
A TWO-LEVEL DOMAIN DECOMPOSITION METHOD FOR IMAGE
RESTORATION

JING XU1, XUE-CHENG TAI2 AND LI-LIAN WANG3

Abstract. Image restoration has drawn much attention in recent years and a surge of research
has been done on variational models and their numerical studies. However, there remains an urgent
need to develop fast and robust methods for solving the minimization problems and the underlying
nonlinear PDEs to process images of moderate to large size. This paper aims to propose a two-level
domain decomposition method, which consists of an overlapping domain decomposition technique
and a coarse mesh correction, for directly solving the total variational minimization problems.
The iterative algorithm leads to a system of small size and better conditioning in each subspace,
and is accelerated with a piecewise linear coarse mesh correction. Various numerical experiments
and comparisons demonstrate that the proposed method is fast and robust particularly for images
of large size.

1. Introduction

Image restoration is one of the fundamental and challenging tasks in image processing [15, 2],
and phenomenal advances have been achieved in variational and PDE-based approaches since the
seminal work [41]. The ROF model minimizes the total variation (TV) over the space of bounded
variation (BV), so it is capable of preserving sharp edges and boundaries with a high quality recovery.
More precisely, given a bounded image domain Ω ⊆ R

d (d = 1, 2, 3), we are interested in the general
minimization problem:

min
u∈BV (Ω)

{∫
Ω

|∇u| +
∫

Ω

f(u)dΩ
}
, (1.1)

where the gradient is in the distributional sense [21], and f(·) is a differentiable functional. The
associated Euler-Lagrange equation takes the form

− div
( ∇u

|∇u|
)

+ f ′(u) = 0, (1.2)

which is also known as the curvature equation [38]. As the TV model (1.1)-(1.2) continues to
enjoy applications in diverse areas such as image denoising, debluring and segmentation [41, 11,
35, 52, 5, 62], interface evolution [38, 39], and inverse problems [16], there still exists a great
demand for developing fast and robust methods for such minimization problems and nonlinear
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PDEs, although considerable progress has been made in several directions. Typically, existing
methods in the literatures can be classified into the following types:

(i) The gradient descent method (cf. [41, 36]): Instead of solving the nonlinear PDE, it involves
(1.2) with an artificial time and minimizes the energy along the gradient descent direct
via the evolution of a parabolic equation. This approach is very reliable, but converges
considerably slowly.

(ii) The lagged diffusivity fixed-point iteration (see, e.g., [1, 53, 54, 55, 56]): It solves the lin-
earized version of the nonlinear steady-state PDE (1.2) iteratively by treating the nonlinear
term 1/|∇u| explicitly. Various iterative solvers have been considered, but further studies
are still needed, in particular, techniques to speed up the outer solvers for large size images.

(iii) The dual approach (cf. [5, 14, 13]): It introduces a dual variable (the original unknown
function u in (1.1) is referred to as the primal variable). These methods overcome the non-
differentiability of the cost functional in (1.1). They often lead to more efficient algorithms,
and have received increasing interests recently.

(iv) Graph-cuts method: It is a well-known technique in image analysis and computer vision
[32, 40, 3]. Darbon and Sigelle’s work [19] and Chambolle’s Markov Random Field based
method [10], have introduced the Graph-cuts methods to total variation minimization. Gold-
fard and Yin [26] have also developed a parametric maximum-flow based method to the
original parametric maximum-flow/minimum-cut algorithm in [24] to improve its efficiency.
They have also proposed a mixed algorithm for solving the ROF and TV/L1 models more
efficiently by combining the Gallo-Grigoriadis-Tarjan algorithm with the divide-and-conquer
approach proposed in [19].

(v) Additive operator splitting (AOS) scheme: Historically, this type of schemes was first devel-
oped for (nonlinear elliptic/parabolic) monotone equation and Navier-Stokes equations in
[33, 34]. In image processing applications, the AOS scheme was found to be an efficient way
for approximating the Perona-Malik filter [61, 60], especially if symmetry in scale-space is
required. The AOS scheme is first order in time, semi-implicit, and unconditionally stable
with respect to its time-step [34, 61]. These methods have been applied to a wide range of
image processing applications and often lead to very efficient numerical algorithms.

(vi) Bregman iteration: Iterative optimization methods based on penalization or Bregman dis-
tance [59, 57, 27] have been proposed very recently. In [59, 57], the authors used variable-
splitting to separate the L1 and L2 terms and then solved an equality constrained opti-
mization problem by penalization and alternative minimization. Bregman iteration was
introduced by Osher et. al. in [37] and was then extended to wavelet-based denoising [58],
nonlinear inverse scale space in [8, 9], and compressed sensing[29, 64]. The basic idea is
to transform the equality constrained optimization problem to be a series of unconstrained
problems using Bregman distance. By combining the variable-splitting and Bregman itera-
tion, Goldstein et. al. obtained split Bregman method in [27] which is particularly efficient
for L1 regularized problems, e.g., TV restoration.

(vii) Augmented Lagrangian method [25]: It was proposed in [49] for total variation image
restoration. It has many advantages over other methods such as penalty method [4]. As only
linear problems need to be solved during the iterations, FFT can be applied to get extremely
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efficient implementations. In addition, the augmented Lagrangian approach provides close
connections to dual methods and split Bregman iteration [64, 49].

(viii) Multigrid method [50, 51, 63]: It is one of the most powerful numerical methods for solving
some linear and nonlinear partial differential equations. In [17, 30], the linear algebraic
multigrid method [44] was adopted for solving the above PDE in each (outer) step of a
fixed iteration, while [42] attempted to use the standard multigrid methods with a non-
standard and somewhat global smoother. Recently, nonlinear multigrid methods based
on the subspace correction approach of [50] have been introduced to image processing in
[18, 12]. Numerical experiments indicate their overwhelming numerical potentials.

The purpose of this paper is to propose a fast solver based on overlapping domain decomposition
and a coarse mesh correction for solving the TV model (1.1)-(1.2). It is known that domain de-
composition (DD) methods are powerful iterative methods for solving partial differential equations
[7, 20, 28, 43, 63]. Some recent progress has shown that DD methods are also efficient for some
nonlinear elliptic problems and some convex minimization problems [47, 46, 48, 50] with mesh inde-
pendent convergence. So far, it still unknown that one can use domain decomposition methods for
the ROF model. Some recent efforts have been devoted to study this problems [45, 31, 23, 22]. In
this work, we propose an algorithm and show the details of the implementation. We use numerical
experiments to show its capability in processing images of large size with saving in CPU time and
memory. The proposed method also has good potentials for large scale parallel computation.

The essence of the method is to regard domain decomposition method as a space decomposition
technique. The original minimization problem related to ROF is reduced to some sub-minimization
problems with smaller size over the sub-domains. If the sub-minimization problems are solved
exactly, the convergence of the generated sequence is trivial to prove. Due to the degeneracy of the
nonlinear equation of ROF, it is not convincing that we will be able to prove the convergence rate
for the numerical solutions.

The rest of the paper is organized as follows. In section 2, we present the domain decomposition
algorithm under a general framework of the subspace correction method. We describe the detailed
implementation of the two-level method using the TV-denoising model as an illustrative example
in section 3. Various numerical experiments are given to demonstrate the merits of the proposed
methods in section 4, and the final section is for conclusion and discussion.

2. Domain decomposition based subspace correction method

We put the method in a more general setting and start with the description of the subspace
correction algorithm of [50].

Given a reflexive Banach space V and a convex, Gateaux differentiable functional F : V → R,
we consider the minimization problem:

min
u∈V

F (u). (2.1)

Under the notion of space correction, we first decompose the space V into a sum of smaller subspaces:

V = V1 + V2 + · · · + Vm, (2.2)

which means that for any v ∈ V , there exists vj ∈ Vj such that v =
∑m

i=1 vj .
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Following the framework of [63] for linear problems, we solve a finite sequence of sub-minimization
problems over the subspaces:

min
e∈Vj

F (un + e), (2.3)

where un denotes a previous approximation, to resolve (2.1). Two types of subspace correction
methods based on (2.2)-(2.3), known as the parallel subspace correction (PSC) and successive sub-
space correction (SSC) method, were proposed in [63, 50]. Here, we adopt the latter, which can be
described as follows:

Algorithm SSC. Choose an initial value u0 ∈ V .

For n = 0,

while j = 1, · · · , m do

Find en
j ∈ Vj such that

F
(
un+(j−1)/m + en

j

) ≤ F
(
un+(j−1)/m + vj

)
, ∀vj ∈ Vj .

Set
un+j/m = un+(j−1)/m + en

j .

end
Go to next iteration for n.

As an illustrative example, we apply the algorithm to the (regularized) ROF denoising model
with the cost functional:

F (u) = α

∫
Ω

√
u2

x + u2
y + β dxdy +

1
2

∫
Ω

|u − z|2 dxdy, α, β > 0, (2.4)

where z is a given noisy image defined on Ω = (0, 1) × (0, 1). Here, the TV-term is regularized so
that F is differentiable and it also avoids the division by zero in the corresponding Euler-Lagrange
equation:

u − αdiv

(
∇u√

|∇u|2 + β

)
= z, (2.5)

with a homogenous Neumann boundary condition ∂u/∂n = 0 along the boundary. Recall that the
lagged diffusivity fixed-point iteration (cf. [55]) for (2.5) is to solve the linearized equation

uk+1 − αdiv

(
∇uk+1√
|∇uk|2 + β

)
= z, k = 0, 1, · · · , (2.6)

with the initial value u0. We see that each iteration involves all the pixel values in the image domain,
so it will be costly and usually the system is not in good conditioning when the size of images is
large. The domain decomposition based SSC algorithm will overcome the difficulties by breaking
down the whole problem into sub-problems of much smaller size.

In the first place, we use an overlapping domain decomposition to decompose the solution space
V = BV (Ω). More precisely, we partition Ω into m overlapping subdomains

Ω =
m⋃

j=1

Ωj , Ωj ∩ Ωk �= ∅, k �= j. (2.7)

For clarity, the subdomain Ωj is colored with a color j, and Ωj consists of mj subdomains (assumed
to be “blocks” for simplicity), which are not intersected. Hence, the total number of blocks that
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cover Ω is

M :=
m∑

j=1

mj . (2.8)

Figure 2.1 illustrates schematically the decomposition of Ω into four colored subdomains with 25
blocks.

Based on the above domain decomposition, we decompose the space V = BV (Ω) as

V =
m∑

j=1

Vj , Vj = BV0(Ωj), (2.9)

where BV0(Ωj) denotes the subspace of BV (Ωj) with zero traces on the “interior” boundaries
∂Ωj\∂Ω. Applying the SSC algorithm to the TV-denoising model leads to an iterative method.

Given an initial value u0 ∈ V, Algorithm SSC needs us to solve un from⎧⎨
⎩

F
(
un+ j−1

m + en
j

)
≤ F

(
un+ j−1

m + vj

)
, ∀vj ∈ Vj = BV0(Ωj),

un+ j
m = un+ j−1

m + en
j , 1 ≤ j ≤ m.

(2.10)

Here, we notice that en
j is the solution of the subproblem over Ωj . It is also easy to see that un+ j

m

satisfies the associated Euler-Lagrange equations for 1 ≤ j ≤ m,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−αdiv
(

∇un+ j
m√

|∇un+ j−1
m |2+β

)
+ un+ j

m = z, in Ωj ,

∂un+ j
m

∂n = 0, on ∂Ωj ∩ ∂Ω,

un+ j
m = un+ j−1

m , on ∂Ωj\∂Ω.

(2.11)

Outside Ωj , we have un+ j
m = un+ j−1

m . Thus, there is no need to solve un+ j−1
m outside Ωj . As the

subdomain Ωj may contain many disjoint “block”, the values of un+ j−1
m can be obtained in parallel

in these “blocks” by solving (2.11).
More details on the disretization of (2.11) will be described in the forthcoming section.

3. The two-level domain decomposition method

In this section, we build another ingredient, i.e., a coarse mesh correction, into the previous
domain decomposition method. For clarity of presentation, we introduce the coarse mesh solver in
the finite element setting. Similar explanations are also valid for the finite difference approximations.

We first partition the domain Ω into a coarse mesh {TH} with a mesh size H, and then refine it
into a fine mesh partition {Th} with a mesh size h < H . Assume that both the coarse mesh and
the fine mesh are shape-regular, and let {Di}m

i=1 be a non-overlapping domain decomposition for Ω
and each Di is the union of some coarse mesh elements (see Figure 2.1).

Let V := V (Ω) be the space to be specified later. Let SH ⊂ V (Ω) and Sh ⊂ V (Ω) be the
continuous, piecewise linear finite element spaces, over the H-level and h-level subdivisions of Ω
respectively. More specifically,

SH =
{
v ∈ C1(Ω) : v|Di ∈ P1(Di), ∀i

}
,

Sh =
{
v ∈ C1(Ω) : v|T ∈ P1(T ), ∀T ∈ Th

}
.

(3.1)

For each Di, we consider an enlarged sub-domain Ωi = Dδ
i consisting of elements T ∈ Th with

dist(T , Di) ≤ δ. The union of Ωi covers Ω with overlaps of size δ. Let us denote the piecewise linear
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Figure 2.1. Schematic illustration of the coloring of the subdomains, and fine/coarse meshes

on Ω = (0, 1)2. This corresponds to the decomposition: V h = V H
0 +

∑4
i=1 V h

i with H = 5h and
in (2.8), m = 4, m1 = 9, m2 = 6, m3 = 6, m4 = 4, and M = 25.

finite element space with zero traces on the boundaries ∂Ωi\∂Ω as Sh(Ωi). Then one can show that

Sh =
∑

Sh(Ωi) and Sh = SH +
∑

Sh(Ωi). (3.2)

For the overlapping subdomains, assume that there exist m colors such that each subdomain Ωi

can be marked with one color, and the subdomains with the same color will not intersect with each
other. For suitable overlaps, one can always choose m = 2 if d = 1; m = 4 if d ≥ 2; m ≥ 8 if d = 3.
Let Ωc

i be the union of the subdomains with the ith color, and define

V h
i =

{
v ∈ Sh : v(x) = 0, x /∈ Ωc

i

}
, i = 1, 2, · · · , m.

By denoting subspaces V H
0 = SH , V h = Sh, we get from (3.2) that

a). V h =
m∑

i=1

V h
i and b). V h = V H

0 +
m∑

i=1

V h
i . (3.3)

Note that the summation index is from 0 to m instead of from 1 to m when the coarse mesh is
added.
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For a better understanding of the above slightly abstract setting, we present below two illustrative
examples.

Example I: overlapping
Divide Ω into only four nonoverlapping subdomains (see Figure 3.1 (left)):

Dc
1 = (0, 1/4)× (0, 1/4) ∪ (1/2, 3/4)× (0, 1/4) ∪ (0, 1/4)× (1/2, 3/4)∪ (1/2, 3/4)× (1/2, 3/4)

and get the overlapping subdomains corresponding

Ωc
1 = (0, 5/16)×(0, 5/16)∪(7/16, 13/16)×(0, 5/16)∪(0, 5/16)×(7/16, 13/16)∪(7/16, 13/16)×(7/16, 13/16)

where δ = 1/16.

Figure 3.1. Left: an overlapping decomposition. Right: The finite element basis at the center
node. The weights from center towards boundary are 1 (marked by black ‘◦’), 3/4 (marked by
green ‘�’ along the innermost hexagon), 1/2 (marked by brown ‘◦’), 1/4 (marked by blue ‘�’), 0
(marked by red ‘◦’ along the innermost hexagon)

Example II: A coarse mesh correction to space decomposition. We consider the simple
unit square domain Ω = (0, 1)×(0, 1) and a uniform triangulation TH(Ω) = {τ} and piecewise linear
finite element spaces. If we take H = 4h, then the values of the 2D basis function may be denoted
by matrix Ih

H (called the correction operator), which takes the values (see Figure 3.1 (right)):

Ih
H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 1
4

1
4

1
4

1
4 0 0 0 0

0 1
4

1
2

1
2

1
2

1
4 0 0 0

0 1
4

1
2

3
4

3
4

1
2

1
4 0 0

0 1
4

1
2

3
4 1 3

4
1
2

1
4 0

0 0 1
4

1
2

3
4

3
4

1
2

1
4 0

0 0 0 1
4

1
2

1
2

1
2

1
4 0

0 0 0 0 1
4

1
4

1
4

1
4 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

If we apply Algorithm SSC to decomposition (3.3) with the coarse mesh, we will get the following
domain decomposition algorithm:
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Algorithm DDC. Choose an initial value u0
h ∈ V h.

For n = 0,

Set ũn
h = un

h,

while j = 1, · · · , m do

Find en
h,j ∈ V h

j such that

en
h,j = arg min

vh∈V h
j

F (ũ
n+(j−1)/m
h + vh).

Set
ũ

n+j/m
h = ũ

n+(j−1)/m
h + en

h,j .

end

Find en
H,0 ∈ V H

0 such that

en
H,0 = arg min

vH∈V H
0

F (ũn+1
h + vH).

Set
un+1

h = ũn+1
h + Ih

Hen
H,0.

Go to next iteration for n.

It is seen that the above iteration algorithm requires to solve a sequence of the minimization
problems over the subspaces/subdomains. For the TV-denoising problem (2.4), the prototypical
variational formulation of the sub-minimization problem is⎧⎪⎨

⎪⎩
Given un, find en ∈ V such that

α

(
∇(un + en)√

|∇(un + en)|2 + β
,∇v

)
+ (un + en − z, v) = 0, ∀v ∈ V ,

(3.5)

where (·, ·) is the L2(Ω) inner product, and V is the finite dimensional space V h
j or V H

0 .

In real implementations, we linearize (3.5). For V = V h
j , since ũ

n+j/m
h = ũ

n+(j−1)/m
h + en

h,j, we
solve the problem:

α

⎛
⎝ ∇ũ

n+j/m
h√

|∇ũ
n+(j−1)/m
h |2 + β

,∇v

⎞
⎠+ (ũn+j/m

h − z, v) = 0, ∀v ∈ V h
j , (3.6)

to obtain ũ
n+j/m
h for all 1 ≤ j ≤ m. For V = V H

0 , the linearized problem for en
H,0 is

α

⎛
⎝∇(ũn+1

h + en
H,0)√

|∇ũn+1
h |2 + β

,∇v

⎞
⎠+

(
ũn+1

h + en
H,0 − z, v

)
= 0, ∀v ∈ V H

0 . (3.7)

However, a little care has to be taken for the transition between the coarse mesh and fine mesh, and
the details will be presented in the forthcoming section.

4. Numerical discrete algorithm for TV denoising

We next present the full two-level algorithm formulated in the previous section for the TV-
denoising model. We partition the image domain Ω = (0, 1)2 into N × N uniform cells with mesh
size h = 1/N. The cell centers are

(xi, yj) =
(
(i − 1)h, (i − 1)h

)
, 1 ≤ i, j ≤ N + 1. (4.1)
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Hereafter, let zi,j be the pixel value of the original image z at (xi, yj), and let ui,j be the finite
difference solution at (xi, yj). Denote

δ±x ui,j = ±(ui±1,j − ui,j), δ±y ui,j = ±(ui,j±1 − ui,j).

δc
xui,j = ui+1,j − ui−1,j, δc

yui,j = ui,j+1 − ui,j−1.

The finite difference approximation of (3.6) is

ul,k − αh

⎧⎨
⎩δ−x

⎡
⎣ δ+

x ul,k√
(δ+

x ul,k)2 + (δc
yul,k)2 + βh

⎤
⎦

+ δ−y

⎡
⎣ δ+

y ul,k√
(δc

xul,k)2 + (δ+
y ul,k)2 + βh

⎤
⎦
⎫⎬
⎭ = zl,k,

(4.2)

where αh = α/h and βh = h2β. The one-sided second-order finite differences are used to treat the
Neumann boundary conditions, say at x = 0:

u0,k =
4
3
u1,k − 1

3
u2,k. (4.3)

Boundary conditions are also needed when evaluating δc
x and δc

y at the boundary nodes.
We now turn to the coarse mesh problem (3.7). Firstly we note that (3.7) can be written in the

form:

α
(
an∇en

H,0,∇v
)

+ (en
H,0, v) =

(
z − ũn+1

h , v
)
− α

(
an∇ũn+1

h ,∇v
)
, ∀v ∈ V H

0 . (4.4)

with

an = (|∇ũn+1
h |2 + β)−1/2.

As before, we need to define a restriction operator for the explanation of the algorithm. For any
given r ∈ Sh, we define IH

h r ∈ SH such that

(IH
h r, v) = (r, v), ∀v ∈ SH .

Given a r ∈ Sh, IH
h r can be obtained numerically by a proper summation of r multiplied with the

matrix Ih
H defined in (3.4) over the support of the finite element basis functions. Analysis in [47]

showed that we could solve the subproblems approximately. So we shall use the following finite
difference scheme to solve (3.7) approximately:

eL,K − αH

⎧⎨
⎩δ−x

⎡
⎣ δ+

x eL,K√
(δ+

x uL,K)2 + (δc
yuL,K)2 + βH

⎤
⎦

+δ−y

⎡
⎣ δ+

y eL,K√
(δc

xuL,K)2 + (δ+
y uL,K)2 + βH

⎤
⎦
⎫⎬
⎭ =

IH
h

⎡
⎣zl,k − ul,k + αh

⎧⎨
⎩δ−x

⎡
⎣ δ+

x ul,k√
(δ+

x ul,k)2 + (δc
yul,k)2 + βh

⎤
⎦

+δ−y

⎡
⎣ δ+

y ul,k√
(δc

xul,k)2 + (δ+
y ul,k)2 + βh

⎤
⎦
⎫⎬
⎭
⎤
⎦ ,

(4.5)
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where αH = α/H and βH = H2β. Formly, the above system can be written as

ÃHeH = IH
h

(
z − Ahuh

)
, (4.6)

where {ÃH , Ah} are the coefficient matrices of the systems (4.2) and (4.5), respectively, and {eH , z, uh}
are vectors of the pixel values. The matrix ÃH is an approximation of the system matrix for finite
element equation (4.4), i.e. we have replaced an by the known data an−1.

We summarize the above algorithm as follows.

Algorithm DDC-TV. Choose an initial value u0
h ∈ V h.

For n = 0,

Set ũn
h = un

h,

while j = 1, · · · , m do

Solve (4.2):

Ah,jũ
n+j/m
h = zj .

end
Solve (4.5):

ÃHen
H,0 = IH

h (z − Ahũn+1
h ).

Set
un+1

h = ũn+1
h + Ih

Hen
H,0.

Go to next iteration for n.

5. Numerical results

We present in this section various numerical results to demonstrate the efficiency of the proposed
domain decomposition algorithms without or with a coarse domain correction, denoted by DD and
DDC in short, respectively. Their performance is assessed by comparing with the naive lagged
diffusivity fixed-point iteration (i.e., (2.6), denoted by TV) in terms of convergence, recovery of
peak signal-to-noise ratio (PSNR) and computational time. We remark that to the best of our
knowledge, these algorithms have not been applied to the image restoration problems before. Hence,
it is interesting to see some good results and particularly how the methods can be applied to restore
images of large size.

Hereafter, assume that the pixel values of all images lie in the interval [0, 255], and the Gaussian
white noise is added by the normal imnoise function imnoise(I,‘gaussian’, M, σ) (i.e., the
mean M and variance σ) in Matlab. In our tests, we use PSNR [6] as a criteria for the quality of
restoration. This quantity is usually expressed in terms of the logarithmic decibel scale:

PSNR = 10 log10

2552

1
mn

∑
i,j(ui,j − zi,j)2

, (5.1)

where {ui,j − zi,j} are the differences of the pixel values between the restored and original images.
Typical values for the PSNR in lossy image and video compression are between 30dB and 50dB (the
higher implies the better). Acceptable values for wireless transmission quality loss are considered
to be about 20dB to 25dB. We shall also use the relative dynamic error between two consecutive
iterations:

‖uk − uk−1‖2

‖uk‖2
< ε, (5.2)

for a prescribed tolerance ε, as the stopping rule.
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We test the methods on three typical images: lena-512× 512, boat-1024× 1024, and cow-2048×
2048. All the computations are done in Matlab on an IBM server with 2.93 GHz, 8 Intel(R) Xeon(R)
Quad-Core CPU and 128GB RAM. In the first two sets of experiments, we fix β = ε = 10−4, and
choose the mean value M = 0 and the variance σ = 0.04 for the noise level, whose signal-to-noise
ratio (SNR) is roughly between 8.8 to 9.1. We compare the methods with different α, subdomain size
d (pixels) and overlapping size δ (pixels), and show their performance with respect to the iteration
number k and computational time T. Finally, we test the methods with smaller regularization
constant β, and other noise levels.

We shall see that the proposed methods lead to significant time and memory saving. Moreover,
they are not sensitive to the image size, and the choice of the intrinsic parameters d and δ can be
fairly relaxed. Hence, they provide fast and robust means to process images in particular of large
size.
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Figure 5.1. The impact of α to PSNR: lena-512 × 512 (left) and boat-1024 × 1024 (right).

5.1. Convergence. To set up a more quantified and reasonable rule for comparison, we fix β =
ε = 10−4, and first identify a suitable α in the TV model with larger PSNR values (i.e, a better
restoration). We plot in Figure 5.1 the PSNR against α obtained by TV (i.e., (2.6)) and the DD (i.e.,
(2.11)) with different subdomain and overlapping sizes for lena-512×512 and boat-1024×1024. For
both cases, a good choice is α between 0.02 and 0.03. Hereafter, we fix α = 0.025. We also observe
from Figure 5.2 that the PSNR reaches the “maximum” values after about ten iterations for TV,
DD and DDC.

In Figure 5.2, we plot the residual history of the three methods and PSNR values against the
iteration steps. We see that the DD and DDC exhibit a convergence behavior similar to that of the
fixed-point iteration. Hence, the domain decomposition method produces as good quality as the
classical TV restoration via local operations and/or some global corrections. In Figure 5.3, we plot
the computed solution for the first iteration for the boat-1024× 1024 image. We have used d = 32
and δ = 4. These plots visualize the local step-by-step denoising effect and the recovery through
overlapping subdomains.
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Figure 5.2. The residual (cf. (5.2)) (left column) and the PSNR (right column) at iteration
step k for three methods (for DD and DDC, d = 32 and δ = 4) with lena-512 × 512 (upper row)
and boat-1024 × 1024 (lower row).

5.2. Sensitivity to the subdomain size and overlapping size. After understanding some
general behaviors of the algorithms, we next demonstrate the time-saving by DD and DDC, and
also provide some guidelines on the choice of the subdomain and overlapping sizes.

To illustrate the impact of overlapping sizes, we tabulate in Table 5.1 the PSNR and CPU time
of the classic TV by the lagged diffusivity fixed-point iteration and DD with subdomain size 32, but
with different overlapping size δ. Here, the percentage of the CPU time is against TV, and likewise
for other tables. We see that that the PSNR obtained by DD is not so sensitive to the overlapping
size δ, while the computational time increases as δ increases, as expected. To have a good trade-off
between convergence rate and quality of restoration, it is advisable to choose δ to be 2, 3 or 4. It is
essential to point out that the use of DD leads to a remarkable reduction of computational time in
particular for images of large size. One also refers to Figure 5.4. the restored lena-512× 512 image.
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Figure 5.3. The intermediate results of DD for the boat image for un+ j
m with n = 0, j =

1, 2, 3, 4. The subdomains are painted with 4 colors. From left to right: the intermediate image
obtained by solving (2.11) for n = 0, j = 1, 2, 3, 4. Here, the image size: 1024×1024, the subdomain
size: 32, and the overlapping size: 4.

Table 5.1. Different overlapping size with stopping residual ε = 10−4, σ = 0.04
α = 0.025 and β = 10−4.

image d δ k PSNR Time image d δ k PSNR Time

lena512 TV 45 25.9725 415.9900 boat1024 TV 40 27.3254 1880.2

1 63 25.9135 16.32% 1 57 27.3394 12.81%
2 51 25.8780 15.32% 2 46 27.3523 11.40%
3 46 25.8724 15.82% 3 43 27.3495 11.74%

lena512 32 4 43 25.9261 16.41% boat1024 32 4 42 27.3081 12.96%
5 41 25.9022 17.86% 5 42 27.2982 14.28%
6 41 25.8859 19.84% 6 43 27.3290 15.88%
7 45 25.9778 24.71% 7 42 27.2660 18.54%
8 46 25.9247 28.62% 8 42 27.3165 21.10%

We further examine the impact of subdomain size to the overall performance of DD. For this
purpose, we fix the overlapping size δ = 4, but vary α and the subdomain size d. Once again, Table
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5.2 indicates a significant gain in computation time. It also shows that a good choice of d is roughly
1/16 of the given image size.

Table 5.2. Comparison of computational time of TV and DD for different subdo-
main sizes of lena-512 × 512 and boat-1024 × 1024 with ε = β = 10−4, σ = 0.04
and the PSNR depicted in Figure 5.1.

d \ α 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

TV512 570.90 516.20 392.57 415.48 415.99 359.06 357.23 326.31 313.74 300.79

8 71.30% 48.02% 46.40% 37.85% 34.98% 38.99% 36.51% 36.47% 34.33% 37.50%
16 38.62% 24.32% 23.17% 20.02% 18.79% 22.80% 22.54% 24.29% 23.57% 25.73%
32 26.58% 17.36% 18.81% 17.02% 15.86% 21.76% 19.77% 20.58% 19.07% 19.27%
64 33.83% 22.95% 29.86% 24.26% 24.16% 27.71% 26.26% 25.42% 27.98% 26.85%
128 34.16% 34.67% 42.94% 37.61% 26.60% 38.24% 35.65% 38.38% 31.70% 30.96%

TV1024 3145.4 2197.3 2061.4 1884.0 1880.2 1935.5 1805.1 1768.9 1859.6 1736.3

8 45.85% 43.26% 37.78% 34.07% 31.68% 28.56% 27.82% 26.85% 24.40% 23.89%
16 22.37% 20.42% 17.47% 16.24% 15.88% 16.44% 17.41% 16.81% 15.67% 15.85%
32 16.17% 13.53% 13.17% 14.09% 13.74% 13.63% 13.87% 13.98% 12.47% 12.67%
64 16.45% 16.91% 17.05% 19.35% 18.95% 18.01% 19.87% 19.77% 17.79% 17.48%
128 25.52% 33.50% 26.47% 30.09% 29.74% 29.23% 26.81% 25.02% 24.86% 26.00%

Table 5.3. Comparison of TV, DD and DDC for boat-1024×1024 and cow-2048×
2048 with σ = 0.04, β = ε = 10−4, α = 0.025 and various subdomain sizes. Here,
PSNR1 and PSNR2 refer to the PSNR of DD and DDC, respectively, and likewise
for the iteration number k and computational time T.

d δ PSNR1 PSNR2 k1 k2 T1 T2

TV1024 27.3254 40 1880.2

8 2 27.3786 27.3429 62 63 31.68% 57.72%
16 4 27.2813 27.3294 43 43 15.88% 33.67%
32 4 27.3089 27.3329 42 42 13.74% 29.32%
64 4 27.3031 27.2892 42 41 18.95% 31.66%
128 4 27.3066 27.2647 40 41 29.74% 39.95%

TV2048 25.3433 41 12319.0

8 2 25.8873 24.4947 79 79 26.47% 48.80%
16 4 25.4409 25.3809 47 46 11.13% 24.06%
32 4 25.3787 25.3675 43 42 8.25% 20.99%
64 4 25.3650 25.3499 42 42 12.57% 21.74%
128 4 25.3808 25.3956 41 41 15.23% 23.94%

Table 5.4. Comparison of TV, DD and DDC with β = 0.1, σ = 0.04, α =
0.025, ε = 10−6.

d δ PSNR1 PSNR2 k1 k2 T1 T2

TV512 26.0541 163 1420.2

32 4 25.9820 25.9900 173 157 17.93% 31.44%

TV1024 27.3402 189 8129.9

32 4 27.3954 27.3377 246 202 16.36% 32.01%

TV2048 25.4310 141 35901.0

32 4 25.4304 25.4146 157 145 9.54% 22.49%
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We now particularly examine the effect of coarse mesh correction. We tabulate in Table 5.3 the
computational time and PSNR for three methods with various choice of subdomain sizes. We also
test them on large size image cow-2048× 2048. Once more, it indicates the notable time saving by
using domain decomposition techniques, and also justifies the 1/16−rule for the choice of subdomain
size. However, we realize that the coarse mesh correction does not help too much to DD in the sense
that almost the same number of iterations are needed for DD and DDC, but more time is consumed,
since additional coarse mesh equations have to be resolved at each iteration (cf. Algorithm DDC).
We believe that the main reason is the regularization constant β is small, which results in stiff
elliptic equations and the correcting effect is expected to be minor. The influence of the coarse
mesh correction increases when β is bigger as shown in Table 5.4.

We illustrate below some samples of the restored image obtained by DD or DDC with an “opti-
mal” choice of the intrinsic parameters. Figure 5.4 is devoted to the lena-512×512, where we depict
the difference images and find that three methods with the same stopping rule give indistinguishable
restored images. Indeed, the PSNR are very close and the residuals ‖u − uK‖2/‖u‖2 (where u is
the true image, and uK is the restored image by TV, DD or DDC with K steps) are TV: 0.8029,

DD: 0.8076 and DDC: 0.8060. Figure 5.5 illustrates the restored image of larger size by DD.

Figure 5.4. Row one: original image (left lena-512×512), noise image with σ = 0.04 (middle)
and restored image(right) obtained by DD with subdomain size d = 32, overlapping size δ = 4,
α = 0.025, ε = β = 10−4. Here, SNR= 9.0597 and PSNR= 25.9388. Row two: difference images
between the restored one and original one (magnified by multiplying 5). From left to right: TV,
DD, DDC with the same parameters chosen as above.
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Figure 5.5. DD restoration of boat-1024×1024 and cow-2048×2048. Clean image (left), noise
image with σ = 0.04 (middle) and restored image (right) with overlapping size δ = 4, α = 0.025,
and ε = β = 10−4. Note: for boat, d = 64, SNR= 9.1503 and PSNR= 27.3031, and for cow,
d = 128, SNR= 9.1866 and PSNR= 25.3808.

Finally, we examine the methods for very small regularization parameter β, and for images with
considerable higher noise level. We record in Table 5.5 the iteration number k, computational time,
and PSNR for TV and DD with the regularization parameter β = 10−12. In this case, the system is
very stiff, so TV is extremely costly, but the stiffness can be significantly relaxed by breaking down
the size of system, so DD is very fast. In a nutshell, DD is still very efficient for small β.

Table 5.5. Comparing TV with DD using small β = 10−12, σ = 0.04, ε = 10−4

and α = 0.025.

image d δ PSNR k T

lena512 TV 26.0702 52 14873.0

8 2 26.0221 57 0.89%
16 4 25.9995 53 0.65%

lena512 32 4 25.9089 48 0.54%
64 4 25.7169 54 1.02%
128 4 25.6731 52 2.71%

As the end of this section, we illustrate in Figures 5.6-5.7, the restoration of boat-1024 × 1024
and cow-2048 × 2048 with higher noise level by DD. As before, the quality is essentially the same
as that by TV, but recovered by much less CPU time.
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Figure 5.6. Original image boat-1024 × 1024 (left), noise image with σ = 0.1 (middle) and
restored image(right) by DD with subdomain size d = 64, overlapping size δ = 4, α = 0.015,
ε = 10−4 and β = 10−12. Here, SNR= 6.0128, PSNR= 24.2600.

Figure 5.7. Original image cow-2048 × 2048 (left), noise image with σ = 0.1 (middle) and
restored image(right) by DD with subdomain size d = 128, overlapping size δ = 4, α = 0.015,
ε = 10−4 and β = 10−4. Here, SNR= 5.8910, PSNR= 21.6081.

Concluding Remarks. We proposed in this paper fast algorithms for nonlinear minimization
problems with particular applications to TV-image denoising. We described the very detailed im-
plementation of the domain decomposition and coarse mesh correction techniques. We also presented
a plenty of numerical results that demonstrated the effectiveness of the proposed methods in CPU
time and memory saving. We provided useful guidelines for the choices of parameters through such
quantitative studies. Most importantly, these methods are fast and reliable for large image pro-
cessing, and are efficient even for the stiff TV-based models. The proposed algorithms is a useful
alternative for practical 3D data processing with large sizes.
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