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Abstract

In this paper, we main introduced some concepts and Ciric cyclic fixed point theorem in the complete dislocated quasi-b-
metric space. We also can improve some fixed point theorems by Ciric cyclic fixed point theorem such as Kannan cyclic
fixed point theorem. It is consist with [Klin-Eam. C, 2016]. Our results for such space consist with the metric space. And
our theorems generalization and extend some results in the literature.
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1. Introduction

It is well-known that fixed point theory is an important mathematical displine. It has been study extensively. The metric
space is very clearly and some contraction have only one fixed point in metric space, such as Ciric contraction [Ciric,
1974; Senapati. T, 2016]. And Ciric contraction includes Kannan contraction [Choudhury. B. S, 2014], Hardy-Roges
contraction [Kumari. P. S, 2016] and Zamfirescu contraction [Zamfirescu. T, 1972]. So the Ciric fixed point theorem can
deduces the Kannan fixed point theorem, Hardy-Roges fixed point theorem and Zamfirescu fixed point theorem. They all
the classical fixed point theorems in metric space. For the past years, some new type of metric spaces was introduced.
Such as quasi-metric space was introduced in [Alegre. C, 2015; Gaba. Y. U, 2016; Liu Z, 1997; Noorwali. M, 2016],
dislocated metric space was introduced in [Pasicki. L, 2015] and b-metric space was introduced in [Zhu. C, 2014]. In
[Klin-Eam. C, 2015] introduce a new metric space called dislocated quasi-b-metric space. It is more generalization than
others. In this paper, we main introduced Ciric cyclic fixed point theorem in complete dislocated quasi-b-metric space.
And deduces some fixed point theorems such as Kannan cyclic fixed point theorem, Hardy-Roges cyclic fixed point
theorem and Zamfirescu cyclic fixed point theorem. Our result generalization and consists the fixed point theorems with
metric space.

2. Preliminaries

Definition 1 Let X is non-empty set, w : X2 → [0,∞), such that there exist a constant α > 1, satisfied as follow:
(i)w(x, y) = w(y, x) = 0 implies that x = y, for all x, y ∈ X;
(ii)w(x, y) ≤ α[w(x, z) + w(z, y)], for all x, y, z ∈ X.
Then, we called (X,w) is a dislocated quasi-b-metric space.

Definition 2 Let (X,w) is a dislocated quasi-b-metric space, {xn} is a sequence in it.Then x is called the limit of {xn}, if

limn→∞ w(xn, x) = limn→∞w(x, xn) = 0.

Definition 3 Let (X,w) is a dislocated quasi-b-metric space, {xn} is a sequence in it, if

limm,n→∞ w(xn, xm) = limn,m→∞w(xm, xn) = 0.

Then {xn} is called a cauchy sequence.

Definition 4 Let (X,w) is a dislocated quasi-b-metric space, if all of the cauchy sequences are convergents in X, then
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(X,w) is called the complete.

Definition 5 ([Klin-Eam, 2016])Let (X,w) is a dislocated quasi-b-metric space, A and B are nonempty closed subsets in
it. A map T : A ∪ B→ A ∪ B is called cyclic map, if T (A) ⊆ B and T (B) ⊆ A.

Definition 6 Let (X,w) is a dislocated quasi-b-metric space, A and B are nonempty closed subsets in it. A map T is called
Ciric cyclic contraction, if T is a cyclic mapping on A ∪ B and exist h ∈ (0, 1), such that for α ≥ 1, αh < 1 and all x ∈ A ,
y ∈ B,

w(T x,Ty) 6 hmax{w(x, y),w(x,T x),w(y,Ty),w(x,Ty),w(y,T x)}.

Definition 7 Let (X,w) is a dislocated quasi-b-metric space, A and B are nonempty closed subsets in it. A map T is called
Kannan cyclic contraction, if T is a cyclic mapping on A ∪ B and exist h ∈ [0, 1

2 ), such that for α ≥ 1, αh < 1
2 and all x ∈

A, y ∈ B,

w(T x,Ty) 6 h[w(x,T x) + w(y,Ty)].

Definition 8 Let (X,w) is a dislocated quasi-b-metric space, A and B are nonempty closed subsets in it. T is called Hardy-
Roges cyclic contraction, if T is a cyclic mapping on A ∪ B and exist

∑5
i=1 ai < 1 such that for α ≥ 1,

∑5
i=1 αai < 1 and all

x ∈ A, y ∈ B,

w(T x,Ty) 6 a1w(x, y) + a2w(x,T x) + a3w(y,Ty) + a4w(x,Ty) + a5w(y,T x).

Definition 9 Let (X,w) is a dislocated quasi-b-metric space, A and B are nonempty closed subsets in it. T is called
Zamfirescu cyclic contraction, if T is a cyclic mapping on A ∪ B and exist h ∈ (0, 1) such that for α ≥ 1, αh < 1 and all x
∈ A, y ∈ B,

w(T x,Ty) 6 hmax{w(x, y), 1
2 [w(x,T x) + w(y, Ty)], 1

2 [w(x,Ty) + w(y,T x)]}.

Lemma 1 (X,w) is a dislocated quasi-b-metric space, T is Ciric cyclic contraction in it, for x ∈ X and all 1 ≤ i, j ≤ n, i, j
∈ Z+. Then

w(T ix,T jx) 6 hδ(OT (x; 0, n)).

Which OT (x; 0, n) = {x,T x,T 2x, ..., T nx} and δ(H) = sup{w(x, y), x, y ∈ H}.

Proof.

w(T (T i−1x),T (T j−1x)) ≤ hmax{w(T i−1x,T j−1x),w(T i−1x,T ix),w(T j−1x,T jx),w(T i−1x,T jx),w(T j−1x,T ix)}
≤ hδ(OT (x; 0, n)).

Then, there exists some 1 ≤ ki ≤ n, such that

M1 = max{w(x,T k1 x),w(T k2 x, x),w(x, x)} = δ(OT (x; 0, n)). (1)

�

Lemma 2 δ(OT (x; 0,∞)) ≤ M2
α

1−αh . Which

M2 = max{w(x,T x),w(T x, x),w(x, x)}.

Proof. From lemma 1 , we obtain that

δ(OT (x; 0, 1)) ≤ δ(OT (x; 0, 2)) ≤ ... ≤ δ(OT (x; 0, n)).

δ(OT (x; 0,∞)) = sup{δ(OT (x; 0, n)), n = 1, 2, ...}.
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When δ(OT (x; 0, n)) = w(x, x),

we obtain that
δ(OT (x; 0,∞)) ≤ M2

α

1 − αh
. (2)

When δ(OT (x; 0, n)) = w(x,T k1 x),

we obtain that

w(x,T k1 x) ≤ α[w(x, T x) + w(T x,T k1 x)]
≤ αw(x,T x) + αhδ(OT (x; 0, n))
= αw(x,T x) + αhw(x,T k1 x).

Then
w(x,T k1 x) ≤ α

1 − αh
w(x,T x). (3)

Similarly, when δ(OT (x; 0, n)) = w(T k2 x, x),

w(T k2 x, x) ≤ α

1 − αh
w(T x, x). (4)

So by (2), (3), (4),

δ(OT (x; 0,∞)) ≤ M2
α

1−αh .

�

3. Main Results

Theorem 1 (X,w) is a complete dislocated quasi-b-metric space, if T is a Ciric cyclic contraction in it. Then, in A ∩ B,
T has only one fixed point.

Proof. Let x0 ∈ A( f ixed), suppose m ≥ n.

First, we will proof {T nx0} are Cauchy sequence.

w(T mx0,T nx0) = w(T m−n+1(T n−1x0),T (T n−1x0)) ≤ hδ(OT (T n−1x0); 0,m − n + 1)).

So from (1), for some ki, k j, 1 ≤ i, j ≤ m − n + 1,

we have

δ(OT (T n−1x0; 0,m − n + 1)) =

max{w(T n−1x0,T ki (T n−1x0)),w(T k j (T n−1x0),T n−1x0),w(T n−1x0,T n−1x0)}.

When δ(OT (T n−1x0; 0,m − n + 1)) = w(T n−1x0,T ki (T n−1x0)),

as to

w(T n−1x0,T ki (T n−1x0)) = w(T (T n−2x0),T ki+1(T n−2x0))
≤ hδ(OT (T n−2x0; 0, ki + 1))
...

≤ hnδ(OT (x0; 0,m)). (5)

Similarly, when δ(OT (T n−1x0; 0,m − n + 1)) = w(T k j (T n−1x0),T n−1x0),

w(T k j (T n−1x0),T n−1x0) ≤ hnδ(OT (x0; 0,m)). (6)
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When δ(OT (T n−1x0; 0,m − n + 1)) = w(T n−1x0,T n−1x0),

w(T mx0,T nx0) ≤ hw(T n−1x0,T n−1x0)
= hw(T (T n−2x0),T (T n−2x0))
≤ h2δ(OT (T n−2x0; 0, 1))
...

≤ hnδ(OT (x0; 0, n))

≤ hnδ(OT (x0; 0,m)) (7)

Thus, by (5), (6), (7), we have

w(T mx0,T nx0) ≤ hnδ(OT (x0; 0,m)).

Similarly,

w(T nx0,T mx0) ≤ hnδ(OT (x0; 0,m)).

Take n→ ∞, we get w(T mx0,T nx0)→ 0 and w(T nx0,T mx0)→ 0.

Since (X,w) is complete, we obtain that {T nx0} is Cauchy sequence.

Second, we note {T nx0} converges to some z ∈ X. And {T 2nx0} is a sequence in A, {T 2n−1x0} is a sequence in B. It is all
tends to the same limit z.

Consider

w(T nx0,Tz) ≤ hmax{w(T n−1x0, z),w(T n−1x0,T nx0),w(z, Tz),w(T n−1x0,Tz),w(z,T nx0)}.

Take limit as n→ ∞. we have

w(z,Tz) ≤ hw(z,Tz).

as to 0 ≤ h < 1, we have w(z,Tz) = 0.

Similarly,

w(Tz,T nx0) ≤ hmax{w(z, T n−1x0),w(z,Tz),w(T n−1x0,T nx0),w(z,T nx0),w(T n−1x0, Tz)}.
Take limit as n→ ∞. we have

w(Tz, z) ≤ hw(z,Tz).

As to w(z,Tz) = 0, we have w(Tz, z) = 0.

Third, we prove z is the only one fixed point. Suppose there have another fixed point z∗ ∈ X on T , such that Tz∗ = z∗.

w(z, z∗) = w(Tz, Tz∗) ≤ hmax{w(z, z∗),w(z∗, z)}

and

w(z∗, z) = w(Tz∗,Tz) ≤ hmax{w(z, z∗),w(z∗, z)}.

Then

w(z, z∗) ≤ h[w(z, z∗) + w(z∗, z)];

w(z∗, z) ≤ h[w(z, z∗) + w(z∗, z)].

We have
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w(z, z∗) ≤ h
1−h w(z∗, z);

w(z∗, z) ≤ h
1−h w(z, z∗).

We obtain that w(z, z∗) = w(z∗, z) = 0.

Hence, z is the only one fixed point of T . The proof are completes.

�

Corollary 1 (X,w) is a complete dislocated quasi-b-metric space, if T is Kannan cyclic contraction in it. Then, T has
only one fixed point in A

∩
B.

Corollary 2 (X,w) is a complete dislocated quasi-b-metric space, if T is Hardy-Roges cyclic contraction in it. Then, T
has only one fixed point in A

∩
B.

Corollary 3 (X,w) is a complete dislocated quasi-b-metric space, if T is Zamfirescu cyclic contraction in it. Then, T has
only one fixed point in A

∩
B.

4. Discussion

Example 1 Let X = [−1, 1], T : X −→ X defined by T x = − x
5 and x ∈ A, y ∈ B, if A = [−1, 0], B = [0, 1], then T x ∈ B

and Ty ∈ A, defined w : X2 → [0,∞) that

w(x, y) = |x − y|2 + 4|x| + 3|y|.

Proof. It is clearly that (X,w) is a complete dislocated quasi-b-metric space and T is a cyclic map on X.

Thus,

w(T x,Ty) = |T x − Ty|2 + 4|T x| + 3|Ty|

=
1

25
|x − y|2 + 4

5
|x| + 3

5
|y|

≤ 1
25

(|x| + |y|)2 +
4
5
|x| + 3

5
|y|

≤ 2
25
|x|2 + 2

25
|y|2 + 4

5
|x| + 3

5
|y|

≤ 2
25

[
36
25
|y|2 + 4|y| + 3

5
|y|] + 2

25
[
36
25
|x|2 + 4|x| + 3

5
|x|]

≤ 2
25

[w(y,Ty) + w(x,T x)]

≤ 2
25

[w(x, y) + w(x, T x) + w(y,Ty) + w(x, Ty) + w(y,T x)]

As to 2
25 × 5 < 1,

then

w(T x,Ty) = |T x − Ty|2 + 4|T x| + 3|Ty|

≤ 2
25

[w(x, y) + w(x, T x) + w(y,Ty) + w(x, Ty) + w(y,T x)]

≤ 11
25

max{w(x, y),w(x,T x),w(y,Ty),w(x,Ty),w(y,T x)}

0 ≤ h = 11
25 < 1. It is satisfied theorem 1. Thus, 0 is the only one fixed point of T . �
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