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Abstract

In this paper we introduce the Cayley digraph structure. This can be considered as a generalization of Cayley digraph.
We prove that all Cayley digraph structures are vertex transitive. Many graph theoretic properties are studied in terms of
algebraic properties.
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1. Digraph Structure

A binary relation on a set V is a subset E of V × V . A digraph is a pair (V, E) where V is a nonempty set (called vertex
set) and E is a binary relation on V .

We extend the above definition as follows:

Definition 1.1 Let V be a nonempty set and let E1, E2, . . . , En be mutually disjoint binary relations on G. Then the (n+1)-
tuple G = (V; E1, E2, . . . , En) is called a digraph structure. The elements of V are called vertices and the elements of
∪Ei are called edges. In case, a digraph structure with only one binary relation is a digraph. So a digraph structure is a
generalization of a digraph.

A digraph structure (V; E1, E2, . . . , En) is called (i) trivial if Ei = ∅ for all i, (ii) reflexive if for all x ∈ G, (x, x) ∈ Ei

for some i, (iii) symmetric if Ei = E−1
i for all i, (iv) transitive if for every i and j, Ei ◦ E j ⊆ Ek for some k, (v) a hasse

diagram if for every positive integer n ≥ 2 and every v0, v1, . . . , vn of V , (vi, vi+1) ∈ ∪Ei for all i = 0, 1, 2, . . . , n − 1,
implies (v0, vn) < Ei for all i, and (vi) complete if ∪Ei = V × V . A walk of length k in a digraph structure is an alternating
sequence W = v0, e0, v1, . . . , ek−1, vk, where ei = (vi, vi+1) ∈ ∪Ei. A walk W is called a path if all the vertices are
distinct. We use notation (v0, v1, v2, . . . , vn) for the walk W. A walk is a called a circuit if its first and last vertices are
the same, but no other vertex is repeated. A weak path is a sequence (v0, v1, v2, . . . , vn) of distinct vertices of G such that
(vi, vi+1) ∈ (∪Ei) ∪ (∪Ei)−1. A digraph structure (V; E1, E2, . . . , En) is called (i) connected (strongly connected ) if v is
connected to u for all u, v ∈ V , (ii) locally connected iff for every pair of vertices u, v ∈ V there is a path from v to u
whenever there is a path from u to v, (iii) semi connected for every pair of vertices u, v, there is a path from u to v or a
path from v to u, and (iv) weakly connected if any two vertices can be joined by a weak path, that is, the digraph structure
(V; E1 ∪ E−1

1 , E2 ∪ E−1
2 , . . . , En ∪ E−1

n ) is connected. A weakly connected digraph structure (V; E1, E2, . . . , En) with out
any circuits is called a tree.

The distance between two vertices x and y in a digraph structure G is the length of the shortest path between x and y,
denoted d(x, y). Let G = (V; E1, E2, . . . , En) be finite connected digraph structure. Then the diameter of G is defined as
d(G) = maxu,v∈Gd(x, y).

Two digraph structures (V1; E1, E2, . . . , En) and (V2; R1,R2, . . . ,Rn) are said to be isomorphic if there exits a bijective
function f : V → V such that (x, y) ∈ ∪Ei ⇔ ( f (x), f (y)) ∈ ∪Ri. An isomorphism of a graph structure onto itself is called
an automorphism. A graph structure (V; E1, E2, . . . , En) is said to be vertex-transitive if, given any two vertices a and b of
V , there is some graph automorphism f : V → V such that f (a) = b. Let (V; E1, E2, . . . , En) be a graph structure and let
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v ∈ V . Then the out-degree of u is |{v ∈ V : (u, v) ∈ ∪Ei}| and in-degree of u is |{v ∈ V : (v, u) ∈ ∪Ei}|.
2. Cayley Digraph Structure

Let G be a group and S be a subset of G. The cayley digraph of G with respect to S is defined as the digraph X = (G, E),
where E is a binary relation on G, such that

(x, y) ∈ E if and only if there is some s ∈ S , such that y = xs (E. Dobson, 2006)

Informally, the vertices of the cayley digraphs are group elements, and two vertices are connected with an edge if and
only if the second vertex is the product of an element from S and the first vertex. The cayley digraph of G with respect to
S is denoted by Cay(G, S ). The set S is called the connection set of Cay(G, S ).

We define cayley graph structure as follows:

Definition 2.1 Let G be a group and S 1, S 2, . . . , S n be mutually disjoint subsets of G. Then cayley digraph structure of G
with respect to S 1, S 2, . . . , S n is defined as the digraph structure X = (G; E1, E2, . . . , En), where

Ei = {(x, y) : x−1y ∈ S i}

The sets S 1, S 2, . . . , S n are called connection sets of X. The cayley digraph structure of G with respect to S 1, S 2, . . . , S n is
denoted by Cay(G; S 1, S 2, . . . , S n). In case, a digraph structure with only one connection set is the usual cayley digraph.
So a cayley digraph structure is a generalization of the cayley digraph.

Examples of Cayley Digraph Structures

Example 2.1 Let G = Z, the additive group of integers and let S 1 = {1}, S 2 = {2}, S 3 = {3}, S 4 = {4}. Then the cayley
digraph structure Cay(G; S 1, S 2, S 3, S 4) is shown in figure 1.

Example 2.2 Let G = Z ⊕Z, the direct sum of the group of integers and let S 1 = {(1, 0)}, S 2 = {(0, 1)}, S 3 = {(1, 1)}. Then
the cayley digraph structure Cay(G; S 1, S 2, S 3) is shown in figure 2.

In this paper we may use the following notations. Let Cay(G; S 1, S 2, . . . , S n) be a cayley digraph structure.

(1) Let Ak be the set of all k products of the form S iS j · · · S k. Then [S ] is defined as

[S ] =
∪

k

Ak.

(2) Let A = {S i ∪ S −1
i : i = 1, 2, . . . , n} and let Bk be the set of all finite products of elements from A taken k at a time.

Then we define
[[S ]] =

∪
k

Bk

Theorem 2.1 If G is a group and let S 1, S 2, . . . , S n are mutually disjoint subsets of G, then the cayley digraph structure
Cay(G; S 1, S 2, . . . , S n) is vertex-transitive.

Proof: Let a and b be any two arbitrary elements in G. Define a mapping φ : G → G by

φ(x) = ba−1x for all x ∈ G.

This mapping defines a permutation of the vertices of Cay(G; S 1, S 2, . . . , S n). It is also a graph automorphism. To see
this, note that

(x, y) ∈ ∪Ei ⇔ (x, y) ∈ Ei for some i

⇔ x−1y ∈ S i for some i

⇔ (ba−1x)−1(ba−1y) ∈ S i for some i

⇔ (φ(x), φ(y)) ∈ ∪Ei.

Also we note that φ(a) = ba−1a = b. Hence Cay(G; S 1, S 2, . . . , S n) is vertex-transitive.

Corollary 2.1 Cay(G; S 1, S 2, . . . , S n) is a trivial graph if and only if S i = ∅ for all i.

Proof: By definition, Cay(G; S 1, S 2, . . . , S n) is trivial⇔ Ei = ∅ for all i. This implies that S i = ∅ for all i.

Corollary 2.2 Cay(G; S 1, S 2, . . . , S n) is reflexive (each vertex has a loop) if and only if 1 ∈ ∪S i.
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Proof: Assume that Cay(G; S 1, S 2, . . . , S n) is reflexive. Then for every x ∈ G, (x, x) ∈ Ei for some i. This implies that
x−1x ∈ S i for some i. That is, 1 ∈ S i for some i.

Conversely, assume that 1 ∈ S i for some i. This implies for each x ∈ G, (x, x) ∈ Ei for some i. That is, (x, x) ∈ ∪Ei for all
x ∈ G.

Corollary 2.3 Cay(G; S 1, S 2, . . . , S n) is symmetric if and only if S i = S −1
i for all i.

Proof:First, assume that Cay(G; S 1, S 2, . . . , S n) is symmetric. Let a ∈ S i. Then (1, a) ∈ Ei. Since Cay(G; S 1, S 2, . . . , S n)
is symmetric (a, 1) ∈ Ei. This implies that a−1 ∈ S i. That is a ∈ S −1

i . Hence S i ⊆ S −1
i . Similarly, we can prove that

S −1
i ⊆ S i.

Conversely, if S i = S −1
i for all i, then we can prove that Cay(G; S 1, S 2, . . . , S n) is symmetric.

Corollary 2.4 Cay(G; S 1, S 2, . . . , S n) is a transitive if and only if for every i, j, S iS j ⊆ S k for some k.

Proof: First, assume that Cay(G; S 1, S 2, . . . , S n) is transitive. Let x ∈ S iS j for some i and j. Then x = z1z2 for some
z1 ∈ S i and z2 ∈ S j. This implies that (1, z1) ∈ Ei and (z1, z1z2) ∈ E j. Since Cay(G, S 1, S 2, . . . , S n) is transitive
(1, z1z2) ∈ Ek for some k. That is z1z2 ∈ S k. Hence S iS j ⊆ S k for some k.

Conversely assume that for each i, j, S iS j ⊆ S k for some k. Let (1, x), (x, y) ∈ ∪Ei. Then x ∈ S i for some i and x−1y ∈ S j

for some j. This implies that y ∈ S iS j. Since S iS j ⊆ S k for some k, (1, y) ∈ S k.

Corollary 2.5 Cay(G; S 1, S 2, . . . , S n) is complete if and only if G = ∪S i.

Proof:Suppose Cay(G; S 1, S 2, . . . , S n) is complete. Then for every x ∈ G, we have (1, x) ∈ ∪Ei. This implies that x ∈ S i

for some i. This implies that G = ∪S i.

Conversely, assume that G = ∪S i. Let x and y be two arbitrary elements in G such that y = xz. Then z ∈ G. This implies
that z ∈ S i for some i. That is, (1, z) ∈ ∪Ei. That is (x, xz) = (x, y) ∈ ∪Ei. This shows that Cay(G; S 1, S 2, . . . , S n) is
complete.

Corollary 2.6 Cay(G; S 1, S 2, . . . , S n) is a union of complete graphs if and only if each S i is a sub group of G.

Corollary 2.7 Cay(G; S 1, S 2, . . . , S n) is connected if and only if G = [S ].

Proof: Suppose Cay(G; S 1, S 2, . . . , S n) is connected and let x ∈ G. Let

(1, y1, y2, . . . , yn, x)

be a path leading from 1 to x. Then we have,

y1 ∈ S i, y−1
1 y2 ∈ S j, · · · , y−1

n x ∈ S k

This implies that x ∈ A for some A ∈ [S ]. Since x is arbitrary, G = [S ].

Conversely, assume that G = [S ]. Let x ∈ G. Then x ∈ S iS j · · · S k for some i, j, . . . and k. This implies that x = sis j . . . sk

for some i, j . . . and k. Then clearly, (1, si, sis j, . . . , sis j . . . sk) is a path from 1 to x. Hence Cay(G; S 1, S 2, . . . , S n) is
connected.

Corollary 2.8 Cay(G; S 1, S 2, . . . , S n) is weakly connected if and only if G = [[S ]]

Suppose Cay(G; S 1, S 2, . . . , S n) is weakly connected. Let x ∈ G. Then there exists a weak path say:

(1, x1, x2, . . . , xn, x)

from 1 to x. This implies that

x1 ∈ S i ∪ S −1
i for some i

x−1
1 x2 ∈ S j ∪ S −1

j for some j

...

x−1
n x ∈ S k ∪ S −1

k for some k

This implies that x ∈ [[S ]]. Since x is arbitrary, G = [[S ]].
Conversely, assume that G = [[S ]]. Let x and y be any two elements in G. Then the equation y = xz has a unique solution
z ∈ G. This implies that z ∈ (S i ∪ S −1

i )(S j ∪ S −1
j ) · · · (S k ∪ S −1

k ) for some i, j, . . . , k. That is

z = x1x2x3 . . . xk
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where xi ∈ (S i ∪ S −1
i ). This implies that

(1, x1, x1x2, x1x2x3, . . . , x1x2x3 . . . xk)

is a weak path from 1 to z. That is
(x, xx1, xx1x2, xx1x2x3, . . . , xx1x2x3 . . . xk)

is a weak path from x to y. Hence G is weakly connected.

Corollary 2.9 Cay(G; S 1, S 2, . . . , S n) is a quasi ordered set if and only if

(i)1 ∈ S 1 ∪ S 2 · · · ∪ S n,

(ii)for every(i, j), S iS j ⊆ S k for some k.

Corollary 2.10 Cay(G; S 1, S 2, . . . , S n) if a partially ordered set if and only if

(i)1 ∈ S 1 ∪ S 2 · · · ∪ S n,

(ii)for every(i, j), S iS j ⊆ S k for some k,

(iii) ∪ (S i ∩ S −1
i ) = {1}

Corollary 2.11 Let An is the set of n products of the form S i1 S i2 · · · S in . Then Cay(G; S 1, S 2, . . . , S n) is a hasse- diagram
if and only if C ∩ S i = ∅ for all i and for all C ∈ An.

Proof: Suppose the condition holds. Let x0, x1, . . . , xn be (n+1) elements in G such that (xi, xi+1) ∈ ∪Ei for i = 0, 1, . . . , n−
1. This implies that

x−1
0 x1 ∈ S i1 for some i1

x−1
1 x2 ∈ S i2 for some i2

...

x−1
n−1xn ∈ S in for some in

This implies that x0x−1
n ∈ S i1 S i2 S i3 · · · S in ∈ An. Since C ∩ S i = ∅ for all i and for all C ∈ An, (x0, xn) < ∪Ei.

Conversely assume that Cay(G; S 1, S 2, . . . , S n) is a hasse diagram. We will show that C ∩ S i = ∅ for all i and for all
C ∈ An. Let S i1 S i2 S i3 · · · S in be any element in An. Let x ∈ S i1 S i2 S i3 · · · S in . Then x = si1 si2 si3 . . . sin for some sik ∈ S ik .
This implies that

(1, si1 , si2 si3 , . . . , x)

is a path from 1 to x. Since Cay(G; S 1, S 2, . . . , S n) is a hasse- diagram x < S i for any i. That is, An ∩ S i = ∅ for all i.

Corollary 2.12 The out-degree of Cay(G; S 1, S 2, . . . , S n) is the cardinal number |S 1 ∪ S 2 ∪ · · · ∪ S n|.
Proof: Since Cay(G; S 1, S 2, . . . , S n) is vertex-transitive it suffices to consider the out degree of the vertex 1 ∈ G. Observe
that

ρ(1) = {u : (1, u) ∈ E}
= {u : u ∈ S i for some i}
= S 1 ∪ S 2 ∪ · · · ∪ S n

Hence
|ρ(1)| = |S 1 ∪ S 2 ∪ · · · ∪ S n|.

Corollary 2.13 The in-degree of Cay(G; S 1, S 2, . . . , S n) is the cardinal number |S −1
1 ∪ S −1

2 ∪ · · · ∪ S −1
n |.

Proof: Since Cay(G; S 1, S 2, . . . , S n) is vertex-transitive it suffices to consider the in degree of the vertex 1 ∈ G. Observe
that

σ(1) = {u : (u, 1) ∈ E}
= {u : u−1 ∈ S i for some i}
= S −1

1 ∪ S −1
2 ∪ · · · ∪ S −1

n
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Hence
|σ(1)| = |S −1

1 ∪ S −1
2 ∪ · · · ∪ S −1

n |.
Corollary 2.14 Cay(G; S 1, S 2, . . . , S n) is self dual if G is commutative.

Proof: Note that the mapping φ : G → G defined by φ(x) = x−1 is a bijective map. Moreover

(x, y) ∈ ∪Ei ⇔ (x, y) ∈ Ei for some i

⇔ x−1y ∈ Ei ⇔ yx−1 ∈ Ei

⇔ (y−1)−1x−1 ∈ Ei

⇔ (y−1, x−1) ∈ E

⇔ (φ(x), φ(y)) ∈ E−1
i ⊆ E−1.

This implies that Cay(G; S 1, S 2, . . . , S n) is isomorphic to its dual.

Corollary 2.15 If G \ (S 1 ∪ S 2 ∪ · · · ∪ S n) is a subgroup of G then Cay(G; S 1, S 2, . . . , S n) is a bipartite graph structure.

Corollary 2.16 For k = 1, 2, 3, . . . let Ak be the set of all k products of the form S i1 S i2 S i3 · · · S ik . If Cay(G; S 1, S 2, . . . , S n)
has finite diameter, then the diameter of Cay(G; S 1, S 2, . . . , S n) is the least positive integer n such that

G =
∪
A∈An

A.

Proof: Let n be the smallest positive integer such that G =
∪

A∈An
A. We will show that the diameter of Cay(G; S 1, S 2, . . . , S n)

is n. Let x and y be any two arbitrary elements in G such that y = xz. Then z ∈ G. This implies that z ∈ A for some A in
An. But then z has a representation of the form z = si1 si2 · · · sin . This implies that

(1, si1 , si1 si2 , . . . , z)

is path of n edges from 1 to z. That is
(x, xsi1 , xsi1 si2 , . . . , y)

is a path of length n from x to y. This shows that d(x, y) ≤ n. Since x and y are arbitrary,

maxx,y∈Gd(x, y) ≤ n

Therefore the diameter of Cay(G; S 1, S 2, . . . , S n) is less than or equal to n. On the other hand let the diameter of
Cay(G; S 1, S 2, . . . , S n) be k. Let x ∈ G and d(1, x) = k. Then we have x ∈ B for some B ∈ Ak. That is

G =
∪
A∈Ak

A.

Now by the minimality of k, we have n ≤ k. Hence k = n.

Corollary 2.17 Cay(G; S 1, S 2, . . . , S n) is a tree if and only if

(i) G = [[S ]]
(ii) 1 < A for all A ∈ Ak, k = 1, 2, 3, · · ·
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Figure 1. Cay(G = Z; S 1 = {1}, S 2 = {2}, S 3 = {3}, S 4 = {4})

Figure 2. Cay(G = Z ⊕ Z; S 1 = {(1, 0)}, S 2 = {(0, 1)}, S 3 = {(1, 1)})
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