
Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

Data Cleaning and Semantic Improvement in Biological
Databases

Daniele Apiletti, Giulia Bruno, Elisa Ficarra, Elena Baralis

Dep. of Control and Computer Engineering (DAUIN),
Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Summary

Public genomic and proteomic databases can be affected by a variety of errors. These
errors may involve either the description or the meaning of data (namely, syntactic or
semantic errors). We focus our analysis on the detection of semantic errors, in order to
verify the accuracy of the stored information. In particular, we address the issue of data
constraints and functional dependencies among attributes in a given relational database.
Constraints and dependencies show semantics among attributes in a database schema and
their knowledge may be exploited to improve data quality and integration in database
design, and to perform query optimization and dimensional reduction.

We propose a method to discover data constraints and functional dependencies by means
of association rule mining. Association rules are extracted among attribute values and
allow us to find causality relationships among them. Then, by analyzing the support and
confidence of each rule, (probabilistic) data constraints and functional dependencies may
be detected. With our method we can both show the presence of erroneous data and
highlight novel semantic information. Moreover, our method is database-independent
because it infers rules from data.

In this paper, we report the application of our techniques to the SCOP (Structural
Classification of Proteins) and CATH Protein Structure Classification databases.

1 Introduction

It’s about thirty years that biological data are generated from a variety of biomedical devices
and stored at an increasing rate in public repositories. Recently a big effort has been made to
integrate distributed heterogeneous databases, where researchers continuously store their new
experimental results. However data quality improvement is one of the foremost tasks to
perform, since the accuracy of data analysis and the ability to produce correct results from
data mining relies on it.

Public biological databases can be affected by a variety of errors, which may involve either
the description or the meaning of information. The existence of such erroneous or poor data
harmfully affects any further elaboration or application.

Typically addressed data quality problems can be divided into two categories: syntactic
anomalies and semantic anomalies. Among syntactic anomalies there are the problems of
incompleteness (due to the lack of attribute values), inaccuracy (due to the presence of errors
and outliers), lexical errors, domain format errors and irregularity. Among semantic
anomalies there are discrepancy, due to a conflict between some attribute values (i.e. age and
date of birth), ambiguity, due to the presence of synonyms, homonyms or abbreviations,
redundancy, due to the presence of duplicate information, inconsistency, due to an integrity
constraint violation (i.e. the attribute age must be a value grater than 0) or a functional
constraint violation (i.e. if the attribute married is false, the attribute wife must be null),

http://journal.imbio.de/

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

invalidity, due to the presence of tuples that do not display anomalies of the classes defined
above but still do not represent valid entities [1].

In data mining terminology, the deletion of these anomalies is known as Data Cleaning. To
get quality mining results it is important to remove these problems before analysing the data.
Public genomic and proteomic databases could be affected by the afore-mentioned anomalies,
mainly because they grew some years ago, under the pressing need of storing the large
amount of genetic information available at the time, without having a standard method to
collect it neither a standard format to store it. As data acquisition techniques improve and the
sources of data differentiate, the formats of genetic information become heterogeneous getting
harder to maintain and improve the quality of such data.

Errors can occur in different phases of data production: experiment (unnoticed experimental
setup failure or systematic errors), analysis (misinterpretation of information), transformation
(from one representation into another), propagation (erroneous data used for the generation of
new data), and staleness (unnoticed changes in data could produce the falsification of other
data which depend on it). These problems lead to semantic errors and the resulting
information does not represent the real-world facts correctly. Data dependencies inherent to
the production process and to the usage of the data make genome data predestined for
propagated errors [2].

For these reasons, there is the need of a data cleaning framework, able to automatically
recognize the quality problems in databases and to address them to domain experts for further
investigation.

In the last few years, the need of data cleaning tools has increased, and some methods have
been proposed to obtain quality improvement. Some efforts have been made to solve the
problem of duplicated records (sometimes called instance identification, object identity or
record linkage problem) [3], [4]. This case is, for instance, when the same entities do not have
identical labels, e.g. “gene_321” and “g_321”. This is a common problem also for the
integration of bibliographical and text information written in different formats. In [5] a
generic knowledge-based framework for data cleaning is proposed, but it can only identify
duplicates and anomalies, even if with high recall and precision.

Most existing works focus on inaccuracy, lexical errors, redundancy problems and
enforcement of integrity constraints, but ignore the functional constraint violations.

Since quality problems depend on the particular database considered, it is not advisable trying
to define a-priori rules to check data for errors, because they would change from a database to
another. Moreover, due to the large amount of data in existing databases, it is difficult, also
for a specialist, to recognize the structure and the relationships among attributes. Instead it
would be better to define an algorithm that automatically infers rules from data: they can
change, but the algorithm remains the same.

We propose a method to discover constraints and functional dependencies among data by
means of association rule mining. Constraints and dependencies show semantics among
attributes in a database schema. Their knowledge can be exploited to improve data quality and
integration in database design, and to perform query optimization and dimensional reduction.
Association rules are a well-known data mining tool. They have been applied to biological
data cleaning for detecting outliers and duplicates [6], and to Gene Ontology for finding
relationships among terms of the three ontology levels (cellular components, molecular
functions and biological processes) [9], [10], but not for finding constraints or dependencies
or anomalies.

With the use of association rules we find causality relationships among attribute values. Then,
by analyzing the support and confidence of each rule, (probabilistic) data constraints and

http://journal.imbio.de/

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

functional dependencies may be detected. They may both show the presence of erroneous data
or highlight novel semantic information.

2 Background

There are several ways to describe a database at a logic level (hierarchical, relational, reticular
or object oriented). Now the most common type is the relational database, in which every
item of information is represented by a relation, i.e. a table. In the biological domain there are
examples of relational databases, such as cuticleDB (http://biophysics.biol.uoa.gr/cuticle),
RCSB Protein Data Bank (http://pdbbeta.rcsb.org), Identitag (http://pbil.univ-
lyon1.fr/software/identitag), AbMiner (http://discover.nci.nih.gov/abminer), PfamRDB
(http://sanger.ac.uk/pub/databases/Pfam), and Reactome (http://www.reactome.org).

For databases created some years ago, without a relational structure, there are now a lot of
tools to parse and load their data into a relational schema, since it is more convenient to work
with tables rather than others data representations. For example the BioWarehouse toolkit
(http://brg.ai.sri.com/biowarehouse) enables to translate the flat file representation of some
databases, such as SwissProt (www.ebi.ac.uk/swissprot), NCBI (www.ncbi.nih.gov), KEGG
(www.genome.jp/kegg) and GO (www.geneontology.org), into a relational schema.

A relation is composed by many tuples (rows), each of which represents an instance of an
entity, and many columns, which represent the attributes of the entity. For example, in a
protein database, the protein is an entity and its structures, function and sequence are its
attributes. Every row related to a specific protein with all its attribute values is an instance of
the protein entity. The table that contains all the proteins with their attributes is a relation.

The relational model is characterized by a structured, fixed format, since data values have to
be homogeneous and have to meet several constraints. The database structure can be known
or unknown in advance; in both cases our analysis is helpful, in order to determine the
unknown structure or to investigate data constraints, which allows to discover novel
information and errors.

Data constraints could be divided in two groups: domain constraints and tuple constraints.
The first ones limit possible values of single attributes, the second ones consider relationships
among values of different attributes of the same tuple. A typical example of domain constraint
is (age≥0). Instead an example of tuple constraint could be (NOT (merit=yes) OR
(mark=30)): it means that a person can’t gain the merit if his/her mark is not 30.

Data dependencies add semantics to a database schema and are useful for studying various
problems such as database design, query optimization and dimensional reduction. A
functional dependency states that if in a relation two rows agree on the value of a set of
attributes X then they must agree on the value of a set of attributes Y. The dependency is
written as X → Y. For example, in a relation such as Buyers (Name, Address, City, Nation,
Age, Product), there is a functional dependency City → Nation, because for each row the
value of the attribute City identifies the value of attribute Nation.

In this paper we consider tuple constraints and functional dependencies, since they lead to
specific semantic errors such as discrepancies and inconsistencies, and in particular functional
constraint violations.

3 Discovering constraints

Most existing data cleaning works focus on the problem of removing duplicates or dealing
with syntactic errors [3], [4], [5]. Our method, instead, is useful to understand the database

http://journal.imbio.de/
http://biophysics.biol.uoa.gr/cuticle
http://pdbbeta.rcsb.org
http://pbil.univlyon1.fr/software/identitag
http://discover.nci.nih.gov/abminer
http://sanger.ac.uk/pub/databases/Pfam
http://www.reactome.org
http://brg.ai.sri.com/biowarehouse

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

structure and the relationships among attributes. It improves the knowledge of the domain in
which it is used. Moreover it is useful to discover semantic anomalies, especially
inconsistencies due to data constraint and functional dependency violations.

Figure 1 synthesizes the phases of the proposed framework. We first apply our method to
discover tuple constraints and functional dependencies by means of association rules found by
the Apriori algorithm [7]. A detailed description about our method and its goals will be
presented further in this section. Since functional dependencies and tuple constraints have
been found, we test our results in order to verify the method accuracy. Finally, we analyze the
obtained results and show how they can be used to improve domain knowledge and data
quality.

Figure 1 – Schema of the proposed framework

If constraints and dependencies of a database are known, they can be used as criteria to
evaluate its accuracy. If a tuple does not satisfy a tuple constraint or a functional dependency,
its data is not correct. In biological databases such constraints and dependencies are often
unknown or incomplete, due to the complexity of stored information. We propose a method to
discover them by means of association rule mining.

Association rule discovery is an important data mining technique, which is commonly used
for local pattern detection in unsupervised learning systems. They show attribute value
conditions that occur together in a given dataset, which are useful for finding correlations
among sets of items in transactional or relational databases.

The rules are expressed in the form: body → head [support, confidence]. Body and head are
conjunctions of pairs (attribute=value). Support (s) and confidence (c) are computed as:

(1)
n

n=s bh

(2)
b

bh

n
n=c

where bhn is the number of data instances that contain both body and head, n is the total
number of data, and bn is the total number of data instances containing the body [1]. bhn is
also called absolute support, while the support defined by formula (2) is a relative value with
respect to the total number of tuples.

For example, the rule ((City=Paris)^(Age=30)) → (Product=Car) [0.5%, 60%] means that
thirty years old people living in Paris that bought a car are the 0.5% of the buyers stored in the
database. It means also that 60% of thirty years old people living in Paris bought a car.

The concepts of support and confidence are used to determine the frequency and the
importance of the discovered rules. Association rules that have confidence equal to 1 are tuple
constraints, since they represent value constraints for those tuple attributes examined in the
head and in the body of the rule.

Apriori algorithm

min
support

min
confidence

Database

A B C D (A = x) → (C = y) [s, c]
(A = z) → (C = y) [s, c]

(D = k) → (A = j) [s, c]

Functional
dependencies

Tuple
constraints

Database known
structure or domanin
expert knowledge

Comparison
New
knowledge

Data
cleaning

Dimensional reduction,
optimization, …

Method
verification

Method
applications

Apriori algorithm

min
support

min
confidence

Database

A B C D (A = x) → (C = y) [s, c]
(A = z) → (C = y) [s, c]

(D = k) → (A = j) [s, c]

Functional
dependencies

Tuple
constraints

Database known
structure or domanin
expert knowledge

Comparison
New
knowledge

Data
cleaning

Dimensional reduction,
optimization, …

Method
verification

Method
applications

http://journal.imbio.de/

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

In the special case in which all the association rules that involve the same attributes have
confidence equal to 1 and the sum of all association rule supports is 1, a functional
dependency between the corresponding elements is found [8]. The following formula is
verified:

 (3) 1 ∑
∈Ai

i =s

where A is the set of all association rules representing tuple constraints on the same attributes,
and si is the support of every such rule.

In the example of buyers database, we may find the following rules

(City=Paris)→(Nation=France) [20%, 100%], (City=Turin)→(Nation=Italy) [50%, 100%],
(City=London)→(Nation=United Kingdom) [30%, 100%].

In this case, the sum of the supports of all the rules that have City in the body and Nation in
the head is

(4) 10.30.50.2 =++=s
NationCity

i∑
→

For these reasons we can also deduce that City → Nation is a functional dependency.

The dependencies between attributes can be expressed by considering confidence and support
in a single expression [8], as in the following formula

(5) ∑
∈

⋅=
Ai

ii csp

where p is an index of the dependency degree. When p is equal to 1, there is a functional
dependency between attributes. Note that if the confidence value is not equal to 1, the p index
will never be equal to 1.

Sometimes rules with confidence close to 1 or with the sum of supports near to 1 are found.
For example, given the following rules

(City=Paris)→(Nation=France) [19%, 95%], (City=Paris)→(Nation=Australia) [1%, 5%],

the issue is: “Are the records with people living in Paris, Australia wrong, or does a city
named Paris exist in Australia?”, or also: “Is (NOT (City=Paris) OR (Nation=France)) a
tuple constraint and City → Nation a functional dependency?”. In these cases a domain expert
opinion is needed.

In this work we aim at discovering every tuple constraint and functional dependency in a
given database. We further consider every association rule with confidence higher than a
minimum confidence threshold, and with the sum of supports higher than a minimum support
threshold, in order to investigate errors or anomalies in the system as explained in Section 4.1.

3.1 Extracting association rules

The first step in finding association rules is to look for attribute values that appear in the same
tuple. Every couple of attribute-value is an item. A set of items is called itemset. We are
interested in finding frequent itemset, which are itemset with support higher than a specific
threshold. A commonly used algorithm for doing this is the Apriori algorithm [7]. The
algorithm relies upon a fundamental property of frequent itemsets, called the apriori property:
every subset of a frequent itemset must also be a frequent itemset. The algorithm proceeds
iteratively, first identifying frequent itemsets containing a single item. In subsequent
iterations, frequent itemsets with n items identified in the previous iteration are combined

http://journal.imbio.de/

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

together to obtain itemset with n+1 items. A single scan of the database after each iteration
suffices to determine which generated candidates are frequent itemsets.

Once the largest frequent itemsets are identified, each of them can be subdivided into smaller
itemsets to find association rules. For every largest frequent itemset s, all non-empty subsets a
are computed. For every such subset, a rule a →(s-a) is generated and its confidence is
computed. If the rule confidence exceeds a specified minimum threshold, the rule is included
in the result set.

4 Experimental results

In biological databases functional dependencies are not known, or sometimes are incomplete,
due to the complexity of stored data. It is possible that none of the discovered rules have a
confidence equal to 1, due to the errors that could be present in the database. Our aim is to
identify rules with confidence close to 1, according with a given tolerance, since they could
represent errors to clean or anomalies in the system to analyse. The tolerance parameter is
discussed in Section 4.1.

We chose two databases whose structure and dependencies among data were known in order
to verify the accuracy of our method. We considered SCOP (Structural Classification Of
Proteins, http://scop.berkeley.edu) and CATH (Class, Architecture, Topology and
Homologous superfamily, version 3.0.0, http://www.cathdb.info) databases, which are
characterized by a hierarchical structure, similarly to many biological data sources. However,
our method is independent of the hierarchical structure, since the Apriori algorithm and our
analysis can be applied to different data models ranging from the relational model to XML.

The SCOP database classifies about 30.000 proteins in a hierarchical tree of seven levels.
From the root to the leaves they are: class, fold, superfamily, family, protein, and species, as
shown in Figure 2. This tree structure is particularly suitable for verifying the tuple
constraints and functional dependencies that can be extracted by our tool. In fact, in this
database tuple constraints are represented by tree edges, while functional dependencies are
represented by the tree hierarchy.

Figure 2 – SCOP (on the left) and CATH (on the right) hierarchical trees

For example we expect to find the following association rules:

(Superfamily=alpha helical ferredoxin)→(Fold=globin-like) with confidence of 100%

(Superfamily=globin-like)→(Fold=globin-like) with confidence of 100%

and 1=s
FoldySuperfamil
i∑

→

In this way we can deduce that (NOT(Superfamily=alpha helical ferredoxin) OR
(Fold=globin-like)) and (NOT(Superfamily=globin-like) OR (Fold=globin-like)) are tuple
constraints and Superfamily→Fold is a functional dependency.

scop

all alpha
protein

all beta
protein

…

globin-likelong-alpha
airpin

…

globin-likealpha helical
ferredoxin

truncated
hemoglobin

globins…

ciliategreen alga…

root

class

fold

superfamily

family

protozoan/bacterial
hemoglobin

protein

species

scop

all alpha
protein

all beta
protein

…

globin-likelong-alpha
airpin

…

globin-likealpha helical
ferredoxin

truncated
hemoglobin

globins…

ciliategreen alga…

root

class

fold

superfamily

family

protozoan/bacterial
hemoglobin

protein

species

cath

alpha
beta

mainly
alpha

…

2-layer sandwichroll…

replication terminator protein; chain
A, domain 2

NK-Lysin

ligase/rna

root

class

architecture

topology

homologous
superfamily

complex (dna-binding
protein/dna)

cath

alpha
beta

mainly
alpha

…

2-layer sandwichroll…

replication terminator protein; chain
A, domain 2

NK-Lysin

ligase/rna

root

class

architecture

topology

homologous
superfamily

complex (dna-binding
protein/dna)

scop

all alpha
protein

all beta
protein

…

globin-likelong-alpha
airpin

…

globin-likealpha helical
ferredoxin

truncated
hemoglobin

globins…

ciliategreen alga…

root

class

fold

superfamily

family

protozoan/bacterial
hemoglobin

protein

species

scop

all alpha
protein

all beta
protein

…

globin-likelong-alpha
airpin

…

globin-likealpha helical
ferredoxin

truncated
hemoglobin

globins…

ciliategreen alga…

root

class

fold

superfamily

family

protozoan/bacterial
hemoglobin

protein

species

cath

alpha
beta

mainly
alpha

…

2-layer sandwichroll…

replication terminator protein; chain
A, domain 2

NK-Lysin

ligase/rna

root

class

architecture

topology

homologous
superfamily

complex (dna-binding
protein/dna)

cath

alpha
beta

mainly
alpha

…

2-layer sandwichroll…

replication terminator protein; chain
A, domain 2

NK-Lysin

ligase/rna

root

class

architecture

topology

homologous
superfamily

complex (dna-binding
protein/dna)

http://journal.imbio.de/
http://scop.berkeley.edu
http://www.cathdb.info

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

The CATH database is a hierarchical classification of protein domain structures in the Protein
Data Bank (http://www.rcsb.org/pdb/). Protein structures are classified using a combination of
automated and manual procedures. There are four major levels in this hierarchy: Class,
Architecture, Topology and Homologous superfamily, as shown in Figure 3. Domains within
each Homologous superfamily level are subclustered into sequence families using multi-
linkage clustering, identifying five family levels (named S, O, L, I, D). Thus, the complete
classification hierarchy consists of nine levels (CATHSOLID).

The actual version of the CATH database (release 3.0.0, May 2006) includes 4 Classes, 40
Architectures, 1110 Topologies, 2147 H-superfamilies, and 86151 total protein domains.

4.1 Experimental setup

To set suitable values for the support and confidence parameters, we examined their meaning
in different cases.

For the purpose of identifying functional dependencies both the confidence and the sum of
supports must be equal to 1 (see formula (4)). For tuple constraints, the minimum confidence
must be equal to 1. The minimum support value allows us to concentrate on the most frequent
constraints. If the support is set to the inverse of the total number of records, then all the
constraints are considered (this support corresponds to rules contained in a single data entry).

Since interesting anomalies generally affect a relatively small subset of records in a database,
the minimum support and confidence must be low enough to detect all these data.
Unfortunately, mining the association rules with low confidence is unfeasible on large
databases because it is computationally too intensive. Furthermore, setting the confidence to
low values is useless because the identified items include both
actual anomalies and many other irrelevant features, which do
not represent dependency exceptions. To solve this problem,
we find rules characterized by a high confidence in order to
investigate records that do not respect such rules. We call such
records anomalies.

In order to detect anomalies, we performed several
experiments by setting the support to the lowest value (the
inverse of the total number of records) and by varying the
confidence in the range from 0.999 to 0.900. We defined
tolerance as the complement of the confidence value (e.g.,
confidence = 0.950, tolerance = 0.050). Results on anomaly
detection will be provided in Section 4.3.

4.2 Functional dependency identification

We validated our approach by means of two steps: (i)
verification that the proposed method correctly identifies all
and only the functional dependencies and the tuple constraints
contained in the database; (ii) verification that our algorithm
actually detects violations of such constraints. In both cases we
exploited the structural knowledge of the examined databases
only for evaluating the obtained results.

To perform the first step we executed the algorithm with the
lowest support value and setting the confidence to 1. To show
that the result is sound and complete, we separately computed
all the known tuple constraints and functional dependencies

attributes original faulted
cf cl 1.000000 0.999774

dm cf 1.000000 0.999972
dm cl 1.000000 1.000000
dm fa 1.000000 0.999944
dm sf 1.000000 0.999945
fa cf 1.000000 0.999972
fa cl 1.000000 1.000000
fa sf 1.000000 0.999944
px cf 1.000000 1.000000
px cl 1.000000 1.000000
px dm 1.000000 1.000000
px fa 1.000000 1.000000
px sf 1.000000 1.000000
px sp 1.000000 1.000000
sf cf 1.000000 0.999916
sf cl 1.000000 1.000000
sp cf 1.000000 0.999972
sp cl 1.000000 1.000000
sp dm 1.000000 0.999817
sp fa 1.000000 0.999972
sp sf 1.000000 0.999945

Table 1 - functional
dependencies among
attributes in the SCOP
database

http://journal.imbio.de/
http://www.rcsb.org/pdb/

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

from the database structure, as explained at the beginning of Section 4. Our method detected
all and only the same 519781 tuple constraints contained in the SCOP database and the
239483 ones contained in the CATH database. Furthermore, by applying formula (3) on the
detected tuple constraints, we identified all the functional dependencies contained in the
databases.

In the second step we verified that the proposed algorithm actually detects erroneous data. For
this purpose, we performed a simulation of fault injection tests. We changed random values at
different levels of the hierarchy, by substituting the actual value with one randomly taken
from another branch of the tree. This kind of misclassification is rather subtle to identify,
since the value is acceptable (i.e., it is valid and it is not misspelled), but it assigns a particular
protein to the wrong class for one or more levels of the hierarchy.

Table 1 shows the results of one of the fault injection tests on the SCOP database. The first
two columns contain the attributes which are functionally dependent; their names are
explained in the example below. The third column represents the results obtained applying
formula (4) on the original data. Finally, the fourth column represents the same kind of results
on SCOP data after a fault injection simulation where one random fault has been injected for
some levels of the classification hierarchy. All the affected attributes represented in bold in
the first two columns report dependencies whose value falls below 1 and our method allows
us to detect all of the faults. The same results have been obtained analyzing the CATH
database.

Example
In the SCOP database, the record of the protein chain px=100068 is composed by the
following attributes: class cl=46456 (alpha proteins), fold cf=46457 (globin-like), super
family sf=46458 (globin-like again), family fa=46459 (truncated hemoglobin), protein
domain dm=46460 (hemoglobin) and species sp=46461 (ciliate). One of the injected faults is
the misclassification of the record by assigning the value fa=46463 (globins) instead of
fa=46459 (truncated hemoglobin) to the family attribute. The faulty value fa=46463 (globins)
actually exists in the database and is the correct family attribute of many other proteins.

To identify the misclassified records, we analyze the rules with confidence below 1. In this
example, the rule protein domain dm=46640 → family fa=46459 occurs in 26 records with
confidence=0.963. We classified records that do not respect such rule as anomalies. Thus, the
records with protein domain dm=46640 and family fa≠46459 are selected as either candidate
inconsistency or information for further investigation by biological experts.

4.3 Anomaly detection

In the previous section we showed that the proposed method is able to recognize erroneous
data and all the functional dependencies and tuple constraints in the database. In this section
we concentrate our analysis on the detection of the anomalies that could be contained in the
database. These anomalies could be inconsistencies in the data or biological correct, albeit
infrequent, situations. We called these infrequent events biological exceptions, interesting for
further analyses.

We performed experiments on the original data with tolerance values ranging from 0.001 to
0.1 (corresponding to confidence values from 0.999 to 0.90). The confidence value must be
lower than 1 but high enough to assure that mainly such anomalies are detected, while the
support value has been set to the inverse of the total number of records, as discussed in
Section 4.1. Results show a consistent number of anomalies whose presence increases as the
tolerance value of the corresponding tuple constraint increases (see Figure 3).

http://journal.imbio.de/

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

The tolerance parameter allows us to investigate the meaning of the detected anomalies. For
instance, if the tolerance is low (e.g. 0.01), each detected anomaly affects only few records
which represent strong exceptions in the data.

0

200

400

600

800

1000

1200

1400

0,
10

0

0,
09

0

0,
08

0

0,
07

0

0,
06

0

0,
05

0

0,
04

5

0,
04

0

0,
03

5

0,
03

0

0,
02

5

0,
02

0

0,
01

5

0,
01

0

0,
00

5

0,
00

1

Tolerance

R
ul

es

SCOP

CATH

Figure 3 - Number of anomaly-rules found for different values of tolerance

Anomalies detected by our algorithm allow domain experts interested in the domain to focus
their analysis on a small set of data in order to highlight biological exceptions or
inconsistencies in the data. To distinguish between them, we further analyzed the discovered
anomalies by means of three approaches: querying different related databases (e.g., GO, PDB,
Swiss Prot, CATH, SCOP), searching relevant information in literature, comparing the
obtained results with the examined database structures. In this work we perform this
investigation manually, but as a future work we plan to extend our method with a framework
which automatically performs a distributed retrieval of related information from different
databases and a comparison of same information with the examined database structure. In
fact, if the database structure is known, errors can be distinguished from exceptions
automatically, by comparing the results with the structure. If the attribute values of a tuple do
not respect the attribute structure, we can conclude that it is an error. Otherwise it is a
biological exception.

The following example shows an anomaly analysis that aims to distinguish between
biological exceptions and errors. First, a database research is done, followed by a literature
research. All of these steps are here executed manually. We detected some infrequent event
(namely, anomaly) during the experiments on SCOP and, in order to discuss our anomaly
investigation approach, we focused our analysis on a few of them. Searching for the same
anomalies on other databases (i.e., Swiss-Prot, PDB, GO, CATH), we found out that such
anomalies are biological correct, albeit infrequent, situations. In addition, by applying our full
algorithm to the CATH database we discovered the same data as infrequent events. This is a
further proof of the consistency of the proposed method.

For space reason, in the example below we report only a single case of anomaly analysis, but
we performed similar investigation on other anomalies in SCOP and in CATH reaching
similar results.

Finally, since in the SCOP and CATH case the database structure is known, we compared our
results with those structures in order to obtain a further validation of our approach.

Example
In the SCOP database, one of the anomalies reported by our method indicates that the Ntn
hydrolase-like fold has the hypothetical protein MTH1020 superfamily only in one tuple

http://journal.imbio.de/

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

(tolerance = 0.00229), while it has the N-terminal nucleophile aminohydrolases superfamily
in all the other 435 tuples (confidence = 0.99771).

Given such anomaly, we performed a query in other databases (i.e., GO, Swiss Prot, PDB,
CATH) in order to investigate if it was related to an error or a biological exception. As result,
we found out evidences that the SCOP classification for this protein was biologically correct,
thus it was not an inconsistency. In particular, we verified in CATH that this protein is
classified in the same alpha+beta class as in SCOP and that it has a 4-layer sandwitch
architecture (and Glutamine topology). This architecture consists on the 4 layers
alpha/beta/beta/alpha that are the same for the N-terminal nucleophile aminohydrolases fold
found in the SCOP classification. Moreover, we found evidence in literature that the crystal
structure of MTH1020 protein reveals an Ntn-hydrolase fold [11].

We applied our algorithm also to the CATH database and we discovered some anomalies (as
reported in Figure 3), by setting the tolerance parameter within 0.005. Among these
anomalies, we noticed the one for the hypothetical protein MTH1020. This result confirms the
consistency of the proposed method for anomaly discovery.

Furthermore, since the SCOP structure is known, we compared the result with the database
structure, confirming the correctness of this relationship (i.e. it is not an error).

5 Conclusions

In this paper we presented a framework for the application of data mining tools to data
cleaning in the biological domain. We focused on tuple constraints and functional
dependencies detection in representative biological databases by means of association rule
mining. By analyzing association rules we can deduce not only constraints and dependencies,
which provide structural knowledge on a dataset and may be useful to perform query
optimization or dimensional reduction, but also the anomalies in the system, which could be
errors or interesting information to highlight to domain experts.

We have applied our analysis technique to SCOP and CATH databases. We plan to extend
our approach to different database models, such as XML or a collection of relational tables,
and to integrate automatic distributed inquiry about the detected anomalies on such databases,
in order to help domain experts to distinguish biological anomalies from errors. Further
developments of this work include the application of our method to heterogeneous data
sources, to derive schema information that may be exploited during data integration.

6 Acknowledgements

We would like to thank Paolo Garza for his help in association rule extraction and for many
stimulating discussions.

7 References

[1] J. Han, M. Kamber. Data Mining: Concepts and Techniques. 2006.

[2] H. Müller, F. Naumann and J-C. Freytag. Data quality in genome databases.
Proceedings of the International Conference on Information Quality (IQ 2003),
Boston, 2003.

[3] H. Galhardas et al. AJAX: An Extensible Data Cleaning Tool. Proc. 2000 ACM
SIGMOD Conf. Management of Data (SIGMOD 00). ACM Press, 2000, p. 590.

http://journal.imbio.de/

Journal of Integrative Bioinformatics 2006 http://journal.imbio.de/

[4] H. H. Shahri and A. A. Barforush. A Flexible Fuzzy Expert System for Fuzzy
Duplicate Elimination in Data Cleaning. DEXA 2004, LNCS 3180, pp. 161 - 170.

[5] Mong Li Lee, Tok Wang Ling and Wai Lup Low. IntelliClean: A Knowledge-Based
Intelligent Data Cleaner. KDD 2000, Boston.

[6] J.L.Y. Koh, et al. Duplicate Detection in Biological Data using Association Rule
Mining. 2nd European Workshop on Data Mining and Text Mining for
Bioinformatics. An ECML/PKDD 2004 workshop, Pisa, Italy, September 24, 2004.

[7] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules. VLDB
Conference, 1994, Santiago, Cile.

[8] E. Baralis, P. Garza, E. Quintarelli, L. Tanca. Answering Queries on XML Data by
means of Association Rules. In Current Trends in Database Technology, vol. 3268,
2004.

[9] A. Kumar, B. Smith, C. Borgelt. Dependence Relationships between Gene Ontology
Terms based on TIGR Gene Product Annotations. 3rd International Workshop on
Computational Terminology (CompuTerm), 2004.

[10] O. Bodenreider, M. Aubry, A. Burgun. Non-lexical approaches to identifying
Associative relations in the gene ontology. Pacific Symposium on Biocomputing 2005.

[11] V. Saridakis, D. Christendat, A. Thygesen, C.H. Arrowsmith, A.M. Edwards, E.F. Pai.
Crystal structure of Methanobacterium thermoautotrophicum conserved protein
MTH1020 reveals an NTN-hydrolase fold. Proteins 2002 Jul 1;48(1):141-143

http://journal.imbio.de/

