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Collective cognition in animal groups
Iain D. Couzin

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA

The remarkable collective action of organisms such as
swarming ants, schooling fish and flocking birds has
long captivated the attention of artists, naturalists, phi-
losophers and scientists. Despite a long history of scien-
tific investigation, only now are we beginning to
decipher the relationship between individuals and
group-level properties. This interdisciplinary effort is
beginning to reveal the underlying principles of collec-
tive decision-making in animal groups, demonstrating
how social interactions, individual state, environmental
modification and processes of informational amplifica-
tion and decay can all play a part in tuning adaptive
response. It is proposed that important commonalities
exist with the understanding of neuronal processes and
that much could be learned by considering collective
animal behavior in the framework of cognitive science.

Introduction
It is little wonder that the behavior of animal groups,
such as schools of fish, flocks of birds or swarms of insects
has been associated with the concept of having a ‘collec-
tive mind’ [1]. Grouping individuals often have to make
rapid decisions about where to move or what behavior to
perform, in uncertain and dangerous environments.
Decision-making by individuals within such aggregates
is so synchronized and intimately coordinated that it has
previously been considered to require telepathic com-
munication among group members or the synchronized
response to commands given, somehow, by a leader
[2,3].

In fact, individuals base their movement decisions on
locally acquired cues such as the positions, motion, or
change in motion, of others [2], making the collective
response all themore remarkable. Each organism typically
has only relatively local sensing ability (further limited in
large aggregates by crowding). Groups are, therefore, often
composed of individuals that differ with respect to their
informational status and individuals are usually not aware
of the informational state of others, such as whether they
are knowledgeable about a pertinent resource, or of a
threat [1,2,4,5].

Recent studies have begun to elucidate how the
repeated interactions among grouping animals scale to
collective behavior, and have revealed, remarkably, that
collective decision-making mechanisms across a wide
range of animal group types, from insects to birds (and
even among humans in certain circumstances) seem to
share similar functional characteristics [2,4,5]. Further-
more, at a certain level of description, collective decision-
making by organisms shares essential common features

with mechanisms of decision-making within the brain
[1,6]. Although many details differ, there is good reason
for increased communication between researchers inter-
ested in collective animal behavior and those in cognitive
science.

Collective motion
It is usually not possible to scale reliably from individual to
group behavior through verbal argument alone. Con-
sequently, considerable progress in revealing the prin-
ciples of collective behavior has been made using
mathematical modeling techniques, such as computer
simulation (Box 1). Some of the earliest theoretical
approaches were inspired by particle physics [2,7]. These
introduced the influential concept of using equations to
characterize individual movements and interactions (as
‘social forces’), the aim being to explore whether (and if so,
how) individual behaviors can scale to the coherent collec-
tive motion exhibited by fish schools or bird flocks.

Valuable insight was gained using such model descrip-
tions. First, it was realized that collective behavior can
arise from repeated and local interactions and need not be
explicitly coded as a global blueprint or template [2,8–10].
In addition, biologically plausible local interactions can
account for the typical group structures found in nature
(Box 1). Because of the nature of these local interactions,
behavioral control is typically distributed, as opposed to
control being hierarchical with one (or a few) leader(s)
controlling group-members’ actions.

Because distributed coordination does not depend on a
specific subset of individuals, groups are inherently robust
to perturbation. Analogous decentralized principles govern
the coordination of many neuronal assemblies, enabling
robust encoding of information across a wide range of
spatial and temporal scales [11–22]. Information from
multiple distributed sources can be acquired and processed
simultaneously, thus allowing individual (cells or organ-
isms) access to computational capabilities not possible in
isolation.

A further principle revealed by computational modeling
of grouping, as outlined in Box 1, is that multiple stable
modes of collective behavior can co-exist for exactly the
same individual interactions [10]. This is directly analo-
gous to multistability in neural systems, in which multiple
collective states (attractors) co-exist at the same value of
the system’s parameters both within neurons themselves
and in neural networks [20]. Multistability in neural sys-
tems has been suggested as an important mechanism for
memory storage and temporal pattern recognition [20],
and an intriguing (but currently untested) possibility is
that similar functional benefits might exist for animal
groups.
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Amplification and damping of collective response
Feedback processes

The social context created by highly integrated behavior
stronglyaffects theway information isacquired, transmitted
and processed by group members. Specifically, it can facili-
tate the collective amplification and damping of information
and, thus, the adaptive tuning of collective behavior in
response to external stimuli and/or internal state.

Alignment among individuals (a tendency tomove in the
same direction as near-neighbors, Box 1), for example, can
enable information about a change in direction to be
transmitted as a rapid wave of turning, over long distances
[23,24]. Amplifying local fluctuations through positive
feedback is important when threats, such as predators,
are detected because it creates an ‘effective’ sensory range
much greater than that of individual perception [1,2]. For
example, the change of direction of only a few individuals
that initially detect a cryptic predator can be amplified
rapidly, as a propagating wave of turning, resulting in a
much larger number of individuals, or even a whole group,
turning away from the threat [1,2,23,24].

Similar amplification processes are a fundamental com-
ponent of neural information-processing. They facilitate
the translation of local stimuli to response both within the
cell (the conversion of localized ion fluxes to action poten-
tials) and to intensification of propagating electrical and
chemical activity across networks of cells, such as the
traveling waves of activity seen in the vertebrate cortex
[13,17,20–22].

A further commonality with neural signal propagation
and information encoding is that it is difficult for animals in
groups to tune collective response with positive feedback
alone. Damping, or negative feedback, is often an important
regulator of group response. Tuning, adaptively, collective
response through regulation of the relative influence of
positive and negative feedback is the essence of decision-
making in many neuronal [20–22] and animal systems
[2,5,25,26]. In certain ant species, the analogy with neural
systemsbecomesparticularly intimate, as outlined inBox 2.

Feedback and the speed–accuracy trade-off

Decisions basedonuncertain information oftenbenefit from
an accumulation of information over time. A very fast
decision, in which positive feedback dominates, is typically
compromised with respect to accuracy because the choice

made can often be the result of amplification of random
fluctuations or stochastic initial conditions. This can result
in ‘informational cascades’ in which arbitrary choices are
made [2,5,27]. Incorporating negative feedback can prevent
such over-sensitivity of collective response to individual
error or environmental noise and can enable long-range
patterns to be detected in the face of distracting local
fluctuations [28]. Typically, however, this ability comes at
a cost as the time taken to make a decision is increased (a
speed–accuracy trade-off).

Little is currently known about how vertebrate groups,
such as fish, birds or herding quadrupeds actually balance
the trade-off between speed and accuracy during collective
decision-making. A clue comes from an experimental study
by Ward et al. [25] on schooling stickleback fish (Gasteros-
teus aculeatus). Individuals were shown to exhibit a highly
non-linear response to near-neighbors; they largely disre-
gard the movement decisions of a single neighbor, but
strongly increase their probability of copying asmore neigh-
bors (a ‘quorum’) commit to a given direction of travel. This
functional response was found to improve the accuracy of
individual decision-making by enabling fish to integrate
their own estimationwith that of others,while not incurring
much cost in terms of the time taken to make a movement
decision.

This form of non-linear response represents a common
theme among many decision-making systems that face
speed–accuracy tradeoffs (see later discussions on social
insects). An initial slow phase enables appropriate infor-
mation to be accumulated before a transition to a higher
commitment to one option, among alternatives.

A similar challenge faces the brain when presented with
ambiguous conflicting sensory stimuli. Within the primate
brain, for example, sensory evidence for different stimuli is
encoded as firing rate within separate, competing neural
groups [11,12,14–16,18,19]. This evidence is noisy, however,
and to appropriately weigh evidence it must be integrated
over time. Thus, neuronal decision-making also faces the
challenge ofwhen to commit to a decision. If a choice ismade
too early in the integration process it is too error-prone. If
made too late, much valuable time can be lost. In fact,
decisions made in brain circuits have been shown to opti-
mize the speed and accuracy of choices, and their trade-off
[19]. Although the mechanism determining decision-
making is currently unclear, a threshold process has been

Box 1. Scaling from individual to collective behavior

Mathematical modeling proves to be indispensable when investigat-

ing many aspects of collective behavior. Spatial features of interac-

tions are typically incorporated by modifying the strength, or type, of

interaction as a function of spatial [10] or topological [69] distance to

neighbors. For example, behavioral tendencies can be restricted

within specified ‘zones’ around each individual as represented in

Figure Id (see next page). Near-range repulsion from others enables

collision-avoidance and maintains individual personal space (Figure

Id, ‘zor’). A relatively long-range attraction maintains group cohesion,

minimizing potentially dangerous isolation [2,23,24] (Figure Id, ‘zoa’).

Furthermore, individuals often exhibit a tendency to align their

direction of travel with others (Figure Ia, ‘zoo’).

Despite the continuously varying parameters, only a few types of

stable collective-behavior typically emerge. For example, loose,

disordered ‘swarms’ form when individuals exhibit only repulsion

and attraction (Figure Ia). Introducing a relatively restricted alignment

tendency causes individuals to form a ‘torus’ in which they perpetually

rotate around an empty core (Figure Ib), a pattern exhibited by fish

species such as barracuda, jack and tuna [2,5,10]. Slowly increasing the

range of alignment further, however, results in a transition to a

cohesive and ‘polarized’ (well-aligned) group, much like typical mobile

bird flocks and fish schools (Figure Ic). The transitions between these

collective behaviors are very sudden, even if individual behavior

changes only slowly. Multiple stable collective states can exist for the

exactly the same individual behavior, and be dependent on the

previous history of group structure, such as whether behavioral

parameters are increasing or decreasing (see the graph in Figure I),

despite no individual having memory of that structure. This demon-

strates that animal groups can exhibit a form of hysteresis, or ‘collective

memory’.
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proposed whereby a decision is made once one integrating
neural group reaches a certain threshold-level of activity
[11,14,19]. Unlike in animal groups, however, this assess-
ment is likely to be made by a higher-level circuit, rather
than being arrived at by the integrating units themselves
[19].

Group size and collective decision-making
Group size can also have an important role in decision-
making. If individuals have access to the same infor-
mation, but it is inaccurately represented or processed,
then averaging response with others (as is inherent in
many schooling or flocking strategies; Box 1), will improve

Figure I (Box 1). Computational model of animal groups demonstrating changes in group shape resulting from changing local interactions. Modifying the range over

which individuals tend to align with each other causes sudden transitions in group state from (a) a ‘swarm’ when attraction dominates, to (b) a ‘torus’ and finally (c) a

highly mobile ‘polarized’ group as the range of alignment with neighbors is increased. At intermediate ranges, two different collective behaviors exist for the same

individual behavior; which one is found depends on previous group structure [10]. Abbreviations: zor, zone of repulsion (avoidance); zoo, zone of orientation

(alignment); zoa, zone of attraction. Modified, with permission, from Ref. [10].
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the decisions of the group-members. This can enable indi-
viduals to avoid the time costs associated with temporal
integration and has sometimes been referred to as ‘the
many-wrongs hypothesis’ [29] or ‘the wisdom of the crowd’
[30]. Note that this argument assumes that individuals
have access to the same noisy information and, thus,
averaging among an increasing number of individuals
inevitably improves accuracy (analogous to convergence
under the central limit theorem). In many cases, however,
information is not distributed in this way and individuals
differ with respect to informational status or motivation
[25,26,31]. Increasing group size can still benefit individ-
ual-level decision-making under conditions of conflicting
information, however. It was recently demonstrated (again
using schooling stickleback fish) that increasing group size
also gives individuals the opportunity to integrate dispa-
rate information more effectively and, thus, reach a more
accurate consensus decision [26].

Leadership and coming to a consensus decision
Although leadership is not a pre-condition for group coordi-
nation it does frequently emerge in animal groups [2,4,31]
such as when only relatively few ‘informed’ individuals
have salient information [31]. Using computational mod-
eling, Couzin et al. [31] revealed that information transfer
within groups requires neither individual recognition nor
signaling. If relatively few informed individuals bias
grouping tendency with a desired direction of travel (such
as towards a resource or away from a threat [31,32]) they
can accurately guide other, naı̈ve, group members.
Furthermore, as group size increases, the proportion of
informed individuals needed to guide the group, for a given
accuracy, actually decreases [31].

Following these simple rules, in the face of conflict
(disagreement) among informed individuals, groups can
also accurately, and quickly, come to a consensus and
travel in the direction preferred by the majority. This is

Box 2. Ants as mobile neural networks

Ant colonies are parallel information-processing systems capable of

intricate collective decision-making during essential tasks such as

foraging, moving home or constructing a nest (see main text). If one

looks within the nest of several species [72], further similarities to

neuronal systems become apparent. Many neuronal cell types are not

intrinsically rhythmic and yet together form synchronously firing

assemblies as a result of mutual excitation [17,20]. Similarly, ants in

isolation display short and temporally erratic bouts of activity [73].

When within the colony, however, a regular rhythm of activity is

generated spontaneously (Figure I).

Analysis of this process indicates a common mechanism [71–74].

Ants seem to exhibit a very ‘neuron-like’ behavior in which inactive

ants exhibit a low propensity to become spontaneously active

(analogous to spontaneous firing of a neuron). Moving ants can

excite individuals with whom they come into contact and ants seem

to temporally integrate these inputs. If an inactive ant is excited above

a threshold (equivalent to beyond-threshold depolarization of a

neuron), they change state and start moving, thus becoming

excitatory themselves. Activity, therefore, can spread across the

colony. Insufficient reinforcement of excitatory activity, however,

results in active ants tending to become inactive again. Like their

neuronal counterparts, once they change to an inactivated state they

exhibit a short refractory period during which they have a very low

probability of being re-activated. This latter property prevents the

system locking into an excitatory state and facilitates the repeated

propagation of coordinated waves of activity, similar to those seen in

the developing retina [13] and vertebrate cortex [17,21,22].

A functional parallel could exist with input selection in oscillating

neuronal systems [17,20]. Rhythmical neuronal network activity is an

energy-efficient way to periodically elevate the system close to

threshold, thus providing discrete windows of high responsiveness

to external stimuli [17]. Similarly, it has been hypothesized that

synchrony among ants provides discrete windows of opportunity to

detect, and respond to, external foraging opportunities or to

efficiently allocate workers to required tasks within the nest, such as

brood care [75].

Figure I. Computer vision techniques reveal the spontaneous generation and spread of rhythmic activity within ant nests superimposed onto images of the nest at the

end of each time period; (a) 0–6 min, (b) 6–12 min and (c) 12–18 min. (d) A typical time-series of activity showing a periodicity of �20 min (0 = no activity, 1 = all ants

active). Note that ants spend �70% of their time inactive. Modified, with permission, from [71].
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despite the fact that individuals are likely to have no
explicit knowledge of whether they are in the majority
or minority, or even if there are any other informed indi-
viduals at all. Considering the case of two conflicting
directions of travel (see Ref. [31]), the type of consensus
achieved is predicted to depend on the degree to which the
informed individuals within a group disagree. Below a
crucial difference in opinion (in this case the angle between
the preferred directions of travel) groups adopt the average
of informed opinions. Above that difference a consensus is
adopted and the group travels in one, or other, preferred
direction (Figure 1a).

Recent experiments by Biro et al. [33] using homing
pigeons have provided support for the existence of such a
transition. When released in pairs, pigeons trained to take
different routes will tend to take an average course when
the distance between routes is not great, but select collec-
tively one, or other, route as the difference increases
(Figure 1b). Studies of human crowds have also supported
the basic principles of this collective decision-making pro-
cess [34].

It can be informative to note that, at a certain level of
description, the collective selection of direction in animal
groups exhibit commonalities with visual choice tasks in
humans and primates [11,12,14–16,18,19]. Competition
among groups of direction-sensitive neurones enables
information from visual scenes to be integrated and a
collective decision about motion properties to be made.
By artificially stimulating the middle temporal visual area
of monkeys to create competing directional visual stimuli,
Nichols and Newsome [35] also report a sudden transition
between vector averaging to consensus decision-making
(winner-takes-all) as the angular difference between con-
flicting motion vectors increases (Figure 1).

Collective cognition through environmental
modification: foraging ants
In highly related grouping organisms, such as the social
insects (e.g. ants, bees, wasps etc.), collective cognition can
be particularly sophisticated because individual behavior
and interactions have evolved to benefit the colony repro-
ductive success (thus reducing inter-individual conflict), a
functional integration so tight that they have been termed
‘super-organisms’ [36]. This is exemplified by ant species
that use chemical pheromone trails to coordinate foraging
activities [36].

By depositing and responding to trails, ants facilitate
spontaneous and indirect coordination of each others’
activity by modifying the environment, a process termed
‘stigmergy’ [37]. Similar indirect feedback principles are
thought to facilitate the remarkable nest construction
capability of many social insects [37,38]. When foraging,
this process enables information about environmental con-
ditions to be built up over time, permitting colonies to more
efficiently allocate foragers to food sources and also to
provide a means by which colonies can select the closer
[36,39,40], or the most profitable [41–44], among multiple
available food sources.

In the case of finding the shortest foraging route, it is the
fact that ants traverse shorter distances more quickly that
means, probabilistically, shorter paths will bemore rapidly
reinforced with trail pheromone [39,40]. The more concen-
trated a trail, the more likely it is to be followed than are
less concentrated alternatives [36,39–44]. Thus, the ants
effectively create a competition (lateral inhibition) among
trails. Competition among alternative options is also com-
mon to many neuronal decision-making processes such as
during intercircuit coordination and spatially selective
attention tasks [11,12,14–20]. The strengthening of fre-

Figure 1. (a) Simulation models have revealed insights into how only a few ‘informed’ individuals with a biased direction of travel can guide groups with high accuracy,

without requiring individual recognition or signaling. Where there are two conflicting subsets of informed individual (s1 and s2; here five individuals in each subset), the

whole group adopts the average preferred direction below a critical difference in opinion. Above this, the group enters a consensus phase in which, given a symmetrical

conflict, the whole group goes in one preferred direction or the other with equal probability (here group size was 100). In cases of an asymmetry, such that s1 does not equal

s2, the group will select, collectively, the majority direction with high probability (see Ref. [31] for details). (b) When faced with a similar conflict, pairs of homing pigeons

also tend to compromise when the difference in preferred route is small, but do tend to select one direction or other when this becomes large [33]. (a) Modified, with

permission, from Ref. [31]. (b) Modified, with permission, from Ref. [33].
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quently used trails is also reminiscent of Hebbian
reinforcement of active neuronal pathways through long-
term potentiation [17,20]. The relative rates of positive
feedback (here chemical reinforcement) and negative feed-
back (evaporative decay of existing trails) largely deter-
mine the dynamics, imposing an inevitable trade-off
between the speed and accuracy of decision-making. In
addition, because ants tend to deposit more pheromone
and/or recruit more individuals from the nest in response
to higher quality resources, colonies can also focus their
workforce (‘attention’) on the best among available food
sources [39–44]. Importantly, such collective decision-mak-
ing is not reliant on individual ants making direct com-
parison of the options themselves.

Many ant species employ multiple pheromones during
foraging [36,45–50]. This can serve as an important role in
enabling lower volatility chemicals (which evaporate more
slowly) to be used to store relatively long-term information
about the environment, such as providing an extensive
network connecting both existing and previous known
resources. Simultaneous use of, and response to, a phero-
mone with higher volatility can enable exploitation of
previously undiscovered resources, and in addition, can
facilitate rapid re-deployment of ants to areas of the exist-
ing long-term trail network if previously depleted
resources become available again. The separation of time-
scales afforded by employing chemicals with different
volatilities enables a form of ‘working memory’ (encoded
using slowly decaying chemicals, which if not reinforced, is
eventually lost) and also a ‘selective attention’ (through the
deployment of short-lived, but behaviorally dominant
chemicals) in which relevant events, such as exploitable
resources, become the focus of foraging activity [44–50].

Finding a new home
In addition to selecting among potential food sources,
social insects need to choose where to live. This process
has been studied extensively in two, apparently very
different, organisms; a species of small ant, Temnothorax
albipennis, which lives in colonies of between �50 to 200
individuals in naturally weathered cracks in rocks (these
ants are similar to those shown in Box 2, Figure I), and the
honeybee, Apis mellifera, which typically lives in colonies
of tens of thousands of individuals nesting in hollow trees.

T. albipennis colonies move sites relatively frequently
because of the inherently transient nature of their nests.
These are very small colonies and they cannot effectively
employ collective communication using pheromones
because of insufficient capacity for trail reinforcement
[51,52]. How then, can they come to a consensus when
faced with multiple options? Approximately 30% of the
colony scouts for new nests using visual cues to navigate
[53]. Upon finding a potential site each scout indepen-
dently assesses it, the time taken being inversely pro-
portional to perceived site quality [54]. If she accepts the
nest, based on relatively fixed internal criteria that relate
to, among other properties, its size, the size of the nest
entrance and brightness [55], her search is discontinued
and she begins to actively canvas other ants to also visit
and assess the site. This she does by returning to the nest
and recruiting a single individual who follows closely

behind as she walks back. During this process the follower
can learn the route [56]. Upon reaching the nest she also
assesses it, independently [55], and if it is accepted she too
becomes a recruiter [54,55,57].

Leading ants to the site is slow, however. If recruiting
ants detect a threshold quorum (density) of ants already
present in the nest to which they are recruiting [53,58] they
begin to physically carry others from the old nest, rather
than to lead them [53]. This recruitment is approximately
three times faster [53] and represents a higher commit-
ment to a given nest [53,59,60].

This function of this graded recruitment is similar to
that described in groups of stickleback fish [25,26]; it
enables a relatively slow, but more accurate, phase of
decision-making to begin with and, later, a fast committed
phase to decrease the overall time taken to make the
decision (emigration) [59,60]. Amplification of recruitment
to one site inhibits transport to others because of there
being a limited pool of potential scouts. The ants tune
recruitment speed (positive feedback) according to
urgency. Accuracy is compromised for increased speed if
their nest is suddenly destroyed; more ants participate in
searching, the rate at which they begin recruiting to new
sites is increased and they decrease the required density
(quorum) needed to switch to fast transport [60].

Honeybees also need to choose among available new
nests when moving home. Like ants, the decision is
mediated by local interactions occurring in parallel and
Passino et al. [6] have recently noted similarities with
functional organization in the vertebrate brain. Recruit-
ment does not involve individuals directly leading others,
like the ants do. Instead, scouts use the famous waggle
dance to inform others of the direction of their find [61].
Because dance length is proportional to perceived site
quality, probabilistically more bees will be recruited to
better sites, creating a positive feedback loop [61–63].
Negative feedback is encoded in the form of a constant
dance decay rate resulting in less persistent dancing for
poor sites [63]. Like the ants, once a threshold quorum of
individuals is found within a site it is used to indicate that
it is indeed of adequate quality (many individuals having
considered it so) and recruitment to that site then becomes
very rapid [6,62,63].

Conclusions and future research
Through collective action, animals of many species can
enhance their capacity to detect and respond to salient
features of the environment. Interactions with others can
enable individuals to circumvent their own cognitive
limitations, giving them access to context-dependent and
spatially and temporally integrated information. This can
result in more accurate decision-making even in the face of
distractions and uncertainty. Collective behavior allows
access to important higher-order information-processing
capabilities that are very difficult, or impossible, to achieve
in isolation. Very similar informational benefits exist for
neural and other cell assemblages, such as bacterial
swarms [64], and perhaps even cell populations within
malignant tumors [65].

Distributed feedback processes are the hallmark of
collective decision-making. This enables information to
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be integrated simultaneously, overmultiple timescales, and
facilitates a self-referential process of quorum sensing,
enabling individuals within groups or whole societies to
balance appropriately the inevitable trade-off between
speed and accuracy of collective decision-making. Group
members are typically error-proneandunaware of available
options, and yet the collective behavior exhibited is efficient
over many scales. This ability is important and bears close
comparison with distributed processing of information
within and among neural assemblies. Distributed control,
in general, is probably a consequence of a common evol-
utionarypressure tofindsolutions thatare robustanddonot
fail catastrophically as parameters change.

The study of animal groups presents an opportunity to
reveal, in unparalleled detail, how the behavior of individ-
ual components scales to that at higher organizational
levels. This is a fundamental problem in a wide range of
biological disciplines [66], not least the cognitive sciences.
Furthermore, evolved coordinated behavior serves as
direct inspiration for designed systems such as autonom-

ous robot groups and computational search algorithms
[67]. Computer vision technology is now available for
vastly improved data collection [68–70], and there holds
great promise in the near future of integrated research that
implements concepts and analytical tools from cognitive
science. In return, this could offer us amore comprehensive
view of the extent and role of collective cognition in the
natural world (Box 3).
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