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ABSTRACT
Many DBMS products in the market provide built in en-
cryption support to deal with the security concerns of the
organizations. This solution is quite effective in prevent-
ing data leakage from compromised/stolen storage devices.
However, recent studies show that a significant part of the
leaked records have been done so by using specialized mal-
wares that can access the main memory of systems. These
malwares can easily capture the sensitive information that
are decrypted in the memory including the cryptographic
keys used to decrypt them. This can further compromise
the security of data residing on disk that are encrypted with
the same keys. In this paper we quantify the disclosure risk
of encrypted data in a relational DBMS for main memory-
based attacks and propose modifications to the standard
query processing mechanism to minimize such risks. Specif-
ically, we propose query optimization techniques and disclo-
sure models to design a data-sensitivity aware query opti-
mizer. We implemented a prototype DBMS by modifying
both the storage engine and optimizer of MySQL-InnoDB
server. The experimental results show that the disclosure
risk of such attacks can be reduced dramatically while in-
curring a small performance overhead in most cases.

1. INTRODUCTION
Most organizations today store increasing amounts of sen-

sitive data in computer based systems. At the same time
there are increasing concerns related to the security and
privacy of the stored data due to many data theft incidents
reported in the past. According to a recent report [15],
approximately 285 Million records have been stolen from
databases in 2008. It is believed that approximately 4.3
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million of those records contain personally identifiable infor-
mation [15]. According to another study, after a data theft
incident, companies need to spend between $90 and $305
per lost record for various forensic, legal and IT costs [4].

To reduce the effect of various attacks and limit disclosure
risks of sensitive data, organizations prefer to store the con-
fidential data in encrypted format in databases. To support
such demand, most of the commercial DBMS products in the
market nowadays have built-in encryption support. One of
these brands, Microsoft SQL Server 2008 1, provides Trans-
parent Data Encryption (TDE). TDE provides protection
for the entire database at rest without affecting existing ap-
plications. In this security mechanism, a cryptographic key
hierarchy is used to guarantee the secrecy of the keys. All
data and index pages written to the storage device are en-
crypted with database master key (DMK). All DMKs under
a certain service running in the system are encrypted with
the corresponding Service Master Key (SMK). At the root
of this key tree, service master keys are encrypted with the
OS level root key. In this model, since the encryption and
decryption operations are performed in memory, the cryp-
tographic keys needed for such operations must be kept in
memory as well. Unless a special hardware is used, all of
these keys are kept in the main memory as long as they are
in use. The implicit threat model assumed by these prod-
ucts is that the database server is trusted and only the disk
is vulnerable to compromise. In the event that the physical
storage devices are stolen this method prevents data theft
effectively. On the other hand, this model is not strong
enough to prevent data disclosure if the attacker has access
to the main memory of the server itself. According to the
Verizon’s Data Breach Investigation Report [15], newer va-
rieties of malware utilities bypass existing access controls
and encryption, effectively creating vulnerable data stores
that can later be retrieved from the victim environment.
Examples of this include the usage of memory scrapers, so-
phisticated packet capture utilities, and malware that can
identify and collect specific data sequences within memory,
unallocated disk space and pagefile. According to this re-
port, 85 % of the 285 million records breached in the year
2008 were harvested by custom-created malware. Clearly,
a malware observing memory can easily capture the mas-
ter keys used to encrypt/decrypt the sensitive information
stored in the disks2. Once the keys are revealed, all sensitive

1Similar functionality is provided by Oracle. Due to lack of
space, we do not discuss it here.
2Memory scraping is listed among the top 15 data breach
threats in [15].



data may be compromised irrespective of what encryption
algorithm has been used.3

To prevent this type of attacks, SQL Server provides the
Extensible Key Management module (EKM). It enables parts
of the cryptographic key hierarchy to be managed by an ex-
ternal source such as Hardware Security Module (HSM), re-
ferred to as a cryptographic provider4. This external hard-
ware is used to keep the master keys secret. Because of
the low processing capacity, HSM is not used to encrypt
and decrypt the bulk data. Instead, it is used to encrypt
and decrypt the SMKs as needed. The actual data is de-
crypted by the processors of the server machine. Nonethe-
less, the naive usage of HSM does not sufficiently protect
against main memory attacks. If a large portion of the sen-
sitive data is brought into the main memory during query
processing, the disclosure risk increases significantly. Cur-
rent query optimizers aims to minimize the execution cost of
the queries without considering the sensitivity of the table
contents. Instead, a data-sensitivity aware query optimizer
might choose a plan which minimizes the accesses to the
HSM. (An illustrative example is provided in Appendix A).
Unfortunately, none of the existing products take this aspect
into consideration.

Another issue is that the granularity of the leaf level keys
in a given key hierarchy is not small enough to restrict the
disclosure area. For example, if there are multiple SQL
Server database instances running in parallel, during a mem-
ory attack, all DMKs of these databases will be compromised
no matter what particular subset of these databases were in
use at that moment.

In this paper, to create a better last line of defense and
to address some of the issues with current encrypted data
storage, we create the following novel solutions:

• We propose a novel query optimization approach that
is cognizant of the disclosure risk of sensitive data.
We derive appropriate disclosure-risk metrics for all
kinds of data access mechanism considered by a typical
DBMS optimizer.

• We incorporate our search algorithm by modifying a
popular (publicly available) query optimizer to gener-
ate plans that minimize main memory disclosure risks
while keeping performance overheads within specified
bounds. We also illustrate how to integrate the rela-
tively slow cryptographic hardware without incurring
substantial overhead.

• We carry out empirical tests to understand the na-
ture of tradeoff between performance and disclosure-
risk. We compare the performance of 3 different search
mechanisms for determining the most desirable trade-
off points.

Next, we describe our threat model and give an overview of
the proposed architecture.

1.1 Threat Model and System Overview
Threat model: In this paper, we address a threat model

where both the memory and hard disk are not trusted and

3The proposed techniques in this paper are also effective
against the attack scenarios described in [6] where they de-
scribe how to capture cryptographic keys from the memories
with cold boot attacks.
4We use the term Secure Co-rocessor (SCP) and HSM in-
terchangeably

only the client and HSM are trusted. Trusting a hardware
component means that there is negligible probability that
any malware or malicious agent will have access to (be able
to tamper) the data residing on that component. Further-
more, we assume a passive adversary (e.g., malware) has
access to the contents of the memory and the entire hard
disk from time t1 to time t2. In this threat model, we try
to limit what the passive adversary can learn by observing
the contents of the memory by smartly designing the query
optimizer.

Disclosure metric: There are many ways one can model
memory scraping attacks in RDBMS. We chose one where
the duration of attack is assumed to be longer than the query
execution time. Therefore, an adversary may gather either
decrypted data or keys off the memory brought in during a
particular query execution within the interval of attack. The
metrics proposed in this paper estimate the “worst case”
number of records that may be disclosed as a result of such
an attack. They account for all the records in the extents
corresponding to any data item retrieved during execution
of the query. Modeling attackers in a more sophisticated
manner, for example taking bandwidth limits, smaller dura-
tion (but perhaps repeated) attacks, effect of buffering and
data lifetime, presence of concurrent queries etc. are all in-
teresting directions for future work to address the memory
scraping threats in RDMS more comprehensively.

In the proposed system, the decryption operation is per-
formed in the server with the symmetric keys generated by
the HSM. Based on the threat model described above, we
define the disclosure risk as follows. Let Skey be the set
of symmetric keys residing in the memory during the attack
[t1, t2]. We assume that all sensitive attributes of the records
(i.e., cells) encrypted with any key in Skey are compromised.
Based on this assumption we propose disclosure models in
Section 2 for different query evaluation techniques. In these
models we use “the number of cells” as the disclosure
metric5. To clarify the definition of disclosure cost, consider
the following example. Let a table T have two sensitive and
three non-sensitive attributes and say, each data page of T
can accommodate 100 tuples of T . Suppose further that
each data page of T is encrypted with a unique key. That
is, whenever a data page of T is retrieved to the memory, the
HSM generates a unique decryption key for this page and
the sensitive records in this page are decrypted with this key
in the main memory of the server. If a query plan p requires
accessing 1000 data pages of T , then the disclosure risk of p
is computed as: 1000 * 100 * 2 = 200,000. Using this metric,
we compare the disclosure cost of different query plans.

Proposed Architecture:
The proposed architecture is summarized in Figure 1.

When a query is issued to the DBMS (item 1 in the fig-
ure), after parsing the query, the optimizer starts analyz-
ing alternative query execution plans. The query optimizer
solves a multi-objective optimization problem that considers
the sensitive record disclosure risk and the query execution
time. In this paper, we focus on minimizing disclosure risk
for each query independently, and do not consider the effect
of running multiple queries concurrently. Such independent
query evaluation could be considered as the worst case sce-
nario for data disclosure risk. We leave the concurrent query
optimization for minimizing sensitive data disclosure as a di-

5Cell is described as the smallest indivisible values of the
tuples.
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Figure 1: System overview

rection for future work.
During the execution, the pages are requested from the

storage engine (item 2). If the page does not exist in the
buffer pool, the request is forwarded to the file manager for
retrieval (item 3). After the encrypted page is retrieved from
the disk (item 4), the file manager requests the decryption
key from the HSM (item 5). This request includes the extent
ID 6 of the page. In the proposed system, all of the pages
within an extent are encrypted with the same key. One could
prefer key management at the level of pages or records but
there are negative performance implications of this decision.
We discuss the details of why we prefer extent level key
management in Appendix B.

Once the key request is received (item 6), HSM computes
the hash of this ID and encrypts the output of this hash func-
tion with the master key stored within the HSM. Therefore
a MAC based approach is used to generate the extent keys.
Once the key is generated, it is returned to the file manager
along with the audit log record (item 7). Next, the file man-
ager writes the audit log record to the disk (item 8). The
audit logs are used to keep track of extent accesses during
the query execution. Since HSM needs to be used to access
any encrypted data page, such logs will provide an accurate
estimate of what could be leaked during an attack. Next,
the file manager decrypts the page using the extent key and
forwards the decrypted page to the buffer pool for process-
ing (item 9, 10). Note that the decryption of the data page
is performed in the system memory, not in the HSM. If the
attacker monitors the content of the memory during these
operations, all records within the extent would be compro-
mised since the extent key resides in the memory during the
attack.

To guarantee that the remnants of the sensitive informa-
tion is removed from the memory, the proposed system has
a mechanism called Page Expiration Controller. The objec-
tive of this component is to delete both the extent keys and
the sensitive pages (item 11, 12) from the memory after a
certain amount of time, tlife. In [3], Chow et al. present
a technique for reducing the lifetime of sensitive data (i.e.,
encryption keys, sensitive records) in memory called secure
deallocation so as to minimize the data disclosure from the

6An extent is defined as a set of contiguous blocks allocated
in a database tablespace.

memories. The basic idea is to “zero” the data either at
deallocation or within a short, predictable period afterward
in general system allocators. They show that this method
substantially reduces the data lifetime with minimal imple-
mentation effort in the existing operating systems. We use a
similar technique to guarantee that given an attack interval
[t1, t2] there are no remnants of the data pages or the keys
retrieved to the memory before t1 − tlife. This is essential
for the accuracy of the auditing process. If a data page has
to stay longer than tlife in the memory, an audit log record
including this extension event is written to the Audit Logs
disk.

Outline of the remaining paper: In Section 2 we dis-
cuss the relation of performance and disclosure risk in a
RDBMS and derive concrete measures for the latter. In
Section 3 we discuss how to jointly optimize for both perfor-
mance and disclosure-risk and describe our implementation
of the enhanced disclosure aware query optimizer. Subse-
quently, in Section 4 we describe our experimental setup and
discuss the results on the TPC-H benchmark. We summa-
rize the related works in Section 5 and conclude in Section 6.

2. DISCLOSURE METRICS FOR MEMORY-
BASED ATTACKS

Current database products are designed to minimize the
response times of the queries issued by the clients. Estimat-
ing the query execution cost is one of the major steps in
the query optimization process. Modern databases consider
numerous factors while estimating the cost of alternative
plans. Some of these factors are number of page I/Os and
blocked I/Os, physical access speed of the storage devices,
CPU costs etc. [10]. Using these parameters, the goal of
the traditional optimizer is to generate a query plan that
minimizes the response time of the issued queries. Typi-
cally, query optimization consists of two phases - a heuris-
tics based query rewriting phase that generates a logical
plan and a cost-based optimization phase that generates a
physical plan starting from the output of the first phase. In
the first phase, the optimizer employs standard heuristics to
rewrite the parsed query tree where all selection and pro-
jection operators (restrictions) are pushed down the appro-
priate branches of the tree as deep as possible. The second
phase is a cost-based optimization step where predicate eval-
uation ordering and join ordering (for multi-relation queries)
are selected. However, the sensitivity of contents of the ta-
bles are not taken into account while evaluating alternative
plans. This, in turn, could lead to a dramatic change in
the data exposure risk depending on the selected plan. Our
goal in this study is to design an optimizer that not only
maximizes the performance but also minimizes the disclo-
sure risk. Below we first discuss this problem by analyzing
a query evaluation scenario and then present the measures
to estimate the disclosure risk of alternative query execution
plans.

In our model since the pages are decrypted as soon as they
are brought into the memory, the disclosure risk is only pro-
portional to the number of different extent keys that are
accessed. This, in turn is assumed to be proportional to the
number of pages brought into the memory under the random
spread assumption (i.e., the fact that each matching tuple
can reside anywhere on the disk independent of other tuples
in the set). Therefore, the disclosure risk is only depen-
dent upon the selectivity of the least selective predicate in



the query. In an alternate model where one has a choice to
postpone the decryption of a page until processing the sen-
sitive records, the optimal predicate ordering might differ
significantly. A detailed discussion on this issue is provided
in Appendix C.
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Figure 2: Possible execution plans for a given query

Disclosure risk vs. performance cost: Before deriv-
ing the disclosure metrics to be used by an optimizer, here we
illustrate via an example how the disclosure cost and perfor-
mance vary across different query plans for a sample query.
Using the metrics to be described soon (in Section 2.1 and
Section 2.2) we implemented a disclosure estimator module
in MySQL query optimizer. The objective of this module is
to estimate the disclosure risk of alternative query execution
plans. Using the TPC-H schema [16], we created a database
instance and designated four attributes of Customer table
and eight attributes of Lineitem table as sensitive. Next, a
query joining six tables is issued to the database (See Ta-
ble 2 in the Appendix for the query). Consequently, 720
(6!) different enumeration plans are generated. Each point
in Figure 2 represents an alternative execution plan (Only
the top 20 query plans are plotted, the full plot is shown in
Figure 8 in the Appendix). The x axis represents the query
execution cost and the y axis represents the disclosure risk
for the execution plans. In this figure, plan B minimizes the
execution cost whereas plan A minimizes the disclosure risk.
Hence, there is no single query execution plan for which both
the execution time and the disclosure risk are minimized.
This is a common problem in multi-objective optimization
which involves the application of special methods in order
to obtain a viable solution.

In Section 3, we discuss alternative approaches to solve
this multi-objective optimization problem. We now present
metrics to estimate the disclosure risk given different input
parameters and data access paths for a query. We also refer
to the disclosure risk metrics as the cost functions

2.1 Disclosure Risk for Single-relation Queries
Single-relation queries include only one relation in the

FROM clause. During the evaluation of these type of queries
the disclosure cost changes dramatically depending on the
existence of indexes. Therefore we will analyse the disclo-
sure issue in single relations under two categories: “Plans
without indexes” and “Plans utilizing at least one index”
similar to the chronology of discussions in [10]. We use the
notations given in Table 1 while describing the models.

In the cost models, we assume that all sensitive attributes
of the relations have the same disclosure risk. However,
different attributes of a table could have different levels of

Table 1: Notations used for disclosure model
D(R) Total disclosure cost of accessing the relation R
Next(R) Number of extents in relation R
Erec(R) Number of records in an extent
Ctotal(R) Number of sensitive and nonsensitive columns

in relation R
Csens(R) Number of sensitive columns in relation R
Srange(R) Number of records satisfying a range condition

defined on R

Ii
nleaf (R) Number of sensitive values in a non-leaf

index page of the ith index defined on R

Ii
leaf (R) Number of sensitive values in a leaf index page

of the ith index defined on R
EiP age(R) Number of index pages within an extent

for the ith index defined on R
Eexp(k) Expected number of extents touched while accessing

k records through an unclustered index

disclosure risk. For instance, an attribute containing the so-
cial security numbers of the clients may be considered more
sensitive than their phone-number attribute. In this case,
the data owner may prefer assigning weights to the sensitive
attributes proportional to their sensitivity. The models de-
scribed below can be easily extended to accommodate such
variations.

Granularity of encryption: We provide the disclo-
sure cost models for only column level encryption. We as-
sume that a column encryption scheme similar to one pro-
posed in [7] can be implemented wherein each page that is
brought into the memory is decrypted separately. 7 For the
databases where the table level encryption is used, the cost
estimations can be carried out by assuming that all columns
contain sensitive information. (See [2] for a detailed discus-
sion on table level encryption and column level encryption).

2.1.1 Plans without indexes
The simplest way of accessing the records of a relation is

to scan the data pages in a linear order if there is no in-
dex created on it. During a table scan all data pages are
retrieved to the memory. Consequently, all sensitive infor-
mation stored in relation R will be disclosed. The disclosure
cost in this case would be:

D(R) = Next(R) ∗ Erec(R) ∗ Csens(R). (1)

2.1.2 Plans utilizing an index
In case that the selectivity of predicates is very low, using

indexes may improve the performance substantially. Addi-
tionally, the disclosure cost will be much less than a table
scan if indexes are used. In the following models we assume
that B+ tree indexes are used.

Single-Index Access Path: If there is an index on a
relation R which matches a range condition in the WHERE
clause of the query, first, the initial leaf page of the index tree
including the data entries (or records if it is a primary index)
should be identified. During this operation some non-leaf
index pages should be retrieved to the memory. Typically
2-4 I/O’s are performed to find this page [10]. These non-
leaf index pages may include sensitive values. The disclosure
cost of these top down tree traversal is EiPage(R)∗Ii

nleaf (R)
per I/O operation.

The disclosure cost of traversing the leaf pages depends
on whether the index is clustered. If it is clustered, then
the records satisfying a range condition could be found in
the consecutive data pages8. Since the consecutive pages are
stored in contiguous extents, we can compute the disclosure

7Here we assume that the cost of page level encryption and
decryption are hidden in the I/O latency.
8Here we assume that the data entries are the actual data
records since this is a primary index.



risk by estimating the number of extent keys that need to be
retrieved from the HSM to the memory. In the worst case,(⌈

Srange(R)

Erec(R)

⌉
+ 1

)
keys will be requested from the HSM,

including the first and last extents which includes some extra
records out of the range condition. Then, the worst case
total disclosure cost of a clustered index access will be:
(⌈

Srange(R)

Erec(R)

⌉
+ 1

)
∗Erec(R)∗Csens(R)+4∗EiPage(R)∗Ii

nleaf (R)

(2)

If the index is not clustered (i.e., a secondary index), the
traversal of data entries will reveal some information if the
key values in the data entries are sensitive. Then, the disclo-
sure cost of the traversal will be Ii

leaf (R) for each consecu-
tive accessed leaf page. In the worst case the I/O cost would
be one I/O per matching key value under the random spread
assumption. Therefore, the worst case disclosure cost is esti-
mated as Erec(R)∗Csens(R), that is, one extent per match-
ing tuple. For average cost estimation we use a model similar
to the one in [11]. Suppose that Srange(R) records satisfy
a given range condition. Then, the disclosure cost will be
Eexp(Srange(R))∗Erec(R)∗Csens(R) where Eexp(Srange(R))
can be estimated by using the Cardenas formula [17]. If
there are |R| records in Next(R) extents in relation R, then
the number of extents touched while accessing Srange(R)
records through an unclustered index will be:

Eexp(Srange(R)) = Next(R) ∗
(

1−
(

1− 1

Next(R)

)Srange(R)
)

(3)

Then, the worst case total disclosure cost for non-clustered
index is:

Eexp(Srange(R))∗Erec(R)∗Csens(R)+4∗EiPage(R)∗Ii
nleaf (R)

(4)

Note that, expression 3 is independent of |R| (the total
number of records in R). Yao mentions in [17] that the error
involved in using this approximation is negligible for cases in
which the number of tuples per page is not a small number
(say < 10). This assumption is typically true for page sizes
used in today’s database systems (4KB-32KB) [11].

Multiple-Index Access Path: If there are multiple in-
dexes (i.e., secondary indexes) matching the predicates in
the WHERE clause of the query, these indexes can be used
together to minimize the number of data pages retrieved to
the memory. The disclosure model of this evaluation method
is similar to the single index case except the disclosure cost
of each non-leaf traversal operation for each index should be
calculated independently.

Index-Only Access Path: If all of the attributes men-
tioned in the query (in the SELECT, WHERE, GROUP
BY, or HAVING clauses) are included in the search key
for some dense index on the relation in the FROM clause,
an index-only scan can be used to compute answers [10].
The disclosure cost of using an index-only plan consists
of the disclosure due to the traversal of non-leaf and leaf
nodes of the index tree. Similar to the single index case,
the disclosure cost of top down tree traversal cost will be
EiPage(R) ∗ Ii

nleaf (R) for each I/O operation. As for the
leaf pages, if the index is a primary index then the disclosure

cost will be
(⌈

Srange(R)

Erec(R)

⌉
+ 1

)
∗Erec(R) ∗Csens(R). If it is

a secondary index, then the disclosure cost will be Ii
leaf (R)

for each consecutive accessed leaf page.
We do not derive expressions for the multiple index cases

here. In general, different ways of traversing the indexes will
lead to differing degrees of disclosure.

2.2 Disclosure Risk for Multi-relation Queries
Join Algorithms: The most commonly used join al-

gorithms in the conventional database systems are nested
loop join, block nested loop join, index nested loop join, sort
merge join, and hash join. Except index nested loop join,
all of these algorithms require at least one scan over the
joined relations9. Therefore, the disclosure cost of these
algorithms except index nested loop join is computed sim-
ilar to the single relation plans without indexes. That is,
D(R) = Next(R) ∗ Erec(R) ∗ Csens(R) for each joined rela-
tion. This can be effectively written as:

|R| ∗ Csens(R) (5)

As for the index nested loop join algorithm, the disclosure
cost of accessing the outer relation, and the inner relation,
is estimated separately. The summation of these costs will
yield the overall cost of the join operation. Let Do(R) be the
disclosure cost of accessing the outer relation R and Di(S)
be the cost of accessing the inner relation S. If the relations
R and S are joined with index nested loop join algorithm,
then the records of R is scanned at least once. Consequently,
all sensitive information in R will be revealed. Then, Do(R)
will be |R|∗Csens(R). On the other hand, the disclosure cost
of accessing the inner relation depends on the index type on
it (i.e., primary or secondary index). For each tuple from R,
the index on S will be accessed to find matching tuples. Let
Dindex(S) denote the disclosure cost of accessing S via index.
In Section 2.1.2 we explained how to estimate Dindex(S) for
a particular equality or range condition. Using this model
the disclosure cost of accessing S is the following:

Di(S) = Min (|R| ∗Dindex(S), |S| ∗ Csens(S)) (6)

The summation of each index access cost on S and the
linear scan cost of R, will then yield the overall disclosure
cost of the index nested loop join algorithm.

3. MULTI-OBJECTIVE QUERY OPTIMIZA-
TION

We presented various cost metrics for different access meth-
ods in the previous section. We now describe how the query
optimizer can be modified to take disclosure risk costs into
consideration while query plan generation.

3.1 Combining two cost measures
Multi-objective (MO) problems are traditionally solved by

converting all objectives into a single objective (SO) func-
tion. The ultimate goal in this process is to find the solution
that minimizes or maximizes this single objective while sat-
isfying the given constraints [8]. Below, we discuss some of
the classical methods and how to apply them to our prob-
lem.

Weighted Aggregation Approach: Conversion of the
MO function into an SO function is usually carried out by
aggregating all objectives in a weighted function. The major
issue in this approach is that it requires an a priori knowl-
edge of the relative importance of the objectives [8]. In our

9For sort merge join, we assume that there is no index on
the join attribute that can be used for merging the tuples.
If there is an index used on one of the tables, the disclosure
cost of accessing this table could be estimated similar to the
one in index nested loop join.



case, aggregation can be employed by expressing the dis-
closure risk and execution cost in monetary terms. Next,
this aggregate monetary cost can be minimized subject to
the constraints. According to a new study by Forrester Re-
search, the average security breach can cost a company be-
tween $90 and $305 per lost record [4]. Considering the
criticality of the system, the cost of the execution time for
the issued queries can also be estimated. Then, these unit
weights can be multiplied by the estimates for each query
plan. The objective of the query optimizer is minimizing
the sum of these costs.

Constraint Approach: An MO problem with n objec-
tives can also be solved by transforming n−1 objectives into
constraints and minimizing or maximizing only one objec-
tive subject to the constraints. In this approach a security
administrator sets a tolerance ratio α > 0 on either the
performance loss or the disclosure risk. Suppose κ denotes
the minimum disclosure risk that can be achieved among all
possible execution plans. Suppose further that the disclo-
sure risk cannot exceed κ+κ ∗α% is the security constraint.
Then, the objective of the optimizer is to minimize the ex-
ecution cost while ensuring that the disclosure risk is not
higher than κ+κ∗α%. Consider the following example. For
a given query q, suppose that the disclosure risk of query
plan pi is 1000 records and this plan minimizes the disclo-
sure risk among all possible execution plans. As for the
tolerance ratio, the security administrator sets the value of
α at 20. Given α, the optimizer is now free to select any
query plan pj as long as its execution cost is less than the
execution cost of pi and the disclosure risk is less than 1200
records. Hence the optimizer may select a query plan p*
which has a disclosure risk between 1000-1200 records and
an execution time less than that of pi.

Note that the above logic also applies to the case where
the administrator sets a tolerance ratio on the execution
time and determines the plan which yields the minimum
disclosure risk.

3.2 Modifications in MySQL Query Optimizer
and InnoDB Storage Engine

Query Engine: The suggested algorithms has been im-
plemented by modifying the source code of MySQL 5.1.38
query optimizer. The implementation is about two-three
man months, but for more sophisticated optimizers this cost
could be slightly higher. Given a set of query tables,
best extension by limited search procedure in sql select.cc file
searches for the optimal ordering of these tables and the cor-
responding optimal access paths to each table. The pseu-
docode of this procedure is given in Algorithm 1. The name
of the recursive procedure in the pseudocode is denoted as
findBestPlan. This is essentially a dynamically pruning, ex-
haustive search algorithm. Therefore, the complexity of the
algorithm is O(N!) in the worst case where N is the number
of base tables. The procedure constructs all alternative left
deep trees by iterating on the number of relations joined so
far, while pruning suboptimal trees. We changed three parts
of this procedure. These are: cost estimator, pruning con-
ditions and best plan selection conditions. The given pseu-
docode includes the implementation details of the Weighted
Aggregation approach and Constraint on Performance ap-
proaches. Due to lack of space the full pseudo-code includ-
ing the description of Max Performance, Min Disclosure,
and Constraint on Disclosure is given in Algorithm 2 in Ap-

pendix E. Max Performance is the default implementation
of the optimizer which aims to maximize the performance
by reducing the overall execution cost. We implemented a
second approach called Min Disclosure and the goal of this
is to reduce the disclosure without considering the overall
execution cost.

Recursive Procedure: findBestPlan
Input: execCost, discCost, bestExec, bestDisc, Stables, bestJoinOrder
// Stables is the set of tables to traverse

Output: bestJoinOrder
1 foreach table T in Stables do
2 cummDiscCost = discCost + estimateDiscCost(T ) ;
3 cummExecCost = execCost + estimateExecCost(T ) ;
4 if OptAlgorithm = “Weighted Aggregation” then
5 bestWeightedCost =
6 (discWeight * bestDisc) + (perfWeight * bestExec) ;
7 cummWeightedCost =
8 (discWeight * cummDiscCost) + (perfWeight * cummExecCost) ;
9 if cummWeightedCost > bestWeightedCost then

10 backTrack ;
// Prune sub-tree

11

12 else if OptAlgorithm = “Constraint On Performance” then
// κ: minimum execution cost among all possible query plans

// α: tolerance ratio on performance

13 maxAllowedCost = κ+κ ∗ α% ;
14 if cummExecCost > maxAllowedCost and cummDiscCost > bestDisc then
15 backTrack ;
16

17
// Recursively expand the current partial plan

18 if Stables − T is not empty then
19 findBestPlan(cummExecCost, cummDiscCost, bestExec,

bestDisc, Stables − T , bestJoinOrder) ;
20
21 if OptAlgorithm = “Weighted Aggregation” then
22 bestWeightedCost =
23 (discWeight * bestDisc) + (perfWeight * bestExec) ;
24 cummWeightedCost =
25 (discWeight * cummDiscCost) + (perfWeight * cummExecCost) ;
26 if cummWeightedCost < bestWeightedCost then

// A better path is available

27 bestExec = cummExecCost ;
28 bestDisc = cummDiscCost ;
29 updateBestJoinOrder(T, bestJoinOrder) ;
30

31 else if OptAlgorithm = “Constraint On Performance” then
32 maxAllowedCost = κ+κ ∗ α% ;
33 if cummExecCost < maxAllowedCost and cummDiscCost < bestDisc then
34 bestExec = cummExecCost ;
35 bestDisc = cummDiscCost ;
36 updateBestJoinOrder(T, bestJoinOrder) ;
37

38

39 end

Algorithm 1: Pseudocode of the modified query optimiza-
tion algorithm (with additional pruning and decision steps)

For each table T in a set of base tables Stables, the execu-
tion cost and the disclosure cost of joining this table as the
inner table with the tables in the current partial plan is esti-
mated and added to the costs accumulated so far (line 2, 3 in
Algorithm 1). Then, the pruning conditions are checked to
back track the traversal of the tree when a better plan is not
available (line 4-15). When Weighted Aggregation approach
is used, a weighted cost of disclosure cost and execution cost
is computed. Using this aggregate cost a decision of pruning
the rest of the path is made (line 9, 10).

For Constraint on Performance approach, a maximum ac-
ceptable limit on the performance cost is computed using
κ and α. (κ is the minimum execution cost that can be
achieved among all possible execution plans and α is the
tolerance ratio). If the traversal of the nodes in the path
does not provide a better performance than the best plan
selected so far or a better disclosure cost is not available,
the path is pruned (line 14-15). Without a full traversal of
the tree, the value of κ can not be estimated. To tackle
this problem two methods can be applied. The first method
involves traversing the tree twice. In the first traversal, the
value of κ is computed and then used in the second run to
find a plan which minimizes the disclosure cost while ensur-
ing that the execution cost does not exceed κ+κ ∗ α%. The



second method has the advantage of traversing the tree once
but this solution requires exponentially large memory space
in the worst case. The details of this alternate algorithm is
discussed in Appendix D.

After the pruning steps the current partial plan is ex-
panded with a new table in the tree which is not visited
in the current path so far (line 18-19). This recursive pro-
cedure call includes accumulated costs and the remaining
tables that need to be visited in the child nodes.

After all nodes in the current path in the tree are ex-
panded, the decision of updating the best join order vari-
ables is made depending on the selected optimization algo-
rithm (line 21-36). To keep track of the best join order, a
path variable bestJoinOrder is used and updated once a bet-
ter path is found. At the end of the traversal of the nodes,
the best join order is returned to the execution engine for
evaluation.

For the disclosure estimations, we used best access path
procedure to get the number of rows satisfying a predicate
and the access method (whether a full scan or index ac-
cess). Since we use the existing cost estimator of the engine
to predict the result size of the operators, the accuracy of
the implemented disclosure risk estimator depends on the
accuracy of the cost estimator of the optimizer. The other
parameters that we use in our cost model are read from an
external configuration file. In a real implementation these
parameters could be retrieved from the catalog tables rather
than reading from a configuration file.

Storage Engine: We modified the source code of MySQL
5.1.38 InnoDB storage engine to integrate the secure copro-
cessor to the storage engine. The encryption/decryption
layer has been implemented by modifying the file manager
layer (fil0fil.c) and buffer pool layer (buf0buf.c) of InnoDB
storage engine. Before writing a page to the disk, the page
frame is encrypted with the key generated by the secure
coprocessor within procedure fil io in fil0fil.c. When a page
including sensitive information is retrieved to the buffer pool
from the disk, the page frame is decrypted in buf page io complete
with the key generated by the SCP. For each SCP accesses,
a log record is generated and flushed to a log file for au-
diting purposes. In the experiments section we discuss the
performance overhead of these operations.

4. EXPERIMENTS
To compare the effectiveness of the proposed approaches

we conducted several experiments using TPC-H schema and
queries. After presenting these observations, we discuss the
experiment results related to the performance overhead of
key generation and logging mechanism.

4.1 Experiments with TPC-H workload
We prepared an experiment bed using the TPC-H queries

and the TPC-H schema which includes 8 relations. In total,
1.5 GB of disk space is used to create the TPC-H database
(Scale factor 1). Using 5 TPC-H queries (Query # 2, 5, 9,
10, 17) as the basis, we prepared a workload of 100 TPC-H
queries. The hardware and software specifications are given
in Appendix E.1 and the details of the workload preparation
steps are given in Appendix E.2.

Experiment with constant weights and constraints:
In this experiment, our goal is to compare the perfor-

mance and disclosure risk of running a workload while choos-
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Figure 3: Comparison of query optimizer algorithms

ing alternative multi-objective optimization algorithms. We
run the workload repeatedly (five times) on the modified
MySQL database server and monitored the cumulative dis-
closure risk and the execution time estimated by the query
optimizer for different algorithms. In the configuration file
we designated Customer and Supplier tables as the tables
including sensitive information. The results are given in
Figure 3. The dashed bars in the figure represents the total
disclosure risk (see left y axis) for a particular algorithm.
The black bars represent the cumulative execution time of
the workload (see right y axis). Each pair of bars correspond
to a single run of the workload. In the first run Max Perf.
algorithm is chosen. In this algorithm, the performance is
maximized while disregarding the disclosure risk. As seen in
the figure, the total execution time of the workload is min-
imized when this algorithm is chosen. However, this option
also maximizes the disclosure risk by retrieving maximum
number of sensitive information to the memory. This op-
tion represents the default choice of conventional database
optimizers. The second algorithm aims to minimize the dis-
closure risk without considering the performance penalty.
Note that the execution time of the workload in this case
is about three orders of magnitude greater than the one in
Max Perf. algorithm while reducing the disclosure risk by a
factor of three. The third pair in the figure corresponds to
the weighted aggregation approach. As we discussed earlier
the average security breach can cost a company about $200
per lost record. So we set the weight of the disclosure as 200.
As for the execution cost, we assumed that each delayed sec-
ond of the queries costs a dollar for the company. So we set
the disclosure cost weight as 1, in this particular scenario.
Given these parameters, we observed that the cumulative
disclosure risk of the workload in this case is similar to the
one in Min Disc. approach whereas the execution time is re-
duced by about two orders of magnitude. Compared to the
Max Perf. approach, the execution cost is increased. If one
considers both the disclosure risk and execution cost of the
workload this approach would yield more preferable results
compared to both Max Perf. and Min Disc. approaches. As
for the fourth experiment, we tuned the database with the
constraint approach parameters. In this run, we assumed
that there is 30 % limit on the performance loss. That is, the
optimizer aims to minimize the disclosure risk while guar-
anteeing that there is no performance loss more than 30 %
compared to the best running time. As seen in this figure,
there is a slight increase in the overall workload execution
performance (less than 3 %) whereas the disclosure risk is
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Figure 4: a) Number of SCP accesses during the execution of the workload b) Constraint on Disclosure and
Constraint on Performance c) Weighted Aggregation Approach

better than the one in Max Perf. approach (about 20 %).
The last experiment is similar to the fourth one. In this run,
we assume that there is 30 % limit on the disclosure risk.
The results are similar to what we observe in weighted aggre-
gation approach. Compared to the other three approaches
this one provides more balanced results in terms of both
performance and disclosure.

We implemented a program to analyse the audit logs gen-
erated by the DBMS. Using this program, we counted the
number of SCP accesses during the execution of the work-
load (see Figure 4-a). We observed that the number of SCP
accesses in Max Perf. is reduced by a factor of three in Min
Disc., Weighted Aggregation and Constraint on Disclosure
approaches which is parallel with the disclosure estimations
of the query optimizer.

Experiment with changing constraints:
In this experiment, our goal is to observe the impact of

constraint parameter on the disclosure and performance of
a given workload. Using the database instance described
above we run the same workload on MySQL while changing
the constraint parameter. Each point in Figure 4-b repre-
sents the disclosure and execution time of a single run of
the workload. As discussed in Section 2, a constraint could
be defined either on disclosure or performance. Therefore,
for various constraint ratios (see the x axis), we run the
workloads for both “Constraint on Performance (COP)” and
“Constraint on Disclosure (COD)”. In the COP approach,
as the constraint ratio on performance is relaxed, the execu-
tion time increases while the disclosure risk reduces. In the
COD approach, the opposite of this behavior is observed as
expected.

Experiment with changing weights:
In this experiment, our goal is to observe the impact of dif-

ferent weights on the disclosure and performance of a given
workload. Similar to the constraint approach experiments,
each point in Figure 4-c represents the disclosure and ex-
ecution time of a single run of the workload. For various
weight ratios (ratio of disclosure cost to the execution cost),
we run the workload. As the weight of the performance cost
gets higher, the execution time starts decreasing while the
disclosure risk starts increasing.

4.2 Performance Overhead of Key Generation
and Audit Log Generation Mechanism

As we discussed earlier accessing the key generation hard-
ware at smaller granularities such as single key per record
or single key per page will incur too much performance
cost while reducing the disclosure risk. Therefore, we pro-
posed the idea of extent level key management. To prove

the effectiveness of this approach we run a query workload
and measure the overall execution time while changing the
granularity of key generation. We observed that generat-
ing keys (i.e., accessing the HSM) per each extent provides
substantial improvement in terms of both performance and
disclosure. The details of the experiments are discussed in
Appendix E.3. Additionally, we measured the overhead of
generating and flushing the audit logs to the disk while ex-
ecuting the queries. We observed that this process incurs
less than 3 % performance overhead during the execution of
workloads.

5. RELATED WORK
There are numerous studies that address several problems

regarding database auditing and forensic analysis and pro-
vide alternative solutions to deal with them. Most of these
studies focus on detection and protection of database tam-
pering. In [12] Schneier et al. present a general scheme
that allows keeping an audit log on an insecure machine, so
that log entries are protected even if the machine is com-
promised. In [5] a special mechanism is proposed to cer-
tify the creation and modification of digital documents such
as text, video and audio files. In [14] Stahlberg et al. in-
vestigate the problem of unintended retention of data in
database systems, and build a database system that is re-
sistant to unwanted forensic analysis. They show how data
remnants in databases pose a threat to privacy. In [9] Pavlou
et al. focus on the problem of determining when the tam-
pering occurred, what data was tampered with, and who
did the tampering, via forensic analysis. In [13] a secu-
rity mechanism within a DBMS is proposed that prevents
an intruder within the DBMS itself from silently corrupt-
ing the audit logs. The solution they propose involves use
of cryptographically strong one-way hash functions. Unlike
ours, none of these studies addresses the problem of detect-
ing and minimizing what is revealed in databases during a
memory attack. In [1], a secure database architecture is im-
plemented within a tamper resistent USB key. Unlike this
study, we outsource the computations to the server (instead
of performing the cryptographic operations within secure
hardware due to the performance limitations) while trying
to minimize sensitive data disclosure risks under various at-
tacks.

6. CONCLUSION
In this work, we consider the problem of estimating dis-

closure cost incurred in query processing over data with sen-
sitive information. Specifically, we study the risk of sensi-
tive data exposure when the adversary is able to access the
contents in the main memory of the server during query ex-



ecution. We enhanced the query optimization techniques
to consider both the sensitive data disclosure risk and the
execution costs and provide knobs to the administrator to
select the desired tradeoff between the two. In addition,
we developed methods to securely generate audit logs which
is critical for forensic analysis after an attack occurs. Our
results indicate that careful consideration of disclosure risk
and query execution cost is indeed required to balance se-
curity and efficiency of query processing. Our work in this
paper just scratches the surface of this important new direc-
tion of potential research. As a future work, we will analyze
the impact of various query rewriting strategies and heuris-
tics (e.g., pushing selections) on disclosure risk. Also, we
will explore how to efficiently store and analyze the audit
log for effective forensic analysis. Furthermore, we plan to
extend our framework to consider active memory attacks
where the attacker can modify the contents of the memory
as well.
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Figure 5: Query execution plans

APPENDIX

Table 2: Sample query
SELECT n name, sum(l extendedprice * (1 - l discount)) as rev-
enue FROM customer, orders, lineitem, supplier, nation, region
WHERE c custkey = o custkey AND l orderkey = o orderkey
AND l suppkey = s suppkey AND c nationkey = s nationkey
AND s nationkey = n nationkey AND n regionkey = r regionkey
AND r name = ’AMERICA’ AND o orderdate ≥ ’1993-01-01’
and o orderdate < ’2000-01-01’ AND O ORDERKEY BETWEEN
261658 and 271658 GROUP BY n name ORDER BY revenue
DESC

A. MOTIVATING EXAMPLE FOR QUERY
OPTIMIZATION

Suppose that the following query is issued to the database:
Select ∗ From A, B, C Where A.pk = B.pk and B.pk =
C.pk. Table A includes sensitive information and all of the
data pages of this table are stored in an encrypted format in
the disk. Tables B and C include non-sensitive information
and the records of these tables are not encrypted. Suppose
further that two alternative join plans given in Figure 5 are
considered. Without the knowledge of the sensitivity of the
tables, the query optimizer selects the plan on the left as-
suming that this is the least costly plan. However, this plan
requires accessing all of the rows of table A and therefore
maximizes the risk of disclosure. To be able to access all of
the rows, all of the data pages of A should be decrypted.
Suppose that table A on the second plan is accessed via in-
dex only plan and retrieves less than 2 % of the data pages
of A to the memory. Compared to the former plan this could
be a slower one but may reduce the disclosure risk effectively.
If an attacker monitors the content of the memory during
the execution of this query, the amount of information leak-
age in the second plan would be much less than the one in
the first plan. Being aware of the sensitive information, a
query optimizer may reduce the risk of disclosure effectively
while maximizing the performance.

B. GRANULARITY OF KEY MANAGEMENT
To minimize the risk of disclosure, we propose the idea of

“extent level key management”. In this approach a unique
key is used for each extent to encrypt/decrypt the data
pages. An extent is defined as a set of contiguous blocks
allocated in a database tablespace. For instance, if the ex-
tent size in MySQL-InnoDB is configured as 128KB then



eight contiguous data pages can be placed in one extent as-
suming that 16KB data pages (physical blocks) are used.
For OLTP environments the typical size of an extent could
vary between 4 to 16 pages whereas for DSS (OLAP) envi-
ronments larger extent sizes are preferred: 8 to 64 pages per
extent. All of the pages within an extent are encrypted with
the same key. Whenever a page within an extent is retrieved
to the memory the extent key is used to decrypt that page.
In our approach extent keys are not stored physically but
generated whenever they are needed. To be able to decrypt
the content of a page the extent key is requested from the
HSM device. This request includes the extent ID. HSM de-
vice computes the hash of this id and encrypts the output
of this hash function with the master key stored within the
HSM. Therefore a MAC based approach is used to generate
the extent keys. Once generated the key is used to decrypt
the requested page.

To minimize the information disclosure, one can suggest
key management at the level of data records, (i.e., one key
per record). All of these keys are encrypted with a mas-
ter key which is protected by a hardware security module.
Whenever a row needs to be accessed, the key of this row will
be decrypted by the HSM and then used to decrypt the row.
This approach would certainly reduce the amount of disclo-
sure during the attack because only the keys used to decrypt
the rows in use will be compromised. Although this scheme
provides much better protection, it is not preferable due
to the performance concerns. First and foremost, for each
row access, the HSM needs to be accessed. Such approach
would drastically slow down the query processing perfor-
mance. The second problem is the burden of key initializa-
tion. Key initialization is a costly operation and can signifi-
cantly affect the query processing time if it is performed for
each row. The third problem is the encryption/decryption
speed of HSM devices. Due to limited processing capacity of
these devices, decryption speed of the keys may significantly
slow down the data processing. Assuming that 128 bit keys
are used, just scanning a table with six million records could
require more than one minute extra processing time with a
IBM Secure Coprocessor as the HSM device. The fourth
problem that we need to address is the storage of encryp-
tion keys. An efficient key management strategy should be
employed to tackle the issues related to storage of the keys
in DBMS. Keeping a single key per row may create a non-
negligible storage problem if there is high contention for the
shared memory space in the buffer pool.

Key generation in the level of records may not be prefer-
able. However, one could argue that a single key could be
used for the encryption of each page. Although this ap-
proach provides better protection, we observed that extent
level key management provides significant performance im-
provement compared to the page level key approach. In our
preliminary experiments we used a 4764 IBM Secure Co-
processor as the HSM device which is connected to a server
machine over PCI-X bus. The execution times of different
operations for a single database page are given in Figure 6.
The first bar represents the time to generate a single extent
key with the HSM device. The second bar and third bar
shows the time to decrypt a single data page with the HSM
and CPU correspondingly. As seen in this figure decryp-
tion speed of the CPU is more than an order of magnitude
faster than the HSM. Therefore performing the decryption
of bulk data in the server side is much faster. The third

and fourth bars show how much time is spent to retrieve a
single page to the memory from the disk with a sequential
and random disk access pattern correspondingly. Not sur-
prisingly the random access cost is much greater than the
sequential access cost due to the physical head movements
of the magnetic disk. In OLAP type database applications
the disk I/O operations are dominated by the sequential
disk accesses because most of the queries require scanning
the tables. If page level key generation approach is used the
key generation cost would exceed the I/O cost because key
generation is twice as costly as reading a page from the disk
sequentially. Therefore the query execution time would be
dominated by the key generation cost which is not desirable.
On the other hand if extent level approach is preferred only
a single key generation is required for all pages within an
extent. Assuming that we have eight pages within an ex-
tent only a single key is generated per eight page accesses.
Therefore key generation process does not create a bottle-
neck while processing the queries.
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Figure 6: Execution times of operations

Also for random disk accesses using extent level keys does
not yield any problem because random access cost of a page
is much greater than the cost of key generation. Hence,
query processing performance will not get stalled by the key
generation process.

C. OPTIMAL RESTRICTION ORDERING
In our model since the pages are decrypted as soon as

they are brought into the memory, the disclosure risk is
only proportional to the number of different extent keys
that are accessed. In an alternate model where one has
a choice to postpone the decryption of a page the optimal
restriction ordering might differ significantly as illustrated
by the following example - consider three selection uncorre-
lated predicates p1, p2 and p3 with selectivity 0.3, 0.4 and
0.5 respectively. Also, let p1 be a sensitive predicate (i.e.,
one that involves a sensitive attribute) and p2 and p3 be
predicates over non-sensitive attributes. Then, simply using
the performance criteria the optimizer would schedule p1 to
be evaluated first, but this would mean a complete disclo-
sure assuming a table scan is used. Instead, if p2 and p3

are evaluated first and the resulting tuples pipelined to p1,
we can expect only 0.2 fraction of the keys to be exposed
under the random spreads assumption. In multi-relational
queries where join ordering is required, pushing down selec-
tions all the way in the query tree may significantly increase
the exposure risk in general. A smart way to explore all
possible orderings of joins and selections can be carried out
by masking a selection predicate as a join with a virtual ta-



ble containing a single tuple in the range of the predicate.
For instance, a condition like σage=50(R) can be modeled
as natural join between R and a virtual table V (age) with
a single record having value of attribute age as 50. Other
common selection conditions can also be represented simi-
larly. Unfortunately, given the exponentially large number
of ordering, this technique is likely to degrade the optimizer
severely. In a related problem regarding expensive predicate
placement in query plans, it might be possible to develop an
approach similar to what was done in Hellerstein [sigmod93].
They consider the problem of expensive predicate ordering
in query plans and use an optimal constraint aware sequenc-
ing algorithm to order the operators optimally be defining
a notion of a stream in a query plan. Anyway, we do not go
into the details of this alternative model in this paper and
this remains an important direction of our future work.

D. AN ALTERNATIVE IMPLEMENTATION
METHOD FOR CONSTRAINT APPROACH

During the traversal of the tree, a temporary value κtmp is
stored (Note that κtmp corresponds to the bestExec variable
in the pseudo-code). Initially, κtmp is assigned to the largest
possible number in the domain of the variable declared. If
the execution cost of the path exceeds κtmp+κtmp ∗α%, the
path is pruned. Otherwise, the nodes in the path are ex-
panded. When all of the nodes in a path are expanded, the
disclosure cost of the path is stored in a heap along with
the path information. The top element of the heap includes
the information of the path which has the maximum exe-
cution cost. During the traversal, the value of κtmp would
decrease as better plans are found. As the value of κtmp is
updated, the nodes at the top of the heap are removed until
the path corresponding to the top node has execution cost
that is no more than κtmp+κtmp ∗α%. Once the traversal is
finished, the path which has minimum disclosure risk is se-
lected among the paths in the heap and this path is returned
to the execution engine as the best plan.

E. ADDITIONAL DETAILS OF THE EXPER-
IMENTS

E.1 Hardware & Software Specifications
All experiments are conducted on a 32 bit SLES 10.2

(Linux kernel 2.6.16.60) operating system. For the proto-
type database implementation, we modified the source code
of MySQL 5.1.38. As for the platform, we used an IBM
x3500 which has 16GB of main memory and a 8 core In-
tel(R) Xeon(R) CPU E5420 @ 2.50GHz processor.

As for the tamper resistant hardware we used IBM 4764
PCI-X Cryptographic Coprocessor (See Figure 7). For the
cryptographic operations in both the server side and the
secure co-processor we used AES in CBC mode with 16 byte
key size as the encryption algorithm.

E.2 Preparation of TPC-H database instance
and query workload

The TPC-H benchmark is a decision support benchmark
widely used in the database community to assess the perfor-
mance of very large database management systems [16]. The
benchmark illustrates decision support systems that exam-
ine large volumes of data, execute queries with a high degree

Figure 7: IBM 4764 PCI-X Cryptographic Copro-
cessor

of complexity, and provide answers to critical business ques-
tions. Using the TPC-H schema and queries, we prepared
an Operational Data Store (ODS) environment to compare
the effectiveness of proposed query optimization approaches.
Below, we explain the details of how we prepared the exper-
iment bed and the workloads.

We prepared a workload using the TPC-H queries and the
TPC-H schema which includes 8 relations. In total, 1.5 GB
of disk space is used to create the TPC-H database (Scale
factor 1). During the execution of the workload, the buffer
pool size of the database was set to 80 MB (default buffer
pool size in InnoDB).

The workload used in the experiments is constructed us-
ing 5 TPC-H queries (Query # 2, 5, 9, 10, 17) with the
objective of maximizing the number of joined tables during
the execution of each query. We subsequently modified these
queries to simulate an Operational Data Store (ODS) envi-
ronment where some of the queries in the workload require
processing large ranges of data while others process smaller
ranges.

The major difference between an ODS and a data ware-
house (DW) is that the former is used for short-term, mission-
critical decisions while the latter is used for medium and
long-range decisions. The data in a DW typically spans a
five to ten years horizon while an ODS contains data that
covers a range of 60 to 90 days or even shorter. In order to
simulate an ODS environment, more predicates are added to
the “where” clause of the TPC-H queries. This in turn, re-
duces the number of rows returned. As a result, we obtained
a workload comprising of queries which scan both small and
large ranges of data. The query given in Table 2 provides
an example for this modification.

In this query, the predicate “o orderkey between 261658
AND 271658” is added to the original query to reduce the
range of the data that has been accessed. In order to reduce
the buffer pool hit ratio, the predicate values are randomly
drawn from a uniform distribution with range (0, n) where
n is the maximum in the domain of the predicate attribute.
Using this technique, 100 TPC-H queries are generated and
issued to the database.

E.3 Performance Overhead of Key Genera-
tion and audit log generation mechanism

Using a similar technique described in Section 4 we pre-
pared a workload of 50 TPC-H queries and run on the mod-
ified MySQL database server. In this experiment setting,
we created a new TPC-H instance where we assume all at-
tributes of the tables are sensitive and therefore stored in
encrypted format in the disk. Each bar in Figure 9 repre-
sents the execution time of the workload for different key
generation granularity. The left-most bar shows the overall
execution time when the HSM device is accessed for each
page retrieved from the disk. As the granularity increases
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the execution time declines. After a certain number of pages
(single key per 8 pages) the overhead of key generation re-
mains steady. These results show that key generation per
extent would be a good design choice in terms of both per-
formance and disclosure risk. The second right-most bar
in this figure shows the execution time when a single key
is used for all page decryption operations. Therefore there
is no HSM accesses. Note that the execution time in this
case is almost similar to the case where the HSM device
is accessed per each extent. This observation shows that
using extent level key generation incurs no extra cost com-
pared to using a single master key for the database. This,
in turn, reduces the disclosure cost while having no extra
performance cost. The last bar in the figure shows the exe-
cution time when there is no decryption at all. Hence, one
can observe the overhead of the decryption operations by
comparing this one with the other execution times. We ob-
serve 18 % increase in the execution time of the workload
when we assume that all accessed tables include sensitive
information.

Recursive Procedure: findBestPlan
Input: execCost, discCost, bestExec, bestDisc, Stables, bestJoinOrder
// Stables is the set of tables to traverse

Output: bestJoinOrder
1 foreach table T in Stables do
2 cummDiscCost = discCost + estimateDiscCost(T ) ;
3 cummExecCost = execCost + estimateExecCost(T ) ;
4 if OptAlgorithm = “Max. Perf” then
5 if cummExecCost > bestExecCost then
6 backTrack ;

// Prune sub-optimal plan

7

8 else if OptAlgorithm = “Min. Disc” then
9 if cummDiscCost > bestDisc then

10 backTrack ;
11

12 else if OptAlgorithm = “Weighted Aggregation” then
13 bestWeightedCost =
14 (discWeight * bestDisc) + (perfWeight * bestExec) ;
15 cummWeightedCost =
16 (discWeight * cummDiscCost) + (perfWeight * cummExecCost) ;
17 if cummWeightedCost > bestWeightedCost then
18 backTrack ;
19

20 else if OptAlgorithm = “Constraint On Performance” then
// κ: minimum execution cost among all possible query plans

// α: tolerance ratio on performance

21 maxAllowedCost = κ+κ ∗ α% ;
22 if cummExecCost > maxAllowedCost and cummDiscCost > bestDisc then
23 backTrack ;
24

25 else if OptAlgorithm = “Constraint On Disclosure” then
// κ: minimum disclosure cost among all possible query plans

// α: tolerance ratio on disclosure

26 maxAllowedCost = κ+κ ∗ α% ;
27 if cummDiscCost > maxAllowedCost and cummExecCost > bestExec then
28 backTrack ;
29

30
// Recursively expand the current partial plan

31 if Stables − T is not empty then
32 findBestPlan(cummExecCost, cummDiscCost, bestExec,

bestDisc, Stables − T , bestJoinOrder) ;
33
34 if OptAlgorithm = “Max. Perf” then
35 if cummExecCost < bestExec then

// A better path is available

36 bestExec = cummExecCost ;
37 updateBestJoinOrder(T, bestJoinOrder) ;
38

39 else if OptAlgorithm = “Min. Disc” then
40 if cummDiscCost < bestDisc then

// A better path is available

41 bestDisc = cummDiscCost ;
42 updateBestJoinOrder(T, bestJoinOrder) ;
43

44 else if OptAlgorithm = “Weighted Aggregation” then
45 bestWeightedCost =
46 (discWeight * bestDisc) + (perfWeight * bestExec) ;
47 cummWeightedCost =
48 (discWeight * cummDiscCost) + (perfWeight * cummExecCost) ;
49 if cummWeightedCost < bestWeightedCost then

// A better path is available

50 bestExec = cummExecCost ;
51 bestDisc = cummDiscCost ;
52 updateBestJoinOrder(T, bestJoinOrder) ;
53

54 else if OptAlgorithm = “Constraint On Performance” then
// κ: minimum execution cost among all possible query plans

// α: tolerance ratio on performance

55 maxAllowedCost = κ+κ ∗ α% ;
56 if cummExecCost < maxAllowedCost and cummDiscCost < bestDisc then

// A better path is available

57 bestExec = cummExecCost ;
58 bestDisc = cummDiscCost ;
59 updateBestJoinOrder(T, bestJoinOrder) ;
60

61
62 else if OptAlgorithm = “Constraint On Disclosure” then

// κ: minimum disclosure cost among all possible query plans

// α: tolerance ratio on disclosure

63 maxAllowedCost = κ+κ ∗ α% ;
64 if cummDiscCost < maxAllowedCost and cummExecCost < bestExec then

// A better path is available

65 bestExec = cummExecCost ;
66 bestDisc = cummDiscCost ;
67 updateBestJoinOrder(T, bestJoinOrder) ;
68

69

70 end

Algorithm 2: Pseudocode of the modified query optimiza-
tion algorithm (with additional pruning and decision steps)


