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Abstract We sketch a proof of the Hecke orbit conjecture for the Siegel modular variety Ag,n over
Fp, where p is a prime number, fixed throughout this article. We also explain several techniques
developed for the Hecke orbit conjecture, including a generalization of the Serre-Tate coordinates.

§1. Introduction
In this article we give an overview of the proof of a conjecture of F. Oort that every prime-to-p
Hecke orbit in the moduli space Ag of principally polarized abelian varieties over Fp is dense
in the leaf containing it. See 4.1 for a precise statement, 2.4 for the definition of Hecke orbits,
and 3.1 for the definition of a leaf. Roughly speaking, a leaf is the locus in Ag consisting
of all points s such that the principally quasi-polarized Barsotti-Tate group attached to s
belongs to a fixed isomorphism class, while the prime-to-p Hecke orbit of a closed point x
consists of all closed points y such that there exists a prime-to-p quasi-isogeny from Ax to Ay
which preserves the polarizations. Here (Ax, λx), (Ay, λy) denote the principally polarized
abelian varieties attached to x, y respectively; a prime-to-p quasi-isogeny is the composition
of a prime-to-p isogeny with the inverse of a prime-to-p isogeny.

For clarity in logic, it is convenient to separate the prime-to-p Hecke orbit conjecture,
or the Hecke orbit conjecture for short, into two parts (see 4.1): (i) the continuous part,
which asserts that the Zariski closure of a prime-to-p Hecke orbit has the same dimension
as the dimension of the leaf containing it, and (ii) the discrete part, which asserts that the
prime-to-p Hecke correspondences operate transitively on the set of irreducible components
of every leaf; see 4.1.

The prime-to-p Hecke correspondences on Ag form a large family of symmetries on Ag.
In characteristic 0, each prime-to-p Hecke orbit is dense in the metric topology of Ag(C),
because of complex uniformization. In characteristic p, it is reasonable to expect that every
prime-to-p Hecke orbit is “as large as possible”. The decomposition of Ag into the disjoint
union of leaves constitutes a “fine” geometric structure of Ag, existing only in characteristic
p and called foliation in [23]. The prime-to-p Hecke orbit conjecture says, in particular, that
the foliation structure on Ag over Fp is determined by the Hecke symmetries.

The prime-to-p Hecke orbit H(p)(x) of a point x is a countable subset of Ag. Experience
indicates that determining the Zariski closure of a countable subset of an algebraic variety in
positive characteristic is often difficult. We developed a number of techniques to deal with
the Hecke orbit conjecture. They include

1Partially supported by a grant from the National Science Council of Taiwan and by grant DMS01-00441
from the National Science Foundation.

2Visiting the Mathematical Division of the National Center for Theoretical Sciences at Taipei between
January and August of 2004.
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(M) the `-adic monodromy of leaves,

(C) the theory of canonical coordinates on leaves, generalizing Serre-Tate parameters on
the local moduli spaces of ordinary abelian varieties,

(R) a rigidity result for p-divisible formal groups,

(S) a trick “splitting at supersingular point”,

(H) hypersymmetric points,

and will be described in §5, §7, §8, §11, and §10 respectively. We hope that the above
techniques will also be useful in other situations. Among them, the most significant is
perhaps the theory of canonical coordinates on leaves, which generalizes the Serre-Tate
coordinates for the local moduli space of ordinary abelian varieties. At a non-ordinary
closed point x ∈ Ag(Fp), there is no description of the formal completion A/xg of Ag at x
comparable to what the Serre-Tate theory provides. But if we restrict to the leaf C(x) passing
through x, then there is a “good” structure theory for the formal completion C(x)/x. To get
an idea, the simplest situation is when the Barsotti-Tate group Ax[p

∞] is isomorphic to a
direct product X × Y , where X, Y are isoclinic Barsotti-Tate groups over Fp of Frobenius
slopes µ

X
, µ

Y
respectively, and µ

X
< µ

Y
= 1 − µ

X
. In this case, C(x)/x has a natural

structure as an isoclinic p-divisible formal group of height g(g+1)
2

, Frobenius slope µ
Y
−µ

X
,

and dim(C(x)/x) = (µ
Y
−µ

X
)· g(g+1)

2
. Moreover, there is a natural isomorphism of V -isocrystals

M(C(x)/x)⊗Z Q
∼−→ Homsym

W (Fp)
(M(X),M(Y ))⊗Z Q ,

where M(C(x)/x),M(X),M(Y ) denote the Cartier-Dieudonné modules of C(x)/x, X, Y re-
spectively, W (Fp) is the ring of p-adic Witt vectors, and the right-hand side of the formula
denotes the symmetric part of the internal Hom, with respect to the involution induced by
the principal polarization on Ax. In the general case, C(x)/x is build up from a successive
system of fibrations, and each fibration has a natural structure as a torsor for a suitable
p-divisible formal group.

The fundamental idea underlying our method is to exploit the action of the local stabilizer
subgroups. Recall that the prime-to-p Hecke correspondences come from the action of the
group Sp2g(A

(p)
f ) on the prime-to-p tower of the moduli space Ag. Here the symplectic group

Sp2g in 2g variables is viewed as a split group scheme over Z, and A
(p)
f denotes the restricted

product of Q`’s, where ` runs through all primes not equal to p. Suppose that Z ⊂ Ag is
a closed subscheme of Ag which is stable under all prime-to-p Hecke correspondences. It is
clear that for any closed point x ∈ Z(k), the subscheme Z is stable under the set Stab(x)
consisting of all prime-to-p Hecke correspondences having x as a fixed point. This is an
elementary fact, referred to as the local stabilizer principle, and will be rephrased in a more
usable form below.
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The stabilizer Stab(x) comes from the unitary group Gx = U(Endk(Ax) ⊗Z Q, ∗x) over
Q attached to the pair (Endk(Ax) ⊗Z Q, ∗x), where ∗x denotes the Rosati involution on
the semisimple algebra Endk(Ax) ⊗Z Q. Notice that Gx has a natural Z-model attached
to the Z-lattice Endk(Ax) ⊂ Endk(Ax) ⊗Z Q, and we denote by Gx(Zp) the group of Zp-
valued points for that that Z-model. The group Gx(Zp) is a subgroup of the p-adic group

U(Endk(Ax[p
∞]), ∗x); the latter operates naturally on the formal completion A/xg by defor-

mation theory. With the help of the weak approximation theorem, applied to Gx, the local
stabilizer principle then says that the formal completion Z/x of Z at x, as a closed formal
subscheme of A/xg , is stable under the action of Gx(Zp). See §6 for details.

The tools (C), (R), (H) mentioned above allows us to use the local stabilizer principle
effectively. A useful consequence is that, if Z is a closed subscheme of Ag stable under
all prime-to-p Hecke correspondences, and x is a split hypersymmetric point of Z, then Z
contains an irreducible component of the leaf passing through x; see Thm. 10.2. Here a split
point of Ag is a point y of Ag such that Ay is isogenous to a product of abelian varieties
where each factor has at most two slopes, while a hypersymmetric point of Ag is a point y
of Ag such that Endk(Ay)⊗Z Zp

∼−→ Endk(Ay[p
∞]). It should not come as a surprise that the

local stabilizer principle gives us a lot of information at a hypersymmetric point, where the
local stabilizer subgroup is quite large.

Let x ∈ Ag(Fp) be a closed point of Ag. Let H(p)(x) be the Zariski closure of the

prime-to-p Hecke orbit H(p)(x) of x, and let H(p)(x)
0

:= H(p)(x) ∩ C(x).3 The conclusion

of the last paragraph tells us that, to show that H(p)(x) is irreducible, it suffices to show

that H(p)(x)
0

contains a split hypersymmetric point. The result that H(p)(x)
0

contains a
split hypersymmetric point is accomplished through what we call the Hilbert trick and the
splitting at supersingular points.

The Hilbert trick refers to a special property of Ag: Up to an isogeny correspondence,
there exists a Hilbert modular subvariety of maximal dimension passing through any given
Fp-valued point of Ag; see §9. To elaborate a bit, let x be a given point of Ag(Fp). The
Hilbert trick tells us that there exists an isogeny correspondence f , from a g-dimensional
Hilbert modular subvarietyME ⊂ Ag to Ag, whose image contains x. The Hilbert modular
variety above is attached to a commutative semisimple subalgebra E of End

Fp
(Ax)⊗ZQ, such

that [E : Q] = g and E is fixed by the Rosati involution. There are Hecke correspondences
on ME coming from the semisimple algebraic group SL(2, E) over Q, and SL(2, E) can be
regarded as a subgroup of the symplectic group Sp2g. The isogeny correspondence f above
respects the prime-to-p Hecke correspondences. So, among other things, the Hilbert trick
tells us that, for an Fp-point x of Ag as above, the Hecke orbitH(p)(x) contains the f -image of

a prime-to-p Hecke orbit H(p)
E (x̃) on the Hilbert modular varietyME, where x̃ is a pre-image

of x under the isogeny correspondence f .

3In fact H(p)(x)
0

is the open subscheme of H(p)(x) consisting of all points y of H(p)(x) such that the
Newton polygon of Ay is equal to the Newton polygon of Ax.
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A consequence of the Hilbert trick and the local stabilizer principle, is the following trick
of “splitting at supersingular points”; see 11.2. This “splitting trick” says that, in the interior
of the Zariski closure of a given Hecke orbit, there exists a point y such that Ay is a split
abelian variety. The last clause means that Ay is isogenous to a product of abelian varieties,
where each of the factor abelian variety has at most two slopes.

One can formulate the notion of leaves and the Hecke orbit conjecture for Hilbert modular
varieties. It turns out that the prime-to-p Hecke orbit conjecture for Hilbert modular varieties
is easier to solve than Siegel modular varieties, reflecting the fact that a Hilbert modular
variety comes from a reductive group G over Q such that every Q-simple factor of the adjoint
group Gad has Q-rank one. The trick “splitting at supersingular points” and a standard
technique in algebraic geometry implies that, when one tries to prove the prime-to-p Hecke
orbit conjecture, one may assume that the point x of Ag is defined over Fp and the abelian
variety Ax is split. Now we apply the Hilbert trick to x. To simplify the exposition, we will
assume, for simplicity, that we have a Hilbert modular variety ME in Ag passing through
the point x, suppressing the isogeny correspondence f . We will also assume (or “pretend”)
that the leaf CE(x) on ME passing through x is the intersection of C(x) with ME. (The
last assumption is not far from the truth, if we interpret “intersection” as a suitable fiber
product.) Notice that the commutative semisimple algebra E is a product of totally real
number fields Fi, i = 1, . . . ,m, and Fi ⊗Qp is a field for each i, because the abelian variety
Ax is split.

It is easy to see that every leaf inME contains a hypersymmetric point y of Ag. Moreover
Ay is split because Ax is split. So if we can prove the Hecke orbit conjecture for ME,
then we will know that the Zariski closure of the Hecke orbit H(p)(x) in C(x) contains a
split hypersymmetric point y. Therefore the prime-to-p Hecke orbit conjecture for Hilbert
modular varieties implies the continuous part of the prime-to-p Hecke orbit conjecture for
Ag.

The general methods we developed, when applied to a Hilbert modular variety ME,
produce a proof of the continuous part of the prime-to-p Hecke orbit conjecture forME. So
the prime-to-p Hecke orbit conjecture for Ag is reduced to the discrete part of the prime-to-p
Hecke orbit conjecture for both Ag and the Hilbert modular varieties.

The discrete part of the Hecke orbit conjecture is equivalent to the statement that every
non-supersingular leaf is irreducible, see Thm. 5.1; the same holds for Hilbert modular
varieties. Generally such irreducibility statements do not come by easily; so far there is no
unified approach which works for all modular varieties of PEL-type. Using the techniques
(H) and (M), one can reduce the discrete part of the Hecke orbit conjecture for Ag to
the statement that the prime-to-p Hecke correspondences operate transitively on the set of
irreducible components of every non-supersingular Newton polygon stratum in Ag. Happily
the results of Oort in [21], [22] can be applied to settle the latter irreducibility statement;
see 13.1.1, [25], and references cited in 13.1.1.
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The discrete part of the Hecke orbit conjecture for the Hilbert modular varieties, how-
ever, requires a different approach, based on the Lie-alpha stratification of Hilbert modular
varieties, and the following property of Hilbert modular varieties: For each slope datum ξ for
ME, there exists a Lie-alpha stratum Ne,a ⊂ME, contained in the Newton polygon stratum
in ME attached to the given slope datum ξ, and a dense open subset Ue,a of Ne,a such that
Ue,a is a leaf in ME. Here a slope datum for ME is a function which to each prime ideal ℘
of OE/pOE attaches a set of the form {µ℘, 1− µ℘}, where 0 ≤ µ℘ ≤ 1

2
, and the denominator

of µ℘ divides 2[E℘ : Qp]. There is a natural slope stratification ofME, indexed by the set of
slope data for ME. The Lie-alpha stratification of ME is defined in terms of the Lie type
and alpha type of the OE-abelian varieties attached to points of ME; the Lie type (resp.
alpha type) of an OE abelian variety A over Fp refers to the (semi-simplification of) the linear
representation of the algebra OE ⊗Fp Fp on the the vector space Lie(A) (resp. Hom(αp, A))
over Fp. A critical step in the proof of the discrete part of the Hecke orbit conjecture for
Hilbert modular varieties, due to C.-F. Yu, is the construction of “enough” deformations for
understanding the incidence relation of the Lie-alpha stratification; see 13.3.

Details of the proof of the Hecke orbit conjecture will appear in a manuscript with
F. Oort. All unattributed results are due to suitable subsets of {Oort, Yu, Chai}. The
author is responsible for all errors and imprecisions.

It is a pleasure to thank F. Oort for many stimulating discussions on the Hecke orbit
conjecture over the last ten years, and for generously sharing his insights on the foliation
structure. The author would like to thank C.-F. Yu for the enjoyable collaboration on the
Hecke orbit conjecture for Hilbert modular varieties; a conversation with him in the spring
of 2002 led to the discovery of the canonical coordinates on leaves. The author thanks the
referee for a very careful reading and many suggestions. This article was completed when the
author visited the National Center for Theoretical Sciences in Taipei, from January to August
of 2004. The author thanks both NCTS/TPE-Math and the Department of Mathematics of
the National Taiwan University for hospitality.

§2. Hecke orbits

(2.1) Let p be a prime number, fixed throughout this article. Let Z
(p)
f =

∏
`6=p Z`, where `

runs through all prime numbers different from p. Let A
(p)
f :=

∏′
` 6=pQ`

∼= Z
(p)
f ⊗Z Q be the

restricted product of Q`’s for ` 6 p, known as the ring of prime-to-p finite adèles attached to
Q.

Let k be an algebraically closed field of characteristic p. Choose and fix an isomorphism
ζ : Z

(p)
f

∼−→ Z
(p)
f (1) over k, i.e. a compatible system of isomorphisms ζm : Z/mZ ' µm(k),

where m runs through all positive integers which are not divisible by p. For any natural
number g and any integer n ≥ 3 with (n, p) = 1, denote by Ag,n the moduli space over
k classifying g-dimensional principally polarized abelian varieties with a symplectic level-n
structure with respect to ζ.
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(2.2) For any two integers n1, n2 ≥ 3, such that (p, n1n2) = 1 and n1|n2, there is a canonical
map Ag,n2 → Ag,n1 . Denote by Ag,(p) the resulting projective system of the moduli spaces
Ag,n, where n runs through all integers n ≥ 3 with (p, n) = 1. By definition, a geometric
point of Ag,(p)(k) corresponds to a triple (A, λ, η), where A is a g-dimensional principally

polarized abelian variety over k, λ is a principal polarization on A, and η is a level-Z
(p)
f

structure on A, i.e. η is a symplectic isomorphism from
∏

` 6=p A[`∞] to (Z
(p)
f )2g, where the

free Z
(p)
f -module (Z

(p)
f )2g is endowed with the standard symplectic pairing.

(2.3) From the definition of Ag,(p) we see that there is a natural action of Sp2g(Z
(p)
f ) on

Ag,(p), operating as covering transformations over the moduli stack Ag. Moreover there is a

natural action of the group Sp2g(A
(p)
f ) on Ag,(p), extending the action of Sp2g(A

(p)
f ) and gives

a much larger collection of symmetries on the tower Ag,(p). The automorphism hγ of Ag,(p)
attached to an element γ ∈ Sp2g(A

(p)
f ) is characterized by the following property. There is a

prime-to-p isogeny αγ from the universal abelian scheme A to h∗γA such that

η ◦ αγ[(p)] = γ ◦ η ,

where αγ[(p)] denotes the prime-to-p quasi-isogeny induced by αγ, between the prime-to-p-
divisible groups attached to A and h∗γA respectively. On each individual moduli space Ag,n,

the action of Sp2g(A
(p)
f ) induces algebraic correspondences to itself; they are the classical

Hecke correspondences on the Siegel moduli spaces.

(2.4) Definition Let n ≥ 3 be an integer, (n, p) = 1. Let x ∈ Ag,n(k) be a geometric point
of Ag,n, and let x̃ ∈ Ag,(p)(k) be a geometric point of the tower Ag,(p) above x.

(i) The prime-to-p Hecke orbit of x in Ag,n, denoted by H(p)(x), or H(x) for short, is the

image of the subset Sp2g(A
(p)
f ) · x̃ of Ag,(p) under the projection map πn : Ag,(p) → Ag,n.

(ii) Let ` be a prime number, ` 6= p. The `-adic Hecke orbit of x in Ag,n, denoted by H`(x),
is the image of Sp2g(Q`) · x̃ under π : Ag,(p) → Ag,n.

(2.4.1) Remark (i) It is easy to see that the definition of H`(x) does not depend on the
choice of x̃. One can also use the `-adic tower above Ag,n to define the `-adic Hecke orbits.

(ii) Explicitly, the countable set H(p)(x) (resp. H`(x)) consists of all points y ∈ Ag,n(k)
such that there exists an abelian variety B over k and two prime-to-p isogenies (resp. `-power
isogenies) α : B → Ax, β : B → Ay such that α∗(λx) = β∗(λy).

(iii) The moduli stack Ag over k has a natural pro-étale GSp2g(Z
(p)
f ) cover; and the group

GSp2g(A
(p)
f ) operate on the projective limit. Then for any geometric point x ∈ Ag,n(k),

we can define the GSp2g(A
(p)
f )-orbit of x and the GSp2g(Q`)-orbit of x as in Def. 2.4 using

the pro-étale GSp2g(Z
(p)
f )-tower. Explicitly, the GSp2g(A

(p)
f )-orbit of x (resp. the GSp2g(Q`)-

orbit of x) on Ag,n for a geometric point x ∈ Ag,n(k) can be explicitly described as follows.
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It consists of all points y ∈ Ag,n(k) such that there exists a prime-to-p isogeny (resp. an
`-power isogeny) β : Ax → Ay such that β∗(λy) = m(λx), where m is a prime-to-p positive
integer (resp. a non-negative integer power of `.)

(2.4.2) Remark In 2.4 we used the group Sp2g(A
(p)
f ) to define the prime-to-p Hecke orbits

of a closed point x in Ag,n → Spec(k). Geometrically that means to consider the orbit of x
under all prime-to-p symplectic quasi-isogenies. One can also consider the orbit of x under all
symplectic quasi-isogenies, or, as a slight variation, the orbit of x under all quasi-isogenies
which preserve the polarization up to a multiple. The latter was used in [20, 15.A]. We
considered only the prime-to-p Hecke correspondences in this article, since they are finite
étale correspondences on Ag,n, and reflect well the underlying group-theoretic properties.

(2.5) For any totally real number field F and any integer n ≥ 3, (n, p) = 1, denote by
MF,n the Hilbert modular variety over k attached to F as defined in [11]. Just as in the
case of Siegel modular varieties, the varieties MF,n over k form a projective system, with a

natural action by the group SL2(F ⊗Q A(p)
f ). The prime-to-p Hecke orbit H(p)

F (x) and the
`-adic Hecke orbit HF,`(x) of a geometric point x ∈ MF,n(k) are, by definition, the image

in MF,n(k) of SL2(F ⊗Q A(p)
f ) · x̃ and SL2(F ⊗Q Q`) · x̃ respectively, where x̃ is a k-valued

point, lying above x, of the projective system MF,(p) := {MF,m : (m, p) = 1}.

(2.5.1) More generally, if E = F1 × · · · × Fr is a product of totally real number fields, and
n ≥ 3 is a positive integer not divisible by p, we can define the Hilbert modular varietyME

over k attached to E, in the same fashion as in [11], with OE := OF1 × · · · ×OFr , as follows.
For any k-scheme S, ME(S) is the set of isomorphism classes of triples of the form

(A→ S, α : OE → EndS(A), φ : A⊗OE L
∼−→ At) ,

where α is a ring homomorphism, L is an invertible OE module with a notion of positivity
L+ ⊂ L⊗QR, and φ is an isomorphism of abelian varieties such that for each element λ ∈ L,
the homomorphism φλ : A→ At attached to λ is symmetric, and φλ is a polarization of A if
λ is positive. Then we have a canonical isomorphism ME =MF1 × · · · ×MFr . The notion
of Hecke orbits generalizes in the obvious way to the present situation.

(2.5.2) Remark The notion of prime-to-p Hecke orbits can be generalized to other modular
varieties over k of PEL-type in a natural way. Furthermore, one expects that the notion of
prime-to-p Hecke orbits can be generalized to the reduction over k of a Shimura variety X,
with satisfactory properties.

§3. Leaves
In this section we work over an algebraically closed field k of characteristic p > 0. The
modular varieties Ag,n and ME,n are considered over the fixed based field k.
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(3.1) Theorem (Oort) Let n ≥ 3 be an integer, (n, p) = 1. Let x ∈ Ag,n(k) be a geometric
point of Ag,n.

(i) There exists a unique reduced constructible subscheme C(x) of Ag,n, called the leaf
passing through x, characterized by the following property. For every algebraically
closed field K ⊇ k, C(x)(K) consists of all elements y ∈ Ag,n(K) such that

(Ax[p
∞], λx[p

∞])×Spec(k) Spec(K) ' (Ay[p
∞], λy[p

∞]) ,

where λx[p
∞], λy[p

∞] are the principal quasi-polarizations induced by the principal po-
larizations λx, λy on the Barsotti-Tate groups Ax[p

∞], Ay[p
∞] respectively.

(ii) The leaf C(x) is a locally closed subscheme of Ag,n. Moreover it is smooth over k.

(3.1.1) Remark (i) Thm. 3.1 is proved in [23, 3.3, 3.14]. The statement that the subset
of Ag,n(k) consisting of all geometric points y such that (Ay[p

∞], λy[p
∞]) is isomorphic to

(Ax[p
∞], λx[p

∞]) is the set of geometric points of a constructible subset of Ag,n, follows from
the following fact, proved in Manin’s thesis [16]: A Barsotti-Tate group over k of a given
height h is determined, up to non-unique isomorphism, by its truncation modulo a sufficiently
high level N ≥ N(h).

(ii) T. Zink showed, in a letter to C.-L. Chai dated May 1, 1999, the following generaliza-
tion of Manin’s result: A crystal M over k is determined, up to non-unique isomorphisms,
by its quotient modulo pN , for some suitable N > 0 depending only on the height of M and
the maximum among the slopes of M .

(iii) In [23], C(x) is called the central leaf passing through x.
(iv) It is clear from the definition that each leaf in Ag,n is stable under all prime-to-p

Hecke correspondences. In particular, the Hecke orbit H(p)(x) is contained in the leaf C(x)
passing through x.

(v) Every leaf is contained in an Newton polygon stratum of Ag,n, and every Newton poly-
gon stratum is a disjoint union of leaves. Recall that an Newton polygon stratum Wξ(Ag,n)
in Ag,n over k is, by definition, the subset of Ag,n such that Wξ(Ag,n)(K) consists of all
K-valued points y of Ag,n such that the Newton polygon of Ay[p

∞] is equal to ξ, for all fields
K ⊃ k.4 By Grothendieck-Katz, Wξ(Ag,n) is a locally closed subset of Ag,n; see [14] for a
proof. There are infinitely many leaves in Ag,n if g ≥ 2. In particular the decomposition
of Ag,n into a disjoint union of leaves is not a stratification in the usual sense: There are
infinitely many leaves, and the closure of some leaves contain infinitely many leaves.

(3.1.2) Examples.

(i) The ordinary locus of Ag,n, that is the largest open subscheme of Ag,n over which each
geometric fiber of the universal abelian scheme is an ordinary abelian variety, is a leaf.

4Some author use the notation W 0
ξ (Ag,n) instead of W 0

ξ (Ag,n), and call it an “open Newton polygon
stratum”; then they denote by Wξ(Ag,n) the closure of W 0

ξ (Ag,n) in Ag,n and call it a Newton polygon
stratum.

8



(ii) The “almost ordinary” locus of Ag,n, or, the locus consisting of all geometric points x
such that the maximal étale quotient of the attached Barsotti-Tate group Ax[p

∞] has
height g − 1, is a leaf.

(iii) Every supersingular leaf in Ag,n is finite over k. Hence there are infinitely many
supersingular leaves in Ag,n if g ≥ 2.

(iv) Consider the Newton polygon stratum Wξ(A3,n) in A3,n, where the Newton polygon
ξ has slopes (1

3
, 2

3
). Every leaf C contained in Wξ(A3,n) is two-dimensional, while

dim(Wξ(A3,n)) = 3.

(3.2) Proposition Let C be a leaf in Ag,n. For each integer N ≥ 1, denote by A[pN ] → C
the pN-torsion subgroup scheme of the restriction to C of the universal abelian scheme. Then
there exists a finite surjective morphism f : S → C such that (A[pN ], λ[pN ])×CS is a constant
principally polarized truncated Barsotti-Tate group over S.

See [23, 1.3] for a proof of 3.2.

(3.2.1) Using Prop. 3.2, one can show that there exist finite surjective isogeny correspon-
dences between any two leaves lying in the same Newton polygon stratum; see [23, Lemma
3.14]. In particular, any two leaves in the same Newton polygon stratum have the same
dimension.

(3.2.2) Remark In this article we have focused our attention on leaves in Ag,n over k. The
notion of leaves can be extended to other modular varieties of PEL-type in a similar way,
and the basic properties of leaves, including 3.1, 3.2, 3.3, can all be generalized; some of the
generalized statements become a little stronger. It is expected that the notion of leaves can
be defined on reduction over k of a Shimura variety X, with nice properties.

(3.3) Proposition Let C be a leaf in Ag,n. Denote by A[p∞] → C the Barsotti-Tate group
attached to the restriction to C of the universal abelian scheme. Then there exists a slope
filtration on A[p∞]→ C. More precisely, there exist Barsotti-Tate subgroups

0 = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gm = A[p∞]

of A[p∞]→ C over the leaf C such that Gi/Gi−1 is a Barsotti-Tate group over C with a single
Frobenius slope µi, i = 1, . . . ,m, and µ1 > µ2 > · · · > µm. Moreover each Barsotti-Tate
group Gi/Gi−1 → C is geometrically fiberwise constant, for i = 1, . . . ,m. In other words,
any two geometric fibers of Gi/Gi−1 → C are isomorphic after base extension to a common
algebraically closed overfield.

Remark (i) The statement that Hi := Gi/Gi−1 has Frobenius slope µi means that there
exists constants c, d > 0 such that

Ker([pbNµi−cc]Hi) ⊆ Ker(Fr
(pN )
Hi

) ⊆ Ker([pbNµi+dc]Hi)
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for all N � 0. Here Fr
(pN )
Hi

: Hi → H
(pN )
i denotes the relative pN -Frobenius for Hi → C, also

called the N -th iterate of the relative Frobenius by some authors, while Ker([pbNµi−cc]Hi)
(resp. Ker([pbNµi+dc]Hi)) denotes the kernel of multiplication by pbNµi−cc (resp. by pbNµi+dc)
on Hi.

(ii) The Frobenius slopes of a Barsotti-Tate group X measures divisibility property of
iterates of the Frobenius map on X. A Barsotti-Tate group X is isoclinic with Frobenius
slope µ if (FrX)N/pµN and pµN/(FrX)N are both bounded as N →∞. In the literature the
terminology “slope” is sometimes also used to measure the divisibility of the Verschiebung,
hence we use “Frobenius slope” to avoid possible confusion.

(iii) When all fibers of A[p∞] at points of C are completely slope divisible, the existence of
the slope filtration was proved by in [32, Prop. 14]; see also [27, Prop. 2.3]. The statement
of Prop. 3.3 has not appeared in the literature, but the following stronger statement can be
deduced from [32, Thm. 7] and [27, Thm. 2.1]: If S → Spec(Fp) is an integral Noetherian nor-
mal scheme of characteristic p, and G is a Barsotti-Tate group over S which is geometrically
fiber-wise constant, then G→ S admits a slope filtration.

(iv) The slope filtration on a leaf holds the key to the theory of canonical coordinates on
a leaf; see §7.

(v) It is clear that on a Barsotti-Tate group over a reduced base scheme S over k, there
exists at most one slope filtration.

(vi) One can construct a Barsotti-Tate group G over a smooth base scheme S over k, for
instance P1, such that G does not have a slope filtration.

(3.4) Denote by Π0(C(x)) the scheme of geometrically irreducible components of C(x), or
equivalently, the set of geometrically connected components of C(x), since C(x) is smooth
over k. The scheme Π0(C(x)) is finite and étale over k; this assertion holds even if the base
field k is not assumed to be algebraically closed.

(3.5) Let E = F1 × · · · × Fr be the product of totally real number fields F1, . . . , Fr, and
let n ≥ 3 be an integer with (n, p) = 1. The notion of leaves can be extended to the
Hilbert modular variety ME,n over k, as follows. Let x ∈ ME,n(k) be a geometric point of
the Hilbert modular variety ME,n(k). The leaf in ME,n passing through x is the smooth
locally closed subscheme CE(x), characterized by the property that CE(x)(K) consists of all
geometric points y ∈ ME,n(K) such that there exists an OE⊗ZZp-linear isomorphism from
Ay[p

∞] to Ax[p
∞] compatible with the OE-polarizations, for every algebraically closed field

K ⊃ k.

(3.5.1) Just as in the case of Siegel modular varieties, each leaf inME,n is stable under all
prime-to-p Hecke correspondences on ME,n.

(3.5.2) The slope filtration on the Barsotti-Tate group over a leaf inME,n takes the follow-
ing form. Let CE be a leaf in ME,n, and denote by G the Barsotti-Tate group attached to
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the restriction to CE of the universal abelian scheme over CE. Write OE ⊗Z Zp =
∏s

j=1 OE℘j
,

where each OE℘j
is a complete discrete valuation ring. The natural action of OE ⊗Z Zp on G

gives a decomposition
G = G1 × · · · ×Gs ,

where each Gj is a Barsotti-Tate group over CE, with action by OE℘j
, and the height of Gj

is equal to 2 [OE℘j
: Zp]. Moreover, for j ∈ {1, . . . , s} and Gj not isoclinic of slope 1

2
, there

exists a Barsotti-Tate subgroup Hj ⊂ Gj over CE, stable under the action of OE℘j
, such that

• the height of Hj is equal to [OE℘j
: Zp],

• both Hj and Gj/Hj are isoclinic, of Frobenius slopes µj, µ
′
j respectively, and

• µj > µ′j and µj + µ′j = 1.

§4. The Hecke orbit conjecture
Let k be an algebraically closed field of characteristic p, and let n ≥ 3 be an integer,
(n, p) = 1.

(4.1) Conjecture Denote by Ag,n the moduli space of g-dimensional principally polarized
abelian varieties over k with symplectic level-n structures as before.

(i) (HO) For any geometric point x of Ag,n, the Hecke orbit H(p)(x) is dense in C(x).

(ii) (HO)ct For any geometric point x of Ag,n, we have dim(H(p)(x)) = dim(C(x)), where

H(p)(x) denotes the Zariski closure of the countable subset H(p)(x) in Ag,n. Equiva-

lently, H(p)(x) contains the irreducible component of C(x) passing through x.

(iii) (HO)dc For any geometric point x of Ag,n, the canonical map

Π0(H(p)(x)
◦
)→ Π0(C(x))

is surjective, where H(p)(x)
◦

:= H(p)(x)∩C(x) denotes the Zariski closure of the Hecke
orbitH(p)(x) in the leaf C(x). In other words, the prime-to-p Hecke correspondences op-
erate transitively on the set Π0(C(x)) of geometrically irreducible components of C(x).

(4.1.1) Remark (i) The conjecture (HO) is due to Oort, see [23, 6.2]. It implies Conj.
15.A in [20], which asserts that the orbit of a point x of Ag,n(k) under all Hecke correspon-
dences, including all purely inseparable ones, is Zariski dense in the Newton polygon stratum
containing x.

(ii) It is clear that the conjecture (HO) is equivalent to the conjunction of (HO)ct and
(HO)dc. We call (HO)ct (resp. (HO)dc) the continuous (resp. discrete) part of the Hecke orbit
conjecture (HO).
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(iii) The conjecture (HO)dc is essentially an irreducibility statement; see Thm. 5.1.

(iv) We can also formulate the `-adic version of the Hecke orbit conjecture, (HO)`, for any
prime number ` 6= p. It asserts that H`(x) is dense in C(x). One can define the continuous
part (HO)`,ct, and the discrete part (HO)`,dc of (HO)` as in 4.1. Clearly, (HO)` ⇐⇒ (HO)`,ct+
(HO)`,dc.

(v) Thm. 5.1 tells us that (HO)`,dc ⇐⇒ (HO)dc, and (HO)` ⇐⇒ (HO). So, although
(HO)` appears to be a stronger statement than (HO), it is essentially equivalent to it. Strictly
speaking, Thm. 5.1 gives the implications when the Hecke orbit in question is not supersingu-
lar, however the supersingular case can be dealt with directly, using the weak approximation
theorem.

(4.1.2) Let E be a finite product of totally real number fields, and let ME be the Hilbert
modular variety over k attached to E. Then we can formulate the Hecke orbit conjectures
for Mn as in 4.1, and will use (HO)E, (HO)E,ct, and (HO)E,dc to denote the Hecke orbit
conjecture forMn and its two parts. Remark 4.1.1 (ii), (iii), (iv) hold in the present context.

(4.1.3) Remark The Hecke orbit conjecture(s) can be formulated for other modular vari-
eties of PEL-type, and the reduction over k of any Shimura variety X if one is optimistic.
It should be noted, however, that the statement in 4.1.1 (iii) needs to be modified, because
the last sentence of 5.1 depends on the fact that Sp2g is simply connected. The remedy is

to use the Gder(A
(p)
f )-orbit instead of the G(A

(p)
f )-orbit, where G is the connected reductive

group over Q in the input data of the Shimura variety X.

(4.2) Theorem The Hecke orbit conjectures (HO),(HO)` hold for the Siegel modular vari-
eties. In other words, every prime-to-p Hecke orbit is Zariski dense in the leaf containing it;
the same is true for every `-adic Hecke orbit, for every prime number ` with (`, p) = 1.

(4.3) In the rest of this article we present an outline of the proof of Thm. 4.2. We have
already seen that Thm. 5.1 on `-adic monodromy groups is helpful in clarifying the discrete
Hecke orbit conjecture, and for the equivalence between (HO)` and (HO). The foundation
underlying our approach is the local stabilizer principle, to be explained in §6; this principle
is quite general and can be applied to all PEL-type modular varieties. We will also use
a special property of the Siegel modular varieties, called the Hilbert trick, to be explained
in §9. That property holds for modular varieties of PEL-type C, but not for PEL-type A
or D. Both the local stabilizer principle and the Hilbert trick were used in [2]; the former
was used not only for points of the ordinary locus, but also the zero-dimensional cusps and
supersingular points.

There are several techniques, listed as items (C), (R), (S), (H) in the fourth paragraph of
§1, which make the local stabilizer principle more potent. Among them, the methods (C),
(R), (H) can be generalized to all modular varieties of PEL-type, while (S) depends on the
Hilbert trick, therefore applies only to modular varieties of PEL-type C.
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(4.4) The Hecke orbit conjecture for the Hilbert modular varieties enters the proof of (HO)ct

for Ag,n at a critical point, through the Hilbert trick.

(4.4.1) Theorem The Hecke orbit conjecture holds for Hilbert modular varieties. In other
words, every prime-to-p Hecke orbit in a Hilbert modular variety is Zariski dense in the leaf
containing it.

See 13.2 and 13.3 for an outline of the proof of Thm. 4.4.1.

§5. `-adic monodromy of leaves
Theorem 5.1 below explores the relation between the Hecke symmetries and the `-adic mon-
odromy. It asserts that the `-adic monodromy of any non-supersingular leaf on Ag is maxi-
mal. A byproduct of 5.1, from a group theoretic consideration, is an irreducibility statement.
The irreducibility statement implies that for a non-supersingular leaf C in Ag, the discrete
part (HO)dc of the Hecke orbit conjecture holds for C if and only if C is irreducible.

(5.1) Theorem Let k be an algebraically closed field of characteristic p. Let n ≥ 3 be a
natural number which is prime to p. Let ` be a prime number 6̀ |pn. Let Z be a smooth
locally closed subvariety of Ag,n over k. Assume that Z is stable under all `-adic Hecke
correspondences coming from Sp2g(Q`), and that the `-adic Hecke correspondences operate
transitively on the set of irreducible components of Z. Let A→ Z be the restriction to Z of the
universal abelian scheme. Let Z0 be an irreducible component of Z, and let η̄ be a geometric
generic point of Z0. Assume that Aη̄ is not supersingular. Then the image ρ

A,`
(π1(Z0, η)) of

the `-adic monodromy representation of A→ Z0 is equal to Sp(T`, 〈 , 〉`) ∼= Sp2g(Z`), where
T` = T`(Aη̄) = lim←−n

A[`n](η̄) denotes the `-adic Tate module of Aη̄. Moreover Z = Z0, i.e.
Z is irreducible, and Z is stable under all prime-to-p Hecke correspondences on Ag,n.

(5.1.1) Remark (i) Theorem 5.1 is handy when one tries to prove the irreducibility of
certain subvarieties of Ag. For instance, if one wants to show that a leaf or a Newton
polygon stratum in Ag is irreducible, 5.1 tells us that it suffices to show that the the prime-
to-p Hecke correspondences operate transitively on the set of irreducible components of the
given leaf or Newton polygon stratum. The latter statement be approached by the standard
degeneration argument in algebraic geometry.

(ii) Thm. 5.1 is the main result of [3]. The proof of 5.1 can be generalized to other
modular varieties of PEL-type, but one has to make suitable modification of the statement
if the derived group of G is not simply connected.

(iii) The assumption that Z is stable under all `-adic Hecke correspondences coming from
Sp2g(Q`) means that the closed points of Z is a union of `-adic Hecke correspondences. See

2.3 for the action of Sp2g(A
(p)
f ) on the tower Ag,(p) of modular varieties. The action of the

subgroup Sp2g(Q`) of Sp2g(A
(p)
f ) induces the `-adic Hecke correspondences on Ag,n.
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(iv) The proof of Thm. 5.1 is mostly group-theoretic; the algebro-geometric input is the
semisimplicity of the `-adic monodromy group.

§6. The action of the local stabilizer subgroup
(6.1) Let k be an algebraically closed field of characteristic p. Let n ≥ 3 be an integer,
(n, p) = 1. Let ` be a prime number, ` 6= p. Let Z ⊂ Ag,n be a reduced closed subscheme
stable under all `-adic Hecke correspondences. In other words, Z is a union of `-adic Hecke
orbits. Let x = ([Ax, λx]) ∈ Z(k) be a closed point of Z. Let E = Endk(Ax)⊗Z Qp, and let
∗ be the Rosati involution of E induced by the principal polarization λx. Let

H = {u ∈ E×|u · u∗ = u∗ · u = 1}

be the unitary group attached to the pair (E ⊗Q Qp, ∗). Let Ux := H ∩ Endk(Ax[p
∞])×; we

call it the local stabilizer subgroup at x ∈ Ag(k).

Similarly, let Ẽ := Endk(Ax[p
∞])⊗ZpQp, and let ∗̃ be the involution on Ẽ induced by λx.

Denote by H̃ the unitary group attached to the pair (Ẽ, x̃), and let Ũx = H̃∩Endk(Ax[p
∞])×.

The group Ũx operates naturally on A/xg,n by deformation theory. Since there is a natural

inclusion Ux ↪→ Ũx, the subgroup Ux inherits an action on A/xg,n.

(6.2) Proposition (local stabilizer principle) Notation as above. Then the closed for-

mal subscheme Z/x of A/xg,n is stable under the action of the local stabilizer subgroup Ux on

A/xg,n

Sketch of Proof. Let U be the unitary group attached to the pair (E, ∗); it is a reductive
linear algebraic group over Q. In particular the weak approximation theorem holds for U .
Choose and fix a “standard embedding” U(A

(p)
f ) ↪→ Sp2g(A

(p)
f ) coming from a choice of

a symplectic level-Z
(p)
f structure of Ax. Then every element of the subgroup U(A

(p)
f ) of

Sp2g(A
(p)
f ) gives rise to a prime-to-p Hecke correspondence having x as a fixed point. For

any given element γp ∈ Ux, choose an element γ ∈ U(Q) close to γp in U(Qp). Note that the

image of γ in U(A
(p)
f ) gives rise to a prime-to-p Hecke correspondence, which has x as a fixed

point and sends the formal subscheme Z/x of A/xg,n into Z/x itself. Interpreted in terms of
deformation theory, the last assertion implies that a formal neighborhood Spec

(
OZ/x/m

N
x

)
of

x in Z/x, as a formal subscheme of A/xg,n, is stable under the natural action of γp, where mx is
the maximal ideal of OZ/x , and N = N(γp, γ) depends on how close γ is to γp, N(γp, γ)→∞
as γ → γp. Taking the limit as γ goes to γp, we see that Z/x is stable under the action of
γp.

(6.2.1) Remark (i) The action of the local stabilizer subgroup on the deformation space
goes back to Lubin and Tate in [15].
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(ii) In [2], the local stabilizer principle was applied to the zero-dimensional cusps of Ag,n,
and also to points of Ag,n defined over finite fields. The calculation of [2, Prop. 2, p. 454]
at the zero-dimensional cusps is a bit complicated, and can be avoided, using “Larsen’s
example” on page 443 of [2] instead.

(iii) The bigger the local stabilizer subgroup Ux, the more information the action of Ux
on A/xg,n contains. The size of U , the linear algebraic group over Qp such that Ux is open
in U(Qp), is maximal when the abelian variety Ax is supersingular. If x is supersingular
point, then U is an inner twist of Sp2g, so in some sense almost all information about the

prime-to-p Hecke correspondences on Ag,n are encoded in the action of Ux on A/xg,n. The
challenge, however, is to dig the buried information out of this action; the success stories
include Thm. 11.2, and [2, §5, Prop. 7].

§7. Canonical coordinates for leaves
(7.1) Let k be an algebraically closed field of characteristic p. Let C be a leaf on Ag,n,
where n ≥ 3 is a natural number relatively prime to p. Let x ∈ C(k) be a closed point of
C. Recall that the leaf C is defined by a point-wise property, namely, a point y ∈ C(k) is in
C = C(x) if and only if the principally quasi-polarized Barsotti-Tate groups (Ay[p

∞], λy[p
∞])

and (Ax[p
∞], λx[p

∞]) are isomorphic. One can also use the same point-wise property to define
leaves (on the base scheme) for a (principally quasi-polarized) Barsotti-Tate group over a
Noetherian integral base scheme over k; see [23].

From the definition it is not immediately clear how to “compute” the formal completion
C/x of the leaf C at x. However this turns out to be possible, and the resulting theory is
a generalization of the classical Serre-Tate theory for the local moduli of ordinary abelian
varieties. Some highlights of the description of C/x will be explained in this section. More
details can be found in [6], [7].

(7.2) Recall that the deformation theory of (Ax, λx) is the same as that of the associated
principally quasi-polarized Barsotti-Tate group (Ax[p

∞], λx[p
∞]). Let

0 = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gm = AC[p
∞]

be the slope filtration of the restriction to C of the Barsotti-Tate group attached to the
universal abelian scheme, so that each Gi/Gi−1 is a Barsotti-Tate group over C with slope
µi, i = 1, 2, . . . ,m, and µ1 > µ2 > · · · > µm. Moreover, each subquotient Gi/Gi−1 is constant
over the formal completion C/x of C at x, because it is geometrically fiberwise constant over
the complete strictly henselian base formal scheme C/x.

Let Def(Ax) = Def(Ax[p
∞]) be the local deformation space of Ax over k, or equiva-

lently the local deformation space of Ax[p
∞] over k; it is a g2-dimensional smooth formal

scheme over k. A basic phenomenon here is that C/x is determined by the slope filtration
on A[p∞] → C/x. More precisely, the formal subscheme C/x ⊂ A/xg,n ⊂ Def(Ax) is contained
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in the “extension part” MDE(Ax[p
∞]) of Def(Ax), where MDE(Ax[p

∞]) is the maximal
closed formal subscheme of the local deformation space Def(Ax) = Def(Ax[p

∞]) such that
the restriction to MDE(Ax[p

∞]) of the universal Barsotti-Tate group is a successive exten-
sion of constant Barsotti-Tate groups (Gi/Gi−1)x×Spec(k) MDE(Ax[p

∞]), extending the slope
filtration of Ax[p

∞]. For each Artinian local k-algebra R, MDE(R) is the set of isomorphism
classes of tuples (

0 = G̃0 ⊂ G̃1 ⊂ · · · ⊂ G̃m;α1, . . . , αm; β1, . . . , βm

)
,

such that

• G̃i is a Barsotti-Tate group over R for each i,

• each quotient G̃i/G̃i−1 is a Barsotti-Tate group over R, i = 1, . . . ,m,

• αi is an isomorphism from G̃i ×Spec(R) Spec(k) to (Gi)x, for i = 1, . . . ,m,

• βi is an isomorphism from G̃i/G̃i−1 to (Gi/Gi−1)x ×Spec(k) Spec(R), for i = 1, . . . ,m,

• the isomorphisms α1, . . . , αm are compatible with the inclusion maps Gi ↪→ Gi+1 and
G̃i ↪→ G̃i+1, i = 1, . . . ,m− 1, and

• the isomorphisms β1, . . . , βm are compatible with α1, . . . , αm.

Our theory of canonical coordinates provides a description of the closed formal subscheme
C/x of MDE(Ax[p

∞]) in terms of the structure of MDE(Ax[p
∞]), independent of the notion

of leaves. If the abelian variety Ax is ordinary, then m = 2, G1 is toric, G2/G1 is étale, and
the theory reduces to the classical Serre-Tate coordinates.

(7.3) The computation of C/x can be reduced to the following two “essential cases”. In
both cases we have two p-Barsotti-Tate groups X and Y over k; X has slope µ

X
, while Y

has slope µ
Y

. We assume that µ
X
< µ

Y
. Let Spf(R) be the equi-characteristic deformation

space of X × Y . Let G → Spf(R) be the universal deformation of X × Y . For each s ≥ 1,
since G[ps] is a finite locally free group scheme over Spf(R), it is the formal completion of
a unique finite locally free group scheme over Spec(R), denoted by G[ps]′ → Spec(R). The
inductive system of finite locally free group schemes G[ps]′ → Spec(R) form a Barsotti-Tate
group over Spec(R), denoted by G→ Spec(R), abusing the notation.

• (unpolarized case) In this case, our goal is to compute the leaf in Spec(R), passing
through the closed point of Spec(R), for the Barsotti-Tate group G→ Spec(R). This
leaf will be denoted by C∧up.

• (polarized case) Suppose that λ is a principal quasi-polarization on X × Y . This
assumption implies that µ

X
+µ

Y
= 1. The equi-characteristic deformation space of

(X×Y, λ) is a closed formal subscheme Spf(R/I) of Spf(R). We would like to compute
the leaf in Spec(R/I), passing through the closed point of Spec(R/I), for the principally
polarized Barsotti-Tate group G→ Spec(R/I); denote this leaf by C∧.
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(7.3.1) Our starting point in the computation of C/xup and C/x is the following observation.
There is a closed formal subscheme DE(X, Y ) of the deformation space Spf(R), maximal
with respect to the property that the restriction to DE(X, Y ) of the universal deformation
of X × Y is an extension of X ×Spec(k) DE(X,Y ) by Y ×Spec(k) DE(X, Y ). It is not difficult
to see that DE(X,Y ) is formally smooth over k. The existence of the canonical filtration of
the restriction of G to the leaves implies that both C∧up and C∧ are closed formal subschemes
of DE(X, Y ). On the other hand, the Baer sum for extensions produces a group law on
DE(X, Y ), so that DE(X, Y ) has a natural structure as a smooth formal group over k.

(7.4) Theorem Notation as in 7.3.

(i) In the unpolarized case, the leaf C∧up is naturally isomorphic to the maximal p-divisible
formal subgroup DE(X, Y )p-div of DE(X, Y ). The p-divisible group DE(X,Y )p-div has
slope µ

Y
−µ

X
.

(ii) In the polarized case, the principal quasi-polarization λ on X × Y induces an invo-
lution on DE(X, Y )p-div, and C∧ is equal to the maximal subgroup DE(X, Y )sym

p-div of
DE(X, Y )p-div which is fixed under the involution. Again, DE(X,Y )sym

p-div is a p-divisible
formal group with slope µ

Y
−µ

X
.

(7.4.1) Remark (i) Thm. 7.4 gives a structural characterization of the leaves C∧up and C∧
in the formal subscheme DE(X, Y ) of the deformation space Spf(R) of X × Y . In Thm.
7.6.3 and Prop. 7.6.4, we will see a structural characterization of a leaf C(Def(G)) in the
equi-characteristic deformation space Def(G) of a general Barsotti-Tate group G over k, in a
similar spirit. The above characterization deals with the differential property of leaves, and
complements the global point-wise definition of leaves.

(ii) The statement 7.4 (ii) follows quickly from 7.4 (i). The last sentence of 7.4 (i) can be
proved by comparing the effect of iterates of the relative Frobenius on DE(X, Y )p-div with
suitable powers p, assuming without loss of generality that X and Y are both minimal.

(iii) We have a natural inclusion C∧up ⊂ DE(X,Y ). To prove that C∧up ⊇ DE(X, Y )p-div,
one shows that the pull-back of the universal extension of X by Y over DE(X, Y ) to the
perfection of DE(X,Y )p-div splits. To prove that C∧up ⊆ DE(X, Y )p-div, one shows that
for every complete Noetherian local domain S over k and every S-valued point f : S →
DE(X, Y )unip of the maximal unipotent part of DE(X, Y ), if the extension of X×Spec(k)S by
Y ×Spec(k) S attached to f becomes trivial over the perfection Sperf of S, then f corresponds
to the trivial extension over S.

(7.5) Theorem Let M(X),M(Y ) be the covariant Dieudonné module of X, Y respectively.
Let B(k) be the fraction field of W (k). The B(k)-vector space

HomW (k)(M(X),M(Y ))⊗W (k) B(k)

has a natural structure as a V -isocrystal.
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(i) Let M(DE(X, Y )p-div) be the covariant Diedonné module of C∧up = DE(X, Y )p-div. Then
there exists a natural isomorphism of V -isocrystals

M(DE(X, Y )p-div)⊗W (k) B(k)
∼−→ HomW (k)(M(X),M(Y ))⊗W (k) B(k) .

(ii) Suppose that λ is a principal quasi-polarization λ on X×Y . Let ι be the involution on
HomW (k)(M(X),M(Y ))⊗W (k) B(k) induced by λ. Let M(DE(X, Y )sym

p-div) be the covari-
ant Diedonné module of C∧ = DE(X, Y )sym

p-div. Then there exists a natural isomorphism
of V -isocrystals

M(DE(X, Y )sym
p-div)⊗W (k) B(k)

∼−→ Homsym
W (k)(M(X),M(Y ))⊗W (k) B(k) ,

where the right-hand side is the subspace of HomW (k)(M(X),M(Y )) ⊗W (k) B(k) fixed
under the involution ι.

(7.5.1) Remark (i) See [7] for a proof of Thm. 7.5. The set Cartp(k[[t]]) of all formal curves
in the functor of reduced Cartier ring for algebras over Z(p) plays a crucial role in the proof of
Thm. 7.5; it is denoted by BCp(k) in [7]. The set BCp(k) has a natural (Cartp(k),Cartp(k))-
bimodule structure, because Cartp(k) is a subring of Cartp(k[[t]]). Moreover Cartp(k[[t]])
has a “extra” Cartp(k)-module structure, compatible with the above bimodule structure; it
comes from the Cartier theory, because the functor Cartp is a commutative smooth formal
group. The Cartier module of MDE(X, Y ) is canonically isomorphic to

Ext1
Cartp(k)

(
M(X),BCp(k)⊗Cartp(k) M(Y )

)
where the extension functor is computed using the left Cartp(k)-module structure in the
bimodule structure, and the action of Cartp(k) on MDE(X, Y ) comes from the “extra”
Cartp(k)-module structure of BCp(k) mentioned above. Therefore the covariant V -isocrystal
attached to MDE(X, Y )p-div is canonically isomorphic to

Ext1
Cartp(k)

(
M(X),BCp(k)⊗Cartp(k) M(Y )

)
⊗W (k) B(k) .

(ii) Thm. 7.5 is a generalization of the appendix of [18]. In [18] the authors dealt with the
case when Y is the formal completion of Gm. In that case MDE(X, Y ) is already a p-divisible
formal group, and the natural map in the displayed formula in 7.5 (i) preserves the natural
integral structures, giving a formula for the Cartier module of MDE(X, Y ). The proof of 7.5
(i) begins by choosing a finite free resolution of M(X) of length one, and use the resolution to
write down the canonical map in 7.5 (i). The main technical ingredient is an approximation
of BCp(k) ⊗Z Q by Cartp(k)⊗̂W (k)Cartp(k) ⊗Z Q, where Cartp(k)⊗̂W (k)Cartp(k) denotes a
completed tensor product. The statement 7.5 (ii) follows easily from the proof of 7.5 (i).

(iii) The method of the proof of 7.5 can be regarded as a generalization of §4 and §5
of Mumford’s seminal paper [17]. It may be interesting to note that the set denoted by
ÃR on pages 316–317 of [17], together with its (AR, AR)-bimodule structure is essentially

the set BCp(k)⊗Cartp(k) M(Ĝm) with the natural (Cartp(k),Cartp(k))-bimodule structure in
our notation, where the right action of Cartp(k)) comes from the “extra” Cartp(k)-module
structure of BCp(k).
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(iv) We do not know a convenient characterization of the the p-divisible formal group
DE(X, Y )p-div inside its isogeny class, in terms of the Dieudonneé modules M(X),M(Y ).
When both X and Y are minimal in the sense of [24], i.e. the endomorphism Zp-algebra of
X,Y are maximal orders, we expect that DE(X, Y )p-div is also minimal. It is easy to check
that this conjectural statement holds when the denominators of the Brauer invariant of X
and Y are relatively prime.

(7.5.2) Corollary Let h(X), h(Y ) be the height of X,Y respectively.

(i) In the unpolarized case, the height of DE(X, Y )p-div is equal to h(X) · h(Y ), and
dim(DE(X, Y )p-div) = (µ

Y
−µ

X
) · h(X) · h(Y ).

(ii) In the polarized case, we have h(X) = h(Y ), the height of DE(X,Y )sym
p-div is equal to

h(X)·(h(X)+1)
2

, and dim(DE(X, Y )sym
p-div) = 1

2
(µ

Y
−µ

X
)·h(X)·(h(X) + 1).

(7.5.3) Remark The formulae (i), (ii) in Cor. 7.5.2 are quite similar to the formulae for the
dimension of the deformation space of an h-dimensional abelian variety and the dimension
of Ah respectively, except that there is an “extra factor” µ

Y
−µ

X
.

(7.6) We go back to the general case and use the notation in 7.2. Just as in 7.4, it is conve-
nient to consider the leaves in the local deformation space for the (unpolarized) Barsotti-Tate
group Ax[p

∞]. Denote by C(Def(Ax[p
∞])) the leaf in the deformation space Def(Ax[p

∞]) of
the Barsotti-Tate group Ax[p

∞]. Just as in Prop. 3.3, there exists a slope filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gm = AC(Def(Ax[p∞]))[p
∞]

on the universal Barsotti-Tate group over C(Def(Ax[p
∞])), where each graded piece Gi/Gi−1

is an isoclinic Barsotti-Tate group over C(Def(Ax[p
∞])) with slope µi, µ1 > · · · > µm.

Therefore the leaf C(Def(Ax[p
∞])) is contained in MDE(Ax[p

∞]), the maximal closed for-
mal subscheme of Def(Ax[p

∞]) such that the restriction to MDE(Ax[p
∞]) of the universal

Barsotti-Tate group has a slope filtration extending the slope filtration of Ax[p
∞]. We would

like to have a structural description of the leaf C(Def(Ax[p
∞])) as a closed formal subscheme

of MDE(Ax[p
∞]), independent of the “point-wise” definition of the leaf. This will be achieved

inductively, allowing us to understand how C(Def(Ax[p
∞])) is “built up” from the p-divisible

formal groups DE(Gi/Gi−1, Gj/Gj−1)p-div, 1 ≤ j < i ≤ m.

(7.6.1) For each Barsotti-Tate group G over k, we can consider the leaf C(Def(G)) in the
deformation space Def(G) over k, and we know that C(Def(G)) is contained in MDE(G),
the maximal closed formal subscheme of Def(G) such that the restriction to MDE(G) of the
universal Barsotti-Tate group has a slope filtration extending the slope filtration of G.
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(7.6.2) Let 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gm be the slope filtration of a Barsotti-Tate group G over
k. Suppose that 0 ≤ j1 ≤ j2 < i2 ≤ i1 ≤ m. Then there exists a natural formally smooth
morphism

π[j2,i2],[j1,i1] : MDE(Gi1/Gj1)→MDE(Gi2/Gj2) .

These morphisms form a finite projective system, that is

π[j3,i3],[j2,i2] ◦ π[j2,i2],[j1,i1] = π[j3,i3],[j1,i1]

if 0 ≤ j1 ≤ j2 ≤ j3 < i3 ≤ i2 ≤ i1 ≤ m. Moreover, using the theory of biextensions of
Mumford and Grothendieck in [17] and [13], one can show that the morphism

MDE(Gi/Gj) −→MDE(Gi−1/Gj)×MDE(Gi−1/Gj+1) MDE(Gi/Gj+1)

attached to the pair of morphisms (π[j,i−1],[j,i], π[j+1,i],[j,i]) has a natural structure as a torsor
for the formal group DE(Gi/Gi−1, Gj/Gj−1).

(7.6.3) Theorem Notation as in 7.6.2.

(i) Suppose that 1 ≤ i ≤ m − 1. Then C(Def(Gi+1/Gi−1)) is a torsor for the p-divisible
formal group DE(Gi+1/Gi, Gi/Gi−1)p-div.

(ii) Suppose that 0 ≤ j1 ≤ j2 < i2 ≤ i1 ≤ m. Then the restriction of π[j2,i2],[j1,i1]

to the closed formal subscheme C(Def(Gi1/Gj1)) of MDE(Gi1/Gj1) factors through
C(Def(Gi2/Gj2)) ↪→MDE(Gi2/Gj2), and induces a formally smooth morphism

π[j2,i2],[j1,i1] : C(Def(Gi1/Gj1))→ C(Def(Gi2/Gj2)) .

(iii) Suppose that 1 ≤ i, j ≤ m, i ≥ j + 2. Then the morphism

C(Def(Gi/Gj)) −→ C(Def(Gi−1/Gj))×C(Def(Gi−1/Gj+1)) C(Def(Gi/Gj+1))

attached to the pair of morphisms (π[j,i−1],[j,i], π[j+1,i],[j,i]) is a torsor for the p-divisible
formal group DE(Gi/Gi−1, Gj/Gj−1)p-div, respecting the DE(Gi/Gi−1, Gj/Gj−1)-torsor
structure of

MDE(Gi/Gj) −→MDE(Gi−1/Gj)×MDE(Gi−1/Gj+1) MDE(Gi/Gj+1)

at the end of 7.6.2.

(7.6.4) Proposition The properties (i), (ii), (iii) in Thm. 7.6.3 determine uniquely the fam-
ily of formal schemes {C(Def(Gi/Gj)) : 0 ≤ j < i ≤ m}, where each member C(Def(Gi/Gj))
of the family is considered as a closed formal subscheme of Def(Gi/Gj).
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(7.6.5) Remark It is actually possible to do better than what was stated in Prop. 7.6.4.
Namely, one can actually construct closed subschemes MDE(Gi/Gj)p-div of MDE(Gi/Gj),
satisfying the properties (i), (ii), (iii) in Thm. 7.6.3, using structural properties of the formal
schemes MDE(Gi/Gj), without the concept of leaves, in an inductive way. An important
ingredient of the construction uses the theory of biextensions due to Mumford [17] and
Grothendieck [13]. Of course, MDE(Gi/Gj)p-div is canonically isomorphic to C(Def(Gi/Gj))
by Prop. 7.6.4. However that construction is a bit complicated, so we do not give further
indication here.

(7.6.6) Corollary Notation as in Thm. 7.6.3. Then

dim(C(Def(G))) =
∑

1≤j<i≤m

(µi−µj) · hi · hj ,

where µi is the slope of Gi/Gi−1 and hi is the height of Gi/Gi−1, for i = 1, . . . ,m.

(7.7) Proposition Let G be a Barsotti-Tate group over k, with a principal quasi-polariza-
tion λ. Then λ induces an involution on MDE(G)p-div. Denote by MDE(G)sym

p-div the maximal
closed subscheme of MDE(G)p-div which is fixed by the involution. Then MDE(G)sym

p-div is the
largest closed formal subscheme of MDE(G)p-div such that λ extends to a principal quasi-
polarization on the restriction to MDE(G)sym

p-div of the universal Barsotti-Tate group over
MDE(G)p-div ⊂ Def(G). If (G, λ) = (Ax[p

∞], λx[p
∞]) for some point x ∈ Ag,n(k), then

there is a natural isomorphism of formal schemes from MDE(G)sym
p-div to C/x, where C is the

leaf in Ag,n passing through x.

(7.7.1) Proposition Let Ax be a g-dimensional principally polarized abelian variety over
k. Suppose that Ax[p

∞] has Frobenius slopes µ1 < µ2 < · · · < µm, so that µi + µm−i+1 = 1
for i = 1, . . . ,m. Let hi be the multiplicity of µi, so that hi = hm−i+1 for all i,

∑m
i=1 hi = 2g,∑m

i=1 hiµi = g. Then

dim(C(x)) =
1

2

∑
i<j, i+j 6=1

(µj−µi)·hi ·hj +
1

2

∑
2i≤m

(1− 2µi)·hi(hi + 1) .

Remark Prop. 7.7.1 follows from Prop. 7.7 and Cor. 7.5.2; see [7].

(7.7.2) Remark Historically, the formula for the dimension of a leaf C(x) in Ag,n (resp. the
dimension of the leaf C(Def(G)) in the deformation space of a Barsotti-Tate group G) were
first conjectured by Oort, in terms of the number of lattice points inside suitable regions
under the Newton polygon of Ax (resp. G), after suggestions by B. Poonen. See [6] for the
original proofs of 7.6.6 and 7.7.1, which depend on the following fact, proved in [24]: If
G1, G2 are Barsotti-Tate group over k, G1 is minimal, and G1[p] is isomorphic to G2[p], then
G2 is isomorphic to G1.
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(7.7.3) Remark The theory of canonical coordinates inspires a conjectural group-theoretic
formula for the dimension of leaves in the reduction over k of a Shimura variety. That formula
will be explained in a future article with C.-F. Yu, and verified for modular varieties of PEL-
type.

§8. A rigidity result for p-divisible formal groups
(8.1) Let k be an algebraically closed field of characteristic p. Let X be a p-divisible formal
group over k. Then Endk(X)⊗ZpQp is a semisimple algebra of finite dimension over Qp, and
Endk(X) is an order in Endk(X) ⊗Zp Qp. Let H be a connected reductive linear algebraic
group over Qp. Let ρ : H(Qp)→ (Endk(X)⊗Zp Qp)

× be a rational representation of H, i.e.
ρ comes from a Qp-homomorphism of linear algebraic groups. Let U ⊂ H(Qp) be an open
subgroup of H(Qp) such that ρ(U) ⊆ Endk(X)×, so that U operates on X via ρ.

(8.2) Theorem Notation as above. Let Z be an irreducible closed formal subscheme of
X which is stable under the action of U . Let r

X
be the left regular representation of

(Endk(X) ⊗Zp Qp)
× on Endk(X) ⊗Zp Qp, viewed as a Qp-linear representation of the group

(Endk(X) ⊗Zp Qp)
× on a finite-dimensional Qp-vector space. We assume that the composi-

tion r
X
◦ ρ of ρ with r

X
does not contain the trivial representation of H as a subquotient.

Then Z is a p-divisible formal subgroup of X.

(8.2.1) Remark (i) Thm. 8.2 is a considerable strengthening of [2, §4, Prop. 4], in several
aspects. There, the p-divisible formal group is a formal torus, and the formal subvariety is
assumed to be formally smooth. The most significant part is that, in [2, §4, Prop. 4], the
symmetry group O×℘1

× · · · × O×℘r has about the same size as the formal torus(
Y1 ⊗Zp Ĝm

)
× · · · ×

(
Yr ⊗Zp Ĝm

)
in some sense, while the symmetry group H in Thm. 8.2 can be quite small compared with
the p-divisible formal group X.

(ii) A “typical” special case of 8.2 is to take H = Gm, U = Z×p , and each u ∈ Z×p operates
as [u]X on X, the map “multiplication by u” on X. Any argument which proves this special
case is likely to be strong enough to prove 8.2 as well.

(iii) The proof of 8.2 in [4] is elementary, in the sense that it is mostly manipulation of
power series.

§9. The Hilbert trick
(9.1) Let n ≥ 3 be an integer prime to p. Let x ∈ Ag,n(Fp) be an Fp-valued point ofAg,n. Let
B = End

Fp
(Ax)⊗ZQ, and let ∗ be the involution of B induced by λx. Let E = F1×· · ·×Fm

be a product of totally real number fields contained in B, fixed under the involution ∗, such
that dimQ(E) = g. Let OE = OF1×· · ·×OFm . Denote by SL(2, E) the linear algebraic group

22



over Q whose set of R-valued points is SL2(E ⊗Q R) for every Q-algebra R. There exists a
“standard embedding” h : SL(2, E) ↪→ Sp2g, well-defined up to conjugation.

(9.1.1) We will use the following variant of the definition of Hilbert modular varieties in [31],
slightly different from the definition in [11]. Denote by ME,n the Hilbert modular scheme
attached to OE, such that for every Fp-scheme S,ME,n(S) is the set of isomorphism classes
of (A → S, λ, ι, η), where A → S is an abelian scheme, ι : OE → EndS(A) is an injective
ring homomorphism, λ is an OE-linear principal polarization of A→ S of degree prime to p,
and η is a level-n structure on A→ S. See [31, §5]. The modular scheme ME,n is locally of
finite type over k, and every irreducible component of ME,n is of finite type over Fp. There

is a set of algebraic correspondences onME,n, coming from the adelic group SL2(E⊗QA(p)
f ),

called the prime-to-p Hecke correspondences on the Hilbert modular scheme ME,n.

(9.2) Proposition (Hilbert trick) Notation as above. Then there exists

• a non-empty open-and-closed subschemeM0 ofME,n1 for some natural number n1 ≥ 3
not divisible by p,

• a finite morphism M0 →ME,n,

• a point y ∈M0(Fp), and

• a finite morphism f :M0 → Ag,n

such that

(i) f(y) = x,

(ii) f is compatible with the prime-to-p Hecke correspondences on M0 and Ag,n, coming
from the embedding h : SL(2, E) ↪→ Sp2g, and

(iii) the pull-back by f of the universal abelian scheme over Ag,n is isogenous to the universal
abelian scheme over M0.

(9.2.1) The idea of the proof of Prop. 9.2 is as follows. It is well-known that every abelian
variety defined over a finite field has “sufficiently many complex multiplications”. Hence
every maximal commutative semisimple subalgebra L of B stable under the Rosati involution
∗ is a product of CM-fields, and the subalgebra of L fixed under ∗ is a product of totally
real number fields. In particular this shows the existence of subalgebras E with the required
properties in 9.1. If End

Fp
(Ax) contains OE, then we obtain a natural morphism ME,n →

Ag,n passing through x = [(Ax, λx, ηx)] ∈ Ag,n(Fp). In general E ∩ End
Fp

(Ax) is an order of
OE, and we have to use an isogeny correspondence to conclude the proof of 9.2.
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(9.2.2) Remark The local stabilizer principle and Thm. 8.2, applied to a point y of a
Hilbert modular variety ME,n over Fp, implies that there are only a finite number of possi-

bilities ofHE,n(y)
/y

, as a closed formal subscheme ofME,n over k, whereHE,n(y) denotes the
prime-to-p Hecke orbit of y inME,n. The possibilities are parametrized by non-empty subsets
of the finite set Spec(OE/pOE) of maximal ideals of OE containing p. Then one can verify

that the subset of Spec(OE/pOE) attached to HE,n(y)
/y

must be equal to Spec(OE/pOE)
itself. That proves the continuous part of the Hecke orbit conjecture for Hilbert modular
varieties. The above line of argument is possible because SL2(E) is “small” in some sense,
for instance each semisimple factor of SL2(E)n has Q-rank one. So Hilbert modular varieties
are “not too big” either, and turns out that one can understand the incidence relation of the
Lie-alpha strata to prove the discrete part of the Hecke orbit conjecture for Hilbert modular
varieties. With the Hecke orbit conjecture for Hilbert modular varieties known, the Hilbert
trick becomes an effective tool for the Hecke orbit conjecture for the Siegel modular varieties
Ag,n, as well as other modular varieties of PEL-type.

(9.3) In this section the base field is Fp, because every abelian variety over Fp has sufficiently
many complex multiplications. So it seems that if we use the Hilbert trick, one would be
able to deal with the Hecke orbit conjecture (HO) “only” in the case when the algebraically
closed base field k is equal to Fp. However every closed subvariety of Ag,n over k is finitely
presented over k, and a standard argument in algebraic geometry shows that the validity of
(HO) over Fp implies the validity of (HO) over every algebraically closed field k. See the
beginning of §3 of [2] for details.

§10. Hypersymmetric points
Let k be an algebraically closed field of characteristic p as before.

(10.1) Definition An abelian variety A over k is hypersymmetric if the natural map

Endk(A)⊗Z Zp −→ Endk(A[p∞])

is an isomorphism. An equivalent condition is that the canonical map

Endk(A)⊗Z Qp −→ Endk(A[p∞])⊗Zp Qp

is an isomorphism.

(10.1.1) Remark It is clear from the definition that the abelian variety Ax has sufficiently
many complex multiplications for any hypersymmetric point x. Therefore a theorem of
Grothendieck tells us that Ax is isogenous to an abelian variety defined over Fp; see [19] for
a proof of Grothendieck’s theorem.
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(10.1.2) Examples. (i) A g-dimensional ordinary abelian variety over k is hypersymmetric
if and only if it is isogenous to a g-fold self-product E × · · · × E, where E is an ordinary
elliptic curve defined over Fp.

(ii) Let A be a abelian variety over k such that A[p∞] has exactly two slopes, g = dim(A).
Then A is hypersymmetric if and only if Endk(A) ⊗Z Q is a central simple algebra over an
imaginary quadratic field, and dimQ(Endk(A)⊗Z Q) = 2g2.

The assertions in the two examples can be verified using Honda-Tate theory for abelian
varieties over finite fields. See [29] and [30] for the Honda-Tate theory.

(10.1.3) In every given Newton polygon stratum Wξ in Ag,n over k, there exists a hyper-
symmetric point x ∈ Wξ(k). This statement follows easily from the Honda-Tate theory; see
[26] for a proof.

(10.1.4) Let E = F1 × · · · × Fr be a totally real number field such that there is only one
place of Fi above p for i = 1, . . . , r. LetME be the Hilbert modular variety over k attached
to ME. Then there exists a hypersymmetric point in every given Newton polygon stratum
of ME. Similarly, there exists a hypersymmetric point in every given leaf of ME. This
statement can be derived from the Honda-Tate theory and the “foliation structure” onME.

(10.2) Theorem Let [(Ax, λx)] be a point of Ag(k) such that

• Ax is hypersymmetric, and

• Ax is split, i.e. Ax is isomorphic to a product B1 × · · · × Bm, where each Bi is an
abelian variety over k, and each Bi has at most two slopes.

Then Zariski closure in Ag of the the prime-to-p Hecke orbit H(p)(x) contains the irreducible
component of the leaf C(x) passing through x.

(10.2.1) Remark A special case of Thm. 10.2 is an example of M. Larsen; see [2, §1].

(10.2.2) The proof of Thm. 10.2 uses Prop. 6.2, Thm. 8.2 and the theory of canonical
coordinates. Here we sketch a proof of the special case when Ax[p

∞] is isomorphic to a
productX×Y , whereX, Y are isoclinic Barsotti-Tate group of height g, with slopes µ

X
< µ

Y
,

µ
X

+µ
Y

= 1. The principal polarization λx induces an isomorphism between X and the Serre
dual of Y . The theory of canonical coordinates tells us that C(x)/x is isomorphic to the
maximal subgroup DE(X, Y )sym

p-div of the Barsotti-Tate group DE(X, Y )p-div fixed under the
involution induced by the principal polarization λx. Let Z(x) be the Zariski closure of
the Hecke orbit H(x) in C(x). Notice that Z(x) is a smooth over k: it contains a dense
open subset U smooth over k by generic smoothness, and Z(x) is equal to the the union of
Hecke-translates of U .
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Let Z(x)/x be the formal completion of Z(x) at x. Clearly Z(x)/x is irreducible, because
it is formally smooth over k. The local stabilizer principle says that the closed formal
subscheme Z(x)/x of C(x)/x is stable under the natural action of the local stabilizer Ux. By
Thm. 8.2, Z(x)/x is a Barsotti-Tate subgroup of the Barsotti-Tate group DE(X, Y )sym

p-div.

Now we are ready to use Dieudonné theory and translate the last assertion into a state-
ment in linear algebra. Let VX = M(X) ⊗W (k) B(k), VY = M(Y ) ⊗W (k) B(k). The prin-
cipal polarization λx induces a duality pairing between VX and VY . Thm. 7.5 tells us that
M(DE(X, Y )p-div) ⊗W (k) B(k) is naturally isomorphic to Homsym

B(k)(VX , VY ), the symmetric
part of the internal Hom. The group Ux operates naturally on M(X) ⊗W (k) B(k) and

M(Y ) ⊗W (k) B(k). One checks that, after passing to the algebraic closure B(k) of B(k),

the Zariski closure of Ux operating on VY ⊗B(k) B(k) is isomorphic to the standard repre-

sentation of GLg, and the Zariski closure of Ux operating on VX ⊗B(k) B(k) is isomorphic to
the dual of the standard representation of GLg. So the action of the Zariski closure of Ux on
Homsym

B(k)(VX , VY )⊗B(k) B(k) is isomorphic to the second symmetric product of the standard
representation of GLg. The last representation is absolutely irreducible; in fact it is one of
the fundamental representations. Since M(Z(x)/x) ⊗W (k) B(k) is a non-trivial subrepresen-
tation of the absolutely irreducible representation Homsym

B(k)(VX , VY ) of Ux, we conclude that

M(Z(x)/x)⊗W (k) B(k) is equal to Homsym
B(k)(VX , VY ), therefore Z(x)/x = C(x)/x.

Remark A weaker form of Thm. 8.2, in which the closed formal subscheme is assumed to
be formally smooth instead of being irreducible, would be sufficient for the proof of Thm.
10.2.

(10.3) Proposition Let C+ be an irreducible component of a leaf C in Ag,n, and let Wξ be
the Newton polygon stratum in Ag,n containing C+. Assume that Wξ is irreducible. Then for
every point y ∈ Wξ(k), there exists a point x ∈ C+(k) such that there exists an isogeny from
Ax to Ay, which respects the polarizations up to a multiple.

Idea of Proof. Prop. 10.3 is an immediate consequence of the “almost product structure”
on each irreducible component of a Newton polygon stratum Wξ; see [23, Thm. 5.3]. We
sketch the proof below.

Using Prop. 3.2, one constructs a finite surjective morphism f : S → C+, a scheme T
over k, and a morphism g : S ×Spec(k) T → Wξ such that

(i) For any s1, s2 ∈ S(k), t1, t2 ∈ T (k), if f(s1) = f(s2), then there exists an isogeny from
Ag(s1,t1) to Ag(s2,t2), which respects the polarizations up to a multiple.

(ii) The image of g, in the naive sense, is a union of irreducible components of Wξ.

So far we have not used the assumption that Wξ is irreducible. The irreducibility of Wξ

implies that f is surjective. Prop. 10.3 follows.
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(10.4) Proposition Let C be a leaf in Ag,n, and let Wξ be the Newton polygon stratum
in Ag,n containing C. Assume that Wξ is irreducible. Then the prime-to-p Hecke corre-
spondences operate transitively on π0(C). Consequently C is irreducible if Wξ is not the
supersingular locus of Ag,n.

Idea of Proof. Let y be a hypersymmetric point of Wξ; such a point exists by 10.1.3. By
Prop. 10.3, for each irreducible component C+

j of C, there exists a hypersymmetric point xj
in C+

j , related to y by a (possibly inseparable) isogeny which preserves the polarizations up
to a multiple. Using the weak approximation theorem, one sees that the xj’s are related by
suitable prime-to-p Hecke correspondences. This shows that the prime-to-p Hecke correspon-
dences operate transitively on the irreducible components of the leaf C. The last statement
follows from 5.1.

(10.5) We would like to discuss an emerging picture about the leaves and the hypersymmet-
ric points. In many ways each non-supersingular leaf in Ag,n has properties similar to those
for the Siegel modular variety in characteristic 0, of genus g and with symplectic level-n
structures. The Hecke orbit conjecture (HO) is an example of this phenomenon, so is Thm.
5.1. Borrowing an idea from Hindu mythology, one might want to think of the decomposition
of Ag,n into leaves as Indra-inspired.

(10.5.1) For a leaf C in Ag,n, the hypersymmetric points of C serve as an analogue of the
notion of special points (or CM points) on a Shimura variety in characteristic 0. The following
is an analogue of the André-Oort conjecture in characteristic p. Let C be a leaf of Ag,n over
k, and let Z be a closed irreducible subvariety in C. Assume that there is a subset S ⊂ Z(k)
such that S is dense in Z, and every point of S is hypersymmetric. Then there is a closed
subvariety X ⊂ Ag,n which is the reduction over k of a Shimura subvariety such that Z is
an irreducible component of C ∩ X. This conjecture seems to be more difficult than the
André-Oort conjecture.

(10.5.2) In another direction, one expects that the p-adic monodromy of a subvariety Z in
a leaf C ⊂ Ag,n can be described in terms of the canonical coordinates and the naive p-adic
monodromy of Z; see the first paragraph of §14 for the definition of naive p-adic monodromy.
The case when C is the ordinary locus of Ag,n has been considered in [5], and one expects
that the general phenomenon is similar. In particular, there should be a more global theory
of canonical coordinates on a leaf, and we hope to carry out such a project in the recent
future.

§11. Splitting at supersingular points
(11.1) Proposition Let k be an algebraically closed field of characteristic p. Let x be a
point of Ag,n over k, and let H(p)(x) be the prime-to-p Hecke orbit of x. Then there exists
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a point z0 in the Zariski closure of H(p)(x) such that Az0 is a supersingular abelian variety
over k.

(11.1.1) Remark (i) Similarly, every prime-to-p Hecke orbit in a Hilbert modular variety
has a supersingular point in its closure.

(ii) One can replace “prime-to-p” by “`-adic” in 11.1, and also in (i) above.
(iii) See [2, Prop. 6] for a proof of 11.1 and (i), (ii) above. A key ingredient is the fact

that every Ekedahl-Oort stratum in Ag,n is quasi-affine; see [22].

(11.2) Theorem Let x ∈ Ag,n(Fp) be an Fp-valued point of Ag,n. Let Z be the Zariski
closure in Ag,n of the prime-to-p Hecke orbit H(p)(x) of x, and let Z0 be the intersection of
Z with the leaf C(x) passing through x. Then there exists

• a point y ∈ Z0(Fp),

• totally real number fields L1, . . . , Ls, and

• an injective ring homomorphism β : L1 × · · · × Ls −→ Endk(Ay)⊗Z Q

such that

(i) [L1 : Q] + · · ·+ [Ls : Q] = g,

(ii) β(L1 × · · · × Ls) is fixed by the Rosati involution on End
Fp

(Ay) ⊗Z Q induced by λy,
and

(iii) there is only one maximal ideal in OLj which contains p, for j = 1, . . . , s.

In particular, there exists a point y ∈ Z0(Fp) and abelian varieties B1, . . . , Bs over Fp such
that Ay is isogenous to B1 × · · · ×Bs, and each Bj has at most two slopes, j = 1, . . . , s.

(11.2.1) Remark Thm. 11.2 depends crucially on the fact that x is an Fp-valued point.
However we have seen in Rem. 9.3 that we may assume that the base field k is Fp when
considering the Hecke orbit conjecture (HO).

(11.3) We sketch a proof of 11.2, which uses the action of the local stabilizer subgroup at
a supersingular point in the closure of C and the Hilbert trick.

We may and do assume that there exists a product E = F1 × · · · × Fr of totally real
number fields, [E : Q] = g, such that there exists an embedding ι : OE ↪→ End

Fp
(Ax) of rings,

and ι(OE) is fixed under the Rosati involution. This means that we have a natural morphism
f :ME,m −→ Ag,n passing through x, compatible with the Hecke correspondences, for some
m prime to p, such that for every geometric point u ∈ME,m(Fp), the map induced by f on
the strict henselizations

f (u) :M(u)
E,m → A

(f(u))
g,n
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is a closed embedding. Here M(u)
E,m denotes the henselization of ME,m at u, and A(f(u))

g,n

denotes the henselization of Ag,n at f(u). Let W be the Zariski closure of the prime-to-p

Hecke orbit H(p)
E (x) in ME,n.

By 11.1.1 (i), there exists a supersingular point z ∈ W (k). The local stabilizer principle
tells us that the formal subscheme Z/z ⊂ Ag,n is stable under the natural action of the local
stabilizer subgroup Uz attached to z. Recall that Uz is a subgroup of End

Fp
(Az[p

∞])× by
definition.

One checks that there exists an element γ ∈ Uz such that the subring

Ad(γ)(E ⊗Q Qp) = γ · (E ⊗Q Qp)·γ−1

of End
Fp

(Az)⊗Z Qp is equal to the Qp-linear span of

E ′ := (Ad(γ)(E)⊗Q Qp) ∩
(

End
Fp

(Az)⊗Z Q
)
,

and E ′ is a product of totally real number fields L1 × · · · × Ls, such that there is only one
maximal ideal in OLj above p for j = 1, . . . , s.

Denote by γ/z the automorphism of A/zg,n attached to γ. The fact that γ/z(W /z) ⊂ Z/z

tells us, in the case when Ad(γ)(OE ⊗Z Zp) ⊂ End
Fp

(Az[p
∞]) = End

Fp
(Az)⊗Z Zp, that there

is a natural finite morphism
f1 :ME′,m −→ Ag,n

with the following properties:

(1) There exists a point z1 ∈ME′,m(Fp) such that f1(z1) = z.

(2) For every point u ∈ ME′,m(Fp), the morphism f1 induces a closed embedding, from

the henselization M(u)
E′,m of ME′,m at u, to the henselization A(f1(u))

g,n of Ag,n at f1(u).

(3) γ/z(W /z) ⊂ f
/z1
1

(
M/z1

E′,n

)
∩ Z/z .

Hence the fiber productME′,m×Ag,nZ0 is not empty. Pick a point ỹ ∈ (ME′,m×Ag,nZ0)(Fp),
and let y be the image of ỹ in Z0(Fp). It is easy to see that y has the property stated in

Prop. 11.2, and we are done. In general (Ad(γ)(OE ⊗Z Zp))∩
(

End
Fp

(Az)⊗Z Zp
)

is of finite

index in Ad(γ)(OE ⊗Z Qp) and may not be equal to Ad(γ)(OE ⊗Z Zp), and we have to use
an isogeny correspondence to conclude the proof.

(11.3.1) Remark The last sentence in the statement of Thm. 11.2 follows from the prop-
erties (i), (ii), (iii) of Ay stated in the 11.2.
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§12. Logical interdependencies
Let k be an algebraically closed field of characteristic p as before. We summarize the logical
interdependencies of various statements.

(12.1) We have seen that

(HO) ⇐⇒ (HO)ct + (HO)dc

(12.2) Suppose that x ∈ Ag(k) is not supersingular. Then Thm. 5.1 shows that

(HO)dc for x ⇐⇒ C(x) is irreducible

(12.3) Suppose that x, y ∈ Ag(k), and there is an isogeny from Ax to Ay which preserves

the polarizations up to multiples. Then

(HO)ct for x ⇐⇒ (HO)ct for y

This is a consequence of 3.2.1, which depends on Prop. 3.2.

(12.4) Suppose that x, y ∈ Ag(k), and there is an isogeny from Ax to Ay which preserves

the polarizations up to multiples. Then

(HO)dc for x ⇐⇒ (HO)dc for y

The proof of the above statement is similar to the argument of Prop. 10.4, using hypersym-
metric points.

(12.5) Let Wξ be a non-supersingular Newton polygon stratum on Ag, and let C be a leaf

in Wξ. Then

Wξ is irreducible =⇒ C is irreducible .

See Prop. 10.4.

(12.6) The implication

(HO) for Hilbert modular varieties =⇒ (HO)ct

holds.
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(12.6.1) Here is a sketch of the proof of 12.6. Assume the Hecke orbit conjecture for Hilbert
modular varieties. As remarked in 9.3, we may and do assume that the base field is Fp.
Apply the trick “splitting at supersingular points” to get a point y ∈ Ag,n(Fp) contained in

H(p)(x)∩C(x) as in Thm. 11.2. The Hilbert trick and the Hecke orbit conjecture for Hilbert

modular varieties show that there exists a point y2 ∈
(
H(p)(x) ∩ C(x)

)
(Fp) such that Ay2 is

hypersymmetric and split. Here we used 10.1.4 on the existence of hypersymmetric points
on every leaf of the Hilbert modular subvariety in Ag,n passing through the point y. Apply
Thm. 10.2; the continuous part of the Hecke orbit conjecture for a Siegel modular variety
Ag,n follows.

§13. Outline of the proof of the Hecke orbit conjecture
(13.1) Proof of (HO)dc.

(13.1.1) Theorem Every non-supersingular Newton polygon stratum in Ag,n is irreducible.

See [25] for a proof of Thm. 13.1.1. The proof uses Thm. 5.1 and the results in [21], [9],
[22].

(13.1.2) We have seen in Prop. 10.4 and 12.5 that (HO)dc follows from Thm. 13.1.1. We
are left with the continuous part (HO)ct of the Hecke orbit conjecture.

(13.2) (HO)ct for Hilbert modular varieties.

The continuous part (HO)ct of the Hecke orbit conjecture for Hilbert modular varieties
uses Thm. 8.2 and the argument in [5, §8]; the latter depends on the main result of [8]
by de Jong. It is also possible to avoid de Jong’s theorem in [8], using instead the local
stabilizer principle at a supersingular point, similar to the argument of [2, §5, Prop. 7]. But
the argument will not be as clean.

By 12.6, to complete the proof of the Hecke orbit conjecture for the Siegel modular
varieties Ag,n, it suffices to prove the discrete part of the Hecke orbit conjecture for Hilbert
modular varieties.

(13.3) (HO)dc for Hilbert modular varieties.

The proof of the discrete part of the Hecke orbit conjecture for Hilbert modular varieties
uses the Lie-alpha stratification on Hilbert modular varieties. See [31] for some properties
of the Lie-alpha stratification; see also [12] for the case when p is unramified in the totally
real number field, and [1] for the case when p is totally ramified in the totally real number
field. The starting point is the fact that for each given Newton polygon stratum Wξ on a
given Hilbert modular variety MF , there exists a leaf C contained in Wξ which is an open
subset of some Lie-alpha stratum of MF . A standard degeneration argument shows that it
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suffices to prove that the closure of every Lie-alpha stratum contains a superspecial point of
a specific type. This observation allows us to bring in deformation theory. The last and the
most crucial step was done by C.-F. Yu, who constructed enough deformations to facilitate
an induction on the partial ordering on the family of irreducible components of Lie-alpha
strata induced by the incidence relation.

§14. p-adic monodromy of leaves
In this last section we mention a maximality property of the naive p-adic monodromy group.
By definition, the naive p-adic monodromy representation of a leaf C(x) passing through a
point x ∈ Ag,n(Fp) is the natural action of the Galois group of the function field of C(x) on
the product

m∏
i=1

Hom ((Gi/Gi−1)x, (Gi/Gi−1)η̄) ,

where 0 = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gm = A[p∞] is the slope filtration of A[p∞] → C(x)
denotes the slope filtration as in 3.3, and η̄ is a geometric generic point of C(x). The naive
p-adic monodromy group is the image of the naive p-adic monodromy representation. The
notion of hypersymmetric points plays an important role in the proof of 14.1.

(14.1) Theorem Let x be a hypersymmetric point such that Ax[p
∞] is minimal, i.e. the

ring Endk(Ax[p
∞]) of endomorphisms is a maximal order of Endk(Ax[p

∞])⊗ZpQp. Then the
naive p-adic monodromy group of the leaf C(x) is maximal. In other words, if we use x as the
base point, then the image of the naive p-adic monodromy group is equal to the intersection
of Aut(Ax[p

∞]) with the unitary group attached to the pair (Endk(Ax[p
∞])⊗Zp Qp, ∗), where

∗ denotes the involution on the semisimple algebra Endk(Ax[p
∞])⊗Zp Qp over Qp induced by

the principal polarization λx on Ax.

(14.2) Corollary Let x ∈ Ag,n(k) be a closed point of Ag,n such that Endk(Ax[p
∞]) is a

maximal order of Endk(Ax[p
∞])⊗Zp Qp. Then the naive p-adic monodromy group of the leaf

C(x) is maximal.

(14.3) The idea of the proof of Thm. 14.1 is the following. First we prove an analogous
statement for the naive p-adic monodromy group using Ribet’s method in [28], [10]. Use
a hypersymmetric point x with the properties in the statement of Thm. 14.1 as the base
point for computing the p-adic monodromy group. This allows us to overcome the usual
sticky issues related to different choices of base points, and reduce Thm. 14.1 to showing
that the conjugates of the p-adic monodromy group of a leaf in a Hilbert modular subvariety
already generates the target group of the naive p-adic monodromy representation. The last
group-theoretic statement is elementary and can be verified directly.
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