
  

  

Abstract— We present a methodology for enabling service 

robots to interpret spatial language instruction sequences 

expressed through natural language discourse from non-expert 

users. As part of our approach, we propose a novel probabilistic 

algorithm for the automatic extraction of contextually and 

semantically valid instruction sequences from unconstrained 

spatial language discourse. Additionally, we present the design 

and implementation details of a procedure for reference 

resolution of anaphoric expressions encountered within the user 

discourse. Towards application of our human-robot interaction 

(HRI) methodology on robot platforms in practice with end 

users, we discuss a generalized procedure for transfer to 

physical systems and provide solutions for key pragmatic 

considerations including the generation of safe robot execution 

paths for both the robot and people in the environment. The 

paper concludes with an evaluation of our spatial language-

based HRI framework implemented on a PR2 robot to 

demonstrate the generalizability and usefulness of our approach 

in real world applications. 

I. INTRODUCTION 

For autonomous service robots to provide effective 
assistance in real-world environments, they will need to be 
capable of interacting with and learning from non-expert 
users in a manner that is both natural and practical for the 
users.  In particular, these robots will need to be capable of 
understanding natural language instructions for the purposes 
of user task instruction, teaching, modification, and 
feedback.  This capability is especially important in assistive 
domains, where robots are interacting with people with 
disabilities, as the users may not be able to teach new tasks 
and/or provide feedback to the robot by demonstration.  

Spatial language plays an important role in instruction-
based natural language communication [1, 13]. For example, 
a user might teach a household service robot the complex 
task “Put away the groceries”, through natural language and 
by specifying the subgoals of the task individually, each 
represented by its own spatial language instruction (e.g., “Put 
the spices in the top cupboard on the left hand side of the 
kitchen”, “Stow away all of the trash bags under the sink”, 
“Place the vegetables in the bottom shelf of the refrigerator”, 
etc.).  As the user provides a series of spatially-oriented 
instructions to the robot, the user is engaging the robot in 
discourse.  In such cases, the user may at any point refer to a 
previously introduced entity or object (e.g., household items, 
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people, regions of space, etc.) and the robot must be capable 
of keeping track of the current discourse history in order to 
resolve such referential expressions. In addition, users may 
not adhere to the language model of the robot (the grammar) 
and therefore the robot must be capable of extracting and/or 
inferring the desired tasks expressed by the user for the robot 
to perform from the unconstrained natural language input. 

Therefore, the ability for robots to parse and understand 
unconstrained spatial language in spoken communication, 
and to maintain an active discourse model, is critical for the 
interpretation of user-guided instructions to be successful. 

In this paper, we extend upon our previous work [7, 8, 9] 
and present a methodology for enabling service robots to 
interpret spatial language instruction sequences expressed 
through natural language discourse from non-expert users. 
We propose a novel probabilistic algorithm for the automatic 
extraction of contextually and semantically valid instruction 
sequences from unconstrained spatial language discourse. 
Additionally, we present the design and implementation 
details of a procedure for reference resolution of anaphoric 
expressions encountered within the user discourse. Towards 
application of our human-robot interaction (HRI) 
methodology on robot platforms in practice with end users, 
we discuss a generalized procedure for transfer to physical 
systems and provide solutions for key pragmatic 
considerations including the generation of safe robot 
execution paths for both the robot and people in the 
environment. The paper concludes with an evaluation of our 
spatial language-based HRI framework implemented on a 
PR2 robot to demonstrate the generalizability and usefulness 
of our approach in real world applications. 

II. RELATED WORK 

The use and representation of spatial prepositions, and 
spatial language in general, in human-agent interaction 
scenarios has been investigated by previous work.  Skubic et 
al. [6] developed a mobile robot capable of understanding 
and relaying static spatial relations in natural language 
instruction and production tasks. The use of computational 
field models of static relations has also been explored in the 
context of human-robot cooperation tasks [5], and for 
visually situated dialogue systems [12]. Our approach 
extends upon this related work by modeling not only static 
spatial relations, but also dynamic spatial relations (DSRs).  

Recent work has, however, explored the use of dynamic 
spatial relations in the context of natural language robot 
instruction. Tellex et al. [3] constructed a probabilistic 
graphical model to infer spatial task/actions commanded 
through natural language for execution by a forklift robot.  
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Similarly, Kollar et al. [4] presented a probabilistic approach 
for interpreting route directions using learned models of 
dynamic spatial relations.  These approaches typically 
require the system designer to provide an extensive corpus of 
labeled natural language input for each new application 
context, without taking advantage of the domain-independent 
nature of spatial prepositions.  In contrast, our approach 
develops novel, pre-defined templates for spatial relations, 
static and dynamic, that facilitate use and understanding 
across domains, and whose computational representations 
enable guided robot execution planning. 

Methods for mapping natural language instructions onto 
a formal robot control language have also been developed by 
researchers using a variety of types of parsers, including 
those that were manually constructed [10, 11], learned from 
training data [15], and learned iteratively through interaction 
[16]. Among these examples, the work of Rybski et al. [10] 
and Matuszek et al. [15] relied on pre-defined robot 
behaviors as primitives, as opposed to spatial relations, 
which limits, if not restricts, the user’s ability to introduce 
feedback modifications and/or constraints on robot execution 
of a specific primitive behavior. The work of Kress-Gazit et 
al. [11] and Cantrell et al. [16] mapped words to meanings 
based on dictionary-based rules. Our methodology employs 
domain-generalizable spatial relations as primitives, and 
probabilistic reasoning for the grounding and semantic 
interpretation of phrases, thereby enabling context-based 
instruction understanding. 

III. METHODOLOGY FOR SPATIAL LANGUAGE DISCOURSE 

INTERPRETATION 

In this section we present our methodology for 
autonomous service robots to interpret spatially-oriented 
instruction sequences expressed through natural language 
discourse from non-expert users.  We begin with a brief 
overview of our approach and software modules towards 
understanding spatial language instructions in human-robot 
interaction, detailed in previous work [7, 8, 9], and follow 
with the presentation of novel methods for the probabilistic 
extraction of contextually valid instruction sequences from 
natural language discourse, and for resolving anaphoric 
references expressed within the user discourse.   

A.  Spatial Language-Based HRI Framework 

We have developed a framework for human-robot 
interaction that enables the interpretation of spatial language 
directive instructions, with and without constraints, by 
encoding spatial relations within the robot a priori as 
primitives. Our approach utilizes the semantic field model of 
spatial prepositions, proposed by O’Keefe [2], and 
introduces an extension to the model that enables the 
representation of dynamic spatial relations (DSRs) involving 
paths. The semantic field model is beneficial as it provides a 
continuous representation for determining the applicability 
of a given spatial relation (applied to specified figure and 
reference objects) at each point in the environment, which 
can be used for both probabilistic reasoning and task 
planning.  Fig. 1 shows an example semantic field computed 
for the spatial relation at (utilizing a Gaussian function for 

proximity), used during robot task planning for the 
instruction “Go to my desk”.  

Our robot software framework is comprised of five 
system modules that enable the interpretation of natural 
language instructions, from user speech or text-based input, 
and translation into robot action execution. They are: the 
syntactic parser, noun phrase (NP) grounding, semantic 
interpretation, planning, and action modules. As discussed in 
the following subsections, the first three modules do not 
operate independently, but instead are integrated in a 
feedback loop designed to find the optimal interpretation for 
the natural language input given the context of the 
environment and the current discourse. 

The semantic interpretation module accepts four 
observations as input: the verb and preposition utilized, and 
the associated grounding types for the expressed figure and 
reference objects (as returned by the NP grounding module). 
The module then infers the command semantics of the spatial 
instruction probabilistically using a Naïve Bayes approach 
over a database of labeled training examples, producing 
three outputs: the command type, the DSR type, and the 
static spatial relation (if available). The command type is 
domain-specific, and may include commands such as: robot 
movement, object movement, learned tasks, etc. The 
resulting specifications are then passed on to the planning 
module to search for appropriate robot task solutions. 

For more information regarding our approach to modeling 
spatial relations and our HRI framework design, we refer the 
reader to [7, 8, 9]. 

B. Probabilistic Extraction of Instruction Sequences  

In our prior work we utilized a phrase structure grammar 
capable of parsing spatial language directives that instructed 
a variety of robot tasks, including for example, robot 
movement commands (e.g., “Go inside the kitchen”), object 
manipulation/placement commands (e.g., “Put the book on 
top of the coffee table”), and spatial commands without 
explicit prepositions (e.g., “Leave the room”). Table I 
displays the basic rules of this grammar for illustration 
purposes; the complete grammar is slightly more complex 
[8]. As shown, the non-terminal symbols defined by the 
constituency rules include those for sentences (S), noun 
phrases (NP), and terminating noun phrases (N’).  

While the grammar presented is capable of capturing 
many different types of spatial language instructions 
(including those with hierarchical noun phrases) provided as 

 

Figure 1.  Semantic field for the spatial relation at applied to a desk 

reference object for the instruction “Go to my desk” 



  

TABLE I.  GRAMMAR FOR SPATIAL  LANGUAGE DIRECTIVES 

S → V  P*  NP NP → N’ 

S → V  NP  P*  NP NP → N’  P  NP 

N’ → (Det)  A*  N+ NP → NP and  NP 

Note. POS Tags: V = Verb, P = Preposition, N = Noun, A = Adjective, Det = Determiner 

 

TABLE II.   PROBABILISTIC INSTRUCTION SEQUENCE EXTRACTION PROCEDURE EXAMPLE WITH ITERATION NOTES 

Word 

Index 
0 1 2 3 4 5 6 7 8 9 10 11 12 

Word “PR2 please go into my room and get me my shoes thank you” 

POS Tag N V V P PRP$ N CC V PRP PRP$ N V PRP 

Non-

Terminals 
NP1 - S4 - NP2 NP1 - 

S4 

S2 
NP1 NP2 NP1 S2 NP1 

Algorithm 

Steps 
No S No S 

Valid S 

Found 

len=4 

(skip) (skip) (skip) No S 

Valid S 

Found 

len=4 

(skip) (skip) (skip) 
Invalid 

S 
No S 

Note. Input text = “PR2 please go into my room and get me my shoes thank you”. Parser output is shown along with algorithm steps during iteration over the word indices of the POS tag assignment 

array. Non-terminal symbol lengths are shown in subscripts. Sentences are validated against the context of environment and the inferred command semantics/requirements.  

Final instruction sequence output by algorithm: {go into my room, get me my shoes} 

 

discrete input, its scope is limited when applied to natural 
language input taken as a whole. Specifically, it is unable to 
parse the many non-spatial phrases that users often employ 
when providing instructions through natural language. In 
addition, the grammar only allows for a single instruction per 
sentence, yet in practice, people often sequence multiple 
instructions together within a single utterance that must 
therefore be appropriately segmented.  

To address these limitations in practice with end users, 
we have developed a probabilistic parsing procedure capable 
of extracting a sequence of grammatical instructions (partial 
parses) from unconstrained natural language input for 
subsequent robot task planning and execution. Following is 
an overview of the five steps of the algorithm: 

1) Part-of-Speech (POS) Tag Assignment: The first step 
of the algorithm is to determine the POS tags (terminals) for 
each word of the input text. We use the Stanford NLP Parser 
[14] to generate default POS tags; however, because the 
Stanford parser does not have access to situational context, it 
occasionally assigns POS tags incorrectly (e.g., “Place” 
assigned as a noun (N), instead of as a verb (V)). To address 
this issue, we additionally apply domain-specific POS tags 
taken from a pre-defined lexicon when there is a 
disagreement with the default tags, so that the parser may 
consider both tag options. As a result, there may be multiple 
assignments generated for a given input text (with 
exponential growth). In practice, however, there are typically 
only 1-4 tag assignment arrays for each input, and invalid tag 
assignments are discarded quickly in the following step due 
to grammatical incorrectness. For each of the generated tag 
assignment arrays the algorithm performs steps 2-4; the 
procedure then concludes with step 5. 

2) Parse Word/POS Tag Array using Grammar: Given a 
word/POS tag assignment array, the algorithm proceeds to 
extract the corresponding high-level tags (non-terminals) for 
the input as defined by the constituency rules of the grammar 
(see Table I). The result is that for each word position, there 

exists a set of non-terminal symbols parsed by the grammar 
that begin at that index, each with an associated length 
corresponding to the number of consecutive terminal 
symbols that serve as constituents for the non-terminal 
symbol. From this representation, the algorithm only 
considers non-terminal symbols that denote grammatical 
sentences (i.e., S).  

3) Find Maximum Probable Sentences: For each word 
index of the word/POS tag assignment array, all sentences 
(symbol S) with maximum length among the available 
sentences are tested for validity within the context of the 
environment and the semantics of the inferred instruction. 
The algorithm only considers sentences of maximum length 
among those available as a heuristic to avoid evaluating 
partial sentences unnecessarily. If no sentences exist at the 
current index, the algorithm moves on to the next index.  

Valid sentences are those whose NPs can be grounded 
uniquely in the world, and whose parameters meet the 
specifications of the inferred command. An example error 
would be if the inferred command was [Object Movement] 
and the grounded NP parameter was [the kitchen], as [the 
kitchen] is of type [Room] and hence not movable by the 
robot. In this case a flag would be thrown and the sentence 
would be deemed invalid. This validation procedure is 
discussed in detail in [8]. 

Among the sentences at the current index found to be 
contextually and semantically valid, the sentence of 
maximum probability (calculated during the inference 
process) is chosen as the most likely sentence found at the 
current index, and the algorithm then skips the word indices 
covered by the sentence and continues on searching for valid 
sentences at the next available index. 

4) Form Instruction Sequence Candidate: All of the valid 
sentences found within the word/POS tag assignment array 
(i.e., those with maximum probability at their respective 
word positions) are then combined to form the optimal 
instruction sequence candidate for the specific POS tag 
assignment of the natural language input.  

5) Find Maximum Probable Instruction Sequence: Once 
all instruction sequence candidates are gathered, the final 
instruction sequence returned by the algorithm is that which 
is of maximum probability among the candidates 
(determined by multiplying together each of the probabilities 
of the individual sentences in the sequence). To allow for fair 



  

comparison, candidates are evaluated only against others of 
equal length (number of sentences), and instruction 
sequences of greater length are favored.  

Table II illustrates the probabilistic instruction sequence 
extraction procedure with an example by displaying the 
word/POS tag assignment array for the input “PR2 please go 
into my room and get me my shoes thank you”, along with 
the corresponding parsed non-terminal symbols and resulting 
algorithm steps. In the example, the procedure finds the 
following instruction sequence most likely given the natural 
language input: {Go into my room, Get me my shoes}.  

C. Reference Resolution  

In natural language discourse, people often refer to 
entities, or groundings, which have been previously 
mentioned or discussed through the use of anaphora. 
Examples include references to objects (e.g., “it”, “itself”, 
“this”, “that”) and people (e.g., “he/she”, “him/her”, 
“him/herself”). In addition, anaphoric expressions typically 
refer to an entity introduced by a noun phrase within a recent 
utterance in the discourse history (usually within one or two 
past utterances) [20]. The prevalence of anaphora in natural 
language discourse necessitates a computational approach 
for resolving such references for use in real world human-
robot interaction scenarios with non-expert users.  

In this subsection, we present our approach to resolving 
anaphoric references to both objects and people in the 
context of user-guided spatial language discourse. Our 
reference resolution procedure is similar in nature to those 
that have been developed previously based on related 
principles [20, 21], albeit with the distinction of its 
optimization for use within the framework of our spatial 
language architecture, and in particular, for its designed 
integration with our probabilistic instruction sequence 
extraction procedure (presented in the previous subsection). 

At a high level, our procedure for resolving anaphoric 
references within user discourse can be summarized by the 

following key concepts: 1) entities represented in the world 
(e.g., mobile objects, static objects, rooms, people, etc.) are 
associated internally with numerical identifiers that enable 
unique identification during the NP grounding process; 2) as 
these groundings are referenced in the discourse (usually by 
name) their unique grounding ID numbers are added to a 
global list of recent references; and 3) upon encountering 
anaphoric expressions within the discourse, the groundings 
in the recent references list are used as candidate references 
in an attempt to uniquely resolve the referential expression to 
the specific grounding that the user intended to convey. 

More specifically, in our approach anaphoric expressions 
are categorized as either Object References or Human 
References, depending on whether or not the anaphor 
encountered refers to a person. In addition, anaphoric 
references to persons are further categorized by gender 
(male/female). When adding groundings to the global list of 
recent references, an entry pair is made with both the current 
utterance index and the grounding ID. If a prior entry is 
found with the same grounding ID, it is removed in favor of 
the new entry. The utterance index is incremented after every 
utterance spoken during discourse, and it is included in the 
global list to enforce the consideration of only the references 
expressed within the most recent utterances (in our 
implementation we utilize a history size of three utterances).  

In resolving an anaphoric expression, only recent 
reference groundings with matching type (object vs. human, 
male vs. female) are allowed as candidates, and the list of 
candidate groundings is prioritized with the most recent 
references at the top. During the grounding process, child 
NPs that can be directly grounded (i.e., not anaphoric) are 
added to the current list of recent references; alternatively, 
child NPs that contain anaphora instead merge their 
candidates list with those of sibling NPs to form one 
combined candidates list for the parent NP. Once all child 
NPs are processed and either the figure and/or reference 
object NP parameters of the spatial language instruction 
contain anaphora, the command semantics are evaluated for 

Candidate #1: Figure Id = 2 (“the kitchen”) 

Observations Inferred Semantics 

{ Verb: “Toss” 

   Preposition: “in” 

   Figure Type: Room 

   Ref. Object Type: Static Object } 

{ Command: Object Movement 

   DSR: to 

   Static Relation: in} 

FAILURE 

 

Candidate #2: Figure Id = 8 (“the cup”) 

Observations Inferred Semantics 

{ Verb: “Toss” 

   Preposition: “in” 

   Figure Type: Mobile Object 

   Ref. Object Type: Static Object } 

{ Command: Object Movement 

   DSR: to 

   Static Relation: in } 

SUCCESS 

 
“it” reference resolution → [the cup]Id=8   

 (Add to references list with utterance index=3, remove previous entry) 

 

Final References List:  { (3, 5);  (3, 8);  (3, 2);  (1, 10);  (1, 7) } 

NL Input (with NP groundings) 

1 Go to the [table by [Mary]Id=7]Id=10 

2 Pick up [the cup]Id=8 

3 Walk to [the kitchen]Id=2 and toss [it]Ref in [the sink]Id=5 

 

References List (states until reference occurrence) 

1 { (1, 10);  (1, 7) } 

2 { (2, 8);  (1, 10);  (1, 7) } 

3 { (3, 2);  (2, 8);  (1, 10);  (1, 7) } 

 
“it” reference occurrence  → Object Reference 

 (Get candidates from matching type entries in references list) 

 

Candidates List:  { 2;  8;  10 } 

 

Figure 2.  Reference resolution example for the instruction “toss it in the sink” expressed by the user during spatial language discourse. Parsed NPs 

of the natural language input are shown in brackets with their corresponding unique grounding ID numbers as subscripts. 



  

each of the possible candidate groundings until the first 
successful assignment is found. This greedy approach to 
resolving the reference is reasonable under the assumption 
that the list of candidates is ordered with the most likely 
candidates on top (the most recent are set as a best estimate). 

As previously mentioned, our procedure for anaphora 
resolution was designed to be well integrated with our 
probabilistic instruction sequence extraction procedure. This 
integration is actually a crucial necessity, as determining the 
optimal instruction sequence for a given utterance containing 
anaphora depends entirely on accurate reference resolution. 
Furthermore, if multiple POS tag assignments exist for the 
given utterance, separate reference lists must be concurrently 
maintained and adjusted according to the evolving context of 
the different threads of possible discourse under 
consideration. Yet, in practice, the integration is seamless: 
each POS tag assignment is given its own references list that 
originally is a copy of the most current global references list 
(most current before utterance processing began). 
Additionally, in step 3 a temporary list is used for each new 
sentence grounding and validation check, which is set 
initially to the most recent references list encapsulating the 
instructions (of maximum probability) that have already been 
accepted for the current POS tag assignment’s instruction 
sequence. Lastly, the resulting references list for each of the 
candidate instruction sequences is stored until final 
determination of the maximum probable sequence, whose 
corresponding references list then becomes the global list.  

Fig. 2 illustrates the reference resolution procedure with 
an example discourse scenario, displaying the spatial 
language input and the evolving state of the global references 
list, among other properties of the algorithm. 

IV. PRAGMATICS FOR INTERACTION WITH PEOPLE AND 

GENERALIZED TRANSFER TO ROBOT SYSTEM 

A. Pragmatics for Interaction with People 

Our prior work has demonstrated that the A* search 
algorithm can be used effectively in conjunction with the 
semantic field model of spatial prepositions to generate robot 
task solution plans for execution of spatial language 
instructions provided by the user, including under user-
specified natural language constraints [7, 8, 9]. However, the 
approach was tested only in simulated 2D/3D environments 
and without modeling direct interaction with people. In this 
section we will discuss pragmatic considerations in 
transferring our approach to physical robots for interactions 
with people in real world environments, and how each was 
applied in our methodology towards enabling natural human-
robot interaction.  

Safety is perhaps the most important pragmatic constraint 
to consider when designing robot systems that are to interact 
with people. When generating robot task solution plans for 
given user instructions, it is important that the path/actions 
taken by the robot be safe for the user, but also for the robot. 
In our prior work the robot task solution plans were 
generated to achieve optimality in terms of both distance 
traveled and adherence to user defined constraints, without 
consideration for the value of generating “safe” solution 

paths. To address this issue, we incorporated specific 
pragmatic safety fields into the planning process, one for the 
robot and another for people within the environment.  

Our prior work has demonstrated the ease of 
incorporating pragmatic constraints in our methodology with 
the use of spatial pragmatic fields [8]. These fields have the 
same representation as the semantic fields used for 
computing spatial relations within the environment, and can 
easily be combined for generating robot task plans that 
consider both the semantics and the pragmatics of the given 
instruction.  The safety field for the robot was generated 
using a Gaussian function and a safety threshold specifying 
the minimum desired distance from obstacles and also the 
function mean (set to 2*robot radius). Field values for points 
in the world were designated based on their distance to the 
nearest obstacle, where distances above the threshold would 
result in a maximal field value (1.0) and distances below the 
threshold would be set according to the Gaussian.  The safety 
field for people is generated similarly, with the distance 
parameter instead referring to the distance from the person. 
Fig. 3(a) shows an example robot safety field computed for a 
real world laboratory environment using a SLAM map, and 
Fig. 3(b) illustrates use of the person safety field (merged 
with the at semantic field and pragmatic field for robot 
safety) in a robot solution for the instruction “Come to me”. 

The resulting pragmatic fields have been integrated into 
the A* cost function of our planning procedure, so as to 
designate preference for safer solution paths for both the 
robot and people. Other pragmatic fields can easily be 
incorporated during planning using our methodology, 
including for example, those that enforce appropriate 
approach behaviors (e.g., not from behind) and person-to-
person interaction spaces (e.g., do not cross) [19]. 

B. Generalized Transfer to Robot System 

In order to successfully transfer our spatial language 
interpretation framework to a physical robot system, there 
are a few technical challenges that first need to be addressed. 
The primary of which is a procedure for the translation of the 
discretized path returned by our planner into appropriate 
robot motor commands (e.g., wheel velocities) that result in 
the robot following the desired path. Another major 
consideration is the autonomous generation of a map of the 
environment to be used during planning. Last but not least, 

(a) (b) 

Figure 3.  (a) SLAM map of laboratory space with pragmatic field 

for robot safety shown; (b) Example robot approach behavior with 

combined semantic/pragmatic field shown for at/person safety. 



  

TABLE III.  ACCURACY OF FINAL ROBOT POSITIONS  
IN SPATIAL TASK EXPERIMENT 

Measure Mean (Std.) 

Distance to Goal 

Position 

0.19 m (0.037 m) 

Distance to AMCL 

Position Estimate 
0.07 m (0.038 m) 

Note. Distances calculated from the actual robot position measured after task completion 

 

the robot must be able to localize itself within the generated 
map of the environment using onboard sensors. Fortunately, 
previous work conducted by researchers in the field (e.g., 
[17]) have already designed solutions to these challenging 
research problems, many of which have been packaged 
within the software framework of the Robot Operating 
System (ROS) [18] and which are freely available for use. In 
transferring our approach to a physical robot system (the 
PR2 robot platform) we utilized the ROS software packages 
available for the generation of SLAM maps (gmapping), 
robot localization (AMCL), and robot navigation planning 
(global + local planning using DWA).  

Translation from the discretized plan to robot motor 
commands was accomplished by creating a cost map for the 
ROS navigation package to use during planning that would  
strongly favor points along (or close to) the planned solution 
path. Once created, the cost map is sent to the ROS 
navigation stack along with the desired goal position in the 
map. The result is a smooth path that takes into account the 
motion model of the robot (e.g., omnidirectional vs. 
differential drive) while following very closely to the path 
generated by our spatial language-based HRI framework 
(DWA parameters used: path bias = 30, goal bias = 10). The 
navigation also takes into account local obstacles 
encountered during task execution, and is able to quickly re-
plan upon encountering an obstruction. Fig. 4 shows an 
example of dynamic obstacle avoidance during task 
execution for obstacles not found in the static map, 
displaying actual data from a test run with the PR2 robot 
where a table was introduced into the environment not 
present in the static map. Fig. 4(b) additionally shows the 
cost map that was generated for task planning (shown in 
grayscale with values scaling linearly with distance to the 
original discretized path produced by our spatial planner). 

By utilizing the ROS framework to abstract away the 
generation of robot motor commands from the spatial 
language task solution, the transfer process is generalized 
and can easily be replicated for a variety of robot platforms. 

V. EVALUATION 

To evaluate the ability of our robot system to follow 
natural language directives involving spatial language, we 
first analyzed the performance of the physical robot platform 

(PR2 robot) at reaching the desired destination specified in 
the spatial language instruction. To evaluate the robot’s 
performance, we conducted a spatial positioning task 
experiment that consisted of instructing the robot to move to 
a desired location satisfying a given spatial relation with 
respect to one or more groundings in the environment, 
expressed through natural language. The experiment 
consisted of 14 test instructions given to the robot, two for 
each static spatial relation analyzed (near, away from, 
between, inside, outside, at) and two additional test runs for 
the spatial relation at, which is associated with the most 
common path preposition utilized in spatial instruction tasks 
(“to”). After each experiment run, the end location of the 
robot was measured against the goal position generated by 
our spatial language interpretation framework; specifically 
the distance between the target end point and actual robot 
end point was recorded. An example run of the experiment is 
shown in Fig. 5 for the instruction “Stand between the printer 
desk and the whiteboard”, displaying both the planned path 
and actual path taken by the robot during task execution. 

Table III shows the results of the analysis, which 
demonstrate the robot’s notable accuracy in estimating its 
position within the environment, as the distance errors were 
very small (within 0.2 m). This amount of distance between 
the final point of the robot and the planned goal point is to be 
expected, as the ROS navigation module operated with an 
acceptable goal distance threshold of exactly 0.2 m. The 
minor differences observed between the robot’s AMCL 
position estimates and the actual final position highlight the 
effectiveness of the robot’s onboard localization procedure 
(implemented in ROS), and demonstrate the ease of which 
the robot was able to follow the spatial language instructions 
provided to it by our framework in practice in a real world 
environment. 

 

Figure 5.  Combined semantic/pragmatic field and execution result 

for the task “Stand between the printer desk and the whiteboard” 

 
(a) 

 
(b) 

Figure 4.  Dynamic obstacle avoidance for instruction “Go to the 

dinner table”  (a) Planned path (green) and actual path (red);  

(b) Visualization of obstacles detected in robot’s local map and 

global plan after robot re-planning. 



  

TABLE IV.  INSTRUCTIONS GIVEN IN TEST RUNS 1-3 WITH  
INFERENCE RESULTS FOR INSTRUCTION SEQUENCES 

Run Natural Language Instructions 

1 

 

“PR2 can you please head to the dinner table and then pick up 

the water bottle and take it to my desk so I can have a drink 

later” 

    Head to the dinner table 

    Pick up the water bottle 

    Take it to my desk 

2 

“Go ahead and grab the cup if you can and then it would be 

great if you could go to the kitchen counter and put it on top of 

it for me” 

    Grab the cup 

    Go to the kitchen counter 

    Put it on top of it 

3 

“Come into the pen”  

    Come into the pen 

“Lift up the object close to Juan” 

    Lift up the object close to Juan 

“Give him it and then step back outside the pen and wait by 

the entryway” 

    Give him it 

    Step back outside the pen 

    Wait by the entryway 

Note. Distinct utterances are listed on separate lines. Instruction sequences inferred by the 

probabilistic extraction procedure are shown in red 

 

Next, to demonstrate the capabilities of 1) our 
probabilistic instruction sequence extraction procedure, 2) 
our approach to resolving anaphoric expressions, and 3) our 
integration of pragmatic constraints involving safety fields 
for interacting with and operating in environments together 
with humans, we ran three additional test runs of our spatial 
language discourse interpretation and HRI framework.  

Each test run involved the user engaging the robot in 
spatial language discourse, and in particular, providing a 
series of instructions, with and without the use of anaphora, 
for the robot to track, resolve references, and execute 
appropriate task solutions. In total, 11 instructions were 
evaluated. The spatial language discourse provided to the 
robot in each of the three test runs are shown in Table IV, 
together with the instruction sequences inferred by our 
probabilistic instruction sequence extraction procedure. 
Natural language input given to the robot included those with 
multiple instructions within a single utterance, which could 
also contain non-spatial language (e.g., “PR2 can you please 
head to the dinner table and then pick up the water bottle and 
take it to my desk so I can have a drink later”), and those 
with multiple anaphora (“Put it on top of it”) for the robot to 
attempt to interpret within the context of the discourse. 

Fig. 6 and Fig. 7 illustrate the performance of the robot 
during each of the test runs. As evidenced by the results, the 
robot was able to successfully perform all of the tasks 
requested by the user in each of the natural language 
instructions of the test runs. Notable results include the 
ability of the robot to resolve the multiple anaphoric 
references in the instruction “Put it on top of it” during the 
second test run. In this instance, the robot correctly resolved 
the first reference to the grounding of [the cup], mentioned in 
the first utterance of the discourse, after disqualifying the 
initial candidate (most recently grounded NP) of [the kitchen 

counter] as invalid semantically due to inconsistencies with 
the parameter requirements of the inferred command of 
[Object Movement]. Similarly, the instruction “Give him it” 
expressed by the user during the third test run was correctly 
resolved by the robot in accordance with the context of the 
spatial language discourse (“him” → [Juan], “it” → [the 
object close to Juan]). Fig. 7(b) displays the interaction 
between the robot and the user at the time of object transfer 
as performed by the robot during execution of this task.  

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.  (From left to right) Planned (green) and executed paths (red), cost map used for navigation planning with AMCL particles corresponding to 

robot position estimates, and photograph of PR2 robot just before task termination for test runs 1-2. (a),(b),(c) run 1; (d),(e),(f) run 2. 



  

The capability of the robot in successfully interpreting the 

spatial language discourse expressed during each of the test 

runs, while also taking into account the pragmatics of the 

interaction, demonstrates the potential of our approach for 

use in real world environments with target users. 

VI. CONCLUSION 

We have described the need for enabling autonomous 

service robots with spatial language understanding and 

discourse modeling to facilitate natural communication with 

non-expert users for task instruction and anaphoric reference 

resolution, and have presented a general approach we have 

developed toward addressing this research challenge. The 

results obtained from our evaluation testing demonstrate the 

potential of our methodology for representing dynamic 

spatial relations, grounding and interpreting the semantics of 

natural language instructions probabilistically, extracting 

instruction sequences from unconstrained natural language 

input, and resolving anaphoric expressions within the context 

of the current discourse with the user. 
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Figure 7.  Test run 3 results (a) Planned path (green) and actual 

path (red) with semantic/pragmatic fields calculated for hand-off 

behavior; (b) PR2 robot handing bottle (grounded object referent) to 

intended person (ground referent for “him”) during task execution. 


