participants can be roughly divided into some general categories based on their general

inclinations when using the system:

1. Six totally blind users who know Braille very well and use it, but who had no experience

using smart phones or phones with a touch screen. They only know how to place or

answer calls on phones with a numeric keypad but they do not use any screen reader or

their experiences with one were less than satisfactory. They are thus unable to read text

messages. They include both younger as well as older individuals. Also, they seem to be

attracted to our Braille system, i.e. they find it “interesting”, due to some sentimental

attachment with the Braille system of writing in general.

2. Eight users of varying ages who are either totally blind or legally blind and who have enough

familiarity or own a touch screen phone, most times the iPhone. Some of these users might

be excellent Braille readers whilst others might read Braille but slowly.

3. One user who falls into neither of the above categories, since this user neither knows Braille

well nor owns a touch screen phone.

The two main groups can be called the Braillists and the Technologists. The Braillists are

strong proponents of the Braille system of writing, they have been using Braille continuously

since many years for their daily needs. They enjoy getting their information in a tactile manner

and are not so much into text-to-speech or electronic technologies. On the contrary, the Tech-

nologists are not so dependent on Braille and own or are in the process of learning how to use a

touch screen phone. They rely more on mainstream gadgets or software for their daily needs of

communication and information. After carefully looking through their questionnaire responses,

for the Braillists, familiarity was the key design tenant for a successful text input method, fol-

lowed by robustness. For the technologists, robustness was more important than familiarity, as

to them it signified a well-written piece of software which they felt eager to explore. However,

the possible robustness offered by the Two-Finger method was outweighed by its relative com-

plexity and slowness. It is no wonder, therefore, that after all factors had been considered, most

users of both groups preferred the familiarity offered by the One-Finger method, coupled with
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the robustness ensured by its pattern-matching algorithm, which allowed for inaccurate touches.

In contrast to our expectations, the painless exploration afforded by the Split-Tap method was

found to be unnecessary and even frustrating by experienced and beginners alike.

3.6 Discussion

The One-Finger method received the highest ratings because the users who knew Braille could

grasp how it worked very quickly. Some of them even became comfortably proficient using it

after less than an hour. Unlike the Two-Finger or the Thumb-Typing methods, which required

a higher cognitive load and a longer learning curve, the One-Finger method proved to be a more

natural way of entering Braille. Similarly, the Nine-Digit method, despite its familiar numpad

design, proved somewhat less desirable compared to One-Finger due to its two-level hierarchy.

Even when using the One-Finger method though, many users took exception with the length

of the interval before the entered pattern was interpreted. A group of users wanted the interval to

be adjustable either manually based on their skill-level, or, automatically by a heuristic depending

on the physical characteristics of their touches, such as their pressure or their ordering. This

strongly suggests that fixed delays in a UI are annoying to users, as some of them would find them

too short, whilst others too long. Clearly, concerning the One-Finger method, the interpretation

interval needs to adapt to users’ typing speed and currently entered Braille pattern.

Concerning the benefits of the Split-Tap method, it was clear that specific users wanted to be

able to cancel erroneously entered dots before completing the whole Braille pattern, whilst others

wanted to be able to confirm each dot pressed. They felt that waiting until the whole pattern

has been entered and interpreted, just to be subsequently able to delete it, was a waste of time.

In spite of this, using the Split-Tap method for this purpose was deemed undesirable as many

participants rejected the split-tap gesture as too slow and cumbersome, whilst some found the

whole Split-Tap method as too hard to learn. Performing this gesture while the first finger was

towards the edges of the screen felt awkward, whilst the second tap would at times make some

users accidentally lift up the first finger, registering the wrong Braille pattern. This indicates

that for text entry input methods, the split-tap gesture might be inappropriate and should be

avoided.
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Nevertheless, some form of input verification appears necessary, as some participants would

continuously use backspace to ensure themselves that they had correctly typed something or in

order to check their progress in the text. Ultimately, the participants wanted to have the ability

that the Split-Tap method offers to confirm each Braille dot, but without having to perform

a slow split-tap gesture each time. Designing such a method though would be hard, as using,

for example, a double-tap gesture for confirming each dot, might turn a cumbersome method

into an even more cumbersome one. At the end of the day, the seemingly simplistic One-Finger

method offered a compromise for these users needs, as its pattern-matching algorithm would

automatically compensate their desire for higher accuracy.

Most participants who knew Braille would conceptualize each Braille cell in terms of two

columns of three dots. They had a hard time adapting to the row by row separation of the

Two-Finger method, including those users who had enough vision. The widely known numerical

ordering of the dots, which places dots 1 − 3 on the left column and dots 4 − 6 on a second

column, seems to be creating this problem. Even users who understood the Two-Finger method

conceptually, still had trouble switching to a different dot ordering required by the Two-Finger

method. However, the few participants who familiarized themselves with this method quickly,

found it extremely preferable. This indicates that training is needed for mastering this method

but once learned the method might prove very useful. For this possibly laborious training to be

undertaken by the user though, a sufficient motive should be present. The benefits of the input

method, such as providing one-handed input or an enjoyable game-like approach of teaching

yourself Braille, should outweigh the effort involved.

A part of our design which might need improvement is the fact that a cursor was not showing

up on the screen when using the system. Users who relied on some limited form of vision could not

tell their location easily by listening only to a stream of letters that were passed over when using

the virtual cursor. However, showing a text box with the cursor was considered and tried. It was

found to take up important screen real-estate and make totally blind users tap it accidentally.

As a result, it was hidden by default with the option to turn it back on if required.
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3.7 Future Work

One user wisely mentioned: “I would think that the letters would start on the left. They should

work in a motion from left to right.” Taking this comment into consideration, We should change

the pattern matching algorithm so that between competing choices of letters, it would prefer

those that have patterns which, when tapped from left to right and from top to bottom more

closely resemble the entered pattern. In other words, make the ordering of the user taps influence

the decision of the matching algorithm.

For all the methods we should add a filter which will use the pressure of the touch to determine

whether it was an accidental or an intentional touch. Also, for some of the methods, touching

with more than one finger and for all the methods double-tapping is not a valid gesture. We

should write filters for each method which would remove such invalid accidental touches in order

to assist users like some participants who did not have the best finger dexterity. To fix this we

should make the software ignore extra touches when the One Finger method is used. Additionally,

users would accidentally tap the same dot more than once without realizing it. Given this, our

system should ignore multiple taps at the same dot for this input method since there would be

no valid Braille pattern which can have one dot pressed twice.

With users who are relatively advanced, their extra confidence would sometimes, especially

for characters with few dots, work against them. It would make them forget to wait for the

entered dots to be interpreted and they would get two patterns of neighboring characters mixed

together. On the contrary, when a character had too many dots, the interpretation interval would

sometimes prove to be too short for them, making the system erroneously break up an entered

pattern into many characters. During the study, an inside on how to tackle this problem came

from another user who gave the One-Finger method a lower score than his successful experience

using it would suggest. This is because of the lack of mastery he felt due to the issues with the

interpretation time-out. He said that he wanted to type as fast or as slow as he wanted to and

that the delay made him lose this control over the software. As a result, an adjustable interval

based on the length of the entered pattern or based on the speed that dots are entered should be

implemented. When a pattern has more dots, the interval should lengthen to give you extra time

to move around the screen and mentally construct the complex pattern. Similarly, when the dots
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are typed with a faster speed, the interval should shorten itself, to allow for a more experienced

user to complete what he/she is typing without frustration.

Another issue was that users were confused about the maximum height of the input view

as they would originally think that it did not span the whole of the screen but that it only

took up the top part of it. This is because the bottom row of the screen was taken up by the

Android’s default buttons, a fact that made most users feel uncomfortable and lose the sense

of boundaries. Removing these buttons, therefore, should be a top priority, whilst dynamically

resizing the typing view based on the user’s preferred touch area and touch history should also

be considered.

A few users would have desired a more tactile or more personalized set of boundaries than

the current set which were roughly the physical edges of the screen. The current reliance on

the physical screen edges is corroborated by the findings in [41] where it was shown that screen

edges are a site where most visually impaired users perform most of their gestures. From the

interviews as well as the recorded touch data, it is apparent that most visually impaired users

would be better served by an auditory guide which would help them identify the boundaries of

the application’s typing area and the size of the area occupied by each Braille dot. Otherwise

some would accidentally activate extraneous UI elements or lose their orientation.

Most users, when trying to perform a swipe gesture, accidentally do not swipe as fast causing

the screen exploration feature to be activated instead. Taking this into account, we should add

sounds that would indicate that you are exploring the screen, like those present on the iPhone,

which would make it clear when someone is exploring and when they are swiping. This will

“teach” the users what the correct speed sensitivity is.

A top request for us was to implement the full set of the Braille writing system, i.e. ab-

breviated Braille, symbols and Mathematics. Also, many users wanted to be able to control

the amount of information spoken or have additional speech commands, such as to echo each

word upon completion. Adding extra configuration options to our software, however, should be

carefully balanced against the need to maintain intuitiveness, namely that our system should

continue to be easy to learn. Lastly, the need for more editing gestures, such as a Clear All

gesture, was brought up by some of the participants.
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3.8 Summary

We have proposed four Braille-based text-entry techniques which use the Braille alphabet, one of

which minimizes mistakes through pattern matching of user touches and all of which provide easy

editing through swipe-based cursor manipulations. We have evaluated our system through a user

study which compares our input methods with one another, as well as with an existing numpad-

based technique. We have found that a balanced approach provided by the One-Finger method

which combines ease of use with a relatively good accuracy is most preferable. Other methods,

which either enable a faster typing speed but impose more complicated gestures (Two-Finger

method) or provide the ability to confirm each dot entered but are slower (Split-Tap method),

are too cumbersome to be useful.

As future work, we plan to improve the One-Finger method to make it more resilient to noisy

touches and more adaptive to users’ spatial idiosyncrasies. To achieve this, we are planning to

use an adjustable interpretation interval based both on the length of the entered pattern and on

the speed that dots are entered. We also plan to improve the method’s robustness by dynamically

re-locating the position of each Braille dot away from the current symmetric layout, depending

on the spatial concentration of each user’s touches.
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Chapter 4

Exchanging Banknotes without

Fear: A Mobile Tool for Reliable

Cash Identification

The ability to correctly and effortlessly exchange cash is fundamental for our everyday needs.

Many simple transactions which are conducted each day, such as buying groceries or dining at

a restaurant, require not only the handing over of paper bills but, more often than not, the

return of some change. Unfortunately, in certain countries, visually impaired individuals cannot

distinguish banknotes of different denominations from one another. In the United States, for

example, dollar bills of different denominations all have the same size, shape, texture and color.

This has been a source of anguish for the visually impaired community, sparking a successful

lawsuit against the government of the United State [37].

Visually impaired people are dependent on the good will, the honesty and kindness of others

to help them organize and recognize their banknotes. Given the central role that money and more

specifically cash plays in our social and professional lives, this dependence on others places the

visually impaired at a stark disadvantage. To overcome this dependence, the visually impaired

have come up with various forms of coping methods which can help them, to an extent, deal with
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the situation. These practical but often fragile methods include folding some bills in their wallets

while keeping those of other denominations straight, or even storing different denominations in

different pockets. These procedures are easy to mix up and forget, given that they must be

performed with great detail and care every time a new banknote has been received. Relying on

the assistance of others when using inaccessible currencies has become therefore a fact of life for

most visually impaired individuals, robbing them of their independence.

The popularity of smart phones with built-in high-resolution cameras can provide a possible

solution to the currency recognition problem. In this work [67, 64] we propose a software system

which runs on a smart phone and employs the phone’s camera to take a continuous stream

of images of the object placed in front of it. This software analyzes the provided images and

determines whether they depict a dollar bill. If so, the software recognizes the denomination of

the banknote. It subsequently uses synthetic speech to announce the results of its recognition.

The software employs the Scale Invariant Feature Transform (SIFT) [54] for feature extraction

but a faster approach for feature classification so that it can work effectively on the mobile phone.

We evaluated our algorithm using real pictures of bills taken by a visually impaired user through

the phone’s camera.

4.1 Problem Description and Motivation

This section explains in more detail the everyday problem that visually impaired users in some

countries face when handling banknotes. It then outlines the practical challenges that arise when

trying to develop a piece of mobile phone software for identifying such paper currency.

4.1.1 Practical Challenges when Using Paper Bills

In the United States, dollar bills of different denominations all have the same size and so cannot

be easily separated by measuring or comparing one against another. To make things worse, there

are no tactile markings or other forms of identification on each bill to enable a blind person to

discover its value without any sighted assistance. The various engravings or embossed pictures

currently found on such paper bills are too thin and lightweight to be felt by the sense of touch. As

a Federal court noted, “it can no longer be successfully argued that a blind person has ’meaningful

88



access’ to currency if she cannot accurately identify paper money without assistance”, [37].

In 120 other countries, including the countries which have adopted the Euro, paper currency

comes in different sizes, [87]. However, in the European Union, despite the fact that Euro bills

of larger denominations have larger sizes, it might still not be easy to separate them quickly and

effortlessly. Comparing several Euro bills in your hand against one another takes time especially if

a person has low finger dexterity, a difficulty faced by many seniors which are a group representing

the majority of visually impaired individuals, [20]. Also, the difference between the sizes of these

Euro bills might not be as drastic as some individuals would have required. The difference in

width between a 5 Euro bill, for example, which is the smallest in denomination, and a 500 Euro

bill, which is the largest, is only 2 centimeters, [87].

According to [87], paper bills of different denominations around the world do not differ only

in size, but in many countries they also differ by color and tactile markings. Very large numerals

are used in order to assist the partially sighted and certain other population groups whose sight

is diminishing. Using more distinctive colors or larger numerals, however, cannot certainly be of

any use to the totally blind. Countries which have used tactile markings have discovered that

such markings disappear after bills have been in circulation for a while as they tend to wear out

with time and the extensive usage of the bill. Employing a pattern of distinctive holes or cut

corners is undesirable, as this could lessen the lifetime of the bill by allowing it to be more easily

torn. Even though electronic devices which can identify dollar bills are available on the market,

these devices can cost up to $300 and are not always accurate, especially with older or worn

out bills. Meanwhile, visually impaired individuals do not want to carry around with them yet

another specialized gadget just to help them distinguish their paper currency.

While credit cards and other forms of electronic payment are gaining popularity, paper cur-

rency is still widely used, [87], especially for transactions of smaller value. People still carry cash

in their pockets alongside their credit cards, whilst the various efforts to create an electronic

software-based wallet have still to gain any widespread traction. This preference for paper cur-

rency is understandable due to the perceived security, the simplicity and above all the anonymity

that it offers. Unlike other currently available forms of payment, cash is accepted everywhere

and it does not require an electronic connection to any financial network to be valid, whilst using

it does not necessitate giving away any personal information, such as your name.
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The inability to recognize bills exposes blind individuals to fraud as, for example, it can enable

unscrupulous sellers to hand bills to visually impaired buyers which have much less value than

the correct amount. Such forms of cheating may never be discovered or may be discovered too

late by the visually impaired victim for him or her to be able to take any appropriate action.

4.1.2 Algorithmic Challenges

The reliance of the visually impaired on the assistance of their sighted friends or even on the

untrusted assistance of strangers when handling banknotes, cannot be replaced with a piece of

software which will either work on half of the bills or which will assign the wrong denominations

to banknotes. When waiting to pay on a busy line, the visually impaired users should not be

expected to have to spend a long amount of time for the mobile phone software to be able to

recognize each dollar bill. In addition, other irrelevant objects which happen to be captured

should not be identified as banknotes. Identifying banknotes using mobile phone software can

be, therefore, algorithmically challenging as such software requires a high accuracy and speed.

This extra speed is not guaranteed to be available on a mobile phone given that most advanced

image feature extraction algorithms are computationally hungry.

When a blind user wants to find out the value of a particular piece of currency, he or she

will not be aware of the intensity or even of the availability of a suitable light source. So,

the software should work under various and even under difficult lighting conditions. Similarly,

one cannot expect a visually impaired individual to place the banknote straight in front of the

phone’s camera, removing any other objects, such as furniture, which might happen to be in

the background. No assumptions could be made about which face of the bill would be pointed

towards the camera, or that a specific background, such as a white-colored table surface, would

always be used.

A blind person might not even know the exact location of the camera’s lens and so might

inadvertently position a finger or another protrusion in between the phone and the banknote. It

would be an inconvenience for the user to have to unfold each banknote and position it in a very

specific orientation or with a specific face pointing towards the phone. In fact, the user would

most probably present banknotes to the system which would be folded, rotated with various
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angles and at various distances from the camera’s lens.

Pictures taken by a visually impaired user might be blurred. This is because, the quality of

the pictures gathered from mobile devices can be highly variable. Some images may be so blurred

that even human recognition would be hard.

In summary, a successful currency recognition algorithm needs to work accurately under

various lighting conditions and even when bills are folded or covered by fingers, i.e. under partial

occlusion, whilst banknotes need to be identified from several angles and distances.

4.2 Related Work

Previous attempts [52, 51, 69, 71] have used very specific and specialized techniques when tackling

the problem of unhindered access to paper currency. However, any specialized technique can be

fragile and hard to port from one type of currency to another. In addition, such techniques suffer

from the fact that they do not take advantage of the vast research in image feature extraction

that took place in the field of computer vision in the last years.

The AdaBoost learning algorithm was used in [52, 51], to train a set of weak classifiers in

order to determine the value of dollar bills. These weak classifiers consisted of a set of specific

pixel pairs on each bill which were picked by the researchers. However, even though this system

works on both faces of the bill, it seems that it still requires the particular face to be exposed

fully to the camera and so would not work on folded bills or bills with distortion. The blind user

would still need to orient each bill and take care where the phone’s camera was being pointed, a

procedure hard to perform when standing in line at a store. In comparison to a robust and well

established image recognition algorithm which can reliably extract distinguishing features from

any image presented, the authors’ procedure of selecting numerous distinct pixel pairs for each

bill cannot easily scale, especially when having to port the system to more currencies of other

countries.

Similarly, in [71], specific regions which contain “characteristic saliencies that differ enough

from one bill to the other” were selected. These characteristic image regions were also rotated

in order to create more training samples which were then fed to an image recognition algorithm.

However, although identifying bills under multiple orientations is very useful to a visually im-
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paired individual, the distinguishing regions for each bill are still picked by hand and do not

cover the whole of the bill’s surface. In fact, users of the system had to first locate the plastic

strip on each bill before taking a picture of that specific area in order that the recognition would

work.

The idea of finding specific unique characteristics which could easily separate one banknote

from another was taken a step further in [69]. The authors employed an algorithm which would

help the user move the bill until the denomination’s value printed on it would be exposed to the

camera. Asking the user to move the banknote around until a region of interest has been located,

however, can be tedious and time consuming.

Using real humans as a part of the image recognition process was proposed in [90]. In this

work, images are first labeled by using an automatic approach such as a database or an image

search engine and the results are validated in a distributed manner by paid human workers

through Amazon Mechanical Turk. This system can certainly be adapted and used by the

visually impaired to identify their banknotes. However, the use of human workers means that

the users would need to incur at least some financial cost, a fact which can be avoided by

building a completely automatic and high-accuracy currency recognition system which could

also run without any connection to an online service.

4.3 System Design

Our system works by using a set of sample images of dollar bills which are used to train a set

of classification algorithms outlined below 4.3.3. The system parameters are not tuned manually

and it does not rely on any hand-picked distinguishing visual characteristics of bills. Instead a

more robust machine learning approach is followed whereby the training data is used to guide the

algorithm in recognizing similar bills when they are later presented to it by the visually impaired

user.

In this section we describe the algorithms used in our system and our efforts to improve both

the accuracy as well as the efficiency of these algorithms so that they can successfully run on a

mobile phone. We also list all the methods we experimented with, but which were found to yield

low accuracy during this process. The ultimate performance benefits of each of these methods
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are listed in the next section 4.4.2. First we outline how we pre-process our image samples before

extracting SIFT key-points 4.3.1. This is followed by an explanation of the methods we employ to

encode and aggregate the key-points into feature vectors describing each image 4.3.2. Finally, we

detail the classification algorithms 4.3.3 we employ on the computed features in order to identify

the denomination of unseen bills, including how we determine if an object is a bill or not 4.3.4.

4.3.1 Image Pre-Processing

Our system stores and uses an array of training images for each supported denomination, ($1, $5,

$10 and $20), the collection methodology of which is described in section 4.4.1. Pictures of the

bills to be recognized (the testing data) are captured by a visually impaired user. Each image is

resized to a height of 300 pixels and its width is proportionally scaled. A 200 pixel white border

is added around the image. The effects of the color of the lighting source on the images are

removed using the Gray World Assumption 4.3.1 and each image is turned into grayscale. For

experimentation and to account for image distortions, we optionally create additional artificial

training images by taking the existing images and rotating them through 90, 180 and 270 degrees,

in addition to scaling each one by 0.5 and by 1.5. Finally, an implementation of the SIFT

algorithm is used to extract a collection of key-points for each of the training images 4.3.1.

Fixing Lighting with The Gray World Assumption

As outlined in section 4.1.2, blind users cannot be expected to adjust in any way or even be

aware of the light source available in their environment. However, images captured under lights

with different colors will look much different from one another. Any sample images use to train

our currency recognition algorithm would appear dissimilar from the test samples of the same

denomination, making recognition difficult. This problem whereby the color of the light source

affects the captured image can be remedied using color-balancing algorithms. One such balancing

algorithm uses the Gray World Assumption to remove the effects of the light source, [18]. This

assumption is based on the fact that in any realistic and thus sufficiently diverse scene, we expect

to have a diverse amount of colors and color differences. At a very high and simplistic level, one

could even assume that this variety in colors may average out to the color gray.
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In our system, we employ the Gray World Assumption on all our banknote images. The

mean value of each red/green/blue (RGB) color component is computed over all the pixels of

each image. These mean values should be equivalent to the values of a uniform gray color for

the image under normal lighting conditions, if the Gray World Assumption holds. A common

gray color for each image is computed by taking the average of the 3 RGB mean values. The

value for the gray color for each image is divided by the mean values for the RGB components

computed above to create a scaling factor for each color component. All pixels are then adjusted

by multiplying each of their color components with the corresponding scaling factor. As a result,

each component is adjusted based on the amount of deviation from the common gray color for

that image.

Employing the SIFT Algorithm

We employ an adaptation of the Scale Invariant Feature Transform (SIFT) algorithm [54] which is

widely used in the vision community for detecting similarities across images. The SIFT algorithm

identifies key-points or descriptors within any image and generates a multi-dimensional feature

vector representation of each key-point. SIFT is an ideal choice since it can be used to perform

robust classification in the face of positional, rotational and scale variants.

Normalization of SIFT Key-Points

Since some classification algorithms expect input features to be scaled similarly, we normalized

SIFT key-point dimensions by subtracting their mean and dividing by their standard deviation.

4.3.2 Aggregating SIFT Key-Points into Feature Vectors

Comparing and classifying the SIFT key-points on a mobile phone might be a time-consuming

process as it potentially involves performing floating-point calculations on thousands of key-point

pairs belonging to the training sample set and the images to be recognized. This might make the

operation slow to the point of being infeasible, since the input data from the phone’s camera will

arrive at a faster speed than it can be processed. However, achieving high classification accuracy

is paramount and it should not be sacrificed for faster performance. This section outlines various
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methods and heuristics that were employed in order to try and improve classification performance.

The Bag of Words Approach

One way of enhancing performance during classification is to drastically reduce the number of

the SIFT key-points of the training set. In this manner, the number of comparisons between

the training key-points and the testing ones will be much fewer. To achieve this, we employed a

procedure which would select the most representative of the key-points from each denomination

and then transform or encode all the training and testing key-points based on their relationship

to these representatives. This encoding would produce a much smaller set of encoded feature

vectors for each class. This whole methodology is called the Bag of Words Approach, and the

resultant set of representative key-points is called a dictionary. The methods we tested when

creating the dictionary are outlined below, followed by two procedures we tested for encoding all

the key-points using the dictionary.

Using a Random Dictionary

The dictionary is created by picking the set of representative key-points randomly. After provid-

ing the number of entries that the dictionary should contain, key-points are selected randomly

in a uniform manner from all classes from the training image set.

Using K-Means to Build the Dictionary

The K-Means clustering algorithm is used to create a dictionary. The algorithm clusters the

key-points into groups and finds centroids which minimize the intra-group distances of all the

group’s key-points to its centroid. In more detail, a number of representative key-points equal to

the length of the dictionary are first picked randomly as above. We call these selected key-points

the centroids. Then, all key-points compute their Euclidian distance to each centroid and cluster

around the centroid which is closest. Each cluster re-computes its centroid by finding the mean

key-point in the cluster and the process repeats itself until there is no change in the centroids.

The resulting centroids make up the dictionary.
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Key-Point Encoding

This section details how the original SIFT key-points for each training and each testing image

are aggregated into a smaller set of feature vectors.

• Given a list of representative key-points (the dictionary) we take each key-point from our

training and testing images and we either:

1. Triangle Encoding: Use the Triangle encoding method which finds the Euclidian dis-

tance from all the key-points in the dictionary to the key-point we are encoding and

returns a vector of the distances which are less than the mean distance, whilst setting

the remaining distances to 0, or,

2. Nearest Neighbor entry: We transform each key-point into a vector with 1s for each

dictionary entry which has this key-point as its nearest neighbor when compared with

the remaining dictionary entries.

• We average over a number of the above vectors for each training or testing sample so that

we can return fewer encoded feature vectors than key-points.

4.3.3 Classifying Banknotes

This section details our attempts of achieving high classification accuracy.

Nearest Neighbor

The simplest approach for determining the class of the SIFT key-points or the encoded feature

vectors of the image to be recognized (testing image) is to employ an approach whereby each

encoded feature vector is assigned the class of the closest feature vector in the training set. Firstly,

for all the feature vectors of the testing image, the Euclidian distance, the angle or the Histogram

Similarity is computed to all the feature vectors in the training set. Subsequently, for each testing

feature vector we find the closest training feature vector and note its class. We also take the

distance to the nearest neighbor and invert it in order to create a similarity measure. We keep a

total of all the similarity measures for each class. In order to remove any possible skewing effects
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that may be created if training classes do not contain the same number of images, we divide

each similarity total with the total number of training feature vectors for that class. For each

testing feature vector we assign the class with the highest similarity total as its denomination

label. A normalized sum of all the similarity measures from all the testing feature vectors which

have been classified to a specific class is then used as the distance measure of the testing image

to that class.

The Histogram Similarity is a similarity measure between two feature vectors computed as

follows:

• The two vectors are compared element-by-element and from each pair the minimum is kept.

• The sum of these minimums gives the Histogram Similarity.

Nearest to Second Nearest Neighbor Ratio

To improve classification accuracy of a testing feature vector, we observe that we would be more

confident to accept the class label of the nearest neighbor in the training feature vectors set

if that nearest neighbor happened to be much closer than any other training feature vector.

Otherwise, if several of the training feature vectors are within a small radius from our testing

feature vector, then the class label of the nearest neighbor cannot be trusted, as any one of

several training feature vectors might have happened to be the closest simply by chance. For

this reason, a classification result for a specific testing feature vector is only accepted if the ratio

between the distance of the nearest and the second nearest neighbor is below a specific threshold.

This threshold has been determined empirically to be 0.85.

Support Vector Machines (SVMs)

Instead of using nearest neighbor to assign class labels to the encoded feature vectors, we could

use a more complex but a mathematically more proven methodology. In its simplest form, a

Support Vector Machine (SVM) tries to compute the best hyperplane which would separate as

accurately as possible the samples of two given classes. In our case, we compute all class pairs

and we train one SVM per pair of classes. For each pair of classes, we take the encoded feature

vectors created above and we train a specific SVM for that class pair which would be able to
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separate them. Then, when we have computed the encoded feature vectors for our testing images,

each SVM makes a prediction concerning the class to which each encoded feature vector belongs.

The class which has been predicted the most times is the winner.

Breaking the Image into Smaller Patches

To improve classification accuracy another approach was tried whereby all training and testing

images are split up into non-overlapping patches of 13-by-13 pixels. These patches are each

reduced into a feature vector. The patches from the training images, therefore, make up the

training feature set and similarly for the testing images. Then, both nearest neighbor and Kernel

Regression were employed in order to classify the testing images. Unfortunately, the accuracy

was extremely poor so as to discourage us to further investigate this approach.

4.3.4 Determining if the Object is a Banknote

When instructed by a visually impaired user to recognize a banknote, our system takes snapshots

continuously from the phone’s camera which are pre-processed 4.3.1 and are fed into SIFT for key-

point extraction. The extracted key-points from each captured image are then aggregated 4.3.2

into feature vectors and then compared with the feature vectors of the training samples in order to

be classified 4.3.3 according to denomination. The more feature vectors that the system classifies

as belonging to a specific denomination, the higher the confidence that the object currently being

photographed is a banknote of that specific denomination. After a sufficiently high confidence

value has been attained, the system stops taking snapshots and announces, using the phone’s

built-in synthetic speech, the denomination of the recognized banknote. On the other hand, if

the object being captured is not a banknote, the system’s classification confidence will not reach

the required built-in threshold. The system will continue taking snapshots and nothing will be

announced until a banknote is put before the camera.

The classification confidence measure should indicate how similar the image to be recognized is

to a certain currency denomination. For example, if the feature vectors of an image are classified

so that an equal subset of them belongs to each denomination, then there is no way that we

could classify the whole image with certainty and we would want to get a confidence of 0. To
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do this, we first find a collection of measures each one indicating the distance of the captured

image to each class. This can simply be the ratio of the image’s feature vectors which have been

classified as belonging to each particular denomination. Then we compute 1 minus the entropy

of the above distance measures, which gives as the confidence.

4.4 Evaluation

This section details our evaluation methodology, including how we collected training and testing

images of dollar bills and how each of the classification methods described above performed.

4.4.1 Data Collection

Training data was collected by taking clear and complete pictures of bills through the phone’s

camera under a uniform light source and on a white background. The banknotes used for the

training set were placed on a white sheet of paper and exposed to an electric lamp which shone

from above in an otherwise darkened room. The pictures were taken by the phone’s camera held

at the same angle and distance for all samples. The images were then post-processed to remove

the surrounding white background so as to leave the clear and complete image of the bill on its

own. In total, there were 91 training images used. Of them, 21 were of 1 dollar bills, 28 of 5

dollar bills, 22 of 10 dollar bills and 20 of 20 dollar bills.

All 82 testing samples were captured by a totally blind user using the same phone. Naturally,

these images are full of occlusions and may be blurred. The user was asked to take pictures,

one bill at a time, in any way he deemed desirable. Thus, many of the testing samples contain

partial and distorted images of banknotes, in addition to pictures of the users fingers and of the

background furniture embedded in them, 4.1. The user was also asked to randomly move about

in the room while he was taking the pictures.

More specifically, from the 82 testing images captured, 17 were of 1 dollar bills, 28 of 5 dollar

bills, 17 of 10 dollar bills and 20 of 20 dollar bills. The above counts also include pictures of the

same banknotes capture from a different angle/distance by the blind user.
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Figure 4.1: Incomplete but clear images

Classification method Accuracy Speed

textbfNearest neighbor 71.6% 2.29 secs

Nearest to second nearest neighbor heuristic 93.83% 2.2 secs

Random dictionary 20.99% 3.94 secs

K-Means 20.98% 5.5 secs

SVM 17.28% 2.22 secs

Table 4.1: Accuracy and speed of each key-point classification method

4.4.2 Results for each Classification Approach

In section 4.3.3 we have described various methods of accurately classifying the SIFT key-points

computed from each testing image. Optionally, these methods could be employed after aggregat-

ing or encoding the set of training SIFT key-points in an effort to speed up our system 4.3.2. The

following table 4.1 shows the accuracy of each classification method along with the time taken to

classify each testing banknote image. For the first two methods (Nearest Neighbor and Nearest

to Second Nearest Neighbor), the SIFT key-points were used without any encoding. For the

next two results presented, a dictionary of 500 entries was created using both the Random and

the K-Means approaches on which the Nearest to Second Nearest Neighbor classification method

was subsequently run. Finally, a dictionary of 50 entries was used with the SVM method. The

encoding of the SIFT key-points using the above dictionaries was performed with the Nearest

Neighbor entry method.

From the above table 4.1, we can conclude that the two nearest neighbor approaches, when

used on the original SIFT key-points, are much more accurate than any of the approaches which

use a dictionary. In fact, even though the number of comparisons performed by both the nearest

neighbor algorithms between pairs of training and testing SIFT key-points is much larger than the
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number of comparisons that are performed by any of the other procedures which use only a smaller

dictionary of encoded training feature vectors, the speed of both the nearest neighbor methods is

still superior. The reason for this seemingly unintuitive result must be that the actual encoding of

each testing image’s SIFT key-points before comparing them with the encoded training vectors in

the dictionary dominates the execution time of these algorithms. This could suggest that feature

vector comparisons is not the bottleneck on resource-constraint devices and that perhaps another,

more efficient approach of limiting the actual number of training SIFT key-points used for the

nearest neighbor algorithms should be devised. However, even after trying to use methods such

as Voronoi Condensation for removing a great number of seemingly redundant training SIFT

key-points from our training set, we were unable to replicate the high accuracy of the simple

nearest neighbor approaches. Finally, from the results it is obvious that a very simple heuristic,

namely the nearest to second nearest ratio, was able to dramatically improve performance in

the second of the two nearest neighbor algorithms. Even though the underlining mechanism by

which this accuracy increase was realized escapes us, this result indicates that improving the

currency recognition algorithm may simply require good taste in the art of heuristic tweaking.

4.5 Future Work

In our everyday cash exchanges, it is unlikely that we trade paper bills one at a time. More often

than not, we remove and place back into our wallets whole bundles of banknotes as part of each

transaction. One should expect that our software would permit visually impaired individuals

to be able to behave in a similar manner. However, as it is currently designed, our currency

recognizer can work with only one banknote at a time and can be confused when shown, for

example, a handful of multiple bills. We plan to remedy this situation as part of our future

work. This work should enhance our image pre-processing algorithm so that it could partition

an image into different regions, one for each separate bill fragment and then work on each region

separately. Directions should be provided to inform the user the location in the bundle of each

banknote recognized.

Our software has attempted to solve the problem of accessibility with dollar bills. However,

as already discussed 4.1.1, banknotes of other currencies might have similar accessibility issues.
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It would be hard, however, for any software developer to create a mobile phone-based system

which would be designed and tested to work with all the diverse currencies around the world.

We aim to allow users to be able to train the system to recognize arbitrary bills, such as those

of any foreign currency, by themselves. This would involve the software asking the user for some

training samples for each denomination from the specific currency. These samples would be

provided under a more controlled environment concerning lighting conditions and the banknotes’

orientation. The system would guide the user in creating this training environment and would

evaluate the quality of the training samples provided accordingly. The system would then process

the sample images, remove noise and train itself to recognize the new currency.

4.6 Summary

We have presented the design, implementation and evaluation of a mobile currency recognition

system that provides high detection accuracy for visually impaired users. In our limited sample

set, our algorithm exhibited good classification accuracy with high confidence for images that

were clear and properly taken even if the currency bill was folded, incomplete or had orientation

and rotation effects.
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Chapter 5

Choosing which Clothes to Wear

Confidently: A Tool for Pattern

Matching

Being dressed in a socially acceptable combination of clothes is extremely important in a modern

society. Wearing clothes that match in color or design with one another is, to some degree,

considered common sense. Visually impaired persons, however, have difficulty matching their

clothes as they cannot readily identify their color or visual design patterns. To solve this prob-

lem, some visually impaired people rely on the help of their family or friends who help them

either organize their wardrobes by placing sets of matching clothes in the same pile, or tag each

matching set of clothes with a unique tactile marker or Braille label. However, establishing an

organizational structure in one’s wardrobe is fragile and extremely tedious, as the same procedure

has to be repeated after each time a piece of clothing has been worn. For this reason, many blind

people prefer to buy only plain clothes which are of similar colors and which feature no salient

design patterns. Even though according to [9], blind individuals are primarily interested in how

their clothes feel, they also do not want to neglect their appearance. Some blind people in fact

associate popular colors with certain meanings, e.g. red with fire [9].
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Electronic devices which are able to recognize and provide the color of any object using audio

feedback exist on the market [88]. However, even in cases where other means of color identification

are available, such as electronic color detectors and the already mentioned tactile markers, blind

people lack the sensory experience to know if a color combination matches. Training oneself to

memorize which colors match and which do not can certainly be a solution, but it is hard to

achieve fully given the vast number of color-combinations. This work [68] does not fully solve

the clothes matching problem but makes preliminary progress by attempting to identify whether

samples of shirt/tie pairs match. We employ and then evaluating the accuracy of three standard

machine learning algorithms: Ridge regression, a standard neural network and a Siamese Neural

Network.

5.1 Previous Work

A set of RFID tags were attached to each piece of clothing in [77] for identification purposes.

Information about the clothes was also stored in an online database which employed fashion

experts to classify them. The RFID tags could be read by a handheld system which would help

the visually impaired user find matching clothes by using information in the online database.

Similarly, a set of RFID tags were also used in [43] where a system was built to propose matching

clothes to its users based on the individual’s personal style, the current weather conditions and

the individual’s daily schedule.

Some research work to determine which sets of colors are visually compatible with one another

based on human preferences was undertaken in [61]. The researchers first attempted to find out

whether certain theories of human color preferences can be validated using three large online

datasets. Then, they created feature models which could predict the visual compatibility of any

set of five colors and which could also improve such a set of colors to make it more aesthetically

pleasing. Work specifically targeting the visually impaired was described in [94, 81], where a

clothes-matching system algorithmically analyzes pairs of images of clothes, both for matching

colors and for similar texture patterns. To identify matching colors, a color histogram is created

for each image containing only the dominant colors detected on that image. This dominant color

set is subsequently used in conjunction with an edge detection algorithm in order to find which
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edges on each image are surrounded by different dominant colors, i.e. they form part of a texture

pattern. Radon transforms are then used to determine how much to turn each of the two images

so that the detected texture patterns have a similar orientation, whilst histogram equalizations

are performed to fix changes due to lighting. Wavelet features and Gray co-occurrence matrices

are finally employed to compare the detected textures from each image and statistically determine

whether the two images match. At the same time, design patterns on clothing can be classified

with the algorithm proposed in [91] by combining both structural and statistical features from

wavelet subbands using a confidence margin. Clothes can then be characterized as stripe, lattice,

special or patternless. Finally, a method for identifying suits in images of people has been

proposed in [30] where a set of suitable color and shape features are described for this purpose.

5.2 Methodology

This section describes how we collected our sample images of shirts and ties, in addition to the

learning algorithms we used for classifying them.

5.2.1 Sampling

A total of 41 pairs of images of shirts and matching ties were collected from several clothing

websites. 74 x 74 pixel patches were extracted from the front of each shirt and center of each

tie 5.1. For our sample set, each pair was included together with a label indicating that they

match. Also, non-matching pairs were artificially created by pairing each shirt and each tie with

itself, creating a total of 82 non-matching pairs 5.3. In total there were 123 samples in our

training/testing set. However, other pairings were also tried, such as the all possible pairings.

For the results reported here we chose to go with the simpler approach, as our pairs labeled

“non-matching” are certainly so, a fact which cannot be reliably claimed for the non-matching

pairs of the all pairs set. This is because many ties can match with one shirt, making some of

the “non-matching” labels in the all-pairs set invalid 5.2.
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Shirt Matching Tie

Figure 5.1: A matching pair of shirts and ties

Shirt Matching Tie

Figure 5.2: The same shirt matches with more than one tie

Shirt Non-Matching Tie

Figure 5.3: Non-matching pairs of shirts and ties
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5.2.2 Data Preparation

Each image was used to create a color histogram. The histogram was created by dividing the 3-

dimensional color space of red, green and blue into a configurable number of equal bins (we tried

experimenting with 8*8*8, 4*4*4 and 2*2*2 bins) and by determining in which bin each pixel

falls. This was carried out after the luminance of each image was factored out by normalizing it.

Each bin was normalized by dividing with the total number of pixels. Unnormalized histograms

were also tried but attained worse performance. The color histograms of each matching pair

and non-matching pair, chosen above, were then concatenated into one feature vector and a

corresponding label of +1 or 0 was attached.

5.2.3 Learning Algorithms

The following learning approaches were tried in order to classify the computed feature vectors:

• Ridge Regression: This algorithm attempts to calculate the vector of weights which would

return for each seen data point its corresponding score. In addition, the penalty term tries

to minimize the norm of the weight vector to produce more stable solutions. Although

regression is not a classification algorithm, its output can be thresholded to get a classifi-

cation label. In our case, we set the threshold at 0.5 and so if regression returns a value

which is less than 0.5 it receives the 0 (not a match) label and if greater than 0.5 it receives

the 1 (a match) label.

• Standard neural network: A network with two hidden layers is trained using either stochas-

tic or batch training, using the Sigmoid as its activation function.

• Siamese Neural Network: The Siamese Neural Network which is described in [27], is imple-

mented as follows:

1. Two sets of outputs for each layer are stored each one corresponding to one of the two

samples in the given training pair.

2. The loss function is set to the derivative of a hinge loss function, which aims to make

the distance between outputs smaller when the pair of images matches but which tries
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to make the distance large, but only up to a threshold, when they do not.

3. Uses the same error for the output layer for both images, but reverses the sign of the

error for the second image.

5.3 Results

The following table 5.1 shows the regression and the 10-fold cross-validated classification errors

for the two of our three approaches (regression and standard) neural network, together with the

type one and type two errors, i.e. false-positives over (true-positives + false-positives) for the

type one error and false-negatives over (true-negatives + false-negatives) for the type two error.

The Siamese Neural Network was tried with 10 output and 10 and 100 hidden neurons but

produced very bad results, (classification error = 2
3 ). This is because, as our inputs are structured,

the non-matching pairs are made up of two images that are the same in order to give the standard

network the most negative samples that it can get. However, it is impossible for a Siamese Neural

Network to identify the distance between two identical images, as by definition of this algorithm

the distance should be 0. More experimentation is clearly needed by providing pairs which

visually do not match but this is left for a future work. In addition, the matchings are not

symmetric, meaning that a shirt might match with many ties but not the other way round. A

suitable solution perhaps was to add an extra dimension to the input to identify if a sample is a

tie or a shirt.

Ten hidden neurons were also found sufficient for the standard neural network in addition to

a learning rate value of 0.1, with a binning of 4 for the color histogram as other values did not

change the 10-fold cross-validation regression error substantially. The stopping condition for the

cross-validation was 0.00001.

The regression error is calculated by taking the Frobenius norm of the difference between

the expected and actual outputs for each data point and averaging over all points and over all

cross-validation folds.
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Algorithm Regression Error Classification Error Type1 Error Type2 Error

Regression 0.704427 0.175 0.3 0.11253

Neural 0.0955543 0.05 0.125 0.0125

Table 5.1: Performance of learning algorithms

5.4 Summary

In summary, given a sample of 41 pairs of shirts and corresponding matching ties of 74 pixels

squared and using a color-histogram of 8 bins, we have shown that with Ridge Regression we can

achieve a 10-fold cross-validation classification error of 0.175, with a standard neural network

with 10 hidden neurons a 10-fold cross-validation classification error of 0.05 and with a Siamese

neural network an accuracy of only 0.33.

From the above results, it appears that the standard neural network exhibits a superior per-

formance over the Ridge Regression algorithm in this particular problem setting. However, more

work is needed, especially in finding more samples for other types of clothes, in order to evaluate

these algorithms more successfully and develop a more holistic solution to the clothes-matching

problem. Symmetric matching pairs should be found in order to deploy the already designed

Siamese Neural Network effectively. More importantly, our algorithm should be enhanced to

take into consideration other characteristics of the clothes, such as their texture or their design

patterns. The above will necessitate a user study to discover how humans actually distinguish

between sets of clothes that match and sets that do not.
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Conclusion

We have outlined the development of four mobile applications that can assist the visually impaired

in their everyday lives. The problems that these applications have tried to solve are essential issues

which continue to plague the blind community. The first has attempted to push the envelope

on the important issue of unhindered mobility by demonstrating an indoor navigational system.

The second has enhanced the accessibility of modern communication devices by proposing several

methods of text input on touch screens. The third, by contributing to the solution of the currency

recognition problem, has endeavored to remove some of the obstacles encountered by the visually

impaired when accessing printed information. Meanwhile, assisting in overcoming one of the

most frequent of daily needs has been the goal of the last application for clothes-matching. Our

extensive testing has proven the practical usefulness of our applications in daily scenarios.

The main contributions of our navigation system are an algorithm creating a user-trained

topological map for navigation instead of using a pre-developed floor map, as well as an algorithm

for counting the user’s steps. For the mobile Brailler system, our user study has resulted in a

number of important findings, chief of which are the fact that visually impaired users would prefer

an intuitive but potentially more inaccurate spatial method for entering Braille, instead of a more

complex but stationary one, or a slower but more accurate one. Lastly, with both our currency

recognizer and our clothes-matching attempts, we have demonstrated that off-the-shelf feature-

extraction and machine learning approaches can be combined in a new way to create assistive

software in the field of computer vision. Most importantly, we believe that these applications

together provide a suite of important mobile accessibility tools to enhance four critical aspects of

a day-to-day routine of a visually impaired user: to navigate easily, to type easily, to recognize
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currency bills (for payments) and to identify matching clothes.

In addition to a single overarching goal which is to enhance the daily lives of visually impaired

individuals, there is another important factor which unifies the above four applications. This is

the fact that all four of these applications take advantage of a single device: the mobile phone.

As already discussed, this device has attained unparalleled popularity due to the widespread

communication needs of our society which it can so efficiently meet. It has also acquired a rich

development platform whose growth has been fueled by this popularity. The fact that we have

built four separate assistive solutions which run on this widespread platform is not accidental.

It was an experiment to determine both the platform’s ability to support such demanding appli-

cations and a test of the potential acceptance of these applications within the community of the

visually impaired. As this work has demonstrated through our user studies, applications which

run on smart phones are met with enthusiasm by the visually impaired, due to their portability

and social acceptance. This result indicates that when accessibility aids are attached onto main-

stream platforms instead of on specialized devices, they can quickly attain a larger and dedicated

user-base, finding their way into many more hands which are eager to provide feedback and assist

in their further development. This does not in any way mean that specialized devices do not

have their uses and cannot offer their own differentiated affordances which could make them at-

tractive in some situations. However, attaching an accessibility aid to a mainstream device, and

especially to the mobile phone, is not only expedient from a marketing point of view. It can also

open the way to such assistive applications becoming part of the phone’s platform, if popularity

demands it. Indeed, by building popular momentum behind assistive solutions, they can in turn

“infect” popular software, making it more accessible and usable by all. Thus, accessibility would

be regarded as a feature of all software, instead of an add-on required only by the few. In fact,

adding accessibility features to all software would make it more flexible, enabling it to cater to

the needs of all its users, regardless whether they identify themselves as having a disability or

not.
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