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1. Introduction 
The fractional calculus is a current research topic in 

applied sciences such as applied mathematics, physics, 
mathematical biology and engineering. The rule of 
fractional derivative is not unique till date. The definition 
of fractional derivative is given by many authors. The 
commonly used definition is the Riemann-Liouvellie (R-L) 
definition [1,2,3,4,5]. Other useful definition includes 
Caputo definition of fractional derivative (1967) 
[1,2,3,4,5]. Jumarie’s left handed modification of R-L 
fractional derivative is useful to avoid nonzero fractional 
derivative of a constant functions [7]. Recently in the 
paper [8] Ghosh et al proposed a theory of characterization of 
non-differentiable points with Jumarie type fractional 
derivative with right handed modification of R-L fractional 
derivative. The differential equations in different form of 
fractional derivatives give different type of solutions [1-5]. 
Therefore, there is no standard algorithm to solve 
fractional differential equations. Thus the solution and its 
interpretation of the fractional differential equations is a 
rising field of Applied Mathematics. To solve the linear 
and non-linear differential equations recently used 
methods are Predictor-Corrector method [9], Adomain 
decomposition method [2,10,11], Homotopy Perturbation 

Method [12] Variational Iteration Method [13], Differential 
transform method [14]. Recently in [15] Ghosh et al 
developed analytical method for solution of linear fractional 
differential equations with Jumarie type derivative [7] in 
terms of Mittag-Leffler functions and generalized sine and 
cosine functions. This new finding of [15] has been 
extended in this paper to get analytical solution of system 
of linear fractional differential equations. In section 1.0 we 
have defined some important definitions of fractional 
derivative that is basic Riemann-Liouvellie (RL) fractional 
derivative, the Caputo fractional derivative, the Jumarie 
fractional derivative, the Mittag-Leffler function and 
generalized Sine and Cosine functions. In section 2.0 
solution of system of fractional differential equations has 
been described and in section 3.0 an application of this 
method to physical system has been discussed.  

1.1. The Basic Definitions of Fractional 
Derivatives and Some Higher Transcendental 
Functions: 
a) Basic definitions of fractional derivative: 
i) Riemann- Liouvellie (R-L) definition  

The R-L definition of the left fractional derivative is,  
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Where: 1, : is positiveinteger .m m mα≤ < +  
In particular when 0 1 thenα≤ <  
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The definition (1.1) is known as the left R-L definition 
of the fractional derivative. The corresponding right R-L 
definition is  
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where: 1.m mα≤ < +  
The derivative of a constant is obtained as non-zero 

using the above definitions (1.1)-(1.3) which contradicts 
the classical derivative of the constant, which is zero. In 
1967 Prof. M. Caputo proposed a modification of the R-L 
definition of fractional derivative which can overcome this 
shortcoming of the R-L definition. 
ii) Caputo definition 

M. Caputo defines the fractional derivative in the 
following form [6] 
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where: 1 .n nα− ≤ <  
In this definition first differentiate ( ),f x n − times then 

integrate n α−  times. The disadvantage of this method is 
that ( ), must be f x differentiable n-times then the α -th 
order derivative will exist, where 1n α− ≤ < n  . If the 
function is non-differentiable then this definition is not 
applicable. Two main advantages of this method are (i) 
fractional derivative of a constant is zero (ii) the fractional 
differential equation of Caputo type has initial conditions 
of classical derivative type but the R-L type differential 
equations has initial conditions fractional type i.e. 

[ ]1
1lim ( )a x

x a
D f x bα−

→
= . 

This means that a fractional differential equation 
composed with RL fractional derivatives require concept 
of fractional initial states, sometimes they are hard to 
interpret physically [2].  
iii) Modified definitions of fractional derivative: 

To overcome the fractional derivative of a constant, 
non-zero, another modification of the definition of left R-
L type fractional derivative of the function ( ),f x  
in the interval[ , ]a b  was proposed by Jumarie [7] in the 
form, that is following. 
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We consider that ( ) ( ) 0f x f a− =  for x a< . In (1.5), 
the first expression is just fractional integration; the 
second line is RL derivative of order 0 1α< <  of offset 
function that is ( ) ( )f x f a− . For 1α > , we use the third 
line; that is first we differentiate the offset function with 
order 0 ( ) 1mα< − < , by the formula of second line, and 
then apply whole m order differentiation to it. Here we 
chose integer m , just less than the real numberα ; that 
is 1m mα≤ < + . 

The logic of Jumarie fractional derivative is that, we do 
RL fractional derivative operation on a new function by 
forming that new function from a given function by 
offsetting the value of the function at the start point. Here 
the differentiability requirement as demanded by Caputo 
definition is not there. Also the fractional derivative of 
constant function is zero, which is non-zero by RL 
fractional derivative definition. 

We have recently modified the right R-L definition of 
fractional derivative of the function ( ),f x  in the interval 
[ , ]a b  in the following form [8],  
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In the same paper [8], we have shown that both the 
modifications (1.5) and (1.6) give fractional derivatives of 
non-differentiable points their values are different, at that 
point, but we get finite values there, of fractional 
derivatives. Whereas in classical integer order calculus, 
where we have different values of right and left 
derivatives at non differentiable points in approach limit 
from left side or right side, but infinity (or minus infinity) 
at that point, where function is non-differentiable. But in 
case of Jumarie fractional derivative and right modified 
RL fractional derivative [8], there is no approach limit at 
the non-differentiable points, but a finite value is obtained 
at that non differentiable point of the function. The 
difference is that integer order calculus returns infinity or 
minus infinity at non-differentiable points, where as the 
Jumarie fractional derivative returns a finite number 
indicating the character of otherwise non-differentiable 
points in a function, in left sense or right sense. This has a 
significant application in characterizing otherwise non-
differentiable but continuous points in the function. 
However, the finite value of the non differentiable point 
after fractional differentiation depends on the interval 
length. In the rest of the paper J Dυ will represent Jumarie 
fractional derivative. 
b) Mittag-Leffler function and the generalized Sine 
and Cosine functions 

The Mittag-Leffler function was introduced by the 
Swedish mathematician Gösta Mittag-Leffler [17,18,19,20] 
in 1903. It is the direct generalization of exponential functions. 
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The one parameter Mittag-Leffler function is defined (in 
series form) as: 
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In the solutions of FDE we use this series definition in 
MATLAB plots. One parameter Mittag-Leffler function in 
relation to few transcendental functions is as follows 
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The integral representation of the Mittag-Leffler 
function [17,18,19,20] is,  
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Here the path of the integral C is a loop which starts 
and ends at −∞ and encloses the circles of disk 1/| | | |t z α≤  
in positive sense :| arg( ) | ont Cπ≤  [17,18,19,20].  

The two parameter Mittag-Leffler function (in series 
form) and its relation with few transcendental functions 
are as following 
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The corresponding integral representation [17,18,19,20] 
of the two parameter Mittag-Leffler function is,  
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where the contour C is already defined, in the above 
paragraph. 

Using the modified definition, of fractional derivative 
of Jumarrie type, [7,8] we get  

 [ ]1 0, 0 1.J Dα α= < <  

The Jumarie fractional derivative of any constant 
function is zero, unlike a non-zero value of fractional RL 
derivative of a constant. 

We now find Jumarie fractional derivative of Mittag-
Leffler function ( )E atαα   
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Using Jumarie derivative of order α , with 0 1α≤ <  
with start point as 0a =  for ( ) nf t t α= , [15] that is 
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for 1,2,3,...n = ; and also using Jumarie derivative of 

constant as zero [ ]1 0J Dα = , we get the following very 
useful identity.  
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Thus  
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This shows that ( )AE atαα is a solution is a solution of 
the fractional differential equation [15] 
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Where A is arbitrary constant. 
Therefore  
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with (0) 1y = has solution 

 ( ).y E atαα=  

The fractional Sine and Cosine functions are expressed 
as following [16], 
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The above series form of fractional Sine and Cosine are 
used to plots, in solutions. It can be easily shown that 
[15,16] 
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This has been proved by the following term by term 
differentiation. The series presentation of cos ( )xαα  is [15], 
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Taking its term by term Jumarie fractional derivative of 
orderα  we get, 
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Similarly we can get the expression for fractional 
derivative of Jumarie type of order α  for sin ( )xαα . 

2. System of Linear Fractional Differential 
Equations 

Before considering the system of fractional differential 
equations we state the results [15] which arises in solving 
a single linear fractional differential equations composed 
by Jumarie derivative; we will be using the following 
theorems. 
Theorem 1: The fractional differential equation 
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has solution of the form 
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Theorem 2: The fractional differential equation  
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Theorem 3: Solution of the fractional differential 
equation  
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Consider the system of linear fractional differential 
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Here a , b , c  and d are constants, the operator J Dα is 
the Jumarie fractional derivative operator, call it for 

convenience J d
dt

D
αα
α≡ , and x  and y are functions of t . 

In matrix form we write the (2.1) in following way 
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Operating ( )J D aα −  on both sides of the second 
equation of (2.2) we get the following steps.  
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Equation (2.3) is a linear fractional order differential 
equation (with order 2α ), with Jumarie derivative 
operator. 

Let  
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then the equation (2.3) can be re-written as,  
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From above we obtain the following 
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1 1,A B  are arbitrary constants in above derivation, and 

1 2 ,a dλ λ+ = +  1 2 ad bcλ λ = − . 
Thus the solution can be written in the form 
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Again to solve the system of fractional differential 
equation (2.1) we use the method similar to as used in 
classical differential equations. 
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( ) ( ),  is arbitary constant.x t AE t Aα
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Eliminating A and B from (2.8) we get,  
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which is known as the characteristic equation with roots 
1 2andλ λ , also termed as eigen-values. Three cases may 

arises 
i) The roots 1 2andλ λ are real and distinct. 
ii) The roots are real and equal i.e. 1 2 (say)λ λ λ= = . 
iii) The roots are complex i.e. of the form 

1 2, (say)p iqλ λ = ± . 
Case –I 
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= =   
    

 

Example: 1  

 
2

,
2

0 1 with (0) 2, (0) 1.

J

J

D x x y

D y x y
x y

α

α

α

= + 


= + 
< ≤ = =

 

Let  

 ( ) and ( ).x AE t y BE tα α
α αλ λ= =  

be the solution of the above differential equation. 
Substituting this in the above equations we get, 

 
(2 ) 0

(2 ) 0
A B
A B

λ
λ

− + = 
+ − = 

 (2.10) 

The corresponding characteristic equation is,  

 
2 1

0 1,3.
1 2

giving
λ

λ
λ

−
= =

−
 

Putting 1λ =  in (2.8) we get 0A B+ = , taking 1A =  
we get 1B = −  and putting 3λ =  in (2.8) we get A B= , 
taking 1A = we get 1B = . Hence the solutions are, 

 1 1( ) , ( )x E t y E tα α
α α= = −   

and 2 2(3 ) , (3 )x E t y E tα α
α α= = . 

Thus the general solution is  

 1 2

1 2

( ) (3 )

( ) (3 ).

x c E t c E t

y c E t c E t

α α
α α

α α
α α

= +

= − +  

Where c1, c2 are arbitrary constants. 
Using the initial condition  

 (0) 2, (0) 0.x y= =  

we get 1 2 1c c= = . 
Thus the required solution is, 

 
( ) (3 )

( ) (3 )

x E t E t

y E t E t

α α
α α

α α
α α

= +

= − +  

Figure 1 represents the graphical presentation of ( )x t  
and ( )y t  when the eigen-values of the system of 
differential equations are positive. Numerical simulation 
shows that ( )x t  and ( )y t  both grow rapidly with decrease 
of order of derivative i.e. as α decreases from 1 towards 0. 
Example: 2 

 
2

, 0 1 with (0) 2, (0) 1
2

J

J

D x x y
x y

D y x y

α

α
α

= − +  < ≤ = =
= − 

 

Let ( ) and ( )x AE t y BE tα α
α αλ λ= =  
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be the solution of the above differential equation. 
Substituting this in the above equations we get,  

( 2 ) 0
.

( 2 ) 0
A B
A B

λ
λ

− − + = 
+ − − = 

 

 

Figure 1. Numerical simulation of the solutions of fractional differential equation in Example-1 for x(t) and y(t) for different values of α = 0.2, 0.4, 0.6, 
0.8 and 1.0. Figure (i) & (k) and figure (j) & (l) represents the same figure only length of x-axis is changed here to represent the prominent initial values 

The corresponding characteristic equation is,  

 
2 1

0 giving 1, 3
1 2
λ

λ
λ

− −
= = − −

− −
. 

Putting 1λ = −  in (2.8) we get 0A B− = , taking 1A =  
we get 1B =  and putting 3λ = −  in (2.8) we get A B= − , 
taking 1A = we get 1B = − . Hence the solutions are, 

 1 1( ) , ( )x E t y E tα α
α α= − = −  

and 2 2( 3 ) , ( 3 )x E t y E tα α
α α= − = − − . 

Thus the general solution is  

 1 2

1 2

( ) ( 3 )

( ) ( 3 ).

x c E t c E t

y c E t c E t

α α
α α

α α
α α

= − + −

= − − −  

Where c1, c2 are arbitrary constants. 
Using the initial condition (0) 2x = , (0) 0y =  we get 

 1 2 1.c c= =  
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Thus the required solution is,   ( ) ( 3 ), ( ) ( 3 ).x E t E t y E t E tα α α α
α α α α= − + − = − − −  

 

Figure 2. Numerical simulation of the solutions of fractional differential equation in Example-2 for ( )x t  and ( )y t  for different Values of α = 0.6, 0.8 
and 1.0 

Figure 2 represents the graphical presentation of ( )x t  
and ( )y t  when the eigen-values of the system of 
differential equations are negative. Numerical simulation 
shows that ( ) and ( )x t y t  are both decaying rapidly with 
decrease of order of derivative i.e. as α decreases from 1 
to 0.6. For negative eigen-values the solutions are 
decaying asymptotically to zero. 
Case –II 

The roots of the equation (2.3) are complex and are of 
the form 1 2, p iqλ λ = ±  then the solution ( ) and ( )x t y t can 
be written in the form (from Theorem 3), 

 
1 2

1 2

( ) ( )

and ( ) ( ) .

x A iA E p iq t

y B iB E p iq t

α
α

α
α

 = + + 
 = + + 

 

Using the definition of Mittag-Leffler function and 
fractional cosine and sine functions, that is  

 
def

( ) cos ( ) sin( )E ix x i xα α α
α α= +  

we get, 

 

( )
( )

1 2

1 2

1 2

1 2

2 1

( ) ( )

( ) ( ) ( )

( ) ( ) cos ( ) sin ( )

cos ( ) sin ( )
( ) .

cos ( ) sin ( )

x A iA E p iq t

A iA E pt E iq t

A iA E pt qt i qt

A qt A qt
E pt

i A qt A qt

α
α

α α
α α

α α α
α α α

α α
α αα

α α α
α α

 = + + 
   = +    
   = + +   
 −
  =    + +  

 

Similarly we get by repeating the above steps for y as 
follows 

 
( )
( )
1 2

2 1

cos ( ) sin ( )
( ) .

cos ( ) sin ( )

B qt B qt
y E pt

i B qt B qt

α α
α αα

α α α
α α

 −
  =    + +  

 

In above obtained expressions for x and y , we have 
complex quantity as u iv+ . This may be also considered as 
linear combination of u and v considering i a constant. 
Therefore, we can say that x is linear combination of 

1x (the real part of obtained complex x ), and 2x (the 
imaginary part of obtained complex x ). Similarly we have 
y as linear combination of 1y and 2y  [21]. With this 

argument we write the following
 

 

1 1 2

2 2 1

1 1 2

2 2 1

( ) cos ( ) sin ( )

( ) cos ( ) sin ( )

( ) cos ( ) sin ( )

( ) cos ( ) sin ( )

x E pt A qt A qt

x E pt A qt A qt

y E pt B qt B qt

y E pt B qt B qt

α α α
α α α

α α α
α α α

α α α
α α α

α α α
α α α

   = −   
   = +   
   = −   
   = +   

 

It can be shown that 1 1 2 2( , ); ( , )x y x y are solutions of 
the given equations (2.1). 

 
Thus the general solution in this case can be written in 

the form as in classical integer order differential equation 
[[21], pp.305]. 

The linear combination of 1x  and 2x , gives x  and 
linear combination of 1y and 2y gives y , which is 
represented as following

 



79 American Journal of Mathematical Analysis  

 

 
( )
( )

1 2

2 1

cos ( ) sin ( )
( )

cos ( ) sin ( )

M A qt A qt
x E pt

N A qt A qt

α α
α αα

α α α
α α

 −
  =    + +    

 
( )
( )

1 2

2 1

cos ( ) sin ( )
( ) .

cos ( ) sin ( )

M B qt B qt
y E pt

N B qt B qt

α α
α αα

α α α
α α

 −
  =    + +  

 

With ,M N  as arbitrary constants, determined from initial 
states. We demonstrate by following examples. Example: 3  

 
3 2

,
5

0 1 with (0) 2, (0) 1.

J

J

D x x y

D y x y
x y

α

α

α

= + 


= − + 
< ≤ = =

 

Let 

 ( ) and ( )x AE t y BE tα α
α αλ λ= =  

be the solution of the above differential equation, then 
putting in the above equation we get, 

 
(3 ) 2 0
5 (1 ) 0

A B
A B

λ
λ

− + = 
− + − = 

 (2.11) 

The corresponding characteristic equation is,  

 
3 2

0 giving 2 3
5 1

i
λ

λ
λ

−
= = ±

− −
. 

Putting 2 3iλ = +  in (2.8) by putting 3,a =  2,b =  
5,c = −  1d =  we get the following 

 

( ) 2 0
(2 3 3) 2 0

2 ( 1 3 )
( ) 0

5 (2 3 1) 0
5 (1 3 )
5 (1 3 ) (1 3 ) (1 3 )
5(1 3 ) 10
2 ( 1 3 )

A a B
A i B
B i A
cA d B
A i B
A i B
A i i i B

i A B
B i A

λ

λ

− − =
+ − + =
= − +

− + − =
+ + − =
= − +
× − = − + × −
− = −
= − +

 

The (2.8) returns the same answer that is 
2 (3 1)B i A= − .We choose here 2A = , so 3 1B i= − , as we 
obtained one equation with two unknowns. Thus 

3 1B i= −  and 2A =  can be taken as one of the trial 
solution of the above. Hence the solution is,  

 
( )2 (2 3 )

2 (2 ) cos (3 ) sin (3 )

x E i t

E t t i t

α
α

α α α
α α α

= +

   = +   
 

Thus 

 
1

2

2 (2 ) cos (3 )

2 (2 ) sin (3 )

x E t t

and x E t t

α α
α α

α α
α α

   =    
   =    

 

Similarly the solution for y can be written in the form 

 

( )
( )

( 1 3 ) (2 3 )

( 1 3 ) (2 ) cos (3 ) sin (3 )

cos (3 ) 3sin (3 )
(2 ) .

3cos (3 ) sin (3 )

y i E i t

i E t t i t

t t
E t

i t t

α
α

α α α
α α α

α α
α αα

α α α
α α

 = − + + 
   = − + +   

 − −
  =    + −  

 

Hence  

 
1

2

(2 ) cos (3 ) 3sin (3 )  

and (2 ) 3cos (3 ) sin (3 ) .

y E t t t

y E t t t

α α α
α α α

α α α
α α α

   = − −   
   = −   

  

Therefore the general solution is linear combination of 
1x , 2x for x and linear combination of 1y , 2y for y , and 

we write the following 

 ( )
( )

(2 ) 2 cos (3 ) 2 sin (3 )

cos (3 ) 3sin (3 )
(2 ) .

3cos (3 ) sin (3 )

x E t M t N t

M t t
y E t

N t t

α α α
α α α

α α
α αα

α α α
α α

   = +   
 − −
  =    + −  

 

where M  and N  are arbitrary constants. Using initial 
conditions (0) 2,x =  (0) 1y =  we get 2 2,M =  and 
3 1N M− =  giving 1, 2M N= = .  

Hence the required solution is, 

 
(2 ) 2cos (3 ) 4sin (3 )

(2 ) cos (3 ) 5sin (3 ) .

x E t t t

y E t t t

α α α
α α α

α α α
α α α

   = +   
   = −   

 

Numerical simulation in Figure 3 shows that for α = 
0.6, 0.8 and 1.0 after the initiation ( 0)t =  of the system 

( )x t  and ( )y t  both oscillate, Period of oscillation changes 
with decrease ofα .  
Case-III 

In this case roots of the equations (2.9) being equal, that 
is 1 2λ λ λ= = . Then one solution will be of the form  

 1 1( ) and ( )x AE t y BE tα α
α αλ λ= =  

and the other solution will be 

2 1 2 2 1 2( ) ( ) and ( ) ( ).x A t A E t y B t B E tα α α α
α αλ λ= + = +  

Hence the general solution is, 

 1 2 1 2

1 2 1 2

( ) ( ) ( )

( ) ( ) ( )

x c AE t c A t A E t

y c BE t c B t B E t

α α α
α α

α α α
α α

λ λ

λ λ

= + +

= + +
 

1 2 1 2 1 2where , , , , , , ,  are arbitry constantsA A A B B B c c  
Example 4:  

4
,0 1 with (0) 2, (0) 1

2

J

J

D x x y
x y

D y x y

α

α
α

= −  < ≤ = =
= + 

(2.12) 

Let  

 ( ) and ( )x AE t y BE tα α
α αλ λ= =  
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be the solutions of the above differential equation, then 
putting in the above equation we get   

(4 ) 0
.

(2 ) 0
A B
A B

λ
λ

− − = 
+ − = 

 (2.13) 

 

Figure 3. Numerical simulation of the solutions of fractional differential equation in Example-3 for ( )x t  and ( )y t  for different Values of α = 0.6, 0.8 
and 1.0. Figure (e) & (f) and Figure (g) & (h) represents the same figure only length of x-axis is changed here to represent the prominent initial values 

Eliminating A and B as in previous examples, we get,  

 
4 1

0 giving 3,3.
1 2
λ

λ
λ

−
= =

−
 

For 3λ =  from equation (2.4) we get 1A B= = .  
Thus  

 1 1(3 ) and (3 )x E t y E tα α
α α= =  

is one solution of the equation. The second solution is as 
in classical integer order differential equation [[21], pp.307]  

 
2 1 2

2 1 2

( ) (3 )

and ( ) (3 )

x A t A E t

y B t B E t

α α
α

α α
α

 = +  
 = +  

 

α -th order differentiating for above x and y we obtain 
the following 

 1 2 13( ) (3 ) (1 ) (3 )J D x A t A E t A E tα α α α
α αα= + + Γ +  

and 

 1 2 13( ) (3 ) (1 ) (3 ).J D y B t B E t B E tα α α α
α αα= + + Γ +  

Putting the above obtained result in the given equation 
(2.12) we get, 

 

1 2 1

1 1 2 2

1 2 1

1 1 2 2

3( ) (3 ) (1 ) (3 )

(3 )(4 ) (3 )(4 )

3( ) (3 ) (1 ) (3 )

(3 )( 2 ) (3 )( 2 )

A t A E t A E t

E t A B t E t A B

B t B E t B E t

E t A B t E t A B

α α α
α α

α α α
α α
α α α

α α
α α α

α α

α

α

+ + Γ +

= − + −

+ + Γ +

= + + +

 

 1 2 1 1 1 2 2

1 2 1 1 1 2 2

3( ) (1 ) (4 ) (4 )

3( ) (1 ) ( 2 ) ( 2 ).

A t A A A B t A B

B t B B A B t A B

α α

α α

α

α

+ + Γ + = − + −

+ + Γ + = + + +
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Comparing the coefficients and simplifying we get 

 1 1 2 2 1 1, (1 ) (1 )A B A B A Bα α= − = Γ + = Γ +  

for simple non-zero values we take 

  1 1 2 21, (1 ),A B A B α= = − = Γ +  

2for simplicity take 0B = 2then (1 ).A α= Γ +  
Thus the other solution is  

 (1 ) (3 ) and  = (3 ) .x t E t y t E tα α α α
α αα     = + Γ +       

 

Figure 4. Numerical simulation of the solutions of fractional differential equation in Example-3 for ( )x t  and ( )y t  for different Values of α = 0.2, 0.4, 
0.6, 0.8 and 1.0. Figure (i) & (k) and Figure (j) & (l) represents the same figure only length of x-axis is changed here to represent the prominent initial 
values 

Hence the general solution can be written in the form as 
in classical integer order differential equation [[21], pp.307]   1 2

1 2

(3 ) (1 ) (3 )

(3 ) (3 ).

x c E t c t E t

and y c E t c t E t

α α α
α α

α α α
α α

α = + + Γ + 

= +
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Putting the initial condition. 
 (0) 2 and (0) 1x y= =  

and solving we get  

 1 2
11 and .

(1 )
c c

α
= =

Γ +  

Hence the solution is,  

 
1

(1 )

1
(1 )

(3 ) (1 ) (3 )

and (3 ) (3 ).

x E t t E t

y E t t E t

α α α
α αα

α α α
α αα

αΓ +

Γ +

   = + + Γ +   

= +
 

Numerical simulation in Figure 4 shows that ( )x t  and 
( )y t  start from 2 and 1 respectively; and both of them 

start to grow. This time interval to grow decreases as α  
increases. Moreover growth of ( )x t  and ( )y t  is higher for 
is for lower α  values. As α  increases growth rate of the 
solution decreases. This implies for lower values ofα , 

( )x t  and ( )y t  grow initially slowly. Once they start to 
grow, their growth rate is very high whereas for higher 
α values ( )x t and ( )y t  start to grow sooner but their 
growth rate is low. 

From the above discussion of the three cases one can 
state a theorem in the following form  
Theorem 4:  

The solutions of the system of differential equations 

 , Where ,J a b x
D X AX A X

c d y
α    

= = =   
   

 

are 
Case (i)  

 

1 1 2 2

1 2

1 2

1 2

1 2

( ) ( ),
Where , , and are the arbitry constants,
 ,

,
.

X c AE t c BE t
A B c c

a d
ad bc

α α
α αλ λ

λ λ
λ λ
λ λ

= +

+ = +
= −

≠

 

 

 

Case (ii) 

 

1 2 1 2

1 2 1 2

2

( ) ( ) ( ),
Where , , , and are the arbitry constants,
 2 ,

.

X c AE t c B t B E t
A B B c c

a d

ad bc

α α α
α αλ λ

λ

λ

= + +

= +

= −

  

  
 

Case (iii) 

 

1 2

2 1

1 2

2 1

1 2 1 2

2 2

cos ( ) sin ( )

( cos ( ) sin ( ))
( )

cos ( ) sin ( )

( cos ( ) sin ( ))
Where , , , are the arbitry constants,
 2 ,

.

A qt A qt

A qt A qt
X E pt

B qt B qt

B qt B qt
A A B B

p a d

p q ad bc

α α
α α

α α
α αα

α α α
α α

α α
α α

 −
 
 + + =     −
 
 + + 

= +

+ = −

 

3. Application of the Above Formulation 
in Real Life Problem: 

Consider the following fractional damped oscillator, 
formulated by Jumarie fractional derivative 

 [ ] [ ]( )2 2 0.J JD x a D x bxα α+ + =  (3.1) 

Let [ ]J d x
dt

D x y
αα
α≡ =  then the given equation reduce 

to the following system of equation  

 
[ ]

[ ]

2
.

J

J

d yD y ay bx
dt
d xD x y
dt

α
α

α

α
α

α


= = − − 



= = 

 (3.2) 

The above system of equation can be written in the 
form 

 
0 1

.
2

d x
J

dt
J d y

dt

D x x
b a yD y

α
α α

αα
α

 
      
   = =    − −          

 

Let 

 ( ) and ( )x AE t y BE tα α
α αλ λ= =  

be solutions of the differential equations. 
Then  

 
(0 ) 0

.
( 2 ) 0

A B
bA a B

λ
λ

− + = 
− + − − = 

 (3.3) 

For the above system of equation the auxiliary equation 
is, 

 20 1
0 giving 2 0.

2
a b

b a
λ

λ λ
λ

−
= + + =

− − −
 

Here the discriminant is 24( ).a b−  We consider the 

case when 2 0.a b− <  then the eigen-values are 

 2
1 2, where , .p iq p a q b aλ λ = ± = − = −  

Then from (3.3) putting p iqλ = + we get 
( )A p iq B+ = , we can take the solution in the 

form 1, ( )A B p iq= = + . The general solution will be of 
the form,  

 
1

2

( ) )

( ) cos ( ) sin ( )

( ) cos ( )

and ( ) sin ( ) .

x E p iq t

E pt qt qt

x E pt qt

x E pt qt

α
α

α α α
α α α

α α
α α

α α
α α

 = + 
   = +   

   =    
   =    

 

Thus the general solution can be written in the form as 
in classical integer order differential equation [[21], pp.305] 
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 1 2( ) cos ( ) sin ( )x E pt C qt C qtα α α
α α α   = +     

Where C1 and C2 are arbitrary constants. 
 

Here (0) 2x =  and (0) 1J D xα = and solving we get 

1 21 and (1 2 ) / .C C p q= = −  Hence the solution is 

 1 2( ) cos ( ) sin ( ) .p
qx E pt qt qtα α α

α α α
−  = +    

 

 

Figure 5. Numerical simulation of the solutions of fractional differential equation in equation (3.1) for different Values α = 0.2, 0.4, 0.6, 0.8, and 1.0. 
for b=2 and for a=0.1 & a=0 

The numerical simulation of the solutions of the 
differential equation (3.1) has shown in Figure 5, for 2b = , 
left hand figures for 0.1a =  and right hand figures 
for 0a = . Figures 4 (a) and (b) are drawn for 1α = , it is 
clear from the figure in presence of damping the amplitude 
of the oscillation decreases with time. Figures 4 (c) and (d) 
are drawn for 0.8α = , it is clear from the figure in both 
the cases the amplitude of the oscillation decreases with 
time and ultimately amplitude tends to zero. Figures 4 (e) 
& (f) and (g) & (h) and (i) & (j) are drawn for 0.6,α =  

0.4and 0.2  respectively, it is clear from the figures with 
decrease of order of derivative the oscillator losses the 
oscillating behavior.  

4. Conclusions 
The system of fractional differential equation arises in 

different applications. Here we develop an algorithm to 
solve the system of fractional differential equations with 
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modified fractional derivative (with Jumarie’s fractional 
derivative formulation) in terms of Mittag-Leffler function 
and the generalized Sine and Cosine functions. From the 
numerical simulations it is observed that the growing or 
decaying of the solutions is fast in fractional order 
derivative case compare to the integer order derivative. 
The use of this type of Jumarie fractional derivative gives 
a conjugation with classical methods of solution of system 
of linear integer order differential equations, by usage of 
Mittag-Leffler and generalized trigonometric functions 
that we have demonstrated here in this paper. The ease of 
this method and its conjugation to classical method to 
solve system of linear fractional differential equation is 
appealing to researchers in fractional dynamic systems.  
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