
Mobile Computing Middleware

Cecilia Mascolo, Licia Capra and Wolfgang Emmerich

Dept. of Computer Science
University College London

Gower Street, London, WC1E 6BT, UK
{C.Mascolo|L.Capra|W.Emmerich}@cs.ucl.ac.uk

Abstract. Recent advances in wireless networking technologies and the
growing success of mobile computing devices, such as laptop computers,
third generation mobile phones, personal digital assistants, watches and
the like, are enabling new classes of applications that present challeng-
ing problems to designers. Mobile devices face temporary loss of network
connectivity when they move; they are likely to have scarce resources,
such as low battery power, slow CPU speed and little memory; they are
required to react to frequent and unannounced changes in the environ-
ment, such as high variability of network bandwidth, and in the resources
availability. To support designers building mobile applications, research
in the field of middleware systems has proliferated. Middleware aims at
facilitating communication and coordination of distributed components,
concealing complexity raised by mobility from application engineers as
much as possible. In this survey, we examine characteristics of mobile
distributed systems and distinguish them from their fixed counterpart.
We introduce a framework and a categorisation of the various middle-
ware systems designed to support mobility, and we present a detailed
and comparative review of the major results reached in this field. An
analysis of current trends inside the mobile middleware community and
a discussion of further directions of research conclude the survey.

1 Introduction

Wireless devices, such as laptop computers, mobile phones, personal digital as-
sistants, smartcards, watches and the like, are gaining wide popularity. Their
computing capabilities are growing quickly, while they are becoming smaller and
smaller, and more and more part of every day life. These devices can be con-
nected to wireless networks of increasing bandwidth, and software development
kits are available that can be used by third parties to develop applications [70].
The combined use of these technologies on personal devices enables people to
access their personal information as well as public resources anytime and any-
where.

Applications on these types of devices, however, present challenging problems
to designers. Devices face temporary and unannounced loss of network connectiv-
ity when they move, connection sessions are usually short, they need to discover
other hosts in an ad-hoc manner; they are likely to have scarce resources, such as

low battery power, slow CPUs and little memory; they are required to react to
frequent changes in the environment, such as change of location or context condi-
tions, variability of network bandwidth, that will remain by orders of magnitude
lower than in fixed networks.

When developing distributed applications, designers do not have to deal ex-
plicitly with problems related to distribution, such as heterogeneity, scalability,
resource sharing, and the like. Middleware developed upon network operating
systems provides application designers with a higher level of abstraction, hid-
ing the complexity introduced by distribution. Existing middleware technolo-
gies, such as transaction-oriented, message-oriented or object-oriented middle-
ware [21] have been built trying to hide distribution as much as possible, so that
the system appears as a single integrated computing facility. In other words,
distribution becomes transparent [3].

These technologies have been designed and are successfully used for station-
ary distributed systems built with fixed networks. In the following we analyse
the aspect that might not suit mobile settings. Firstly, the interaction primitives,
such as distributed transactions, object requests or remote procedure calls, as-
sume a stable and constant connection between components. In mobile systems,
in contrast, unreachability is the norm rather than an exception. Secondly, syn-
chronous point-to-point communication supported by object-oriented middle-
ware systems, such as CORBA [53], requires the client asking for a service, and
the server delivering that service, to be up and running simultaneously. In a
mobile environment, it is often the case that client and server hosts are not
connected at the same time, because of voluntary disconnections (e.g., to save
battery power) or forced disconnection (e.g., no network coverage). Finally, tra-
ditional distributed systems assume a stationary execution environment, char-
acterised by stable and high bandwidth, fixed location for every hosts. Recent
developments in object oriented middleware have introduced asynchronous prim-
itives in order to allow a more flexible use. As we will see asynchronous primitives
could be a better choice in mobile scenarios.

In mobile systems look-up service components are used to hide service loca-
tion in order to allow reconfiguration with minimal disruption. In mobile sys-
tems, where the location of a device changes continuously, and connectivity
fluctuates, service and host discovery becomes even more essential, and infor-
mation on where the services are might have to reach the application layer.
While in stationary systems it is reasonable to completely hide context informa-
tion (e.g., location) and implementation details from the application, in mobile
settings it becomes both more difficult and makes little sense. By providing
transparency, the middleware must take decisions on behalf of the application.
It might, however, be that in constrained and dynamic settings, such as mobile
ones, applications can make more efficient and better quality decisions based on
application-specific information.

In order to cope with these limitations, many research efforts have focused
on designing new middleware systems capable of supporting the requirements
imposed by mobility. As a result of these efforts, a pool of mobile middleware

systems has been produced. In this survey, we provide a framework and a classi-
fication of the most relevant literature in this area, highlighting goals that have
been attained and goals that still need to be pursued. Our aim is to help mid-
dleware practitioners and researchers to categorise, compare and evaluate the
relative strengths and limitations of approaches that have been, or might be, ap-
plied to this problem. Because exhaustive coverage of all existing and potential
approaches is impossible, we attempt to identify key characteristics of existing
approaches that cluster them into more or less natural categories. This allows
classes of middleware systems, not just instances, to be compared.

Section 2 describes the main characteristics of mobile systems and highlights
the many extents to which they differ from fixed distributed systems. Section 3
presents a reference model; Section 4 describes the main characteristics of mid-
dleware for distributed systems and their limitations in terms of mobility re-
quirements. Section 5 contains a detailed and comparative review of the major
results reached to date, based on the framework presented before. For every class,
we give a brief description of the main characteristics, illustrate some examples,
and highlight strengths and limitations. Section 6 points out future directions of
research in the area of middleware for mobile computing and Section 7 concludes
the paper.

2 What is a Mobile Distributed System?

In this section, we introduce a framework that we will use to highlight the sim-
ilarities but more importantly the differences between fixed distributed systems
and mobile systems. This preliminary discussion is necessary to understand the
different requirements that middleware for fixed distributed systems and mid-
dleware for mobile systems should satisfy.

2.1 Characterisation of Distributed Systems and Middleware

A distributed system consists of a collection of components, distributed over
various computers (also called hosts) connected via a computer network. These
components need to interact with each other, in order, for example, to exchange
data or to access each other’s services. Although this interaction may be built
directly on top of network operating system primitives, this would be too com-
plex for many application developers. Instead, a middleware is layered between
distributed system components and network operating system components; its
task is to facilitate component interactions. Figure 1 illustrates an example of a
distributed system.

This definition of distributed system applies to both fixed and mobile sys-
tems. To understand the many differences existing between the two, we extrap-
olate three concepts hidden in the previous definition that greatly influence the
type of middleware system adopted: the concept of device, of network connection
and of execution context. These concepts are depicted in Figure 2.

Comp_1

Network Operating System

Middleware

Hardware

Host

Comp_1

Network Operating System

Middleware

Hardware

Host

b

c

. . .

. . .

. . .

Comp_1

Network Operating System

Middleware

Hardware

Host a

Comp_n

Comp_m

Comp_l

Network

Fig. 1. Example of a distributed system [20].

Static

Dynamic

Permanent

Intermittent

Fixed

Mobile

Type of Device

Type of Network Connection

Type of Execution Context

Distributed System

Fig. 2. Characterisation of mobile distributed systems.

Type of Device: as a first basic distinction, devices in a fixed distributed sys-
tem are fixed, while they are mobile in a mobile distributed one. This is a key
point: fixed devices vary from home PCs, to Unix workstations, to IBM main-
frames; mobile devices vary from personal digital assistants, to mobile phones,
cameras and smartcards. While the former are generally powerful machines, with
large amounts of memory and very fast processors, the latter have limited capa-
bilities, like slow CPU speed, little memory, low battery power and small screen

size.

Type of Network Connection: fixed hosts are usually permanently connected to
the network through continuous high-bandwidth links. Disconnections are either
explicitly performed for administrative reasons or are caused by unpredictable
failures. These failures are treated as exceptions to the normal behaviour of the
system. Such assumptions do not hold for mobile devices that connect to the
Internet via wireless links. The performance of wireless networks (i.e., GSM net-
works and satellite, WaveLAN [30], HiperLAN [47], Bluetooth [10]) may vary
depending on the protocols and technologies being used; reasonable bandwidth
may be achieved, for instance, if the hosts are within reach of a few (hundreds)
meters from their base station, and if they are few in number in the same area,
as, for some of the technologies, all different hosts in a cell share the bandwidth,
and if they grow, the bandwidth rapidly drops. Moreover, if a device moves to
an area with no coverage or with high interference, bandwidth may suddenly
drop to zero and the connection may be lost. Unpredictable disconnections can-
not be considered as an exception any longer, but they rather become part of
normal wireless communication. Some network protocols, such as GSM, have a
broader coverage in some areas but provide bandwidth that is smaller by or-
ders of magnitude than the one provided by fixed network protocols (e.g., 9.6
Kbps against 10Gbs). Also, GSM charges the users for the period of time they
are connected; this pushes users to patterns of short time connections. Either
because of failures or because of explicit disconnections, the network connection
of mobile distributed systems is typically intermittent.

Type of Execution Context. With context, we mean everything that can in-
fluence the behaviour of an application; this includes resources internal to the
device, like amount of memory or screen size, and external resources, like band-
width, quality of the network connection, location or hosts (or services) in the
proximity. In a fixed distributed environment, context is more or less static:
bandwidth is high and continuous, location almost never changes, hosts can be
added, deleted or moved, but the frequency at which this happens is by orders
of magnitude lower than in mobile settings. Services may change as well, but the
discovery of available services is easily performed by forcing service providers
to register with a well-known location service. Context is extremely dynamic in
mobile systems. Hosts may come and leave generally much more rapidly. Service
lookup is more complex in the mobile scenario, especially in case the fixed infras-
tructure is completely missing. Broadcasting is the usual way of implementing
service advertisement, however this has to be carefully engineered in order to
save the limited resources (e.g., sending and receiving is power consuming), and
to avoid flooding the network with messages. Location is no longer fixed: the
size of wireless devices has shrunk so much that most of them can be carried in
a pocket and moved around easily. Depending on location and mobility, band-
width and quality of the network connection may vary greatly. For example, if
a PDA is equipped with both a WaveLan network card and a GSM module,

connection may drop from 10Mbs bandwidth, when close to a base station (e.g.,
in a conference room) to less than 9.6 Kpbs when we are outdoor in a GSM cell
(e.g., in a car on our way home).

According to the type of device, of network connection and of context, typ-
ical of distributed systems, we can distinguish: traditional distributed systems,
nomadic distributed systems, and ad-hoc mobile distributed systems.

2.2 Traditional Distributed Systems

Fig. 3. Structure of a traditional distributed system.

According to the framework previously described, traditional distributed sys-
tems are a collection of fixed hosts, permanently connected to the network via
high-bandwidth and stable links, executing in a static environment. Application
designers building distributed applications on top of this physical infrastructure
(Figure 3) often have to guarantee the following non-functional requirements:

- scalability, that is, the ability to accommodate a higher load at some time in
the future. The load can be measured using many different parameters, such
as, for instance, the maximum number of concurrent users, the number of
transactions executed in a time unit, the data volume that has to be handled;

- openness, that is, the possibility to extend and modify the system easily, as a
consequence of changed functional requirements. Any real distributed system
will evolve during its lifetime. The system needs to have a stable architecture
so that new components can be easily integrated while preserving previous
investments;

- heterogeneity, that calls for integration of components written using different
programming languages, running on different operating systems, executing
on different hardware platforms. In a distributed system, heterogeneity is al-
most unavoidable, as different components may require different implemen-
tation technologies. The ability to establish communication between them is
essential;

- fault-tolerance, that is, the ability to recover from faults without halting the
whole system. Faults happen because of hardware or software failures (e.g.,
software errors, ageing hardware, etc), and distributed components must
continue to operate even if other components they rely on have failed;

- resource sharing. In a distributed system, hardware and software resources
(e.g., a printer, a database, etc.), are shared among the different users of the
system; some form of access control of the shared resources is necessary in
order to grant access to authorised users of the system only.

Traditional distributed systems were the first form of (fixed) distributed sys-
tem. Since they started to be investigated and employed about 20 years ago,
much research effort has been directed to the solutions of the above mentioned
problems. Successful middleware technologies have been designed and imple-
mented. We will briefly review some of them in Section 4.

2.3 Nomadic Distributed Systems

Nomadic systems are, in a sense, a compromise between totally fixed and totally
mobile systems. Nomadic systems are usually composed of a set of mobile devices
and a core infrastructure with fixed and wired nodes.

In nomadic systems mobile devices move from location to location, while
maintaining a connection to the fixed network. Usually, the wireless network
connects the edges of a fixed infrastructure to the mobile devices. The load of
computation and connectivity procedures are mainly carried out on the backbone
network. Services are mainly provided by the core network to the mobile clients.
In some of these, network disconnection is also allowed and services for trans-
parent reconnection and re-synchronisation are provided. The non-functional
requirements listed in the section above still hold as the core of these systems
is still a fixed network. The scalability of the system is related to the ability of
serving larger numbers of mobile devices in an efficient way. Openness has to deal
with the extensibility of the functionality provided by the core network. Hetero-
geneity is complicated by the fact that different links are present (wireless/fixed),
and that many different wireless technologies may coexist in the same network.
Fault tolerance: depending on the type of application, disconnection may not be
a fault or exception but a functionality. Upon reconnection sharing or services
should be allowed. Resource sharing, as in fixed networks: most of the resources
are on the core network. However, the picture gets more complex if we allow
services to be provided by the mobile devices; in this case discovery, quality, and
provision need to be thought differently.

2.4 Ad-Hoc Mobile Distributed Systems

Ad-hoc mobile (or simply ad-hoc) distributed systems consist of a set of mobile
hosts, connected to the network through high-variable quality links, and exe-
cuting in an extremely dynamic environment. They differ from traditional and
nomadic distributed systems in that they have no fixed infrastructure: mobile

A

B

C

Fig. 4. Structure of an ad-hoc distributed system.

hosts can isolate themselves completely and groups may evolve independently,
opportunistically forming clusters depicted as clouds in Figure 4 that might
eventually rejoin some time in the future. Connectivity may be asymmetric or
symmetric depending, for instance, on the radio frequency of the transmission
used by the hosts. Radio connectivity defines the clouds depicted in Figure 4
implying that connection is, by default, not transitive. However ad-hoc routing
protocols have been defined [51] in order to overcome this limitation and allow
routing of packets through mobile hosts.

Pure ad-hoc networks have limited applications that range from small ad hoc
groups to share information in meetings for a short time to military application
on battle-fields and discovery or emergency networks in disastered areas.

The non-functional requirements discussed for nomadic systems still hold in
this kind of networks. Scalability becomes an issue when big networks need to
be coordinated. In contrast with nomadic systems here every service is provided
by a mobile host. In big ad-hoc networks with ad-hoc routing enabled, for in-
stance, routing tables and messages might become big if the network is large.
Bandwidth and connectivity may vary depending on concentration and interfer-
ence among the devices. As for heterogeneity, the network might provide differ-
ent connectivity strategies and technologies (e.g., Bluetooth areas connected to
WaveLan areas) that need coordination. In terms of fault tolerance, given the
highly dynamic structure of the network, disconnection has to be consider the
norm rather than an exception. Security is even more difficult to obtain than
in fixed networks: some message encryption techniques can be used in order to
avoid message spoofing.

The physical structure of a mobile ad-hoc network is completely different
from the one of traditional fixed networks. In between the two types of network
there is a large range of other network solutions which adopt aspects of both.
We believe these heterogeneous networks, where fixed components interact with
ad-hoc areas, and where different connectivity technologies are used, are going
to be the networks of the future and that middleware should provide support
for them. Much effort has recently been devolved towards middleware for mobile

networks, even if the term mobile network has often been used meaning different
things. We will now introduce some of the most significant middleware, together
with a categorisation of their peculiarities.

3 Middleware Systems: a Reference Model

Building distributed applications, either mobile or stationary, on top of the net-
work layer is extremely tedious and error-prone. Application developers would
have to deal explicitly with all the non-functional requirements listed in the
previous section, such as heterogeneity and fault-tolerance, and this complicates
considerably the development and maintenance of an application. However, given
the novelties of mobile systems this approach has been adopted by many system
developers: we will give more details about this in Section 5.

To support designers building distributed applications, middleware system
layered between the network operating system and the distributed application
is put into place. Middleware implements the Session and Presentation Layer of
the ISO/OSI Reference Model (see Figure 5) [39]. Its main goal is to enable com-
munication between distributed components. To do so, it provides application
developers with a higher level of abstraction built using the primitives of the
network operating system. Middleware also offers solutions to resource sharing
and fault tolerance requirements.

Application

Transport

Data link

Physical

Network

Session

Presentation

Fig. 5. The ISO/OSI Reference Model.

During the past years, middleware technologies for distributed systems have
been built and successfully used in industry. For example, object-oriented tech-
nologies like OMG CORBA [53], Microsoft COM [58] and Sun Java/RMI [52], or
message-oriented technologies like IBM MQSeries [55]. Although very success-
ful in fixed environments, these systems might not to be suitable in a mobile
setting, given the different requirements that they entail. We will discuss this
issue in more details in Section 4, and show how traditional middleware has been

adapted for use in mobile setting in Section 5. Researchers have been and are
actively working to design middleware targeted to the mobile setting, and many
different solutions have been investigated recently. In order to classify, discuss
and compare middleware developed to date, and understand their suitability in
a mobile setting, we introduce the reference model depicted in Figure 6.

Synchronous

Asynchronous

Transparency

Awareness

Lightweight

Heavyweight

Middleware

Type of Computational Load

Type of Context Representation

Type of Communication Paradigm

Fig. 6. Characterisation of middleware systems.

As shown in the picture, we distinguish middleware systems based on the
computational load they require to execute, on the communication paradigms
they support, and on the kind of context representation they provide to the ap-
plications.

Type of Computational Load. The computational load depends on the set of
non-functional requirements met by the system. For instance, the main purpose
of any middleware is to enable communication, e.g., allowing a user to request
a remote service; what distinguishes different middleware systems, is the relia-
bility with which these requests are handled. It is in fact much more expensive
to guarantee that a request will be executed exactly once, instead of providing
only best-effort reliability, that is, that the request may or may not be executed.
As another example, we may consider replication. Replication is widely used by
middleware systems in order to achieve fault tolerance and to improve scalabil-
ity. Keeping the replicas synchronised with the master copy, however, requires
a lot of effort and resources (e.g., network communication). Depending on how
consistent the replicas are, the computational load of middleware varies accord-
ingly. We use the term heavy-weight to denote a system that requires a large

amount of resources to deliver services to the above applications, as opposed
to a light-weight one, which runs using a minimum set of resources (e.g., CPU,
main memory, lines of code, etc.). Different computational loads imply differ-
ent qualities of service and, depending on the characteristics of the distributed
system we are addressing (e.g., amount of resources available, non-functional
requirements, etc.), different middleware may suit better than others, as we will
discuss in Section 3.1 and 3.2.

Type of Communication Paradigm. There are basically two types of commu-
nication paradigms a middleware system can support: synchronous or asyn-
chronous. The former requires that both the client asking for a service, and
the server exporting that particular service, are connected and executing at the
same time, in order for the request to be successfully processed. The latter, in-
stead, does not require the sender and the receiver of a request to be connected
simultaneously. Other forms of communications exist that sit in between these
two: one-way and deferred synchronous. One-way requests return control to the
client, without awaiting for the completion of the operation requested from the
server. This implies that the semantics of the client does not depend on the re-
sult of the requested operation. Deferred synchronous requests return control to
the client immediately; unlike one-way requests, however, the client is in charge
of re-synchronising with the server to collect the result, and this may cause the
client to block if the answer is not yet ready.

Type of Context Representation. The last parameter that we identified to dis-
tinguish between different classes of middleware refers to the fact that either
information about the execution context is fed to the above applications (i.e.,
awareness) or it is kept hidden inside the middleware itself (i.e., transparency).
The middleware interacts with the underlying network operating system and col-
lects information about the actual location of a device, value of network band-
width, latency, remote services available, etc. By transparency, we mean that
this context information is used privately by the middleware and not shown to
the above applications; for example, the middleware may discover a congestion
in a portion of the distributed system and therefore redirect requests to access
data to a replica residing on another part of the distributed system, without
informing the application about this decision. By awareness, instead, we mean
that information about the execution context (or parts of it) is passed up to
the running applications, that are now in charge of taking strategic decisions. It
would, for example, be the application layer to choose which replica to contact in
the non-congestioned portion of the network. Due to the complexity introduced
by the awareness approach, middleware for distributed systems usually chose
transparent strategies. This is justifiable as the lack in behavioural optimisation
with application awareness is compensated by the abundance of resources.

Now that we have discussed a model to characterise distribute systems (Sec-
tion 2) and a model to characterise middleware for distributed systems (Sec-
tion 3), we need to understand the relationships between the two models and

determine the characteristics that middleware for mobile distributed systems
should satisfy and how they differ from the ones required in fixed distributed
systems.

3.1 Middleware for Fixed Distributed Systems

With respect to the conceptual model presented above, middleware for fixed dis-
tributed systems can be mainly described as resource-consuming systems that
hide most of the details of distribution from application designers. With the ex-
ception of message-oriented middleware (Section 4.2), they mainly support syn-
chronous communication between components as the basic interaction paradigm.
We now analyse in more details the relationship between the physical structure
of fixed distributed systems and the characteristics of associated middleware.

Fixed Devices → Heavy Computational Load. As discussed in Section 2,
wired distributed systems consist of resource-rich fixed devices. When build-
ing distributed applications on top of this infrastructure, it is worthwhile
exploiting all the resources available (e.g., fast processors, large amounts of
memory, etc.) in order to deliver the best quality of service to the applica-
tion. The higher the quality of service, the heavier the middleware running
underneath the application. This is due to the set of non-functional require-
ments that the middleware achieves, like fault tolerance, security or resource
sharing.

Permanent Connection → Synchronous Communication. Fixed distribut-
ed systems are often permanently connected to the network through high-
bandwidth and stable links. This means that the sender of a request and
its receiver (i.e., the component asking for a service and the component de-
livering that service) are usually connected at the same time. Permanent
connection allows therefore a synchronous form of communication, as the
situations when client and server are not connected at the same time are
considered only exceptions due to failures of the system (e.g., disconnection
due to network overload).
Asynchronous communication mechanisms are however also provided by
message oriented middleware (MOM) and recently also by the CORBA
specification. Asynchronous communication is used also in fixed networks,
however the bulk of middleware applications have been developed using syn-
chronous communication.

Static Context → Transparency. The execution context of a fixed distributed
system is generally static: the location of a device seldom changes, the topol-
ogy of the system is preserved over time, bandwidth remains stable, etc.
The abundance of resources allows the disregard of application specific be-
haviours in favour of a transparent and still efficient approach. For example,
to achieve fault tolerance, the middleware can transparently decide on which
hosts to create replicas of data and where to redirect requests to access that
data in case a network failure inhibits direct access to the master copy, in a

completely transparent manner. Hiding context information inside the mid-
dleware eases the burden of application programmers that do not have to deal
with the achievement of non-functional requirements (e.g., fault tolerance)
explicitly, concentrating, instead, on the real problems of the application
they are building.

3.2 Middleware for Ad-hoc and Nomadic Distributed Systems

Nomadic and ad-hoc mobile systems differ in some aspects, however they present
a set of similar characteristics that influence the way middleware should behave.
We now justify a set of choices which are generally made by the middleware that
we will describe.

Mobile Devices → Light Computational Load. Mobile applications run on
resource-scarce devices, with little memory, slow CPU, and generally limited
battery power. Due to these resource limitations, heavy-weight middleware
systems optimised for powerful machines do not seem to suit mobile sce-
narios. Therefore, the right trade-off between computational load and non-
functional requirements achieved by the middleware needs to be established.
An example of this might be to relax the assumption of keeping replicas
always synchronised, and allow the existence of diverging replicas that will
eventually reconcile, in favour of a lighter-weight middleware. We will see
examples of this in some of the middleware described in Section 5.

Intermittent Connection → Asynchronous Communication. Mobile de-
vices connect to the network opportunistically for short periods of time,
mainly to access some data or to request a service. Even during these peri-
ods, the available bandwidth is, by orders of magnitude, lower than in fixed
distributed systems, and it may also suddenly drop to zero in areas with no
network coverage. It is often the case that the client asking for a service, and
the server delivering that service, are not connected at the same time. In
order to allow interaction between components that are not executing along
the same time line, an asynchronous form of communication is necessary.
For example, it might be possible for a client to ask for a service, disconnect
from the network, and collect the result of the request at some point later
when able to reconnect.

Dynamic Context → Awareness. Unlike fixed distributed systems, mobile
systems execute in an extremely dynamic context. Bandwidth may not be
stable, services that are available now may not be there a second later, be-
cause, for example, while moving the hand-held device loses connection with
the service provider. The high variability (together with the constrained
resources) influences the way middleware decides and chooses. The optimi-
sation of the application and middleware behaviour using application and
context aware techniques becomes then more important, also given the lim-
ited resources.

4 Middleware for Fixed Distributed Systems

Middleware technologies for fixed distributed systems can be classified into three
main categories1: object-oriented middleware, message-oriented middleware and
transaction-oriented middleware. We briefly review the main characteristics of
these technologies and assess the feasibility of their application in mobile settings.

4.1 Object-Oriented and Component Middleware

Object-oriented middleware supports communication between distributed ob-
jects, that is, a client object requests the execution of an operation from a server
object that may reside on another host. This class of middleware systems evolved
from Remote Procedure Calls [69] (RPCs): the basic form of interaction is still
synchronous, that means the client object issuing a request is blocked until the
server object has returned the response. Products in this category include im-
plementations of OMG CORBA [53], like IONA’S Orbix [7] and Borland’s Vis-
iBroker [46], the CORBA Component Model (CCM) [48], Microsoft COM [58],
Java/RMI [52] and Enterprise JavaBeans [43]. Despite the great success of these
technologies in building fixed distributed systems, their applicability to a mobile
setting is rather restricted because of the heavy computational load required to
run these systems, the mainly synchronous form of object requests supported,
and the principle of transparency that has driven their design and that prevents
any forms of awareness. The most recent CORBA specification allows for asyn-
chronous communication, however at the time of writing no implementation of
it exists. The use of these systems in mobile context has been investigated and
is reported in Section 5.

4.2 Message-Oriented Middleware

Message-oriented middleware supports the communication between distributed
components via message-passing: client components send a message containing
the request for a service execution and its parameters to a server component
across the network and the server may respond with a reply message contain-
ing the result of the service execution. Message-oriented middleware supports
asynchronous communication in a very natural way, achieving de-coupling of
client and server, as requested by mobile systems: the client is able to continue
processing as soon as the middleware has accepted the message; eventually the
server will send a reply message and the client will be able to collect it at a con-
venient time. However, these middleware systems require resource-rich devices,
especially in terms of amount of memory in which to store persistent queues
of messages received but not already processed. Sun’s Java Message Queue [44]
and IBM’s MQSeries [55] are examples of very successful message-oriented mid-
dleware for traditional distributed systems. We believe there is scope for use of
1 Other categories can be identified, like middleware for scientific computing, but we

omit their discussion here because they are only loosely related to the mobile setting.

these middleware in mobile settings, and we will discuss how some adaptation
of JMS has recently been ported to mobile.

4.3 Transaction-Oriented Middleware

Transaction-oriented middleware systems are mainly used in architectures where
components are database applications. They support transactions involving com-
ponents that run on distributed hosts: a client component clusters several oper-
ations within a transaction that the middleware then transports via the network
to the server components in a manner that is transparent to both clients and
servers. These middleware support both synchronous and asynchronous commu-
nication across heterogeneous hosts and achieve high reliability: as long as the
participating servers implement the two-phase-commit protocol, the atomicity
property of transactions is guaranteed. However, this causes an undue overhead
if there is no need to use transactions. Despite their success in fixed systems,
the computational load and the transparency that are typical of this kind of
middleware (such as IBM CICS [31] and BEA’s Tuxedo [28]), make them look
not very suitable for mobile settings.

The classification of middleware for fixed distributed systems in the three
categories (i.e., object-oriented, message-oriented and transaction-oriented) dis-
cussed above is actually not rigid. There is in fact a trend of merging these
categories together, as shown by the CORBA Object Transaction Service, a
convergence of object-oriented and transaction-oriented middleware, or by the
CORBA Event Service and the publish/subscribe communication à la CCM, a
union of object-oriented and message-oriented middleware. We will now assess
the impact of traditional middleware in mobile settings and also describe a set
of middleware developed specifically for mobile.

5 Middleware for Mobile Distributed Systems

There are different examples of use of traditional middleware systems in the
context of mobile computing. We will show some examples of adaptation of
object-oriented middleware and message oriented middleware to small and mo-
bile devices. The main problem with the object-oriented approach is that it
relies on synchronous communication primitives that do not necessarily suit all
the possible mobile system architectures. The computational load of these sys-
tems is quite high and the principle of transparency they adhere to does not
always fit mobile applications.

As we have seen, the requirements for mobile applications are considerably
different from the requirements imposed by fixed distributed applications. Some
of the developed systems for mobile environments adopted the radical approach
of not having a middleware but rather rely on the application to handle all the
services and deal with the non-functional requirements, often using a context-
aware approach that allows adaptation to changing context [15]. Sun provides
J2ME (Java Micro Edition) [70] which is a basic JVM and development package

targeting mobile devices. Microsoft recently matched this with .Net Compact
Framework [42], which also has support for XML data and web services connec-
tivity.

However this approach is a non-solution, as it completely relies on application
designers for the solution of most of the non-functional requirements middleware
should provide, starting from scalability.

On the other hand, recently, some middleware specifically targeting the needs
of mobile computing have been devised [59]; assumptions such as scarce re-
sources, and fluctuating connectivity have been made in order to reach light-
weight solutions. Some of the approaches however target only one of the mobility
aspects: for instance, many location-aware systems have been implemented to
allow application to use location information to provide services.

We now describe some of the developed solutions to date, starting from the
examples of adaptation of object-oriented middleware such as CORBA or Java
Messaging Server to mobile platforms, to solutions targeting completely ad-hoc
scenarios.

5.1 Traditional Middleware applied in Mobile Computing

Object-oriented middleware has been adapted to mobile settings, mainly to make
mobile devices inter-operated with existing fixed networks (i.e., nomadic setting).
The main challenge in this direction is in terms of software size and protocol suit-
ability, as already mentioned. IIOP (i.e., the Internet Inter-ORB Protocol) is the
essential part of CORBA that is needed to allow communication among devices.
IIOP has been successfully ported to mobile setting and used as a minimal ORB
for mobile devices [27]. IIOP defines the minimum protocol necessary to trans-
fer invocations between ORBs. In ALICE [27] hand-helds with Windows CE
and GSM adaptors have been used to provide support for client-server architec-
tures in nomadic environments. An adaptation of IIOP specifically for mobile
(i.e., LW-IOP, Light-weight Inter-Orb Protocol) has been devised in the DOL-
MEN project [57]: caching of unsent data combined with an acknowledgement
scheme to face wireless medium unreliability. Also actual names of machines
are translated dynamically through a name server, which maintains up-to-date
information of the hosts location.

In [56] CORBA and IIOP are used together with the WAP (Wireless Access
Protocol) stack [24] in order to allow the use of CORBA services on a fixed
network through mobile devices connected through WAP and a gateway. IIOP
is used to achieve message exchange.

In general, the synchronous connectivity paradigm introduced by traditional
middleware assumes a permanent connectivity that cannot be given as granted in
most of the mobile computing scenarios. The above mentioned systems are usu-
ally targeted to nomadic settings where hand-offs allow mobile devices to roam
while being connected. Some minimal support for disconnection is introduced.

There have been more serious attempts in the direction of using traditional
middleware using a sort of semi-asynchronous paradigm. Some involved RPC
based middleware enhanced with queueing delaying or buffering capabilities in

order to cope with intermittent disconnections. Example of these behaviours are
Rover [32] or Mobile DCE [65]. As we write, an implementation of the message
oriented middleware JMS (Java Messaging Server) has been released [68]. It sup-
ports point to point and publish/subscribe models, that is a device can either
communicate with a single otehr (through its queue), or register on a topic an be
notified of all the messages sent to that topic. We believe this is a good answer
to the need for adaptation of traditional middleware to mobile and that the use
of publish/subscribe and message oriented systems will be taken further as they
offer an asynchronous communication mechanism that allows for disconnected
operations. However, communication is not the only aspect that mobile comput-
ing middleware should tackle: other important aspects such as context awareness
and data sharing need to be addressed.

In the existing examples of use of traditional middleware on mobile, the focus
is on provision of services from a back-bone network to a set of mobile devices:
the main concerns in this scenarios are connectivity and message exchange. In
case of a less structured network or in case services must be provided by mobile
devices, traditional middleware paradigms seems to be less suitable and a new
set of strategies needs to be used.

The importance of monitoring the condition of the environment, and adapta-
tion to application needs, maybe through communication of context information
to the upper layers, becomes vital to achieve reasonable quality of service.

Given the highly dynamic environment and the scarce resources, quality of
service provision presents higher challenges in mobile computing. Nevertheless,
researchers have devised a number of interesting approaches to quality of service
provision to mobile devices [15]. Most of the time the devices are considered
terminal nodes and the clients of the service provision, and the network con-
nectivity is assumed fluctuating but almost continuous (like in GSM settings).
The probably most significant example of quality of service oriented middleware
is Mobiware [2], which uses CORBA, IIOP and Java to allow service quality
adaptation in mobile setting. As shown in Figure 7, in Mobiware mobile devices
are seen as terminal nodes of the network and the main operations and services
are developed on a core programmable network of routers and switches. Mobile
devices are connected to access points and can roam from an access point to
another.

The main idea in Mobiware is that mobile devices will have to probe and
adapt to the constantly changing resources over the wireless link. The experi-
mental network used by Mobiware is composed of ATM switches, wireless access
points, and broadband cellular or ad-hoc connected mobile devices. The toolkit
focuses on the delivery of multimedia application to devices with adaptation to
the different quality of service and seamless mobility.

Mobiware mostly assumes a service provision scenario where mobile devices
are roaming but permanently connected, with fluctuating bandwidth. Even in
the case of the ad-hoc broadband link, the device is supposed to receive the
service provision from the core network through, first the cellular links and then
some ad-hoc hops.

Fig. 7. Mobiware Architecture (from [2]).

In more extreme scenarios, where links are all ad-hoc, these assumptions
cannot be made and different middleware technologies need to be applied. One
of the strength of Mobiware is the adaptation component to customise quality
of service results. It is more and more clear that middleware for mobile devices
should not ignore context and that adaptation is a key point, given the limited
resources and changing conditions.

Another interesting example of quality of service oriented middleware is
L2imbo [17], a tuple space based quality of service aware system. For a de-
scription of L2imbo, we refer the reader to Section 5.4, where we describe the
advantages of tuple space based models.

5.2 Context-Awareness based Middleware

To enable applications to adapt to heterogeneity of hosts and networks as well
as variations in the user’s environment, systems must provide for mobile appli-
cations to be aware of the context in which they are being used. Furthermore,
context information can be used to optimise application behaviour counter bal-
ancing the scarce resource availability.

User’s context includes, but is not limited to:

- location, with varying accuracy depending on the positioning system used;
- relative location, such as proximity to printers and databases;

- device characteristics, such as processing power and input devices;
- physical environment, such as noise level and bandwidth;
- user’s activity, such as driving a car or sitting in a lecture theatre.

Context-aware computing is not a new computing paradigm; since it was
first proposed a decade ago [64], many researchers have studied and developed
systems that collect context information, and adapt to changes.

The principle of Reflection has often been used to allow dynamic reconfig-
uration of middleware and has proven useful to offer context-awareness. The
concept of reflection was first introduced by Smith in 1982 [67] as a principle
that allows a program to access, reason about and alter its own interpretation.
Initially, the use of reflection was restricted to the field of programming language
design [33]; some years later, reflection has been applied to the field of operating
systems [78] and, more recently, distributed systems [41].

Examples of traditional middleware built around the principle of reflection in-
clude, but are not limited to, OpenORB [22], OpenCorba [36], dynamicTAO [34],
Blair et al. work [9]. The role of reflection in distributed systems has to do with
the introduction of more openness and flexibility into middleware platforms. In
standard middleware, the complexity introduced through distribution is han-
dled by means of abstraction. Implementations details are hidden from both
users and application designers and encapsulated inside the middleware itself.
Although having proved to be successful in building traditional distributed sys-
tems, this approach suffers from severe limitations when applied to the mobile
setting. Hiding implementation details means that all the complexity is managed
internally by the middleware layer; middleware is in charge of taking decisions
on behalf of the application, without letting the application influence this choice.
This may lead to computationally heavy middleware systems, characterised by
large amounts of code and data they use in order to transparently deal with
any kind of problems and find the solution that guarantees the best quality of
service to the application. Heavyweight systems cannot however run efficiently
on a mobile device as it cannot afford such a computational load. Moreover, in
a mobile setting it is neither always possible, nor desirable, to hide all the im-
plementation details from the user. The fundamental problem is that by hiding
implementation details the middleware has to take decisions on behalf of the ap-
plication; the application may, however, have vital information that could lead
to more efficient or suitable decisions. Both these limitations can be overcome
by reflection. A reflective system may bring modifications to itself by means of
inspection and/or adaptation. Through inspection, the internal behaviour of a
system is exposed, so that it becomes straightforward to insert additional be-
haviour to monitor the middleware implementation. Through adaptation, the
internal behaviour of a system can be dynamically changed, by modification of
existing features or by adding new ones. This means that a middleware core
with only a minimal set of functionalities can be installed on a mobile device,
and then it is the application which is in charge of monitoring and adapting the
behaviour of the middleware according to its own needs.

The possibilities opened by this approach are remarkable: light-weight mid-
dleware can be built that support context awareness. Context information can
be kept by middleware in its internal data structures and, through reflective
mechanisms, applications can acquire information about their execution con-
text and tune the middleware behaviour accordingly. No specific communication
paradigm is related to the principle of reflection, so this issue is left unspecified
and depends on the specific middleware system built.

Some recent approaches have investigated the use of reflection in the context
of mobile systems, and used it to offer dynamic context-awareness and adap-
tation mechanisms [60]. UIC (Universally Interoperable Core) [74] is a minimal
reflective middleware that targets mobile devices. UIC is composed of a pluggable
set of components that allow developers to specialise the middleware targeting
different devices and environments, thus solving heterogeneity issues. The con-
figuration can also be automatically updated both at compile and run time.
Personalities can be defined to have a client-side, server-side or both behaviours.
Personalities can also define with which server type to interact (i.e., Corba or
Java RMI) as depicted in Figure 8 : single personalities allow the interaction
with only one type while multi personalities allow interaction with more than
one type. In the case of multi personalities the middleware dynamically chooses
the right interaction paradigm. The size of the core goes, for instance, from 16KB
for a client-side CORBA personality running on a Palm OS device to 37KB for
a client/server CORBA personality running on a Windows CE device.

Fig. 8. The UIC Interaction Paradigm (from [60]).

On top of a framework very similar to UIC, Gaia [14] has been developed
adding support for dynamic adaptation to context conditions. Gaia defines active
spaces where services, users, data and locations are represented and manipulated
dynamically and in coordination. Gaia defines a set of further services such as
event distribution, discovery, security and data storage. Some other approaches
in this direction have been developed focusing on meta-data representation for
services and application depended policies. Mechanisms for dynamic adaptation
and conflict resolutions have also been put in place [35].

In [76] another approach to context-awareness in mobile computing is pre-
sented. The paper presents a middleware for event notification to mobile comput-
ing applications. Different event channels allow differentiation of notification of
different context and environmental variables. Figure 9 shows the architecture of
the system. The asynchronous event channel suits the mobile computing setting
allowing for disconnection; however the model the authors assume is based on
permanent but fluctuating connectivity. Applications can register for notification
of specific events depending on the task they have to perform. Applications rely-
ing on this middleware are constructed decoupling the application functionalities
from the application context-awareness, where policies are defined to adapt to
context.

Fig. 9. The event notification architecture (from [76]).

The main idea of these systems is to offer the ability to change the behaviour
of the middleware and application based on the knowledge on the changing con-
text. This seems to be a valid idea given the scarce resources and the dynamicity
of the mobile environment.

Much research has recently been investigating context-awareness issues. An-
other example of context-aware systems is Odyssey [62], a data-sharing middle-
ware with synchronisation policies depending on applications. We will describe
this middleware together with other data-sharing oriented middleware in Sec-
tion 5.3.
Location-aware Middleware. Location is one of the most studied aspects of
context awareness. Location awareness has attracted a great deal of attention
and many examples exist of applications that exploit location information to:

offer travellers directional guidance, such as the Shopping Assistant [6] and Cy-
berGuide [37]; to find out neighbouring devices and the services they provide,
such as Teleporting [8]; to send advertisements depending on user’s location,
such as People and Object Pager [12]; to send messages to anyone in a specific
area, such as Conference Assistant [19]; and so on. Most of these systems interact
directly with the underlying network OS to extract location information, process
it, and present it in a convenient format to the user. One of their major limita-
tions concerns the fact that they do not cope with heterogeneity of coordinate
information, and therefore different versions have to be released that are able to
interact with specific sensor technologies, such as the Global Positioning System
(GPS) outdoors, and infrared and radio frequency indoors.

To enhance the development of location-based services and applications, and
reduce their development cycle, middleware systems have been built that inte-
grate different positioning technologies by providing a common interface to the
different positioning systems. Examples include Oracle iASWE [49], Nexus [25],
Alternis [1], SignalSoft [66], CellPoint [13], and many others are being released.

We describe briefly Nexus [25], an example of middleware that supports
location-aware applications with mobile users. The idea that has motivated the
development of this system is that no migration to an homogeneous communi-
cation environment is possible, and therefore an infrastructure that supports a
heterogeneous communication environment is necessary. Nexus aims to provide
this infrastructure.

User Interface

1

2

3

4

Nexus

Applications
Clients/

Distributed Data Management

Communication

Outdoor Indoor

DGPS/GPS
Digital Compass
Pedometer
INS

Imagins Sensors
Infrared Signals
Radio Networks
Active Badge
Systems

Fig. 10. Nexus Architecture.

The architecture of the Nexus infrastructure is depicted in Figure 10. As the
picture shows, there are four different components working together.

The User Interface component is running on the mobile device carried by
the user and contains basic functionality, which is required by Nexus Clients
to interact with the Nexus platform, and to display and navigate through the

model. It also provides support for adapting to devices with different levels
of computing power, different amounts of memory, different levels of network
connection or different displays.

The interior of a Nexus platform is then split into three main elements:
communication, distributed data management and sensors.

Sensors: Nexus applications run both in outdoor and indoor areas. It would
be difficult to use only one sensor for positioning in both environments (e.g.,
GPS can be used outdoor but not indoor, as its satellite signals are blocked by
buildings). Therefore, a multi-sensor tool is needed, based on different positioning
systems.

Communication: To access information, mobile devices need to be able to con-
nect to the information source, e.g. the Internet, using wireless communication.
For a wide area network, data services of mobile telephone systems, such as GSM
or UMTS, can be used. Inside a building, wireless LAN, such as Bluetooth, can
be used instead. The Nexus communication layer acts as a broker to bridge the
differences between existing heterogeneous networks.

Distributed data management: according to the demands of different location
aware applications, spatial data have to be offered in multiple representations.
Hence, appropriate algorithms to deduce all the necessary levels of detail have
to be implemented into the platform. In order to guarantee the interoperability,
relationships between different models must be defined and data formats must
be exchangeable. All these different aspects concerning the management of data
within Nexus are managed by the Distributed data Management component.

5.3 Data sharing-oriented Middleware

One of the major issues targeted is the support for disconnected operations and
data-sharing. Systems like Coda [63], its successor Odyssey [62], Bayou [18, 73]
and Xmiddle [40] try to maximise availability of data, giving users access to
replicas; they differ in the way they ensure that replicas move towards even-
tual consistency, that is, in the mechanisms they provide to detect and resolve
conflicts that naturally arise in mobile systems. Despite a proliferation of differ-
ent, proprietary data synchronisation protocols for mobile devices, we still lack
a single synchronisation standard, as most of these protocols are implemented
only on a subset of devices and are able to access a small set of networked data.
This represents a limitation for both end users, application developers, service
providers and device manufacturers.

Coda
Coda [63] is a file system for large-scale distributed computing environments.
It provides resilience to server and network failures through two distinct but
complementary mechanisms: server replication and disconnected operation. The
first mechanism involves storing copies of a file at multiple servers; the second
one is a mode of execution in which a caching site temporarily assumes the role
of a replication site; this becomes particularly useful for supporting portable
computers.

Coda makes a distinction between relatively few servers, which are physically
secure, run trusted software and are monitored by operational staff; and clients,
which are far more numerous, may be modified in arbitrary ways by users, are
physically dispersed, and may be turned off for long periods of time. The Coda
middleware targets therefore fixed or, at most, nomadic systems, as it relies on
a fixed core infrastructure.

The unit of replication in Coda is a volume, that is, a collection of files
that are stored on one server and form a partial subtree of the shared file sys-
tem. The set of servers that contain replicas of a volume is its volume storage
group (VSG). Disconnections are treated as rare events: when disconnected, the
client can access only the data that was previously cached at the client site;
upon reconnection modified files and directories from disconnected volumes are
propagated to the VSG. Coda clients view disconnected operations as a tem-
porary state and revert to normal operation at the earliest opportunity; these
transitions are normally transparent to users. Disconnected operation can also
be entered voluntarily, when a client deliberately disconnects from the network;
however, clients have no way to influence the portion of the file system that will
be replicated locally. Moreover, it is the system that bears the responsibilities
of propagating modifications and detecting update conflicts when connectivity
is restored. Venus (the cache manager) has control over replication of volumes
in use. Venus can be in three states: Hoarding, when the client is connected to
the network, in this case Venus takes care of caching the information; Emulating
when disconnected, using the cache and throwing exceptions when the needed
data is not in the cache; Integrating, upon reconnection, when the data modified
need to be reconciled with the server copy. Venus attempts to solve conflicts dur-
ing reconciliation in an application transparent way; however application specific
resolvers (ASR) may be specified.

Odyssey
The mostly application transparent approach adopted by Coda has been im-
proved introducing context-awareness and application-dependent behaviours in
Odyssey [62], and allowing the use of these approaches in mobile computing
settings. Odyssey, again, assumes that applications reside on mobile clients but
access or update data stored on remote, more capable and trustworthy servers;
once again the nomadic scenario is targeted.

Odyssey proposes a collaborative model of adaptation. The operating system,
as the arbiter of shared resources, is in the best position to determine resource
availability; however, the application is the only entity that can properly adapt
to given context conditions, and must be allowed to specify adaptation policies.
This collaborative model is called application-aware adaptation and it is provided
using the architecture depicted in Figure 11.

To allow reaction to changes, applications first need to register an interest in
particular resources. For every resource, they define the acceptable upper and
lower bounds on the availability of that resource and they register an up-call
procedure that must be invoked whenever the availability of the resource falls

Odissey

Web warden

Video wardenV
ic

er
oy

Odissey runtime

Application

Middleware

Upcalls

Interceptor

Fig. 11. Odyssey Client Architecture.

outside the window of acceptance. The Viceroy component is then responsible
for monitoring resource usage on the client side and notifying applications of
significant changes, using the registered up-calls. When an application is notified
of a change in resource availability, it must adapt its access. Wardens are the
components responsible for implementing the access methods on objects of their
type: the interceptor module redirects file systems operations to corresponding
wardens, which provide customised behaviour (e.g., different replication policies)
according to type-specific knowledge.

Although better suited to the mobile environment than its predecessor Coda,
Odyssey suffers from some limitations: the data that can be moved across mo-
bile devices (i.e., a collection of files) may be too coarse-grained in a mobile
setting, where devices have limited amount of memory and connection is often
expensive and of low quality. Moreover, the existence of a core of more capable
and trustworthy servers does not fit the ad-hoc scenario. Finally, files are un-
interpreted byte streams; this lack of semantics complicates the development of
conflict detection and reconciliation policies from an application point of view.

Bayou
The Bayou storage system [18, 73] provides an infrastructure for collaborative
applications. Bayou manages conflicts introduced by concurrent activity while
relying only on the fluctuating connectivity available in mobile computing. Repli-
cation is seen as a requirement in the mobile scenario as a single storage site may
not be reachable by some mobile clients or within disconnected work-groups.
Bayou allows arbitrary read and write operations to any replica without ex-
plicit coordination with the other replicas: every computer eventually receives
updates from every other, either directly or indirectly, through a chain of peer
interactions. The weak consistency of the replicated data is not transparent to
applications; instead, they are aware they may be using weakly consistent data
and that their write operations may conflict with those of other users and ap-
plications. Moreover, applications are involved in the detection and resolution
of conflicts since these naturally depend on the semantics of the application. In
particular, the system provides the application with ways of specifying its own

Application

Bayou API

Client

Storage
System

Server

read

write/

Storage
System

Server

Client

Application

Bayou API

Storage
System

Server

write/read

antientropy

machine
boundaries

Fig. 12. Bayou System Model.

notion of a conflict, along with its policy for resolving it. In return, the system
implements the mechanisms for reliable detection of conflicts, as specified by the
application, and for automatic resolution when possible.

Automatic detection is achieved through a mechanism called dependency
check: every write operation is accompanied by a dependency set that consists of
a query and its expected result. A conflict is detected if the query, when run at a
server against its current copy of the data, does not return the expected result.
This dependency check is therefore a pre-condition for performing the update.
As an example consider someone trying to add an appointment in an agenda,
without knowing the content of the agenda. A dependency check could make sure
that the time for the appointment is free before adding it. If the check fails, the
requested update is not performed and the server invokes a procedure to resolve
the detected conflict. Once a conflict has been detected, a merge procedure is run
by the Bayou server in an attempt to resolve it. Merge procedures are provided
by application programmers in the form of templates that are then filled in with
the details of each write and accompany each write operation. Users do not have
to know about them, except when automatic conflict resolution cannot be done
and manual resolution is needed. In this, Bayou is more flexible than Odyssey
as customisation can be performed on each write operation, and not by type.

Bayou guarantees that all the servers will move towards eventual consistency.
This means that all the servers will eventually receive all the write operations
(through a process called anti-entropy), although the system cannot enforce
bounds on write propagation delays since these depend on network connectivity
factors that are outside Bayou’s control. Eventual consistency is guaranteed by
two factors: writes are performed in the same well-defined order on all the servers,
and detection and resolution procedures are deterministic so that servers resolve
the same conflict in the same way.

Unlike previous systems like Coda, that promote transparency of conflict
detection and resolution, Bayou exploits application knowledge for dependency
checks and merge procedures. Moreover, while Coda locks complete file volumes

when conflicts have been detected but not yet resolved, Bayou allows replicas
to always remain accessible. This permits clients to continue to read previously
written data and to issue new writes, but it may lead to cascading conflict
resolution if the newly issued operations depend on data that are in conflict.

One of the major drawbacks of Bayou is its client-sever architecture. Al-
though in principle client and server may co-exist on a host (see Figure 12), in
practise the system requires that each data collection is replicated in full on a
number of servers. This is, of course, unaffordable for hand-held devices that
can therefore only play the role of clients in this architecture. Bayou is therefore
most suited for nomadic rather than ad-hoc applications.

Xmiddle
Xmiddle allows mobile hosts to share data when they are connected, or replicate
the data and perform operations on them off-line when they are disconnected;
reconciliation of data takes place once the hosts reconnect.

Unlike tuple-space based systems (as we will see in Section 5.4), which store
data in flat unstructured structures, Xmiddle allows each device to store its data
in a tree structure. Trees allow sophisticated manipulations due to the different
node levels, hierarchy among the nodes, and the relationships among the different
elements which could be defined.

When hosts get in touch with each other, they need to be able to interact.
Xmiddle allows communication through sharing of trees. On each device, a set
of possible access points for the private tree is defined; they essentially address
branches of the tree that can be modified and read by peers. The size of these
branches can vary from a single node to a complete tree; unlike systems such
as Coda and Odyssey (Section 5.3), where entire collections of files have to be
replicated, the unit of replication can be easily tuned to accommodate different
needs. For example, replication of a full tree can be performed on a laptop, but
only of a small branch on a PDA, as the memory capabilities of these devices
differ greatly.

In order to share data, a host needs to explicitly link to another host’s tree.
The concept of linking to a tree is similar to the mounting of network file systems
in distributed operating systems to access and update information on a remote
disk.

Figure 13 shows the general structure of Xmiddle and the way hosts get
in touch and interact. As long as two hosts are connected, they can share and
modify the information on each other’s linked data trees. When disconnections
occurs, both explicit (e.g., to save battery power or to perform changes in iso-
lation from other hosts) and implicit (e.g., due to movement of a host into an
out of reach area), the disconnected hosts retain replicas of the trees they were
sharing while connected, and continue to be able to access and modify the data.

When the two hosts reconnect, the two different, possibly conflicting, replicas
need to be reconciled. Xmiddle exploits the tree differencing techniques devel-
oped in [72] to detect differences between the replicas which hosts use to con-
currently and off-line modify the shared data. However, it may happen that the

a.

b.

HostA

HostB HostC

HostA

HostB

HostC

Fig. 13. a. Host HB and Host HC are not connected. b. Host HB and Host HC connect
and Host HB receives a copy of the tree that it has linked from Host HC .

reconciliation task cannot be completed by the Xmiddle layer alone, because, for
example, different updates have been performed on the same node of the tree. In
order to solve these conflicts, Xmiddle enables the mobile application engineer
to associate application-specific conflict resolution policies to each node of the
tree. Whenever a conflict is detected, the reconciliation process finds out which
policy the application wants the middleware to apply, in order to successfully
complete the merging procedure.

Xmiddle implements the tree data structure using the eXtended Markup
Language (XML) [11] and related technologies. In particular, application data
are stored in XML documents, which can be semantically associated to trees.
Related technologies, such as the Document Object Model (DOM) [4], XPath [16]
and XLink [38], are then exploited to manipulate nodes, address branches, and
manage references between different parts of an XML document. Reconciliation
policies are specified as part of the XML Schema [23] definition of the data
structures that are handled by Xmiddle itself.

Xmiddle moves a step forward other middleware systems which focus on the
problem of disconnected operations. In particular, unlike Coda and Odyssey,
the unit of replication can be easily tuned, in order to accommodate different
application and device needs. This issue may play a key role in mobile scenarios,
where devices have limited amount of memory and the quality of the network
connection is often poor and/or expensive. Moreover, Xmiddle addresses pure
ad-hoc networks and not only nomadic ones, as no assumption is made about
the existence of more powerful and trusted hosts which should play the role of
servers and on which a collection of data should be replicated in full.

Although representing a good starting point for developing middleware for
mobile computing, at present Xmiddle suffers from some limitations that require
further investigation: the communication paradigm (i.e., sharing of trees) pro-

vided is too poor and needs to be improved in order to model more complex
interactions that can occur in mobile settings.

5.4 Tuple Space-based Middleware

The characteristics of wireless communication media (e.g., low and variable
bandwidth, frequent disconnections, etc.) favour a decoupled and opportunis-
tic style of communication: decoupled in the sense that computation proceeds
even in presence of disconnections, and opportunistic as it exploits connectiv-
ity whenever it becomes available. The synchronous communication paradigm
supported by many traditional distributed systems has to be replaced by a new
asynchronous communication style.

As we have seen, some attempts based on events [76], or queues (Rover [32]
or Mobile JMS [68]) have been devised. However, a completely asynchronous and
decoupled paradigm (tuple space based) have also been isolated as effective in
mobile settings. Although not initially designed for this purpose (their origins go
back to Linda [26], a coordination language for concurrent programming), tuple
space systems have been shown to provide many useful facilities for communica-
tion in wireless settings. In Linda, a tuple space is a globally shared, associatively
addressed memory space used by processes to communicate. It acts as a reposi-
tory (in particular a multi-set) of data structures called tuples that can be seen
as vector of typed values. Tuples constitute the basic elements of a tuple space
systems; they are created by a process and placed in the tuple space using a
write primitive, and they can be accessed concurrently by several processes us-
ing read and take primitives, both of which are blocking (even if non-blocking
versions can be provided). Tuples are anonymous, thus their selection takes place
through pattern matching on the tuple contents. Communications is de-coupled
in both time and space: senders and receivers do not need to be available at the
same time, because tuples have their own life span, independent of the process
that generated them, and mutual knowledge of their location is not necessary
for data exchange, as the tuple space looks like a globally shared data space,
regardless of machine or platform boundaries.

These forms of decoupling assume enormous importance in a mobile setting,
where the parties involved in communication change dynamically due to their
migration or connectivity patterns. However, a traditional tuple space imple-
mentation is not enough. There are basic questions that need to be answered:
how is the globally shared data space presented to mobile hosts? How is it made
persistent? The solutions developed to date basically differ depending on the
answers they give to the above questions.

We now review three tuple-space middleware that have been devised for
mobile computing applications: Lime [45], TSpaces [77] and L2imbo [17].

Lime
In Lime [45], the shift from a fixed context to a dynamically changing one is
accomplished by breaking up the Linda tuple space into many tuple spaces, each

permanently associated to a mobile unit, and by introducing rules for transient
sharing of the individual tuple spaces based on connectivity.

ITS ITSITS

Transiently Shared Tuple Space

Mobile Units

Fig. 14. Transiently shared tuple spaces in Lime.

As shown in Figure 14, each mobile unit has access to an interface tuple
space (ITS) that is permanently and exclusively attached to that unit and trans-
ferred along with it when movement occurs (like in the data tree of Xmiddle).
Each ITS contains tuples that the unit wishes to share with others and it rep-
resents the only context accessible to the unit when it is alone. Access to the
ITS takes place using conventional Linda primitives, whose semantics is basically
unaffected. However, the content of the ITS (i.e., the set of tuples that can be
accessed through the ITS) is dynamically recomputed in such a way that it looks
like the result of the merging of the ITSs of other mobile units currently con-
nected. Upon arrival of a new mobile unit, the content perceived by each mobile
unit through its ITS is recomputed taking the content of the new mobile unit
into account. This operation is called engagement of tuple spaces; the opposite
operation, performed on departure of a mobile unit, is called disengagement. The
tuple space that can be accessed through the ITS of a mobile unit is therefore
shared by construction and transient because its content changes according to
the movement of mobile units.

The term mobile unit can be understood either as mobile agent or as mobile
host. In the first case, the context is logical mobility, in the second one, physical
mobility. The Lime notion of transiently shared tuple space is applicable to a
generic mobile unit, regardless of its nature, as long as a notion of connectivity
ruling engagement and disengagement is properly defined.

Lime fosters a style of coordination that reduces the details of mobility and
distribution to changes to what is perceived as the local tuple space. This pow-
erful view simplifies application design in many scenarios, relieving the designer
from explicitly maintaining a view of the context consistent with changes in the
configuration of the system. However, this may be too restrictive in domains

where higher degrees of context awareness are needed, for example to control
the portion of context that has to be accessed.

Lime tries to cope with this problem, first by extending Linda operations
with tuple location parameters that allow to operate on different projections of
the transiently shared tuple space. Secondly, information about the system con-
figuration is made available through a read-only transiently shared tuple space
called LimeSystem, containing details about the mobile components present in
the community and their relationship; finally, reactions can be set on the tuple
space, to enable actions to be taken in response to a change in the configuration
of the system.

An important aspect of Lime is tuple access and movement; events are used
to notify users when a new tuple is available.

TSpaces
TSpaces [77] is an IBM middleware system. The goal of TSpaces is to sup-
port communication, computation and data management on hand-held devices.
TSpaces is the marriage of tuplespace and database technologies, implemented
in Java. The tuplespace component provides a flexible communication model;
the database component adds stability, durability, advanced query capabilities
and extensive data storage capacity; Java adds instant portability.

TSpaces client

TSpaces client

TSpaces client

TSpaces server

answer

answer

read(p)

TSpace1

q

write(r)

p

take(q)

q

p

r

Fig. 15. Examples of interactions in TSpaces.

The TSpaces design distinguishes between clients and servers. A tuple space
exists only on a TSpaces server, while a server may host several spaces. Once a
tuple space has been created, a TSpaces client is allowed to perform operations,
like read and write, on it. A TSpaces server is a centralised server that listens
to client requests: each time a client issues an operation, information is sent to
the server that, using a lookup operation, finds out the tuplespace on which the
operation needs to be performed and passes the operation and tuple operand to
it to process (see Figure 15).

There are two specific server systems tuple spaces: Galaxy, that contains
tuples describing each tuple space that exists on a server; and Admin, that

contains access control permissions for each tuplespace and whose goal is to check
whether the issuer of each operation has the proper access control privileges.

TSpaces is different from other tuple space based systems for the following
reasons: first, the behaviour of the middleware is dynamically modifiable. New
operators can be defined, and new datatypes and operators can be introduced.
Second, TSpaces employs a real data management layer, with functionalities
similar to relational database systems. Operations are performed in a transac-
tional context that ensures the integrity of data. Support for indexing and query
capability is provided. Data (i.e., tuples stored in the database) and operations
that act on data are kept separated, so that operations can be added or changed
without affecting the database.

Unlike Lime, TSpaces mainly targets nomadic environments where servers
containing tuple data bases are stored on fixed and powerful machines, reach-
able by mobile devices roaming around. The transactional approach to tuple
read/write is also a limitation in terms of mobility as the paradigms might be
too heavy if the connection is fluctuating. Furthermore disconnection is seen as
a fault and, when disconnected, clients do not have access to the tuple spaces.

L2imbo. L2imbo [17] is a tuple space based middleware with emphasis on
quality of service. Some of the features of L2imbo are: multiple tuple spaces,
tuple type hierarchy, quality of service attributes, monitoring and adaptation
agents.

Like TSpaces and Lime, L2imbo provides the ability to create multiple tuple
spaces. Tuple spaces can be created when needed, provided that creation and
termination go through the universal tuple space, which is L2imbo main tuple
space. The tuple spaces are implemented in a distributed system fashion, where
each host holds a replica of the tuple space, so to allow for disconnected oper-
ations. L2imbo also provides quality of service features; quality of service fields
can be associated with the tuples, such as deadline for a tuple, which indicates
how long a tuple should be available in the space. Associated to these quality
of service fields is the QoS monitoring agent, which monitors the conditions of
the network, costs of connection and power consumption. Information on quality
of service can then be placed into tuples and made available to other agents or
hosts.

Given the support for disconnected operations and the use of an asynchronous
communication paradigm, L2imbo seems to be well suited for highly mobile
environments.

5.5 Service Discovery in Mobile Computing Middleware

In traditional middleware systems, service discovery is provided using fixed name
services, which every host knows the existence of. The more the network becomes
dynamic, the more difficult service and host discovery becomes. Already in dis-
tributed peer-to-peer network [50] service discovery is more complex as hosts
join and leave the overlay network very frequently. In mobile systems service

discovery can be quite simple, if we speak about nomadic systems where a fixed
infrastructure containing all the information and the services is present. However
in terms of more ad-hoc or mixed systems where services can be run on roaming
hosts, discovery may become very complex and/or expensive.

Most of the ad-hoc systems encountered till now have their own discovery
service. Lime and Xmiddle use a completely ad-hoc strategy where hosts contin-
uously monitor their environment to check who is available and what they are
offering. A trade-off between power consumption (i.e. broadcast) and discovery
needs to be evaluated. Recently, some work on Lime for service advertisement
and discovery has been devised [29]. Standard service discovery frameworks have
appeared in the recent years: UPnP [75], Jini [5], and Salutation [61]. UPnP
stands for Universal Plug and Play and it is an open standard for transparently
connecting appliances and services, which is adopted by the Microsoft operating
systems. UPnP can work with different protocols such as TCP, SOAP, HTTP.
Salutation is a general framework for service discovery, which is platform and
OS independent. Jini is instead Java based and dependent on the Java Virtual
Machine. The purpose of these frameworks is to allow groups of devices and soft-
ware components to federate into a single, dynamic distributed system, enabling
dynamic discovery of services inside the network federation. We now describe
Jini and Salutation.

Jini and JMatos
Jini [5] is a distributed system middleware based on the idea of federating groups
of users and resources required by those users. Its main goal is to turn the network
into a flexible, easily administered framework on which resources (both hardware
devices and software programs) and services can be found, added and deleted
by humans and computational clients.

The most important concept within the Jini architecture is the service. A
service is an entity that can be used by a person, a program or another service.
Members of a Jini system federate in order to share access to services. Services
can be found and resolved using a lookup service that maps interfaces indicating
the functionality provided by a service to sets of objects that implement that
service. The lookup service acts as the central marketplace for offering and find-
ing services by members of the federation. A service is added to a lookup service
by a pair of protocols called discovery and join: the new service provider locates
an appropriate lookup service by using the first protocol, and then it joins it,
using the second one (see Figure 16). A distributed security model is put in place
in order to give access to resources only to authorised users.

Jini assumes the existence of a fixed infrastructure which provides mecha-
nisms for devices, services and users to join and detach from a network in an
easy, natural, often automatic, manner. It relies on the existence of a network
of reasonable speed connecting Jini technology-enabled devices.

However the large footprint of Jini (3 Mbytes), due, mainly, to the use of
Java RMI, prevents the use of Jini on smaller devices such as iPAQs or PDAs.
In this direction Psinaptic JMatos [54] has been developed, complying with the

Client

Lookup Service

2) Join

1) Discovery

3) Lookup

4) Service invocation

Service Provider

Service Object

Service Attributes

Service Object
Service Attributes

Service Object

Fig. 16. Discovery, join and lookup mechanism in Jini.

Jini Specification. JMatos does not rely on Java RMI for messaging and has a
footprint of just 100 Kbytes.

Salutation
Salutation aims at platform and operating system independence. It focuses on
interoperability of different services through a set of common standards for the
specification of the service functionalities. The discovery of services is managed
by Salutation Managers that interact with each others through RPC, exchanging
service registration information. Salutation managers also direct the communi-
cation among different clients, notifying them when new data is arriving, for
example. The concept of service is decomposed in sets of functional units, rep-
resenting specific features of the services. Salutation managers also specify the
format of the transmitted data implementing transport protocol independence.

In general, despite being the most complete systems in terms of discovery,
these systems hardly provide any support of the other important non-functional
requirements that would grant the word “middleware” to them. We believe a
number of functionalities of the systems we have seen could be combined in an
efficient middleware for mobile computing.

6 Future Research Directions

According to our model, a middleware for mobile computing should be lightweight
as it must run on hand-held, resource-scarce devices; it should support an asyn-
chronous form of communication, as mobile devices connect to the network op-
portunistically and for short periods of time; and it should be built with the
principle of awareness in mind, to allow its applications to adapt its own and
the middleware behaviour to changes in the context of execution, so as to achieve
the best quality of service and optimal use of resources.

Furthermore, the variability between different mobile systems, ranging from
pure ad-hoc to nomadic with only few roaming hosts, and the different network
connectivity paradigms, add further parameters which make it very difficult to
isolate a general purpose middleware solution.

We believe research in terms of mobile computing middleware still faces
many challenges that might not be solvable adapting traditional middleware
techniques.

We believe the future mobile networks will be heterogeneous in the sense
that many different devices will be available on the market, with possibly dif-
ferent operating systems and user interfaces. The network connectivity will also
be heterogeneous even if an effort towards complete coverage through different
connection technologies will be made. For these reasons mobile computing mid-
dleware will have to adapt and be customisable in these different dimensions,
both at start-up time (i.e., in case of adaptation to different operating systems)
and at run-time (i.e., in case of adaptation to different connection technologies).

We also believe application dependent information could play an important
role in the adaptation of the behaviour of the middleware and in the trade-
off between scarce resource availability and efficient service provision. In this
direction, the effort of presentation of the information to the application, and
the gathering of application dependent policies is an important presentation
layer issue that should be integrated in any mobile computing middleware.

Discovery of existing services is a key point in mobile systems, where the
dynamicity of the system is, by orders of magnitude, higher than traditional
distributed systems. Recently, interesting research advances in peer to peer sys-
tems [71, 50] have focused on discovery issues, that might be applicable, at least
partially, to mobile settings. However, considerations on the variability of the
connection, of the load and of the resources might be different for mobile sce-
narios. Furthermore, the integration of quality of service consideration into the
service advertisement and discovery might enable some optimisation in the ser-
vice provision.

Another direction of research concerns security. Portable devices are par-
ticularly exposed to security attacks as it is so easy to connect to a wireless
link. Dynamic customisation techniques seems somehow to worsen the situa-
tion. Reflection is a technique for accessing protected internal data structures
and it could cause security problems if malicious programs break the protection
mechanism and use the reflective capability to disclose, modify or delete data.
Security is a major issue for any mobile computing application and therefore
proper measures need to be included in the design of any mobile middleware
system.

7 Summary

The growing success of mobile computing devices and networking technologies,
such as WaveLan [30] and Bluetooth [10], have called for the investigation of new
middleware that deal with mobile computing challenges, such as sudden discon-
nections, scarce resource availability, fast changing environment, etc. During the
last years, research has been active in the field of middleware, and a considerable
number of new systems has been designed to support this new computational
paradigm.

In this survey we have presented a reference model to classify distributed
systems into traditional, nomadic and ad-hoc ones. We have highlighted their
similarities and mainly their differences. We then listed a set of characteristics
that seem to be effective in mobile computing middleware. This list has been
helpful to describe some of the unsuitable aspect of traditional middleware sys-
tems in a mobile setting, and the principles that have driven towards a new set
of middleware for mobile computing

Several classes of middleware for mobile computing (i.e., reflective middle-
ware, tuplespace-based middleware, context-aware middleware, data-oriented)
have been identified, illustrated and comparatively discussed. Although address-
ing some of the issues related to mobility, none of these systems succeed in
providing support for all the requirements highlighted by our framework.

Acknowledgements The authors would like to thank Zuhlke Engineering (UK)
Ltd. for supporting Licia Capra; Stefanos Zachariadis and Gian Pietro Picco for
comments on an earlier draft of this paper.

References

1. Alternis S.A. Solutions for Location Data Mediation. http://www.alternis.fr/.
2. O. Angin, A. Campbell, M. Kounavis, and R. Liao. The Mobiware Toolkit: Pro-

grammable Support for Adaptive Mobile Netwoking. In Personal Communications
Magazine, Special Issue on Adapting to Network and Client Variability. IEEE Com-
puter Society Press, August 1998.

3. ANSA. The Advanced Network Systems Architecture (ANSA). Reference manual,
Architecture Project Management, Castle Hill, Cambridge, UK, 1989.

4. V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors, G. Nicol,
J. Robie, R. Sutor, C. Wilson, and L. Wood. Document Object Model (DOM)
Level 1 Specification. W3C Recommendation http://www.w3.org/TR/1998/REC-
DOM-Level-1-19981001, World Wide Web Consortium, Oct. 1998.

5. K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath. The Jini[tm]
Specification. Addison-Wesley, 1999.

6. A. Asthana and M. C. P. Krzyzanowski. An indoor wireless system for personal-
ized shopping assistence. In Proceedings of IEEE Workshop on Mobile Computing
Systems and Applications, pages 69–74, Santa Cruz, California, Dec. 1994. IEEE
Computer Society Press.

7. S. Baker. Corba Distributed Objects : Using Orbix. Addison-Wesley, Nov. 1997.
8. F. Bennett, T. Richardson, and A. Harter. Teleporting - making applications

mobile. In Proc. of the IEEE Workshop on Mobile Computing Systems and Appli-
cations, pages 82–84, Santa Cruz, California, Dec. 1994. IEEE Computer Society
Press.

9. G. Blair, G. Coulson, P. Robin, and M. Papathomas. An Architecture for Next
Generation Middleware. In Proceedings of Middleware ’98, pages 191–206. Springer
Verlag, Sept. 1998.

10. Bluetooth.com. Bluetooth. http://www.bluetooth.com.
11. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language.

Recommendation http://www.w3.org/TR/1998/REC-xml-19980210, World Wide
Web Consortium, Mar. 1998.

12. P. Brown. Triggering information by context. Personal Technologies, 2(1):1–9,
Mar. 1998.

13. CellPoint, Inc. The CellPoint System. http://www.cellpt.com/thetechnology2.htm,
2000.

14. R. Cerqueira, C. K. Hess, M. Romn, and R. H. Campbell. Gaia: A Develop-
ment Infrastructure for Active Spaces. In Workshop on Application Models and
Programming Tools for Ubiquitous Computing (held in conjunction with the UBI-
COMP 2001), Sept. 2001.

15. D. Chalmers and M. Sloman. A Survey of Quality of Service in Mobile Computing
Environments. IEEE Communications Surveys, Second Quarter:2–10, 1999.

16. J. Clark and S. DeRose. XML Path Language (XPath). Technical Report
http://www.w3.org/TR/xpath, World Wide Web Consortium, Nov. 1999.

17. N. Davies, A. Friday, S. Wade, and G. Blair. L2imbo: A Distributed Systems Plat-
form for Mobile Computing . ACM Mobile Networks and Applications (MONET),
Special Issue on Protocols and Software Paradigms of Mobile Networks, 3(2), 1998.

18. A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. welch. The
Bayou Architecture: Support for Data Sharing among Mobile Users. In Proceedings
of the IEEE Workshop on Mobile Computing Systems and Applications, pages 2–7,
Santa Cruz, California, Dec. 1994.

19. A. Dey, M. Futakawa, D. Salber, and G. Abowd. The Conference Assistant: Com-
bining Context-Awareness with Wearable Computing. In Proc. of the 3rd Interna-
tional Symposium on Wearable Computers (ISWC ’99), pages 21–28, San Franfisco,
California, Oct. 1999. IEEE Computer Society Press.

20. W. Emmerich. Engineering Distributed Objects. John Wiley & Sons, Apr. 2000.
21. W. Emmerich. Software Engineering and Middleware: A Roadmap. In The Future

of Software Engineering - 22nd Int. Conf. on Software Engineering (ICSE2000),
pages 117–129. ACM Press, May 2000.

22. ExoLab. OpenORB. http://openorb.exolab.org/openorb.html, 2001.
23. D. C. Fallside. XML Schema. Technical Report

http://www.w3.org/TR/xmlschema-0/, World Wide Web Consortium, Apr.
2000.

24. W. Forum. Wireless Application Protocol. http://www.fub.it/dolmen/, 2000.
25. D. Fritsch, D. Klinec, and S. Volz. NEXUS Positioning and Data Management

Concepts for Location Aware Applications. In Proceedings of the 2nd International
Symposium on Telegeoprocessing, pages 171–184, Nice-Sophia-Antipolis, France,
2000.

26. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

27. M. Haahr, R. Cunningham, and V. Cahill. Supporting CORBA Applications in
a Mobile Environment (ALICE). In 5th Int. Conf. on Mobile Computing and
Networking (MobiCom). ACM Press, August 1999.

28. C. Hall. Building Client/Server Applications Using TUXEDO. Wiley, 1996.
29. R. Handorean and G.-C. Roman. Service Provision in Ad Hoc Networks. In

Coordination 2002. Springer, 2002.
30. G. Held. Data Over Wireless Networks: Bluetooth, WAP, and Wireless Lans.

McGraw-Hill, Nov. 2000.
31. E. Hudders. CICS: A Guide to Internal Structure. Wiley, 1994.
32. A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile Computing with the

Rover Toolkit. IEEE Transactions on Computers, 46(3), 1997.
33. G. Kiczales, J. des Rivieres, and D. Borrow. The Art of the Metaobject Protocol.

The MIT Press, 1991.

34. F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. M. aes, and R. Cambpell.
Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective
ORB. In International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware’2000), pages 121–143, New York, Apr. 2000.
ACM/IFIP.

35. L. Capra and W. Emmerich and C. Mascolo. A Micro-Economic Approach to
Conflict Resolution in Mobile Computing. March 2002. Submitted for Publication.

36. T. Ledoux. OpenCorba: a Reflective Open Broker. In Reflection’99, volume 1616
of LNCS, pages 197–214, Saint-Malo, France, 1999. Springer.

37. S. Long, R. Kooper, G. Abowd, and C. Atkenson. Rapid prototyping of mobile
context-aware applications: the Cyberguide case study. In Proceedings of the Sec-
ond Annual International Conference on Mobile Computing and Networking, pages
97–107, White Plains, NY, Nov. 1996. ACM Press.

38. E. Maler and S. DeRose. XML Linking Language (XLink). Technical Report
http://www.w3.org/TR/1998/WD-xlink-19980303, World Wide Web Consortium,
Mar. 1998.

39. B. W. Marsden. Communication Network Protocols: OSI Explained. Chartwell-
Bratt, 1991.

40. C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE: A Data-
Sharing Middleware for Mobile Computing. Int. Journal on Personal and Wireless
Communications, April 2002.

41. J. McAffer. Meta-level architecture support for distributed objects. In Proceedings
of Reflection’96, pages 39–62, San Francisco, 1996.

42. Microsoft. .NET Compact Framework. http://msdn.microsoft.com/vstudio/device/compactfx.asp,
2002.

43. R. Monson-Haefel. Enterprise Javabeans. O’Reilly & Associates, Mar. 2000.

44. R. Monson-Haefel, D. A. Chappell, and M. Loukides. Java Message Service.
O’Reilly & Associates, Dec. 2000.

45. A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A Middleware for Physi-
cal and Logical Mobility. In Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21), May 2001.

46. V. Natarajan, S. Reich, and B. Vasudevan. Programming With Visibroker : A
Developer’s Guide to Visibroker for Java. John Wiley & Sons, Oct. 2000.

47. E. B. R. A. Networks. ETSI HIPERLAN/2 Standard.
http://portal.etsi.org/bran/kta/Hiperlan/hiperlan2.asp.

48. OMG. CORBA Component Model. http://www.omg.org/cgi-bin/doc?orbos/97-
06-12, 1997.

49. Oracle Technology Network. Oracle9i Application Server Wireless.
http://technet.oracle.com/products/iaswe/content.html, 2000.

50. A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly,
2001.

51. C. Perkins. Ad-hoc Networking. Addison-Wesley, Jan. 2001.

52. E. Pitt and K. McNiff. Java.rmi : The Remote Method Invocation Guide. Addison
Wesley, June 2001.

53. A. Pope. The Corba Reference Guide : Understanding the Common Object Request
Broker Architecture. Addison-Wesley, Jan. 1998.

54. Psinaptic. JMatos. http://www.psinaptic.com/, 2001.

55. I. Redbooks. MQSeries Version 5.1 Administration and Programming Examples.
IBM Corporation, 1999.

56. T. Reinstorf, R. Ruggaber, J. Seitz, and M. Zitterbart. A WAP-based Session Layer
Supporting Distributed Applications in Nomadic Environments. In Int. Conf on
Middleware, pages 56–76. Springer, Nov. 2001.

57. P. Reynolds and R. Brangeon. Service Machine Development for an Open Long-
term Mobile and Fixed Network Environment. http://www.fub.it/dolmen/, 1996.

58. D. Rogerson. Inside COM. Microsoft Press, 1997.
59. G.-C. Roman, A. L. Murphy, and G. P. Picco. Software Engineering for Mobility:

A Roadmap. In The Future of Software Engineering - 22nd Int. Conf. on Software
Engineering (ICSE2000), pages 243–258. ACM Press, May 2000.

60. M. Roman, F. Kon, and R. Campbell. Reflective Middleware: From your Desk to
your Hand. IEEE Communications Surveys, 2(5), 2001.

61. Salutation Consortium. Salutation. http://www.salutation.org/, 1999.
62. M. Satyanarayanan. Mobile Information Access. IEEE Personal Communications,

3(1):26–33, Feb. 1996.
63. M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere.

Coda: A Highly Available File System for a Distributed Workstation Environment.
IEEE Transactions on Computers, 39(4):447–459, Apr. 1990.

64. B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications. In
Proc. of the Workshop on Mobile Computing Systems and Applications, pages 85–
90, Santa Cruz, CA, Dec. 1994.

65. A. Schill, W. Bellmann, and S. Kummel. System support for mobile distributed
applications, 1995.

66. SignalSoft. Wireless Location services. http://www.signalsoftcorp.com/, 2000.
67. B. Smith. Reflection and Semantics in a Procedural Programming Langage. Phd

thesis, MIT, Jan. 1982.
68. Softwired. iBus Mobile. http://www.softwired-

inc.com/products/mobile/mobile.html, Apr. 2002.
69. W. R. Stevens. UNIX Network Programming. Prentice Hall, 1997.
70. Sun Microsystem, Inc. Java Micro Edition. http://java.sun.com/products/j2me/,

2001.
71. Sun Microsystems, Inc. Jxta Initiative. http://www.jxta.org/, 2001.
72. K. Tai. The Tree-to-Tree Correction Problem. Journal of the ACM, 29(3):422–433,

1979.
73. D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Man-

aging Update Conflicts in Bayou, a Weakly Connected Replicated Storage Sys-
tem. In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP-15), pages 172–183, Cooper Mountain, Colorado, Aug. 1995.

74. Ubi-core. Universally Interoperable Core. http://www.ubi-core.com, 2001.
75. UPnP Forum. Universal Plug and Play. http://www.upnp.org/, 1998.
76. G. Welling and B. Badrinath. An Architecture for Exporting Environment

Awareness to Mobile Computing. IEEE Transactions on Software Engineering,
24(5):391–400, 1998.

77. P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T Spaces. IBM
Systems Journal, 37(3):454–474, 1998.

78. Y. Yokote. The Apertos reflective operating system: The concept and its imple-
mentation. In Proceedings of OOPSLA’92, pages 414–434. ACM Press, 1992.

