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Abstract. We describe the software architecture of a system for doing multi-
physics simulation of a coupled fluid, thermal, and mechanical fracture problem.
The system is organized as a collection of geographically-distributed software
components in which each component provides a web service, and uses standard
web-service protocols to interact with other components. The resulting system
incorporates many features such as componentization and geographical distribu-
tion which we believe are vital to adaptive and dynamic data-driven application
systems (DDDAS).

1 Introduction

Dynamic Data Driven Application Systems (DDDAS) ([10]) are systems in which com-
putational simulation is coupled with real-world experimental data. One example of a
DDDAS system is a weather forecasting simulation that periodically uses field observa-
tions for corrections. To build a true DDDAS system, we must be able to build systems
that adapt continuously to input from sensors and observers, and to changes in compu-
tational requirements as the simulation progresses.

One of the goals of the Adaptive Software Project (ASP)7 is to lay a foundation for
building such adaptive systems. In our work, we have identified three levels at which
adaptivity occurs in computational science simulations.

Application-level A number of mathematical models (discrete, continuum, etc.) may
be available to describe the science of a given problem. A simulation code may find
it advantageous to switch adaptively between such models to trade off accuracy for
computational time and resources.

Algorithm-level There may be many algorithms for implementing a desired function-
ality (e.g., direct and iterative solvers for linear systems), and it may be advanta-
geous to switch between algorithms.

7 Additional information about the ASP project can be found athttp://www.asp.
cornell.edu/ .
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System-levelChanges in the computational environment such as hardware failures
may require a simulation system to be adaptive at the system-level.

In this paper, we describe the ASP system which exhibits these three types of adap-
tivity. In Section 2, we introduce a multi-physics fracture problem from the aerospace
domain that we use as a challenge problem. In Section 3, we describe our simulation
system, which is organized as a collection of components that interact using web-
services implemented on top of standard web-service protocols. We also present the
pros and cons of such an architecture. In Section 4, we present some preliminary per-
formance measurements that show that the performance overhead of using web-services
is relatively small. We discuss related work in Section 5, and conclude in Section 6.

2 Overview of the Problem

The applications engineers on our research team work in computational fluid mechan-
ics and solid mechanics, so we decided to tackle a problem involving high Reynolds
number, chemically reacting gas flow coupled with linear elastic fracture mechanics.

The geometry shown in Figure 1 represents an idealized segment of a rocket engine
modeled after actual NASA experimental spacecraft hardware. The object is a curved,
cooled pipe segment that transmits a chemically reacting, high-pressure, high-velocity
gas through the inner, large diameter passage, and cooling fluid through the outer array
of smaller diameter passages. The curve in the pipe segment causes a non-uniform flow
field that creates steady-state but non-uniform temperature and pressure distributions
on the inner passage surface. These temperature and pressure distributions couple with
non-uniform thermomechanical stress and deformation fields within the pipe segment.
In turn, the thermomechanical fields act on an initial crack-like defect in the pipe wall
(see Figure 2), causing this defect to propagate.

Fig. 1.The Pipe



Fig. 2.The Pipe with Crack

2.1 The Workflow

The workflow of a single time step of the simulation is shown in Figure 3. In this figure,
the components of our system appear likethis , the intermediate data sets appear like

this , and the “human in the loop” is appear likethis . In our current workflow, the
only data that is passed from one timestep to the next is the geometric model of the
pipe, which is updated in each time step as the defect is inserted and grown.

Fig. 3.Workflow for the Pipe problem

Crack initiation is an active area of research in Fracture Mechanics, and, at present,
is not understood well enough to do automatically. Hence, in our present system, we
require a knowledgeable user to manually determine the Initial Flaw Parameters by
studying the displacement field at the end of time stept = 0. This is shown as a compo-
nent labeledClient: Crack Initiation in Figure 3. In subsequent timesteps,



t=1,2,. . . , state of the art fracture mechanics techniques are used to predict growth pa-
rameters that determine how the crack defect will grow. At present, a complete simula-
tion of the Pipe Problem consists of three time steps because at the end of the third step,
we find that the crack reaches the surface of the component, possibly leading to failure.

2.2 Components

We now describe the components used in the simulation. Many of these components
were written as part of the ASP project.

MiniCAD MiniCAD is an integrated environment for creating geometry and topology.
It uses Nonuniform Rational B-Splines (NURBS) to represent geometry surfaces. Mini-
CAD offers several advantages over traditional CAD systems, including being able to
guarantee the “watertightness” of the models that it produces. MiniCAD’s output is a
geometric model in an XML-based representation developed by our project [8].

Surface MesherOnce the geometry model is produced, it is passed to the surface
mesher component which produces triangular meshes for each of the model’s geometric
surfaces. This component produces surface meshes with certain quality guarantees [7].

Generalized MesherMeshes and grids employed for simulating viscous fluid flows
require highly anisotropic elements in regions near no-slip boundaries,i.e. boundary
layers. For such problems, topological adaptivity - using cell types that are locally ap-
propriate for the region being discretized - offers an attractive alternative to traditional
structured multi-block grids or unstructured tetrahedral meshes. Chalasaniet al [6,5]
have exploited this idea to generate high quality meshes consisting of extruded triangu-
lar prisms, tetrahedral elements, and generalized prisms.

JmeshJmesh [4] generates unstructured tetrahedral meshes for arbitrarily shaped three-
dimensional regions, and was designed to handle the unique geometric problems that
occur in fracture mechanics. The input for Jmesh is a triangular surface mesh, which
describes the domain to be meshed, and the output is a tetrahedral mesh for the solid
part of the pipe.

T4 to T10The “T4 to T10” component converts the volume meshes produces by Jmesh,
which use four-noded tetrahedra, into equivalent meshes of ten-noded tetrahedrons.

Fluid/Thermal SimulationLoci [15,14] is a framework for intra-application coordi-
nation of fine-grained numerical kernels and methods. The CHEM code [15,16] is a
library of Loci rules (fine-grained components) and a front end that generates a com-
ponent that simulates 3-D chemically reacting flows of thermally perfect, calorically
imperfect gases.

Mechanical SimulationThe mechanical solver solves the equations of linear elastic-
ity to determine the deformation of the pipe due to different loading conditions (e.g.
pressure on the inner pipe) and thermal expansion.



Fracture MechanicsThe fracture mechanics component takes as input the volume mesh
for the solid part of the pipe and the the nodal displacements computed by the mechan-
ical simulation. It computes the new crack front. This component, as well as a number
of other components, uses GGTK [1], a library for manipulating geometric models and
for performing geometric operations.

Visualization We have developed an innovative real-time visualization tool for inter-
active exploration of large-scale 3D solid models and underlying engineering data.
Users guide dynamic data extraction by manipulating visual probes and selectors. These
choices are automatically translated by the visualization system into SQL queries, which
are sent to a parallel database server cluster and which return new features to the user’s
display.

3 Using Web Services for Simulation

In this section, we describe how the components in our system communicate with
each other. Briefly, each component provides web services, implemented using stan-
dard web-service protocols, and these services are invoked by any other component
that needs to interact with that component.

3.1 Why components?

Components and component frameworks are critical for adaptive and DDDAS systems.
Consider, for example, instances of algorithmic adaptivity in which the application
switches from one technique to another. If the two implementations of these techniques
did not have clearly defined interfaces or did not use similar parameter (or data) types,
then it would be impossible to switch between these implementations dynamically.

3.2 Why distributed?

It is likely that many instruments and visualization tools that would be used in a produc-
tion DDDAS system are geographically distributed. Another reason is that in a multi-
disciplinary, multi-institutional project like ours, there are likely to be many different
architectures and operating systems in use. It would be a tremendous burden if every
developer had to port their code to every other platform. Ideally, a component would
be implemented on just one platform, and it would be invoked as needed by project
partners. In other words, components should bewrite once, runfrom anywhere.

This has a number of advantages. For the component developer, intellectual prop-
erty issues become less critical because source code does not have to be released. For
component users, the advantage is that they do not have to download source code and
install components, nor do they have to find sufficient computational resources to run
the components.



3.3 Distributed components lead to web services

The W3C Web Services Architecture Working Group defines the term “web service” as
([12]),

A web service is a software system identified by a URI [RFC 2396], whose
public interfaces and bindings are defined and described using XML. Its def-
inition can be discovered by other software systems. These systems may then
interact with the web service in a manner prescribed by its definition, using
XML based messages conveyed by Internet protocols.

We have found that frameworks for building and deploying web services are suitable
for developing our adaptive simulation systems. In particular, the current system for
solving the pipe problem has been developed and deployed using the following web
services frameworks.

Microsoft .NET On our Windows platforms, we use Microsoft .NET ([9]), which pro-
vides a “holistic” approach to distributed applications.

SOAP::Clean On our UNIX and Linux platforms, we use SOAP::Clean ([20]), a Perl
module for exposing legacy applications as web services. Compared with .NET,
SOAP::Clean provides a “minimalistic” approach to distributed applications. It is
designed to allow existing command-line applications to be exposed as web ser-
vices after writing a handful of lines of “glue” code, . It also provides client tools
that make remote web services appear as local command-line programs.

4 Performance

We have implemented the workflow shown in Figure 3 by deploying each component
as a web service on a number of different computers at Cornell Computer Science (CU
CS), the Cornell Theory Center (CTC), the Engineering Research Center at Mississippi
State University (MSU ERC) and the College of William and Mary (CW&M), as shown
in Table 1. The entries that areboxed denote the specific instances of components that
were used in these experiments.

4.1 Results

Table 2 shows the individual and total execution times taken by running each of the
components using a number of different methods. All times are given in minutes. The
columns denote the following execution methods,

Local, non-XML Some of our components consist of application programs that read
and write non-standard ASCII file formats. In order to make them interoperable,
we “wrapped” them with code that converted between these non-standard formats
and our standard XML-based formats. This column contains the execution times
of the original application programs running directly on a single machine (i.e., no
web services involved). These times represent the expected performance of these
modules within a traditional monolithic simulation system.



Component CU CS CTC MSU ERC CW&M
Surface Mesher yes no no yes

Jmesh yes no no yes

T4 to T10 yes no no no

Generalized yes no yes no

Fluid/Thermal yes no no no

Mechanical no yes no no

Fracture Mechanicsyes no no no

Crack Growth yes no no no

Table 1.Component deployment

Local, non-XML Local, XML Local, WS Polling freq Intra-campus Interstate
Surface Mesher 1.10 1.10 1.15 0.17 1.33 1.43
Jmesh 17.08 16.92 16.98 5.00 20.27 20.67
T4 to T10 n.a. 0.70 0.77 0.17 1.02 2.22
Generalized(*) n.a. 0.57 0.57 0.17 0.67 1.35
Fluid/Thermal 23.00 24.13 28.05 5.00 25.42 28.92
Mechanical(*) n.a. 16.87 17.45 1.00 18.75 n.a.
Fracture Mechanicsn.a. 0.65 0.72 0.17 1.05 n.a.
Crack Growth n.a. 0.00 0.08 0.00 0.15 n.a.
Total Execution - 60.97 65.82 - 68.73 -
Overhead - 0% 8% - 13% -

Table 2.Execution times for the Pipe problem



Local, XML This column contains the execution times of all of the component pro-
grams, which all use our standard XML-based file formats. Again, these times are
from directly running the component programs on a single machine without using
web services. This column is used for the base times when computing overheads.

LOCAL, WS This column contains the execution times for invoking the components
using web services. For all but two of the components, the web services client and
server were run on the same machine, so it was possible for the two to communi-
cate without having to go through the HTTP server. It was not possible to run the
Generalized Mesher and Mechanical Simulation in this way, so these two were run
according to the “Intra-campus” column.

Intra-campus This column contains the execution times obtained by putting the client
on a different machine, within the same campus (Cornell) network, than the server.
In this case, all of the communication between the client and the server has to go
over a LAN and through an HTTP server. In order to prevent network connections
from timing out, the client uses polling to determine when the server has com-
pleted execution of the component. The column marked “Polling freq” contains the
polling frequency. The Generalized Mesher component resided at MSU ERC, so
its time includes a slightly longer network delay.

Interstate This column contains executions times obtained by putting the client on a
machine in a different state (Alabama) from all of the servers (Mississippi and New
York). The same polling frequencies were used as in the “Intra-campus” cases.
These times are incomplete, because we have not completed the experiments, but it
should be clear from the “Jmesh” and “Fluid/Thermal” times that they are compa-
rable to the “Intra-campus” times.

There are several observations that we can make from these results. First, we would
argue that the total overhead of 13% in the “Intra-campus” case and similar overheads
in the “Interstate” case are not excessive. In particular, paying the price of this overhead
gives us all of the advantages of web services discussed earlier. Second, the bulk of this
overhead is from using the web services frameworks (8%) and not Internet communi-
cation (5%) . This is very encouraging, because there are many places in our system (in
SOAP::Clean in particular) where there is room for aggressive optimization. Third, we
expect that as we scale our experiments to solve larger problems, this overhead should
go down.

5 Related Work

A number of frameworks and standards have been proposed for developing component-
based systems. Perhaps the best known are CORBA ([19]) and COM ([18]). We investi-
gated using these frameworks, but they did not meet our needs. Using these frameworks
required major reengineering of our existing applications to incorporate them into the
frameworks. We also found that the existing frameworks were primarily designed for
deploying applications within a single machine. DCOM ([17]) is one exception to this.
It is also interesting to note that existing component frameworks are evolving towards
interoperability with web services (witness .NET subsuming COM and DCOM, and the
OMG’s adoption of a specification on CORBA-WSDL/SOAP Interworking).



Perhaps the most widely know paradigm for distributed scientific computing is Grid
Computing [11] and the associated Globus Toolkit [2]. We did not follow this approach
for a number of reasons. The most fundamental reason was that none of the Grid soft-
ware provided server-side functionality under Microsoft Windows. Given that the Cor-
nell Theory Center has many hundreds of cluster nodes running Windows, this was a
show-stopper8. Just as importantly, standards for Grid frameworks are only now be-
ing developed whereas the web services community has already adopted a number of
standards (e.g., XML, SOAP, WSDL) that enable frameworks from different vendors to
interoperate.

This is not to say that we will not use Grid computing frameworks at some point in
the future. The Core Grid Functionality ([13]) contains many features that we have not
implemented within our web services frameworks, and leveraging them seems prudent.
Furthermore, the Grid standards being proposed leverage web services functionality
such as WSDL. We see Grid and web services converging in some way in the future,
although in what form we are not sure.

6 Conclusions

We have argued that component design and distributed computing are fundamental to
adaptive and DDDAS simulations, and we have argued that web services provide a
natural means of achieving these characteristics. We have described a multi-physics,
adaptive simulation system developed along these lines. Preliminary performance re-
sults indicate that the overhead of using web services for distributed simulation is not
unacceptably high, and certainly worth the benefits and flexibility they give us.
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