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ABSTRACT
Smartphone users are increasingly shifting to using apps as “gate-
ways” to Internet services rather than traditional web browsers.
App marketplaces for iOS, Android, and Windows Phone platforms
have made it attractive for developers to deploy apps and easy for
users to discover and start using many network-enabled apps quickly.
For example, it was recently reported that the iOS AppStore has
more than 350K apps and more than 10 billion downloads. Fur-
thermore, the appearance of tablets and mobile devices with other
form factors, which also use these marketplaces, has increased the
diversity in apps and their user population. Despite the increas-
ing importance of apps as gateways to network services, we have a
much sparser understanding of how, where, and when they are used
compared to traditional web services, particularly at scale. This pa-
per takes a first step in addressing this knowledge gap by presenting
results on app usage at a national level using anonymized network
measurements from a tier-1 cellular carrier in the U.S. We identify
traffic from distinct marketplace apps based on HTTP signatures
and present aggregate results on their spatial and temporal preva-
lence, locality, and correlation.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions - Network monitoring; C.4 [Performance of Systems]: Mea-
surement techniques

General Terms
Measurement
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Smartphone Apps, App Usage Behaviors
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1. INTRODUCTION
The number and popularity of mobile apps is rising dramatically

due to the accelerating rate of adoption of smartphones. For exam-
ple, Android has 150K apps and 350K daily activations [12]. Pre-
installed with marketplace portals such as the AppStore on iOS,
Market on Android, and MarketPlace on Windows Mobile, popu-
lar smartphone platforms have made it easy for users to discover
and start using many network-enabled apps quickly. By Jan 22,
2011, more than 350K apps are available on the AppStore with
downloads of more than 10 billion [1]. Furthermore, the appear-
ance of tablets and mobile devices with other form factors, which
also use these marketplaces, has increased the diversity in apps and
their user population. The existence of marketplaces and platform
APIs have also made it more attractive for some developers to im-
plement apps rather than complete web-based services. Despite the
increasing importance of apps as gateways to network services, we
have a much sparser understanding of how, where, and when they
are used compared to traditional web services, particularly at scale.
This paper takes a first step in addressing this knowledge gap.

A previous study found evidence that there is substantial diver-
sity in the way that different people use smartphone apps [7]. How-
ever, because the study relied on volunteers using instrumented
phones, it was limited to two platforms and less than three hun-
dred users in a few geographic areas. Other studies of mobile
application/app usage [11, 18, 22] have been similarly limited in
scope. Thus, it is difficult to extrapolate these results to make rep-
resentative conclusions about spatial locality, temporal variation,
and correlation of apps at scale. For example, “where are apps
more popular?”, “How is their usage distributed across a country?”,
“How does their usage vary throughout the day?”. While there
have been studies of smartphone performance at larger scales [14,
2, 10], which use volunteer measurements or network data to ob-
tain measurements at scale, measuring the usage of different apps
from these data sources is more challenging. Volunteer measure-
ments are typically obtained by deploying a measurement tool via
an app marketplace, but many popular platform APIs do not permit
the measurement of other apps in the background, so it is difficult
to write an app that captures this information. Network data may
contain information that can identify app behaviors, but this infor-
mation is not typically part of standard traces. To make represen-
tative conclusions about apps, we require a network data set that
identifies apps in network traffic and contains a significant num-
ber of measurements covering a representative number of devices,
users, locations, and times.

In this study, we address the limitations by collecting anonymized
IP-level networking traces in a large tier-1 cellular network in the



U.S. for one week in August 2010. In contrast to previous work,
we use signatures based on HTTP headers (included in the IP-level
trace) to distinguish the traffic from different apps. Due to the for-
mat ofUser-Agent in HTTP headers when mobile apps use stan-
dard platform APIs, this technique gives us the ability to gather
statistics about each individual app in a marketplace, not just cate-
gories of network traffic characterized by port number. Moreover,
our work examines the spatial and temporal prevalence, locality,
and correlation of apps at a national scale, not just in one area or
over a small population of users.

To our best knowledge, our study is the first to investigate the
diverse usage behaviors of individual mobile apps at scale. In this
study, we make the following five contributions:

• The data set that we use to study mobile apps is signifi-
cantly more diverse geographically and in user base than
previous studies. It covers hundreds of thousands of smart-
phones throughout the U.S. in a tier-1 cellular network. This
allows us to make more generalizable conclusions about smart-
phone usage patterns.

• We find that a considerable number of popular apps (20%)
arelocal, in particular, radio and news apps. In terms of traf-
fic volume, these apps are accountable for 2% of the traffic in
thesmartphone appscategory (i.e., all the marketplace apps
that can be identified byUser-Agent) – that is, their user
base is limited to a few U.S. states. This suggests significant
potential for content optimization in such access networks as
LTE and WiFi where content can be placed on servers closer
to clients. Furthermore, it suggests that network operators
need to understand the impact of different app mixes in dif-
ferent geographical areas to best optimize their network for
user experience.

• Despite this diversity in locality, we also find that there are
similarities across apps in terms of geographic coverage, di-
urnal usage patterns,etc. For example, we find that some
apps have a high likelihood ofco-occurrence on smartphones
– that is, when a user uses one app, he or she is also likely
to use another one. Users also use several alternatives for the
same type of app (e.g., multiple news apps). These findings
suggest that some apps can be treated as a “bundle” when try-
ing to optimize for their user experience and that there may
be opportunities for integration.

• We also find that the diurnal patterns of different genres of
apps can be remarkably different. For example, news apps
are much more frequently used in the early morning, sports
apps are more frequently used in the evening, while other
apps have diurnal patterns less visible and their usage is more
flat during a day. These findings suggest that cloud platforms
that host mobile application servers can leverage distinct us-
age patterns in classes of apps to maximize the utilization
of their resources. Furthermore, network operators may be
able to leverage these results by optimizing their network for
different apps during different times of the day.

• Mobility patterns can be inferred from network access pat-
terns. Some apps are more frequently used when users are
moving around; some of them are used more often when
users are stationary. Mobility affects connectivity and perfor-
mance, so bandwidth sensitive apps that are mobile may need
to consider techniques to compensate for bandwidth variabil-
ity. We find that there is a significant degree of diversity in
the mobility of apps.

The rest of this paper is organized as follows: Related work is
discussed in §2, §3 describes our data set, §4 presents our mea-
surement results, §5 outlines some implications, and we conclude
our study in §6.

2. RELATED WORK
A plethora of studies focus on understanding smartphone apps

from different perspectives. Among them, studies of smartphone
usage have yielded insights into different entities in the mobile
computing community,e.g., content providers, network providers,
OS vendors, mobile app designers,etc. Accordingly, understanding
the usage of mobile apps is critical for content providers to gener-
ate, optimize, and deliver content, for network providers to allocate
radio resources, for OS vendors to support on-device apps, for app
designers to implement efficient programs,etc. Overall, our study
is the first that attempts to address the lack of sufficient knowledge
about how, where, and when mobile apps are used at a national
scale.

A group of studies attempted to improve the performance of mo-
bile apps via OS infrastructure support [5, 13, 10, 6],e.g., offload-
ing resource intensive computation to cloud [5], providing clean
intermediate interface for apps by the OS [13], and signaling mo-
bile devices by network providers via notification channel to save
resource [10]. Our study is complementary to these, as it focuses on
profiling the usage patterns of mobile apps; we note that the design
of supportive infrastructure would also benefit from the knowledge
of mobile app usage patterns.

Also related are studies that proposed measurement tools for
smartphone devices characterizing either the device performance or
the performance of certain apps [14, 30, 21],e.g., 3GTest [14] mea-
sures the network performance of popular smartphone platforms,
PowerTutor [30] profiles energy consumption of running apps on
Android, ARO [21] characterizes the radio resource usage of mo-
bile apps,etc. Compared to these studies, we focus on usage pat-
terns of mobile apps rather than their performance, but our work
also has implications on resource consumption.

Studies have also proposed creative mobile apps to enhance user
experience under mobility [17, 4, 3, 16],e.g., xShare [17] enabling
friendly, efficient, and secure phone sharing on existing mobile
phones, Escort [4] leading a user to the vicinity of a desired person
in a public place,etc. Although mobile apps are fixed in our study,
our work provides app designers with measurements and directions
that can help them improve design decisions.

Besides app usage, app selection has been explored as well in
context-aware mobile apps recommendation systems [26, 29]. A
key requirement for an app recommendation system is to identify
the users who share certain similar app interests so that it can pre-
dict apps of interest. Understanding patterns in user interests is also
part of our study.

On a large scale, there have been studies characterizing the mo-
bile traffic [11, 18, 8, 15] and user interactive behaviors with smart-
phones [7, 22, 23]. Compared to these studies, our study (1) relies
on a data set that can represent the majority of smartphone users
across the U.S.; (2) covers the impact of more than one factor,e.g.,
location, time, device, user,etc.; (3) places more emphasis on the
usage of smartphones rather than traffic flows, content type, and
WiFi usage.

We believe that our study makes an important step in addressing
the lack of knowledge of usage behaviors of mobile apps.



top X apps right (%) wrong (%) unknown (%)
10 8 (80%) 0 (0%) 2 (20%)
20 17 (85%) 1 (5%) 2 (10%)
50 46 (92%) 2 (4%) 2 (4%)

100 91 (91%) 4 (4%) 5 (5%)
200 176 (88%) 5 (3%) 19 (10%)
500 427 (85%) 14 (3%) 69 (14%)

Table 1: accuracy of usingUser-Agent to categorize apps
(via manual comparison to app names in the app marketplace).

3. OVERVIEW OF DATA SET

3.1 Data Set
In this paper, we use an anonymized data set from a tier-1 cel-

lular network provider in the U.S. It is collected during the week
of August 24th, 2010 – August 30th, 2010. The data set contains
flow-level information about IP flows carried in PDP Context tun-
nels (i.e., all data traffic sent to and from cellular devices). This
data set is collected from all links between SGSNs and GGSNs in
tier-1 network’s UMTS core network. Hence, we have a nation-
wide view of cellular data traffic. Due to volume constraints, only
traffic from a uniform random sample of devices is collected. For a
random sample of devices, the data contains the following informa-
tion for each IP flow per minute: the start and the end timestamps,
per-flow traffic volume in terms of both the bytes and the number of
packets, the device identifier, and the app identifier. All device and
subscriber identifiers (e.g., IMSI, IMEI) are anonymized to protect
privacy without affecting the usefulness of our analysis. Further-
more, the data sets do not permit reversing the anonymization or
re-identification of subscribers.

App identifiers include information about application protocol
(e.g., HTTP, DNS, and SIP) and class (e.g., streaming audio, stream-
ing video, web, email). Moreover, given that these popular smart-
phone platforms include the app’s name in theUser-Agent field
when the app uses the standard API to access URL network re-
sources, the marketplace apps can be identified by theUser-Agent
field in HTTP headers. We focus on these apps in this paper and
we classify them into thesmartphone appscategory. Note that the
browser and YouTube are not included in smartphone apps since
they come with the smartphone OS and are not present in the mar-
ketplace.

We further categorize smartphone apps by the genre that it is
listed under in its platform’s marketplace. To find the category,
we use the API provided by each smartphone platform’s market
to search for the app name presented in the HTTPUser-Agent.
While the API typically returns multiple results that match the query
(by treating it as a wild card), we manually validated the top apps
whether the top first result is correct. Table 1 shows the correspond-
ing validation results of the querying. Upon the response of each
query, we have three attitudes:right, wrong, andunknown. We
consider a response as right or wrong only if we are confident on
the correctness. For example, we believe that aUser-Agent con-
tainingPandora is a music app and anotherUser-Agent including
Facebook is not a sport app. There are some apps that are very hard
to tell by us according to theirUser-Agent fields such asWSDU 4,
which we label as unknown. Additionally, those queries whose re-
sponses are empty are labeled as unknown. According to Table 1,
we are confident on the correctness of the top first result for the
majority of the smartphone apps.

In this paper, we are concerned about four main features per app:
traffic volume, access time, unique subscribers, and locations.

We estimate traffic volume as the sum of the flow byte counts, ac-
cess time as the sum of the flow durations (with a precision of sec-
onds), and the number of unique subscribers as the number of dis-
tinct anonymous device identifiers. There is only one anonymized
identifier per distinct device. To determine the location of each
device at the time a flow is in progress, we use the cell sector iden-
tified in the PDP context used to tunnel the flow. This cell sector
is typically recorded when the PDP context begins, when a device
moves far enough that the SGSN its traffic routes through changes,
switches from 2G to 3G (or vice versa), or switches from 3G to
WiFi. While this sector may be slightly stale, previous work [27]
showed that they are still almost always accurate to within 40 kilo-
meters. Thus, they suffice for most of our results that only look
at U.S. states as distinct regions. For other results we present on
sector changes, we may underestimate the number of changes due
to this limitation.

In total, the sample data set includes approximately 600K dis-
tinct subscribers and approximately 22K distinct smartphone apps.

3.2 Limitation
Our approach to identifying apps using the HTTPUser-Agent

field may miss traffic that does not use the standard platform URL
API. However, in Section 3.3 we show that this approach captures a
large fraction of traffic that is not email, web browsing, streaming,
or a marketplace download (which we identify separately based on
other well known heuristics). Obviously, our data set will not cap-
ture app usage except when there are network flows. This is accept-
able for our study, since we are primarily interested in apps that are
gateways to Internet services, not apps that do not use the network.

Another limitation is the time difference when we use these Au-
gustUser-Agent fields generated from the trace during the week of
August 24th, 2010 – August 30th, 2010, and query them on the cur-
rent marketplace. Because developers may change theUser-Agent
field in updating their apps, this may result inaccuracy of smart-
phone app identification. However, according to Table 1, this effect
should be small.

3.3 Traffic Summary
Figure 1 shows a summary of all traffic in our data set. Devices

1, 2, 3, and 4 are four major device types in this tier-1 network.
Figure 1(a) shows the distribution of traffic volume. We observe
that the volume of known smartphone apps traffic is comparable
with the traffic volume of web browsing and other HTTP traffic,
which is a major motivation for our study. Moreover, the market
category also contributes to considerable traffic, which indicates a
high demand for smartphone apps from subscribers.

Figure 1(b) shows the distribution of access time of app cate-
gories. It is interesting to note that the streaming category is only
accountable for a small fraction of the total network access time of
all smartphone apps. The gaming, p2p, and voip categories include
mostly port and header-identified traffic for common desktop apps.
We see that they have a small fraction of both traffic volume and ac-
cess time, which means that these apps are not common on devices
on this cellular network. Figure 1(c) shows the distribution of num-
ber of unique subscribers. In this figure, the misc category includes
DNS requests, so the misc category roughly has the same number
of subscribers as total number of subscribers that we observed in
the data set. The smartphone apps and web browsing categories
cover almost all the subscribers.

For the remainder of this paper, we only examine traffic in the
smartphone apps category.
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Figure 1: distribution of traffic volume, access time, and subscribers across categories of apps.

4. USAGE PATTERNS OF SMARTPHONE
APPS

In this section, we investigate how, where, and when smartphone
apps are used from spatial, temporal, and user perspectives. We
first choose appropriate metrics to evaluate smartphone apps, and
then attempt to understand the impact of location, time, user, and
app interest accordingly.

4.1 Characterizing Usage with Different Met-
rics

We begin our analysis by presenting some broad characteristics
of smartphone app usage. For our analysis, we choose a number of
different natural metrics that profile network activity. We use the
following three metrics for each app through most of our analysis:
(a) traffic volume, defined as the number of bytes consumed by
all subscribers using the app; (b)number of subscribers, defined
as the number of unique subscribers using this app throughout our
week-long data set; (c)network access time, defined as the total
duration summed across all the IP flows generated by the app over
our week-long data set.

Figure 2 shows CDFs of these metrics for the apps. For each met-
ric, we aggregate together all the users of a particular app. The long
tail of these CDFs directly shows the huge diversity in smartphone
apps and their network characteristics. The top app in Figure 2(a)
is a “personalized Internet radio app”, and is responsible for more
than 3TB data in one week, while the majority of smartphone apps
generate only 1 – 10 MB over the same time period. Note that this
top app is by itself responsible for generating over 50% of the total
traffic volume in the smartphone apps category. This dramatic vari-
ation in the traffic volume is due to many factors,e.g., app genres,
popularity of apps, device types, preferences of the user base, con-
tent of apps,etc. For example, both news apps and radio apps may
provide users with the latest news, but news apps typically deliver
most of their content via text while radio apps deliver content via
streaming audio; thus, users of these two apps would receive news
on their smartphones with a substantial difference in the volume of
traffic generated.

We observe a similar variation in Figure 2(b). The top app here
is a “social utility connecting people”, with a total network access
time exceeding 100 years (aggregated across all its users). This
app alone contributes to 86% of the total network access time of
the smartphone apps category, but the majority of the smartphone
apps are seen accessing the network for only about 1 minute - 1
hour. This “social utility” app also has the largest number of unique
subscribers, 540,230 according to Figure 2(c). The total number of
unique subscribers in our data set is 633,892 by examining the num-
ber of unique subscribers with DNS requests in Figure 1. Thus, we

may estimate that 6 in every 7 subscribers use this “social utility”
app on their smartphones. Recall that this data set contains only a
random sample of subscribers, so the numbers here do not reflect
the total number of subscribers in the cellular network. Around
60% smartphone apps have no more than 10 unique users in our
data set, thus illustrating the long tail of smartphone apps on the
market. Because of this long tail, we filter out the smaller apps for
some of our analysis as they do not have enough measurements.
We discuss this further in §4.2.

Figure 2(d) shows the correlation between the traffic volume and
the number of unique subscribers, and between the access time and
the number of unique subscribers. We aggregate the apps with the
same 10⌊lgN⌋ (N is the number of unique subscribers) and present
the minimum, 25th percentile, median, 75th percentile, and maxi-
mum in each aggregation point accordingly. Both the traffic vol-
ume and the network access time roughly increase linearly with the
number of unique subscribers, but the high variation still exists in
the correlation. Due to the high variation, it is difficult to estimate
the an app’s traffic volume and network access time based only on
its number of users. However, given a certain large number of apps
together, their traffic volume and access time may be predictable.
Accordingly, cellular providers may be able to estimate the radio
resource consumption and allocate radio resources.

Figure 3 shows the CDFs of the apps’ traffic volume and access
time, now normalized by the number of subscribers that use the
app. We see a similar variation across apps in these CDFs as well.
For example, in Figure 3(a), the app with the largest traffic vol-
ume per subscriber consumes 5GB in one week, but the majority
of apps consume less than 1MB data per subscriber in the week.
Likewise, in Figure 3(b), the app with the longest access time per
subscriber lasts for 2 days in one week, while the majority of apps
access the network for only 10 seconds - 1 hour per subscriber in
the week. From Figure 2 and Figure 3, we also observe apps with
very marginal usage in the long tail,e.g., the app consuming only
less than 1KB, the app accessing the network less than 10 sec, and
the app with only one user. These numbers indicate why we need
to filter out these tiny apps for our analysis.

4.2 Popular Smartphone Apps
Figure 2 shows that there are a substantial number of smartphone

apps with only 1 subscriber and that 60% of the smartphone apps
have no more than 10 unique subscribers. Thus, these apps do not
provide enough data for analysis, and, in this section, we explore
how to decide systematically which apps can be considered popular
and how we can eliminate the effect of apps with marginal usage
on our analysis.

In effect, we want to identify the popular smartphone apps based
on the numbers of their unique subscribers, but at the same time,
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Figure 4: is the number of unique subscribers a good metric
for filtering? Contributions of the top X apps to total volume
and access time respectively

we do not want to discriminate against apps with few subscribers
that have a significant impact on the network,i.e., generate a lot
of traffic or access the network for long time periods. So, we have
two questions to answer: (1) is the number of unique subscribers a
good metric for filtering? (2) if so, what is a reasonable threshold
on the number of unique subscribers?

Intuitively, if the number of unique subscribers is a good metric
for filtering, the topX apps based on the number of unique sub-
scribers should contribute similar amounts of traffic volume and
access times as the topX apps based on the traffic volume or access
time. We first compare the contribution of the topX apps based on
different metrics. Figure 4 compares the contribution of the topX
apps based on the number of unique subscribers against the topX
apps based on the traffic volume and based on the network access
time. We can observe that the cumulative contributions of the topX

apps based on access time and the topX apps based on number of
unique subscribers are quite close, by comparing the “access time”
and the “access time by top subs”. Likewise, the contributions of
the topX apps based on traffic volume and number of unique sub-
scribers are also close, although a little difference does exist. We
note that over 90% of the total volume and access time is accounted
for by the top 1000 apps based on the number of unique subscribers.

Thus, Figure 4 indicates that somewhere above 1000 would be a
reasonable boundary to distinguish popular apps from apps in the
tail given the 90% coverage. We further explore the marginal nature
of the apps ranking above 1000 in Figure 5. Figure 5(a) shows
that each app in top 1000 have more than 471 unique subscribers.
Figure 5(b) shows the network access time and the traffic volume
per user for apps ranking in 1000 – 4000. For both traffic volume
and access time, we aggregate every 100 apps into one errorbar that
shows the minimum, median, and maximum of every 100 apps.
The app accessing network the most consumes only 250 seconds
per user in a week, and the app transferring the most data generates
only 500 KB per user in a week. Because of these small traffic
volumes and short access times, we do not consider these apps to
be sufficiently active for our analysis.

Our discussion suggests that a natural threshold would be the
top 1000 apps ranked by the number of unique subscribers. Table 2
shows the number of apps in each genre, both for the top 1000 apps
as well as all the 22K apps. In the remainder of the paper, we will
refer to these top 1000 apps aspopular apps.

4.3 Spatial Patterns: Distribution of the Geo-
graphic Usage of Smartphone Apps

Next, we investigate the diversity of smartphone apps being used
by subscribers in different geographic locations. Understanding the
spatial usage patterns of smartphone apps suggests ways to improve
user experience and performance from many aspects, such as con-
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Figure 5: where is the reasonable threshold on the number of uniquesubscribers?

tent placement, context-aware applications, and mobile advertise-
ment system. Taking content placement as an example, if content
providers know that some of their apps are most used at certain lo-
cations, they may choose to place content close to those locations
so that users experience better performance.

4.3.1 Local Smartphone Apps
We first examine whether any apps arelocal apps, i.e., whether

the majority of an app’s traffic comes from a region. We perform
the following analysis: for each app, we divide its traffic by (U.S.)
state of the user, and compute the top 1, 3 and 5 state(s) that con-
tribute the most traffic volume or the longest network access times.
We expect that if an app’s usage is truly localized, most of its traf-
fic or access time (e.g., 90%) will originate from a small number of
states.
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Figure 6 shows the CDF of the fraction of the traffic volume from

top 1, 3, and 5 states for top 1000 apps that we have chosen in §4.2.
According to Figure 6, 20% of the popular apps have more than
90% of their traffic volume originating from 3 states, 5.8% of the
popular apps have 90% of the traffic originating from only 1 state,
and 1.7% of the popular apps have all their traffic from 1 state.
These 20% apps, which have more than 90% of their traffic volume
originating from 3 states, account for 2% traffic in the smartphone
apps category. The distribution of the contribution of access time
of popular apps are very close to the one of traffic volume. Thus,
we see that a significant number of the popular apps are local.

To explore what these local apps are and where they are local-
ized, we examine in more detail the 100 most local apps based on
the contribution of the top 3 states; for each of these apps, the top 3
states contribute at least 97% of their total traffic volume. Figure 7
shows the distribution of the top 3 states of the 100 most local apps;
we differentiate the rank of the top 3 states for these 100 local apps
as well so that we know, for example, California is the state that
originated the most traffic for 19 apps, the state originated the sec-
ond most traffic for 15 apps, and the state originated the third most
traffic for 12 apps. As expected, California, Texas, and New York
are the states with most local apps – these are the states with large
populations of smartphone users. However, there are many states
with much smaller populations such as Louisiana, Wyoming, and
Kentucky that also have some local apps; upon further analysis, this
turn out to be because content from some apps is tailored specifi-
cally for users from some regions,e.g., local TV programs, news,
radio, weather apps,etc. As an example for validation, we show
the local apps for Louisiana in Table 3; we see that the six apps that
have most of their traffic originating from Louisiana provide TV,
news, radio and weather specifically for Louisiana residents.

We also explore the genre-wise breakdown of the local apps, as
the genre of an app reflects the content and service type of a smart-
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total apps 351 418 643 1827 283 3108 368 1298 205 1296 450 1126 475 527 515 721 787 590 1079 236 5865
popular apps 7 8 13 95 13 199 23 71 4 34 23 89 17 23 26 58 33 29 49 16 170

Table 2: distribution of the genre of apps.

app description on Google
WWLTV New Orleans News, Breaking News, Weather ...

KATC News Coverage at Acadiana-Lafayette, Louisiana ...
KSLANews12 News, Weather and Sports at Shreveport, Louisiana ...
KPLC 7 News Lake Charles, Louisiana – kplctv.com ...

WBRZ TV Channel 2 Baton Rouge, LA ...
GoWAFB Local news, weather ... at Baton Rouge, LA ...

Table 3: local apps from Louisiana.
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Figure 7: fraction of traffic size in top X states for each smart-
phone app.

phone app to a great degree. Table 4 shows the distribution of the
genres of the 100 most local apps in Table 7. According to Table 4,
these apps are mostly news, weather, and entertainment apps, likely
due to the local nature of their content,i.e., local weather, local
news, local TV,etc. In music, the local apps are usually online lo-
cal radio stations. The local education apps are typically created by
universities, and mostly used by the local student populations.

4.3.2 National Smartphone Apps
Next, we examine the spatial patterns of smartphone app usage

nation-wide. For this analysis, we remove the 100 apps identified
as local in the previous analysis (Section 4.3.1), and examine the
nation-wide usage of the remaining apps’ traffic. We term these
remaining apps asnational apps. Our analysis explores whether
certain genres are more popular (or have heavier usage) in some
areas than in other areas; in general, we do not expect users to pre-
fer using apps of a specific genre as a function of their geographic
location, but our results show that this does happen under certain
conditions.
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# apps 4 5 2 2 7 3 45 1 1 2 3 3 6 16

Table 4: genres of local apps.

For ease of reference, we termgeographic usage distributionof
a quantityX to be the the empirical probability distribution function
(PDF) ofX by U.S. state. First, we compute the geographic usage
distribution of the unique subscribers and of the aggregate traffic
volume generated by all national smartphone apps. We then use
them to compute the geographic usage of traffic volume normal-
ized by the number of unique subscribers in the state. Figure 8(a)
is the PDF of the geographic usage of the aggregate traffic of all
national apps together, while Figure 8(b) is the PDF of the geo-
graphic usage of the normalized traffic of all national apps. As
expected, California, Texas, New York, Florida, and Illinois are the
states that have the highest aggregate traffic from the national apps
in Figure 8(a). However, after normalizing the volume to account
for the number of subscribers, the distribution looks flatter in Fig-
ure 8(b). We perform the rest of our analysis (Figure 8(c-f)) on the
normalized traffic, since it makes differences across states be easier
identified.
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Figure 9: difference in the geographic usage of different app
genres

Figure 8(c-f) illustrates the geographic usage of some represen-
tative genres (all genres are listed in Table 2). Figure 8(a) demon-
strates the PDF of traffic volume from each state of all nation-wide
apps. Lifestyle, music, news, and social networking genres have
very similar patterns of geographic usage as the aggregate traffic.
As an example, we show the social networking apps in Figure 8(c),
which is is most similar to the aggregate traffic in Figure 8(b). Edu-
cation apps in Figure 8(d) appear to be extremely popular in Texas;
further analysis revealed that this is because some apps produced
by universities (e.g., TAMU) generate a significant fraction of traf-
fic among the education apps. Likewise, Figure 8(f) shows that
weather apps seem to be highly used in the south-eastern U.S. This
may perhaps have happened because the time periods of our data
coincide with the peak hurricane season in those areas [9, 19] –
such variable and dangerous weather conditions may cause users
to check weather forecasts more frequently.

Next, we measure how far the geographic usage of different gen-
res are from the aggregate geographic usage of the apps. We use
the Euclidean distance to measure the distance between a pair of
geographic usage distributions. The Euclidean distance between



0    x %   2
5
   10

20

   50

100

0    x %   2
5
   10

20

   50

100

0    x %   2
5
   10

20

   50

100

a. aggregate (not normalized) c. social networking e. photography

0    x %   2
5
   10

20

   50

100

0    x %   2
5
   10

20

   50

100

0    x %   2
5
   10

20

   50

100

b. aggregate normalized d. education f. weather

Figure 8: distribution of the geographic usage of apps in different genres.

a pair of distributions[x1,x2, · · · ,xn] and [y1,y2, · · · ,yn] is defined

as
√

∑n
i=1 (xi − yi)2. Figure 9 shows the distance between each

genre’s geographic usage distribution and the distribution of aggre-
gate national apps. We note that some genres, such as books and
education, are disproportionately used in some states, while others,
such as social networking apps generate traffic more proportionate
to the total traffic generated by that state.

The distribution of geographic usage of different appswithin the
same genre may also differ. Figure 10 shows the geographic usage
distribution of a number of smartphone apps in the news genre. For
this analysis, we select the apps of a few newspapers that are well-
known across the entire U.S., and cover news relating to any part
of the world. The location of each news app in Figure 10 only re-
flects where the newspaper headquarter is located. However, some
of them have a location indicated in their names (marked with2 in
Figure 10). Although all these apps are used nation-wide, we note
that apps whose names have a location indicated seem to be dispro-
portionally preferred at those respective locations. In addition, the
Washington D.C. news app seems to be highly preferred in Wash-
ington state as well, thus suggesting users look for apps that appear
to be local to their region.

4.3.3 Travel Area of Smartphone Apps
Our final analysis of the spatial patterns of app usage examines

whether individual users use some apps across larger geographic
areas than others,e.g., whether Internet radio apps, which users
may listen to during their commute, are used across a larger area
than books. Such an analysis can help understand what kinds of
apps need to be more robust to variations in network quality.

For this analysis, we define thetravel-area as a smartphone’s
geographic coverage per individual subscriber over short time,e.g.,
6 hours. We use the number of sectors to estimate the geographic
coverage, since we do not have access to the device’s exact loca-
tions. As noted in Section 3, the number of sectors observed in
our data set is an underestimate of the actual number of sectors
that the device passes through, but our results still give an idea of
the relative travel-area of different apps. Specifically, for each app,
we compute the average number of unique sectors used by active
subscribers in each 6 hour time interval.

Figure 11 shows the distribution of the average travel-area of the
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Figure 11: travel-area of apps.
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# apps 2 1 4 19 3 5 6 1 3 1 31 2 1 18

Table 5: genres of high travel-area smartphone apps.

top 1000 popular apps. It shows that 10% apps access the network
from more than two sectors. Thus, our results indicate that a signifi-
cant fraction of the apps are used when users move around, creating
another issue for content caching and delivery techniques. Base
stations in future cellular network designs (e.g., LTE) have been
considered potential locations for content caching and optimization
(since they would be the first IP hop), so significant amount user
movement could make it more difficult to cache content appropri-
ately. Table 5 shows that the majority of these apps are games or
social networking apps, but there are also a few music and news
apps.

4.4 User Patterns: Impact of User Interests
on Smartphone Apps Usage

The needs and interests of individual users are the primary fac-
tors that inform their usage of apps. Because of user interests, the
usage of different apps tends to be correlated. In this section, we an-
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Figure 10: distribution of the geographic usage of apps in the same genre.

alyze the extent to which user apps are correlated. Our analysis has
many motivations: knowing what sets of apps are correlated would
be helpful for both app developers as well as OS vendors, as they
can factor this correlation into their designs and help the apps work
better with each other. From a network perspective, such knowl-
edge could help optimize performance or user experience for a set
of apps as a bundle, and may also enhance troubleshooting. In addi-
tion, app markets can leverage this information for recommending
new apps to users.
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Figure 12: distribution of the Jaccard Similarity Coefficient of
the popular apps.

We use theJaccard Similarity Coefficient to quantify the over-
lap between a pair of appsa andb: we count the number of unique
subscribers who have used botha andb, i.e., joint(a,b), and the
number of unique subscribers who have used eithera or b, i.e.,

union(a,b). We can obtain joint(a,b)
union(a,b) for all pairs of apps in the

popular 1000 apps.
Figure 12 shows the distribution of the Jaccard Similarity Coeffi-

cient between the top 1000, 500, 100, and 50 apps. We observe that
there is a small fraction of app pairs that have a very high Jaccard
Similarity Coefficient. For example, consider a pair of appsa,b

whose joint(a,b)
union(a,b) = 0.05, and assume thata andb have 2000 unique

subscribers together (we know from Figure 5(a) that each of the top

50 most popular apps have over 2000 unique subscribers). Then at
this value of the Jaccard Similarity Coefficient,a andb share 100
unique subscribers. Given that there are more than 600,000 unique
subscribers in our data set, the overlap of 100 subscribers is un-
likely to be due to random chance, indicating that users of appa
have a tendency to also use appb. We also note that as we increase
the number of popular apps from 50-1000, there is a smaller frac-
tion of app pairs that have a significant overlap in subscribers. This
is expected, since an app is more likely to have subscribers overlap
with other apps when gets used by more and more subscribers.

 0

 20

 40

 60

 80

 100

<= 1  2  5  10  20  50  100  200  500  1000

C
D

F
 (

%
)

dependency

Figure 13: distribution of the dependency between popular
apps.

.

Next, we analyze how likely it is for a pair of apps to have a
substantial overlap in their users. Our analysis compares the em-
pirical probabilities of a subscriber using each app individually to
the empirical probability of a subscriber using both apps together.
More precisely, leta,b denote apps, andPr[a],Pr[b] denote the em-
pirical probabilities of a subscriber using appa,b respectively. Let
Pr[ab] denote the empirical probability of a subscriber using both
appsa andb. If the subscribers for each app are selected at random
from the total population, then we would expect thatPr[ab] to be
somewhat close to the productPr[a]Pr[b]. Figure 13 shows the dis-

tribution of the ratio Pr[ab]
Pr[a][b] (we term this quantity thedependency



ratio for ease of reference). It shows that nearly 10% of the app
pairs have a dependency ratio that exceeds 10, and 254 pairs have
a ratio exceeding 100.

Table 6 shows the frequency distribution of the genres of these
254 pairs (i.e., pairs with dependency-ratio exceeding 100). We can
make two immediate observations from this table. First, apps in the
same genre are much more likely have correlated usage. For exam-
ple, 110 pairs of two games apps that have high dependency-ratio,
but games apps are part of a only 230 pairs in total. Second, apps in
similar genres are more likely to have high dependence-ratio,e.g.,
entertainment and games, news and entertainment, entertainment
and social networking, travel and navigation, weather and news,
social networking and news,etc.

There are many reasons that pairs of apps have highly correlated
usage. First, many different apps often provide the same type of
content in different formse.g., there may be multiple local news or
Internet radio stations targeting the same location, and users often
are interested in trying them all out. Or, there may multiple apps
that allow users to access the same social networking sites with
different user interfaces. A second reason may be that a pair of apps
serve similar purpose, but neither may provide complete service
on its owne.g., users may have accounts with multiple banks, and
need to use each bank’s specific app in order to keep track of all
their accounts. Yet another reason may be that different apps target
similar user interests, and users may try them all out to identify
their favorites,e.g., crossword puzzle apps or sudoku apps.

4.5 Temporal Patterns: Distribution of the Traf-
fic over time of Smartphone Apps

Understanding the diurnal patterns of apps is important for sev-
eral reasons. For example, differences in when certain apps are
used can help inform cloud providers on how to best multiplex re-
sources and operators on what to optimize the network for at dif-
ferent times. In this analysis, we compare the traffic volumes and
access times consumed by smartphone apps at different hours of the
day, both in aggregate as well as for different genres. Our results
show that there are diurnal patterns of app usage both in aggregate,
as well as by genre, but that the patterns of different genres are
noticeably different.

We first investigate the diurnal patterns by aggregating all the
popular apps together. For this analysis, we map each flow to the
local time of the device’s geo-location (based on the sector where
the device is connected to the cellular network). Figure 14(a) shows
clear diurnal patterns of traffic volume and network access time.
Around 1AM – 2AM, the total traffic volume and access time are
at their minimum; they start increasing around 4AM, reach the peak
usage around noon, start decreasing after 3PM and drop dramati-
cally after 8PM.

In general, apps have more activity during the daytime than at
night. However, this may not apply to every popular app. Fig-
ure 14(b) shows the distribution of the traffic contribution during
late night for popular apps. According to Figure 14(a), in terms of
both traffic volume or access time, the time period 1:00 AM – 3:59
AM contributes 4.2% traffic. Even if an app generates uniform traf-
fic every hour of the day, it should generate 12.5% traffic from 1:00
AM to 3:59AM. So, Figure 14(b) indicates that there are some apps
that are quite active late at night. We manually investigate these top
66 late night apps according to Figure 14(b) that contribute more
than 12.5% traffic late at night. Table 7 summarizes the results.
It appears that several entertainment and radio apps are used more
frequently than expected at night.

Finally, we analyze diurnal patterns across different genres; we
expect that different genres of apps to have different usage patterns,

category # apps description
entertainment 20 small games, video channels,etc.

radio 28 music radio channels, news radio channels,etc.
healthcare 12 sleep aid utilities,etc.

books 6 bible, references,etc.

Table 7: description of late night apps.
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Figure 15: diurnal patterns across different genres.

since they appeal to different interests. As we did in earlier analy-
sis, we aggregate together the popular apps in the same genre, and
compute the distribution of traffic volumes by genre at hourly in-
tervals (again, using the local time of the flow). Figure 15 shows
the normalized traffic volume across the day; it clearly shows how
different genres do have very different diurnal patterns. In particu-
lar, we see that social network apps have almost exactly the same
pattern as the aggregate, but weather and news apps are most fre-
quently used at early morning. Sports apps, on the other hand, peak
in the early evening, perhaps because users may watch matches or
check scores frequently during those hours. Games apps also peak
after standard work hours as we would expect, since that is proba-
bly the typical recreation time for most subscribers.

4.6 Device Patterns: Differences Across Plat-
forms

Finally, we compare smartphone app usage across different kinds
of devices. We expect that faster devices allow for longer sessions,
faster downloads, and more interactivity, thus enhancing the end-
user experience. Power users, who use their devices more, may also
gravitate to newer and faster devices. We focus on three different
devices from the same device family, as we expect device operat-
ing system to also affect overall usage patterns. We compare three
devices in the same device family but of different generations – we
term these device 2, device 3, and device 4 in Figure 1. Device 2
is a HSDPA category 6 device (capable of 3.6Mbps downlink rate),
and device 3 and device 4 are in HSDPA category 8 (capable of
7.2Mbps downlink) [24]. Device 2 and device 3 are not HSUPA
enabled while device 4 is HSUPA category 6 (capable of 5.76Mbps
uplink) [25].

For this analysis, we use slightly different metrics than we have
used in the rest of the paper, since our goal is to measure how long
a user interacts with the device, and compare these measurements
across different devices. For this, we defineindividual access time
and theindividual traffic volume to be the network access time
and the traffic volume per flow respectively. We use these metrics
for our analysis as we expect the individual access time to provide
a measure of how long a user spends with an app, and the indi-
vidual traffic volume to reflect how much data is transferred each
time a user interacts with an app. Obviously not every flow will be
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books 0 0 0 2 0 3 0 1 0 0 0 1 0 0 0 0 0 1 0 0
business 0 0 0 0 0 0 0 4 0 0 0 2 0 0 0 0 0 0 1 0

education 0 0 5 2 0 2 0 0 0 0 2 3 0 0 0 1 0 0 0 0
entertainment 2 0 2 26 0 26 1 16 0 5 1 16 4 3 3 8 4 4 7 0

finance 0 0 0 0 2 0 1 0 0 0 0 4 0 0 0 0 0 1 1 0
games 3 0 2 26 0 110 2 19 1 5 1 3 2 1 13 5 8 12 1 1

healthcare 0 0 0 1 1 2 1 2 1 0 1 8 1 0 0 1 0 0 0 0
lifestyle 1 4 0 16 0 19 2 30 0 5 0 12 0 1 7 6 4 10 6 0
medical 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

music 0 0 0 5 0 5 0 5 0 6 0 5 0 1 1 11 3 0 3 0
navigation 0 0 2 1 0 1 1 0 0 0 2 1 0 1 0 1 0 4 0 1

news 1 2 3 16 4 3 8 12 1 5 1 77 1 3 2 12 8 7 4 4
photography 0 0 0 4 0 2 1 0 0 0 0 1 1 1 0 0 0 0 1 0
productivity 0 0 0 3 0 1 0 1 0 1 1 3 1 0 0 9 1 0 0 0

reference 0 0 0 3 0 13 0 7 0 1 0 2 0 0 1 0 1 2 0 1
social networking 0 0 1 8 0 5 1 6 0 11 1 12 0 9 0 32 4 0 3 0

sports 0 0 0 4 0 8 0 4 0 3 0 8 0 1 1 4 13 1 0 1
travel 1 0 0 4 1 12 0 10 0 0 4 7 0 0 2 0 1 9 2 0

utilities 0 1 0 7 1 1 0 6 0 3 0 4 1 0 0 3 0 2 2 0
weather 0 0 0 0 0 1 0 0 0 0 1 4 0 0 1 0 1 0 0 1

Table 6: measuring the dependency between genres: apps with highdependency-ratio.
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Figure 14: diurnal patterns.

larger or longer, but we expect that a device that allows for better
interaction will have on average more large flows and longer flows.

In Figure 16, we compare the individual traffic volume and in-
dividual access time between device 2 and device 4, and between
device 3 and device 4. For our analysis, we aggregate all the pop-
ular apps to first compute directly the individual access time and
individual traffic volume for these three platforms, and then com-
pute the relative differences by comparing device 2 against device
4, and device 3 against device 4. According to Figure 16(a), the
individual access time for device 2 and device 4 are very close,i.e.,
the median relative difference is 0. However, individual traffic vol-
ume for device 2 is much smaller. The median difference of the
individual traffic volume is−30%. Such a big difference indicates
that the user experience is substantially different between these two
device categories; users of device 4 consume much more data, typ-
ically through video. Figure 16(b) shows the comparison between
device 3 and device 4; these two device categories are much closer
than device 2 and device 4. There may be two explanations. First,
a faster device tends to give users better overload experience and
encourages them to download more content from the network. Sec-
ond, power user are more likely upgrade to the latest smartphone,

while users not as active may be more likely to keep using their
older devices.

5. IMPLICATIONS
In previous sections, we investigate the usage patterns of smart-

phone apps from spatial, temporal, user, and device perspectives.
We believe that our previous observations have important implica-
tions for the smartphone community. In this section, we discuss
these implications following our previous observations.

5.1 Content Providers
In the analysis of spatial patterns of smartphone usages, we ob-

serve a considerable number of local apps (20%) which contribute
2% of the traffic volume in the smartphone apps category. The
content provided by these local apps are very deterministic,e.g.,
news apps, regional radio online services, weather forecast apps,
etc. Given both the customers and locations for these apps are very
closely clustered, content placement and delivery can be further op-
timized accordingly. It is therefore beneficial to place the content
close to GGSNs in the cellular networks [28] for cellular users and
place the content close to the geographic location of WiFi users.
Besides local apps, for national apps, the distribution of geographic
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Figure 16: impact of devices used.

coverage is still very dependent on the genre (e.g., weather apps are
highly used in the south-eastern U.S.), even the app’s name (e.g.,
the news app headquartered in CHICAGO),etc. Therefore, con-
tent placement according to the geographic coverage is advisable
for both national and local apps.

5.2 Context-Aware Applications
Despite very diverse usage usage patterns across different smart-

phone apps, they still have some common traits. According to our
observations, first, apps in the same genre share similar geographic
coverage. Second, some apps share a large set of common users
due to the similarity of content and interests,e.g., social network-
ing apps strongly correlate with entertainment apps, music apps,
news apps,etc. Third, some apps share similar diurnal patterns due
to content characteristics,e.g., the peak hours of news apps and
weather apps come at early morning.

Context-aware applications can take advantage of the existing
similarity/correlation across smartphone apps. Take smartphone
apps recommendation systems as an example. Unlike normal PC
users, smartphone users depend on apps far more than browsers.
Since a smartphone apps recommendation system is the first ap-
proach for users to explore various smartphone apps that meet their
interests, these systems can be quite important. As the bridge be-
tween app marketplace and app customers, if apps recommendation
systems can learn user interests and dependency across apps, they
can identify more appropriate apps for users,e.g., suggesting gam-
ing fans more entertainment apps and social networking apps.

Another example of context-aware application is advertisement
systems, which upon learning user’s interests in apps, can deliver
more relevant ads to users. Camera or camcorder advertisements
may target more smartphone users that use more entertainment and
game apps because photography apps are more correlated with en-
tertainment and game apps.

5.3 Network Providers
Besides content providers, cellular network providers also play

an important role in content delivery and customization. By under-
standing the access patterns of smartphone apps, network providers
can benefit in allocating radio resource, setting caching policy, com-
pression policy,etc.

If a large number of smartphone apps are targeted, their traffic
volume and access time roughly have linear correlation with their
number of unique subscribers. Accordingly, cellular providers can
estimate and allocate radio resources.

We observe that the several few top apps contribute the major-
ity traffic. For example, the app with the largest traffic volume is
accountable for 50% of the total traffic volume of the smartphone

apps category, and the app with the longest network access time
takes 86% of the total network access time of the smartphone apps
category. Understanding the usage patterns of these apps, network
providers may do certain optimizations case by case.

The temporal patterns of smartphone apps help network providers
allocate radio resource. For example, the access time per IP flow
helps network providers decide the timers in state promotion [20].

We observe that some smartphone apps have large usage radius,
i.e., users of certain social networking apps and games apps are
more likely to move around across several base stations. In future,
LTE networks will push the first IP hop forward to base stations,
which increases the flexibility of content placement and optimiza-
tion. However, if users frequently move around, the correspond-
ing mobility may increase the complexity to decide where to cache
content and what content to cache.

5.4 OS Vendors and Apps Designers
Since smartphones have limited resources, the OS is account-

able for resource management,e.g., the push notification on iOS,
Android, Windows Phone. Understanding the access patterns of
apps on device, OS can add some flexibility to apps and optimize
the resource usage. For example, if a user frequently resorts to a
certain sleep aid app, then OS may allocate less resource to those
apps that may interrupt the user’s sleep.

Certain genres of smartphone apps have different characteris-
tics, which may be taken advantage by apps designers. We ob-
serve that news and weather apps have distinctive diurnal patterns.
Since the content of these apps usually are very time dependent and
content fetching time is very predictable, apps designer can imple-
ment some prefetching mechanism to reduce the latency perceived
by users. Similarly, the content of social networking apps can be
prefetched before dinner time.

6. CONCLUDING REMARKS
In this study, we comprehensively investigated the diverse usage

patterns of smartphone apps via network measurements from a na-
tional level tier-1 cellular network provider in the U.S. Our study
is the first attempt in addressing the lack of how, where and when
smartphone apps are used at the scale of the entire U.S.

We observed that a considerable fraction of popular apps (20%)
are local because their content are expected to serve local users such
as news and radio apps. This suggests that there is significant pos-
sibility for content optimization in LTE and WiFi access networks
where the flexibility of placing content is high.

We also found out that there are similarities across apps in terms
of geographic coverage, diurnal usage patterns,etc. Certain apps



have a high likelihood of co-occurrence – that is, (i) when a user
uses one app, he is also likely to use another one; or (ii) users use
alternatives for the same type of interests,e.g., multiple news apps,
bank apps. These observations suggest that some apps should be
treated as a “bundle” when trying to optimize for their user ex-
perience. There may be opportunities for integrating these apps
together.

Diurnal patterns of smartphone apps can be remarkably differ-
ent. For instance, news apps are much more frequently used in the
early morning while sports apps are more frequently used in the
evening. These findings suggest that content providers (e.g., hosted
on cloud) can leverage distinct usage patterns in classes of apps to
maximize the utilization of their resources.

Many social networking and games apps are more frequently
used when users are moving around. Mobility affects connectiv-
ity and performance, so bandwidth sensitive content that are mo-
bile may need to consider techniques to compensate for bandwidth
variability.

We believe that our findings on the diverse usage patterns of
smartphone apps in spatial, temporal, user, device dimensions will
motivate future work in the mobile community.
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