
A Hamming Distance Based VLIW/EPIC
Code Compression Technique

Montserrat Ros, Peter Sutton
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane Australia 4072

{ros, p.sutton}@itee.uq.edu.au

ABSTRACT
This paper presents and reports on a VLIW code compression
technique based on vector Hamming distances [19]. It
investigates the appropriate selection of dictionary vectors such
that all program vectors are at most a specified maximum
Hamming distance from a dictionary vector. Bit toggling
information is used to restore the original vector.

A dictionary vector selection method which considered both
vector frequency as well as maximum coverage achieved better
results than just considering vector frequency or vector coverage
independently. This method was found to outperform standard
dictionary compression on TI TMS320C6x program code by an
average of 8%, giving compression ratios of 72.1% to 80.3%
when applied to the smallest compiler builds. The most favorable
results were achieved with a Hamming distance upper limit of 3.

An investigation into parallel compression showed that dividing
the program into 32-bit parallel streams returned an average
compression ratio of 79.4% for files larger than 200kb. This
approach enables parallel decompression of instruction streams
within a VLIW instruction word. Suggestions for further work
include compiler/compression integration, more sophisticated
dictionary selection methods and better codeword allocation.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]

General Terms
Algorithms, Performance.

Keywords
Code Compression, VLIW, Hamming distance.

1. INTRODUCTION
Code size management is a significant issue for embedded system
design. As consumers require more functionality, applications for

embedded devices become more and more complex. Furthermore,
abstract programming languages are being chosen for the
development of embedded applications such that the development
can be steered away from the hardware level and more towards a
platform-independent design philosophy. As a result of both of
these considerations, embedded application code sizes are
increasing and this can pose a problem for designers.

Several methods for compressing or compacting code size have
been presented in the literature to date, though most algorithms
have focused mainly on RISC processors. Lately, however,
VLIW (Very Long Instruction Word) processors have begun to be
considered as prime candidates for code compression, given not
only their inherent large instruction words but also their appeal to
the embedded DSP market.

One example of where code compression has reached the VLIW
industry is in Atmel’s Diopsis Dual Core DSP implementing a
mAgic DSP VLIW core which uses a method of built-in dynamic
program decompression [3, 18]. Compressed program code is fed
to dynamic program decompression devices (dyprodes) which
produce the uncompressed code and this is seamlessly executed.
Another advantage of using code compression is that program bus
size can be reduced as a result of the smaller instruction word
size. This is used to the Diopsis’ advantage.

Code compression efficiency is widely defined [4, 12, 15, 19] as
the ratio between the compressed program size and the original
program size. That is, the smaller the compression ratio, the
better the compression. Compression ratio can depend on the size
of the original compiler output. Our previous work has found that
the smallest overall sizes after compression are obtained when the
smallest possible compiler build is used, even though other builds
give better compression ratios [20].

In this paper, we present a new compression scheme and
investigate its performance. We have taken selected benchmarks
from the Spec2000 [2] and the Mediabench [1] benchmark suites,
and built them for the Texas Instruments TMS320c6x [21] and
the Intel Itanium [9] as representatives of the VLIW/EPIC
processor range.

The remainder of this paper is organized as follows. Section 2
presents background and related work in this field. Section 3
describes the compression scheme used and Section 4 outlines
results from applying the compression scheme. Section 5 includes
a discussion and comparison of results and Section 6 contains
conclusions and further work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’04, September 22–25, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-890-3/04/0009…$5.00.

132

2. RELATED WORK
The area of text or data compression is a mature one, but code
compression dates from 1992, when Wolfe and Channin first
published a paper on a Compressed Code RISC Processor
(CCRP) [22]. VLIW code compression is an even more recent
field with papers published in only the last few years. Code
compression is a separate field of study given that many data
compression based schemes are inapplicable to program code,
where branch targets and function entry points need to be
decompressed on demand.

2.1 Code Compression on RISC processors
The paper by Wolfe and Channin [22] suggested a CCRP to
compress code and used a ‘code-expanding instruction cache’,
such that the decompression could be transparent to the processor.
By using a compression technique that did not give consideration
to branch targets and function beginnings, extra hardware was
required to fetch addresses. Their design used a Line Address
Table (LAT) to map original addresses into compressed code
addresses.

Lefurgy et al presented dictionary compression in [13] where all
unique instructions are recorded in an ‘instruction table’ and each
instruction is replaced by an index into the table. They also
present a selective version in [14]. Liao et al offered a dictionary
compression scheme based on set-covering in [16] which looks at
substrings that occur frequently. Lekatsas presented a semi-
adaptive dictionary compression scheme in [15] which generated
new opcodes for instructions appearing frequently. Some
software/compiler methods have also been presented in [5, 6, 14].

2.2 Code Compression on VLIW processors
Code compression techniques have also been applied to VLIW
processors. Nam et al [17] achieved average compression ratios
of 63%-71% using a dictionary compression method and
compared the difference in performance of "identical" (whole
instructions words) and "isomorphic" (split into opcode/operand
fields) instruction word encoding schemes. Ishiura and
Yamaguchi [10] investigated code compression based on
Automatic Field Partitioning, achieving compression ratios of 46-
60%. They reduced the problem of compressing code to the
problem of finding the field partitioning that yields the smallest
compression ratio. Larin and Conte [11] compared code
compression methods and a tailored encoding of the Instruction
Set Architecture. The tailored ISA method produced new code at
64% of the original code size, though at a much smaller cost to
decoding hardware than standard compression.

Xie et al. [23, 25] used a reduced-precision arithmetic coding
technique combined with a Markov model and applied it to
similar systems with different sized sub-blocks. The 16-byte sub-
block scheme yields the best compression rates at 67.3% – 69.7%.
Xie et al. also present a Tunstall-based memory-less variable-to-
fixed encoding scheme and an improved Markov variable-to-fixed
algorithm in [24]. The use of variable-to-fixed encoding means
that codewords are arbitrarily assigned and this assignment can be
used to an advantage to reduce the number of bit toggles on the
instruction bus.

Prakash et al [19] present a dictionary based encoding scheme that
divides instructions into two 16-bit halves. For each half, a
dictionary is constructed that contains a choice set of vectors such

that a majority of the vectors used throughout the program in that
half of the instruction differ from one of the dictionary vectors by
a Hamming distance of at most 1 (the Hamming distance between
two vectors is the number of bits that are different). Each
compressed instruction is then replaced by two codewords
representing each half-instruction. These codewords are a
combination of the indexes into the relevant dictionaries as well
as information about which bits are toggled.

This method means that two vectors that differ by only one bit
will not require both vectors to be stored in the dictionary. One of
the two vectors is stored and the other merely references the
stored vector and points out which bit needs to be toggled.
Average compression ratios of 78.6% including Line Addressing
Table are reported. Although some attempt is made to investigate
32-bit vectors, the dictionary selection method they used did not
appear to give compression ratios as good as the 16-bit scheme.
Their scheme also uses different dictionaries for each sub-block of
2048 bytes as opposed to using one dictionary for the whole
program.

2.3 Previous Implementations of Code
Compression
One successful encoding scheme, commercially used in the
PowerPC 405, is the CodePack scheme [7]. The CodePack
encoding scheme follows an algorithm analogous to a piece-wise
Huffman scheme [8] where the most frequent symbols are
assigned smaller codewords. Here, the 16-bit half-words are
assigned a two or three bit tag which denotes which ‘class’ they
belong to, differentiated by the tag and then how long the
codeword is. CodePack has a reported performance of an overall
program size “reduction” of 35-40% [7] (i.e. a compression ratio
of 60-65%). CodePack uses variable-length encoding and
requires the use of a mapping table to calculate the new address of
a given instruction. Lefurgy et al provide further optimisation and
enhancement suggestions for a machine with CodePack in [12].

A second example of the implementation of code compression is
the Atmel Diopsis example mentioned earlier [3, 18]. This VLIW
code compression architecture claims a 2X to 3X compression of
code (33 to 50% compression ratio) whereby 128-bit instruction
words are compressed to an average of 50 bits per instruction
word. This shows the advantage of an integrated code
compression and instruction set architecture if designed together
from the start.

In most cases, designing a totally new processor complete with
integrated code compression and instruction set architecture is
beyond the scope (not to mention budget!) of many embedded
applications. Instead, research has tended to concentrate on code
compression systems that are software-based or where hardware
need only be altered slightly in order to achieve a saving of
program size (moderate, but a saving nonetheless). An example
of where a slight alteration of hardware is possible would be the
inclusion of a decompression engine next to a processor core in an
ASIC embedded design. In this case, the program to be run on
the processor of choice can be compiled and compressed before
loading.

133

3. ENCODING SCHEME
The encoding scheme presented in this paper is based on the
appropriate selection of dictionary vectors such that all program
vectors are at most a specified Hamming distance from a
dictionary vector. Bit toggling information is used to accurately
restore original code. This scheme is similar to the 16-bit version
from [19] where only vectors differing by one bit were
considered. Instead, our scheme considers 32-bit vectors and was
trialed with Hamming distance upper limits from 1 to 8.
Furthermore, we consider multiple dictionary selection methods
and offer a stream-based compression method for parallel
decompression.

The algorithm is divided into the four steps described in the
following subsections. A decoder is required in the hardware to
decode the uncompressed instructions and is outlined in Section
3.5.

3.1 File Input and Dictionary Construction
(First Input Pass)
The first pass in the encoding scheme is equivalent to most
dictionary compression schemes. The benchmark to be
compressed is read in, one 32-bit vector at a time, and a frequency
distribution of all the used vector space is constructed. This
histogram-like structure (containing elements from the dictionary)
is used in the subsequent compression steps.

3.2 Reduced Dictionary Selection (First
Dictionary Pass)
The purpose of this pass is to select from the dictionary, a subset
of vectors (called the reduced dictionary) such that all original
dictionary vectors are at most a set Hamming distance from any
one of the reduced dictionary vectors. The purpose of this
dictionary-subset selection is to allow for a smaller dictionary, and
include information for bit-toggles where the vectors differ in the
replacement codewords.

The benchmark programs were profiled for 32-bit vector space
usage and three reduced dictionary selection methods were
applied – they are described below. They were tested for up to set
Hamming distance upper limits ranging from 1 to 7.

3.2.1 Frequency Selection Method
This method of selecting vectors for inclusion in the reduced
dictionary chooses vectors based on their frequencies and
continually adds the most frequent vectors until all the vectors in
the original dictionary are ‘covered’ by being at most a set
maximum Hamming distance from any of the reduced dictionary
vectors. The aim of this method is to include vectors into the
reduced dictionary that are very frequent in the original program,
thus incorporating a higher number of “zero Hamming distance”
entries. This means that fewer bit toggle location fields will be
required during compression (see Section 3.4).

3.2.2 Maximum Span Selection Method
This method finds, for each vector in the dictionary, the total
number of other dictionary vectors that are up to a set maximum
Hamming distance from it. The vector that spans the most other
vectors is chosen and placed in the reduced dictionary. Then, this
method discards all vectors in the dictionary that are the set

Hamming distance or less from the chosen vector. Of the un-
discarded vectors in the dictionary, the vector that spans the most
of the remaining vectors is chosen and the process repeats again
until all vectors are discarded from the original dictionary. The
aim of this method is to reduce the number of vectors needed in
the reduced dictionary.

3.2.3 Combination of Frequency and Spanning
Method
This dictionary selection method attempts to combine the best
from both of the previous algorithms. It chooses the most
frequent vector in the dictionary and places it in the reduced
dictionary. Then, it discards all vectors in the dictionary that are
the set Hamming distance or less from the chosen vector. Once
again, the most frequent vector from the remaining vectors is
chosen and the process repeats until all dictionary vectors are
covered by the given set Hamming distance.

3.3 Reduced Dictionary Fill and Codeword
Assignment (Second Dictionary Pass)
The reduced dictionary is analyzed and filled with further vectors
such that the bits required for the indexing of the reduced
dictionary is unchanged. Essentially, this fills it with vectors from
the original dictionary that did not already exist in the reduced
dictionary, up to the next power of 2 so that there is no wasted
indexing space. In all three dictionary selection methods, the
extra filling stage takes the most frequent vectors that are not
already in the reduced dictionary, as this method will reduced the
number of toggle locations more. The indices into the reduced
dictionary serve as codewords for the compression step.

3.4 Compression Application (Final Input
Pass)
The compression scheme is applied by converting each 32-bit
vector into compressed code. The compressed code comprises a
codeword (determined in the last step), a set number of bits to
denote the number of toggles and up to 7 sets of 5-bit toggle
locations. An example of this is shown in Figure 1.

codeword
Number

 of bit

toggles
location location...location

Up to 7 locations of toggle bits

(5 bits each)

Figure 1 - Format of Compressed Program Code

Compressed program code is inserted serially in place of the
original code with one exception. To make decoding easier,
possible branch targets are aligned at byte boundaries and as a
result, some padding is needed at the end of any byte preceding a
target location. This padding and the Line Address Table (LAT) –
described in Section 3.5 – are part of the overhead associated with
this encoding scheme.

3.5 Decompression Engine Design
A decompression unit is required to decompress the instructions
‘on the fly’ and feed them to the CPU. The standard dictionary
scheme uses a dictionary as a lookup table, where the compressed

134

instruction acts as an index into the lookup table and the output of
the table is the uncompressed instruction.

Our scheme works in a similar fashion, with the codeword from
the compressed instruction acting as an index into the reduced
dictionary lookup table, and the extra bits in the compressed
instruction determining which bits (if any) to toggle from the
lookup table output. A block diagram of the dictionary and the bit
toggling hardware required for a code compression scheme with a
Hamming distance upper limit of 3 is given in Figure 2.

Reduced

Dictionary

First toggle location

XOR

XOR

32-bit

toggle

mask

Second toggle location

Third toggle location

control number of toggles

Compressed

Instruction

Uncompressed

Instruction

Dictionary

entry

Figure 2 - Block Diagram of the Decompression Unit

Because our scheme is a variable length one, we must consider the
need for a referencing table of some sort such that instruction
locations (such as branch targets) can be retrieved. For this, we
have used a LAT similar to [19], however only branch targets are
included in the table. The block diagram of this LAT hardware is
given in Figure 3. Furthermore, to ensure the branch targets were
byte aligned, padding was required at the end of the previous
instruction of every target.

Line

Address

Table

(LAT)

Base address of Program

Address of

compressed

Instruction

Address of

decompressed

Instruction

Offset into

original

program

Offset into

compressed

program

Figure 3 - Block Diagram of Line Address Table

3.6 Stream Encoding
The main problem with the serial decompression of variable-
length codes is that performance is affected. In particular, one
fetch packet (which consisted of four and eight 32-bit vectors in
the processors investigated) can consist of many vectors which are
normally fetched simultaneously. If 8 such 32-bit vectors are to
be serially decompressed, then the latency associated with 8 sets
of dictionary retrievals and bit togglings could be detrimental to
performance.

In a bid to parallelize the decompression of the compressed code
and avoid the serial decompression latency, the option of
compressing the information into streams is trialed. This
implementation divides the instruction fetch packet into 32-bit

streams and decompression is applied to the program code in a
given stream rather than the whole program code. Smaller,
individual tables and separate decompressors are required for each
stream.

4. RESULTS
Benchmarks were taken from both the Spec2000 [2] and the
Mediabench [1] benchmark suites. These were built for two
targets, the Texas Instruments TMS320c6x [21] using the TI Code
Composer compiler and the Intel Itanium [9] using gcc.

Benchmarks taken from the Mediabench suite included adpcm
(rawc- and rawd-audio), g721 (g721enc and g721dec), epic (and
unepic), mpeg (mpeg2enc and mpeg2dec) and jpeg (cjpeg and
djpeg). Benchmarks taken from the Spec2000 suite included mcf,
art , equake, parser, ammp, twolf and mesa.

In both processor cases, the benchmarks were built with every
optimization level, and the smallest possible build was used. In
most cases, this corresponded with the -ms3 and -o3 flags for the
TI compiler, and the -Os flag for all gcc builds.

Compression ratio is an accurate measurement to compare the
different versions of this compression scheme, because they are all
applied to the same original files (hence starting size will be the
same for any benchmark).

The first issue investigated was that of the dictionary selection
methods. Compression ratio was found to be very dependent on
the selection method thus results are presented for each selection
technique in comparison to a standard dictionary compression.
The standard scheme places all unique vectors found in the
program code in the dictionary and an index is used instead of the
original vector. An example of its application is given in [13]. In
essence, the ‘normal’ dictionary compression method is a method
that tolerates no bit toggles (and as a result requires no extra
information) and can be likened to our method with a Hamming
distance upper limit of 0 where the ‘reduced’ dictionary is
identical to the original dictionary.

Compression ratios in the following sections include the
compressed code, dictionary and LAT sizes. Dictionary sizes are
taken from the number of reduced unique entries required to cover
the entire code, and the LAT sizes are derived from the number of
branch target locations. Average compression ratios across all
benchmarks tested are reported.

4.1 Frequency Selection Results
The Frequency Selection method returned compression ratios
worse than the standard dictionary compression (left column in
Figure 4) for Hamming distance limits of 7 and under, although
compression ratios were improving as the Hamming distance limit
was raised. This prompted the investigation of larger Hamming
distance upper limits and upper limits of up to 16 were
investigated. In fact, the results suggested that a Hamming
distance upper limit of 10 would give best results.

The results at this Hamming distance returned average
compression ratios of 73.1%. This compression scheme uses the
fact that although Hamming distances of up to 10 may be allowed,
a large portion of the program code is a small Hamming distance

135

from a dictionary vector, because more frequent vectors are added
first.

To examine the relative frequencies of different Hamming
distances, an example benchmark is profiled. Here, the djpeg
benchmark, built for the TI TMS320c6700, has been broken down
into how many instructions are a given Hamming distance from a
dictionary entry, with the upper limit set to 10. The reason
compression is achieved is due to just over half of the program’s
vectors being found in the dictionary even though the number of
dictionary entries is low. This is because this algorithm greedily
includes the most frequent vectors first.

Table 1 – Hamming Distance Frequencies for Frequency
Method Example

Hamming Distance
Number of Program
Instructions (%)

0 15772 (54.7%)
1 2909 (10.1%)
2 3166 (11.0%)
3 2548 (8.8%)
4 1787 (6.2%)
5 1184 (4.1%)
6 796 (2.8%)
7 470 (1.6%)
8 179 (0.6%)
9 30 (0.1%)

10 15 (0.1%)
Total Instructions: 28856

Unique Instructions: 11805
Dictionary Entries: 2048

The main issue arising from this frequency-based scheme is that
the length of the compressed instruction could escalate out of
hand. In the example case, the codeword length was ()2048log2 =

11 bits. For a Hamming distance upper limit of 10, 4 ‘bit-toggle’
bits would be required (see Figure 1) and furthermore, up to 10
sets of 5-bit locations toggle locations could be required (as in the
case of the 15 instructions shown to be a Hamming distance of 10
from a dictionary entry in Table 1). This means the “compressed”
representation would actually be an expansion and would be 65
bits long. The codeword length would only increase with larger
programs. Such a large “compressed” instruction (instead of the

32-bit vector without compression) could add significant changes
to the instruction fetching, retrieving and decoding hardware.

4.2 Maximum Span Selection Results
In order to keep the Hamming distance upper limit to a more
manageable level, the maximum spanning method was trialed.
The aim in this method was to include in the reduced dictionary,
vectors that covered more of the rest of the vectors in the program
code, so that with the same number of dictionary vectors, a larger
set of program vectors were covered. The best results were
obtained at a Hamming distance upper limit of 3 as shown in
Figure 5. This was due to fully utilizing the toggle bit number bit-
space

Unfortunately, this method did not take into account any
information about how frequent the chosen vectors were, and as a
result, none of the Hamming distance upper limits investigated
achieved compression ratios better than standard dictionary
compression. Compression ratios for this method were around
82%.

4.3 Combined Frequency and Spanning
Results
The combined frequency and spanning selection method was
investigated in order to combine the higher frequencies of smaller
compressed instructions from the first selection method and the
larger set of program vectors covered by vectors in the reduced
dictionary from the second selection method.

The results in Figures 6 and 7 showed that, similar to the
maximum span method, selecting the Hamming distance upper
limit of 3 yielded the best results in this combined dictionary
selection method. In the compression for the TI TMS320C6x
program code, the compression scheme using the Hamming
distance upper limit of 3 outperformed the normal dictionary
compression method by an average of 8%, though for some
benchmarks, this was as high as 13%. Compression ratios ranged
from 72.1% to 80.3%.

The main contributing factor found in experiments concerning the
Hamming distance upper limit of 3, was that the reduced
dictionary needed was about one eighth the size of the original
dictionary. This meant on average, 3 bits were saved from each
and every instruction, with only some of the instructions requiring

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

normal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hamming Distance Upper Limit

C
o

m
p

re
ss

io
n

 R
at

io

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

normal 1 2 3 4 5 6 7

Hamming Distance Upper Limit

C
o

m
p

re
ss

io
n

 R
at

io

Figure 4 - Average Compression Ratios for Frequency

Selection
Figure 5 – Average Compression Ratios for Maximum Span

Selection

136

extra bit-toggling information. Furthermore, as the dictionary
itself was much reduced, this contributed to an overall reduction.

Experimental results for the Intel Itanium program code were not
as successful. The Hamming distance limit of 3 was once again
the best compression ratio obtained, however this was on average
only less than 1% better than standard dictionary decompression.
In some cases, the compression ratio was worse. Possible reasons
for this are discussed below.

Once again, the number of vectors that were lower Hamming
distances from a dictionary entry determined how good the
compression would be. The same example benchmark from
Section 4.1 (djpeg) was profiled under the combined dictionary
selection method, with the results in Table 2. Although the
number of instructions found in the dictionary was less than in the
Frequency method (54.7% - 35.6% = 19.1% less), the Hamming
distance upper limit ensured that not as many toggle fields were
needed.

Table 2 – Hamming Distance Frequencies for Combined
Method Example

Hamming Distance
Number of Program
Instructions (%)

0 10278 (35.6 %)
1 6992 (24.2 %)
2 9109 (31.6 %)
3 2477 (8.6 %)

Total Instructions: 28856
Unique Instructions: 11805

Dictionary Entries: 4096

Figure 8 shows a subset of benchmarks with their original size
(white), normal dictionary compressed size (light grey) and
reduced dictionary compressed size (dark). For each benchmark,
the first group of three bars corresponds to the TI TMS320C6x
program code, and the second 3 bars (with diagonal hatching)
correspond to the Intel Itanium program code.

4.4 Stream Encoding Results
The idea of stream encoding was trialed in order to decompress
multiple streams of program code at once, limiting the added
delay attributed to the decompression unit. Our study focused on

the TI TMS320C6x program code, as results from the previous
section showed that Intel Itanium program code did not seem to
compress well under 32-bit vectors.

The results obtained in this investigation suggested that
compression in streams suited the larger benchmarks. As the
program code was divided into 8 smaller streams each one eighth
the size of the original code, the sizes of these streams for some of
the smaller benchmarks were too small to give good compression
results. However, the larger benchmarks responded well, with
benchmarks larger than 200kb only adding on average, 4% on the
reduced dictionary results to give compression ratios around
79.4%. Figure 9 shows the selected benchmarks with their
original code size, reduced dictionary compressed size and the
same compression algorithm applied to streams. In the smaller
benchmarks, the overhead in the streamed version almost negated
the compression, however the larger files still returned good
compression results.

5. DISCUSSION
For the Hamming-distance based reduced-dictionary compression
scheme presented in this paper, the compression ratio has been
found to be very dependent on the dictionary selection method. A
vector selection method which considers both the frequency of
vectors and the codeword-space coverage of vectors outperformed
either method considered independently. This combined
dictionary selection method achieved its best results with a
Hamming distance upper limit of 3 – it outperformed standard
dictionary compression on TI TMS320C6x program code by an
average of 8% to give an average compression ratios of 76.2%
when applied to the smallest compiler builds. Like all code-
compressions schemes, this comes at the cost of additional
decoding hardware.

When applied to the Intel Itanium program code, our scheme only
resulted in a negligible change, and in some cases led to a worse
compression ratio than normal dictionary compression. This is
likely to be because our approach considered fixed-size code
vectors of 32 bits. TI TMS320C6x program code is made up of 32
bit instructions – which corresponded to the code vectors
considered; however, the 128-bit Itanium code bundles contain
three 41-bit instructions which did not align well with the 32-bit
vectors. It is suggested that other vector lengths could be

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

normal 1 2 3 4 5 6 7

Hamming Distance Upper Limit

C
o

m
p

re
ss

io
n

 R
at

io

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

normal 1 2 3 4 5 6 7

Hamming Distance Upper Limit

C
o

m
p

re
ss

io
n

 R
at

io

Figure 6 - Average Compression Ratios for Combined

Selection for the TI TMS320C6x
Figure 7 - Average Compression Ratios for Combined

Selection for the Intel Itanium

137

examined for the Itanium program code to determine if this type
of compression scheme could be applicable under different vector
lengths.

An investigation into parallel compression showed that dividing
the program into 32-bit parallel streams returned an average
compression ratio of 79.4% for programs larger than 200kb. This
approach enables parallel decompression of instruction streams
within a VLIW instruction word with only a small overhead in
compression performance. For small programs, however, there is
little advantage to this approach.

6. CONCLUSIONS AND FURTHER WORK
This paper has presented a VLIW code compression technique
based on vector Hamming distances. Dictionary vectors are

selected such that all program vectors are at most a specified
maximum Hamming distance from a dictionary vector. Bit
toggling information is used to restore the original vector.

A dictionary vector selection method which considered both
vector frequency as well as maximum coverage achieved better
results than just considering vector frequency or vector coverage
independently. This method, with a Hamming distance upper-
limit of 3, was found to outperform standard dictionary
compression on TI TMS320C6x program code by an average of
8%, giving compression ratios of 72.1% to 80.3% when applied to
the smallest compiler builds.

An investigation into parallel compression showed that dividing
the program into 32-bit parallel streams returned an average
compression ratio of 79.4% for files larger than 200kb.

Figure 9 - Relative Sizes of Program code before and after stream compression

Figure 8 - Relative Sizes of Program code before and after compression

0
100
200
300
400
500

600
700
800
900

1000

epic mcf art equake mpeg2enc cjpeg ammp twolf

Benchmarks

P
ro

g
ra

m
 S

iz
e

-
K

il
o

b
yt

es

TMS320C6x original code size TMS320C6x normal dictionary TMS320C6x reduced dictionary

Itanium original code size Itanium normal dictionary Itanium reduced dictionary

0

100

200

300

400

500

600

epic mcf art equake mpeg2enc cjpeg ammp twolf

benchmarks

P
ro

g
ra

m
 S

iz
e

-
K

il
o
b
yt

es

Original Program Size Reduced Dictionary Compressed Size Reduced Streams Compressed Size

138

Further work is suggested in a number of areas. First, compiler
techniques such as register renaming could be used to select
registers whose binary representations are small Hamming
distances from one another. If the compiler was aware of the
Hamming distance upper limit of the subsequent code
compression applied, it would be possible to output program code
such that the 32-bit instructions used as vectors could be grouped
more efficiently and separated by Hamming distances within the
compression scheme’s upper limit.

Second, it is proposed to consider other dictionary selection
methods that are not greedy (all methods presented in this paper
selected reduced dictionary entries based on the maximum current
gain only). Other options could be investigated, such as the use
of dictionary vectors that are not limited to the vectors found in
the program.

Third, the selection of codewords associated with each reduced
dictionary entry could be investigated. In this paper, the
codewords used were a fixed length, with a variable length tail
appended to denote how many and which bits to toggle. A
variable scheme could also be applied to the codeword field such
that codewords would be smaller for more frequently accessed
dictionary entries and longer for infrequent vectors. This could be
achieved by applying either a Huffman [8]-like or CodePack [7]-
like scheme.

7. REFERENCES
[1] Mediabench Benchmarks, 1997, accessed 2003,

http://cares.icsl.ucla.edu/MediaBench/
[2] SPEC CPU2000 Benchmarks, 2000, accessed 2003,

http://www.specbench.org/cpu2000/
[3] Atmel-Corporation, AT572D740 Summary (Datasheet),

2004, accessed 2004,
http://www.atmel.com/dyn/resources/prod_documents/7001s.
pdf

[4] P. Centoducatte, G. Araujo, and R. Pannain, "Compressed
code execution on DSP architectures," in Proceedings 12th
International Symposium on System Synthesis. 1999: IEEE
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 56-61.

[5] K. D. Cooper and N. McIntosh, "Enhanced code compression
for embedded RISC processors," in SIGPLAN Notices. May
1999; 34(5): ACM, 1999, pp. 139-49.

[6] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A.
Proebsting, "Code compression," in SIGPLAN Notices. May
1997; 32(5): ACM, 1997, pp. 358-65.

[7] M. B. Game, A, "CodePack: Code Compression for PowerPC
processors (version 1.0)," PowerPC Embedded Processor
Solutions, IBM, North Carolina 2000.

[8] D. A. Huffman, "A method for the constuction of minimum
redundancy codes," Proceedings of the IRE, vol. 4D, pp.
1098-1101, 1952.

[9] Intel, Intel Itanium Architecture Software Developer's
Manual, Revision 2.1, 2002, accessed 2004,
http://www.intel.com/design/itanium/manuals/iiasdmanual.ht
m

[10] N. Ishiura and M. Yamaguchi, "Instruction Code
Compression for Application Specific VLIW Processors
BAsed on utomatic Field Partitioning," 1997.

[11] S. Y. Larin and T. M. Conte, "Compiler-driven cached code
compression schemes for embedded ILP processors," in

MICRO 32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. 1999: IEEE
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 82-92.

[12] C. Lefurgy, P. Bird, I. C. Chen, and T. Mudge, "Improving
code density using compression techniques," in Proceedings.
Thirtieth Annual IEEE/ACM International Symposium on
Microarchitecture Cat. No.97TB100184. 1997: IEEE
Comput. Soc, Los Alamitos, CA, USA, 1997, pp. 194-203.

[13] C. Lefurgy and T. Mudge, "Code Compression for DSP,"
presented at Compiler and Architecture Support for
Embedded Computing Systems, George Washington
University, Washington DC, 1998.

[14] C. Lefurgy, E. Piccininni, and T. Mudge, "Reducing code
size with run-time decompression," in Proceedings Sixth
International Symposium on High Performance Computer
Architecture. HPCA 6 Cat. No.PR00550. 1999: IEEE
Comput. Soc, Los Alamitos, CA, USA, 1999, pp. 218-28.

[15] H. A. Lekatsas, "Code compression for embedded systems,"
Princeton University, 2000, pp. 171.

[16] S. Liao, S. Devadas, and K. Keutzer, "A text-compression-
based method for code size minimization in embedded
systems," ACM Transactions on Design Automation of
Electronic Systems, vol. 4, pp. 12-38, 1999.

[17] S. J. Nam, In Cheol Park, and Chong Min Kyung,
"Improving dictionary-based code compression in VLIW
architectures," IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol.
E82-A, pp. 2318-24, 1999.

[18] P. S. Paolucci, "Apparatus and Method for Dynamic Program
Decompression." United States, Filed: 2002.

[19] J. Prakash, C. Sandeep, P. Shankar, and Y. N. Srikant, "A
Simple and Fast Scheme for Code Compression for VLIW
processors," in Proceedings DCC 2003. Data Compression
Conference, J. A. Storer and M. Cohn, Eds.: IEEE Comput.
Soc, Los Alamitos, CA, USA, 2003, pp. 444.

[20] M. Ros and P. Sutton, "Compiler optimization and ordering
effects on VLIW code compression," in Proceedings of the
international conference on Compilers, Architectures and
Synthesis for embedded systems. San Jose: ACM Press, 2003,
pp. 95--103.

[21] Texas-Instruments, TMS320C6000 CPU and Instruction Set
Reference Guide, 2000, accessed 2004,
http://focus.ti.com/lit/ug/spru189f/spru189f.pdf

[22] A. Wolfe and A. Chanin, "Executing compressed programs
on an embedded RISC architecture," in SIGMICRO
Newsletter. Dec. 1992; 23(1 2), 1992, pp. 81-91.

[23] Y. Xie, H. Lekatsas, and W. Wolf, "Code compression for
VLIW processors," in Proceedings DCC 2001. Data
Compression Conference. 2001, J. A. Storer and M. Cohn,
Eds.: IEEE Comput. Soc, Los Alamitos, CA, USA, 2001, pp.
525.

[24] Y. Xie, W. Wolf, and H. Lekatsas, "Code compression for
VLIW processors using variable-to-fixed coding," in 15th
International Symposium on System Synthesis IEEE Cat.
No.02EX631. 2002: ACM, New York, NY, USA, 2002, pp.
138-43.

[25] Y. Xie, W. Wolf, and H. Lekatsas, "A code decompression
architecture for VLIW processors," in Proceedings 34th
ACM/IEEE International Symposium on Microarchitecture.
2001: IEEE Comput. Soc, Los Alamitos, CA, USA, 2001,
pp. 66-75.

139

