
Subgraph Queries by Context-free Grammars

Petteri Sevon1,2 and Lauri Eronen1

1Helsinki Institute for Information Technology, Department of Computer Science,PO Box 68,
FI-00014 University of Helsinki, Finland

Summary

We describe a method for querying vertex- and edge-labeled graphs using context-free
grammars to specify the class of interesting paths. We introduce a novel problem, finding
the connection subgraph induced by the set of matching paths between given two vertices
or two sets of vertices. Such a subgraph provides a concise summary of the relationship
between the vertices. We also present novel algorithms for parsing subgraphs directly with-
out enumerating all the individual paths. We evaluate experimentally the presented parsing
algorithms on a set of real graphs derived from publicly available biomedical databases and
on randomly generated graphs. The results indicate that parsing the connection subgraph
directly is much more effective than parsing individual paths separately. Furthermore, we
show that using a bidirectional parsing algorithm, in most cases, allows for searching twice
as long paths as using a unidirectional search strategy.

1 Introduction

Labeled graphs provide a natural representation for many kinds of structured and heteroge-
neous data. In such a graph, a path or subgraph (consisting of multiple, usually overlapping
paths) between two vertices represents a complex, possibly previously unknown relationship.
Link discovery and analysis (for a review on link mining, see, e.g., [1]) aim at finding and eval-
uating these relationships between entities. Extraction of connection subgraphs, interesting or
meaningful subgraphs connecting pairs of vertices, is a problem that can be approached from
quantitative—find a limited size subgraph that maximizes some metric of reliability, capacity,
etc.—or qualitative point of view. In this paper, we focus on the latter; we use context-free
grammars (CFGs) as a query language to define the class of interesting paths whose union
defines the resulting subgraph. The contributions of this paper are (1) formulation of a novel
problem—querying connection subgraphs induced by the set of paths matching a CFG—and
(2) efficient algorithms for this task.

Publicly available biomedical databases contain vast amounts of rich data, much of which can
be interpreted as a labeled graph where vertices correspond to entities and concepts labeled with
their types (gene, phenotype, article, etc.) and edges represent known, annotated relationships
between vertices labeled with the type of relationship (codes for, interacts with, participates in,
etc.). Paths connecting a pair of vertices may correspond to known relationships, but may also
reveal novel links, forming the basis for new biological hypotheses.

The subgraph induced by all (length-constrained) paths provides a concise summary of known
as well as speculative links between the vertices.

2To whom correspondence should be addressed. E-mail: psevon@cs.helsinki.fi

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 1

mailto:psevon@cs.helsinki.fi

Gene(B)

inter
act

s_with

located_in

located_in

Gene(A)

Gene(S)

located_in

linked_to

linked_to

affects

Locus(V)

Locus(U)

Phenotype(T)Pathway(X)
belongs_to

Gene(C)

has

has

belongs_to

MolecularFunction(Y)

belongs_to

Figure 1: A fictional example connection subgraph summarizing the link between a gene and a
phenotype. The user has specified the source and target vertices (Gene(S) and Phenotype(T)), and
the class of path types of interest (path types suggesting causal relationship).

Instead of all paths connecting two vertices, an investigator is often interested in paths with
specific semantics, e.g, paths that confer similarity or paths that suggest a causal relationship.
With labeled graphs, it is natural to base queries on the path type—the string of vertex and edge
types on a path. A path class corresponding to a type of relationship is the set of path types that
suggest that type of link between the end-vertices. Figure 1 illustrates the research problem of
this paper: extract a small, relevant subgraph from a large graph database induced by paths in
a given class. In this example, the subgraph results from a query for causal links from a given
gene to a given phenotype.

We propose context-free grammars as a means of defining path classes. A CFG defines a lan-
guage of strings (path types in our framework) of terminal symbols (edge and vertex types)
that can be derived from a distinguished (starting) non-terminal symbol using a set of produc-
tion rules and a set of other non-terminal symbols. Each non-terminal symbol defines a path
class, and paths of a given class are queried by specifying the non-terminal corresponding to
that class as the starting symbol. Compared to another common formalism for defining string
classes, regular expressions, CFGs are more expressive, and provide a natural means of naming
path classes. For the sake of generality, we focus on CFGs in this paper—any regular expression
can be easily transformed to an equivalent CFG—but the principle and the presented algorithms
can also be applied to regular expressions in a straightforward manner.

Obviously, constructing a dedicated CFG for each query is not always practical. Our proposed
subgraph querying system relies on a background CFG, defining a comprehensive domain-
specific list of path classes. The complexity of using CFGs is hidden from the end-user: sub-
graphs can be queried simply by giving either one or two (sets of) end-vertices and the path
class of interest. Alternatively, the user can pose more complex queries by manually defining
the top level production rules and/or any auxiliary production rules. The proposed system sup-
ports two kinds of queries: 1) connection subgraph queries between two given vertices (or sets
of vertices), returning the subgraph linking the vertices together, and 2) neighborhood queries,
returning the subgraph induced by the set of paths starting from a given vertex and matching
the query.

Much of the literature on path queries is based on regular expressions (e.g., [2, 3, 4, 5]). Typ-
ically, the goal is to find all objects that can be reached from a given object by following a

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 2

path in an edge-labeled graph matching a given regular expression. Mendelson and Wood [6]
concluded that finding all vertex-pairs connected by a path matching a regular expression is
generally intractable. PQL of Mork et al. [7] is an SQL-like query language, in which one can
define complex path classes using rules, which are transformed into a CFG that is subsequently
matched against the source knowledge base. Leser’s Pathway Query Language [8] is another
SQL-like query language for graphs, where the ’WHERE’ clause contains path expressions: se-
quences of vertex variables (that may have other constraints on them) and length-constraints for
paths connecting adjacent vertex variables. Context-free grammars can be easily transformed
into Prolog programs using a one-to-one mapping from production rules to Prolog clauses.
Path querying systems using Prolog have been proposed already in the 1980’s, e.g., by Cruz et
al. [9].

All of the related work above is focused on evaluating individual paths or listing all paths
matching a query; to our knowledge there is no prior work addressing the problem of efficiently
retrieving a subgraph induced by a set of paths matching a query specified using a CFG (or
other formal languages). A trivial solution to the problem is enumerating all possible paths,
parsing each path individually, and returning the union of all matching paths. This approach
may in many cases be infeasible due to the number of paths being exponential in the maximum
allowed path length in the worst case. We present an improved algorithm that is based on
combining many partial parses into a single state, and is guaranteed to work in polynomial
time, and show how parsing can be done bidirectionally. Our experiments demonstrate the
performance superiority of the improved algorithm, especially using bidirectional search, over
the trivial solution.

2 Subgraph queries

Our data model is a directed and labeled graph G = (V, E). The elements of the vertex set V
are labeled by a type from a set Tv, such as Gene or Protein. Edge types from set Te describe
the type of relations between vertices, for example codes for (e.g., gene codes for protein) or
refers to (e.g., article refers to gene).

We define the edge set to consist of triplets (u, τ, v), where u and v are vertices from V and τ ∈ Te

is the type of the edge between them. Each type τ has inverse −τ ∈ Te; for an undirected edge
type τ, −τ = τ. For each edge e = (u, τ, v) ∈ E we define its inverse edge −e = (v,−τ, u) ∈ E
and assume one always exists. The type of path p = (v1, τ1, v2, τ2, . . . , vk) is the sequence of
its vertex and edge types: type(p) = (type(v1), τ1, type(v2), τ2, . . . , type(vk)). We also define the
open-ended type of a path, which is obtained from the path type by removing the vertex types
at both ends: typeopen(p) = (τ1, type(v2), τ2, . . . , τk−1).

2.1 Context-free Grammar for Path Types

Formally, a context-free grammar (CFG) is a 4-tuple (Σ,N, P,Q), where Σ and N are sets of
terminal and non-terminal symbols, respectively, P is a set of production rules, and Q is the
distinguished starting non-terminal. A CFG specifies a class of acceptable strings of alphabet
Σ. Production rules specify how strings in the class corresponding to the left-side non-terminal
symbol are constructed by concatenating sub-strings. For example, rule A -> c B d states

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 3

that concatenating terminal c, any string matching non-terminal B, and terminal d produces a
string matching non-terminal A. The set of strings accepted by CFG (Σ,N, P,Q) is the set of
strings matching Q. The process of checking whether a string is accepted by a CFG is called
parsing, and a tree formed by applications of production rules to derive the input string from
the starting non-terminal is a parse tree. A context-free grammar is unambiguous, if any input
string has at most one parse tree.

In our setting, the strings are (possibly open-ended) path-types—alternating sequences of vertex
and edge types. We do not have a single string to parse, but a potentially large number of
overlapping paths between two given vertices or two sets of vertices.

Terminal and non-terminal symbols map directly onto edge/vertex types and path classes, re-
spectively. The non-terminal symbols are further divided into two groups: ones that have the
role of a vertex (vertex-like non-terminals), and one that have the role of an edge (edge-like
non-terminals) in a path. The set of vertex-like symbols consists of vertex-like non-terminals
and terminal vertex types. The set of edge-like symbols is defined analogously. The right side
of a production rule is always an alternating sequence of vertex and edge-like symbols. The
right side of a production rule for a vertex-like non-terminal must always begin and end with a
vertex-like symbol. The inverse applies to edge-like non-terminals.

We associate non-terminal symbols with path classes: vertex-like or edge-like non-terminal A
maps to class C(A) of closed or open-ended path types, respectively. Path p matches vertex-
like non-terminal A, if and only if type(p) ∈ C(A), or edge-like non-terminal B, if and only if
typeopen(p) ∈ C(B).

In this paper, non-terminal symbols are always typed in all capital letters (e.g.,
IS SIMILAR TO). Terminal symbols corresponding to edge types are typed in all small let-
ters (e.g., interacts with), and terminal symbols corresponding to vertex types are typed
with capital initial letters (e.g., Protein).

2.2 Examples

Meaningful path classes that can be defined for edge-like non-terminal symbols include paths
conferring similarity, interaction, or causal relationships between pairs of objects. A known
interaction between two proteins is reflected in our database as an undirected edge of type
interacts with between the respective vertices. A chain of interacts with edges is sug-
gestive evidence of a potential pathway of interactions, and we may define an edge-like non-
terminal INTERACTS WITH for such chains with the following production rules:

INTERACTS_WITH -> interacts_with |

INTERACTS_WITH Protein interacts_with,

where the vertical bar is a separator between alternative right-sides of the rule. The first rule
states that an edge of type interacts withmatches non-terminal INTERACTS WITH. The sec-
ond, recursive rule states that extending a path matching INTERACTS WITH with an edge of
type interacts with gives a path matching INTERACTS WITH. By repeated application of the
second rule, any length of interaction chains can be obtained. However, the expressive power of
context-free grammars is not necessary for this example; the same path class could be defined
using a regular expression.

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 4

a a a

b b
b

c

d d

e

C(9)

B(4)

C(6)

A(8)

A(2)

B(5)

A(3)

A(1)

B(7)

Figure 2: Subgraphs (1,3,4,6) and (2,3,5,6) around the highlighted vertices 1 and 2 (notation A(1)
means that vertex 1 is of type A) are isomorphic and partially overlapping. This results in palin-
dromic paths of types (A,b,B,-d,C,d,B,-b,A), (A,b,B,c,B,-b) and (A,a,A,a,A) connecting the
two vertices. Note that the mirror of an asymmetric edge type is its inverse type; in this example
edge types a and c are symmetric, and all other edge types are asymmetric.

The second example illustrates a situation where regular expressions do not have sufficient
expressive power. One possibility to define similarity of vertices in a graph is by the simi-
larity of their contexts: two vertices are similar, if they are of the same type and have edges
of the same type to similar vertices. The definition is recursive; the similarity of the neigh-
boring vertices depends on the similarity of their neighbors, and so on. It can be shown that
this kind of similarity implies isomorphic neighborhoods between the pair of vertices that are
partially overlapping, or connected by edges conferring similarity (Figure 2). As a result, the
pair of vertices is connected by palindromic paths, which can be recognized with a set of pro-
duction rules of form IS SIMILAR TO -> e V -e | h for all meaningful (edge-like sym-
bol, vertex-like non-terminal)-pairs (e, V), and for all similarity-conferring edge types h (e.g.,
is homologous to). We assume that each vertex-like non-terminal V corresponding to ter-
minal vertex type v has productions V -> V IS SIMILAR TO v | v, allowing for recursive
nesting of the palindrome rule.

Vertex-like non-terminal symbols are useful for several reasons. First, any vertex can be re-
placed with two vertices connected by a path conferring similarity by using the following
construct: GENE -> GENE IS SIMILAR TO Gene | Gene. These production rules state that
terminal vertex type Gene, or an arbitrarily long sequence Gene IS SIMILAR TO Gene . . .
Gene can be derived from the vertex-like non-terminal GENE. This kind of rule is specified for
all vertex-like non-terminals, and productions are typically given in terms of the non-terminals
rather than terminal vertex types. This kind of behavior is desired, since the user is most likely
interested in non-trivial, speculative links between the vertices of interest, which can often be
obtained by transfer of a property of an object to a similar object.

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 5

QUERY︷ ︸︸ ︷
SEQUENCE︷ ︸︸ ︷

PROTEIN︷ ︸︸ ︷
PROTEIN︷ ︸︸ ︷

Protein

IS SIMILAR TO︷ ︸︸ ︷
belongs to

BIOLOGICALPROCESS︷ ︸︸ ︷
BiologicalProcess -belongs to Protein -codes for

GENE︷︸︸︷
Gene

IS ASSOCIATED TO︷ ︸︸ ︷
-refers to

ARTICLE︷ ︸︸ ︷
Article refers to

PHENOTYPE︷ ︸︸ ︷
Phenotype

Article

(AD)

Protein
(APOE_HUMAN)

be
lo

ng
s_

to

refers_to17474819)
(PubMed: Phenotype

(GO:0007271)

−belongs_to −c
od

es
_f

or

Protein
(ACHB3_HUMAN)

BiologicalProcess

Gene
(APOE)−refers_to

Figure 3: An example illustrating a parse tree for a path type matching a path in the graph
database.

In another scenario, the user does not want to make a distinction between, say, a gene and a pro-
tein. To implement this, we introduce a new non-terminal SEQUENCE encompassing both genes
and proteins: SEQUENCE -> GENE | PROTEIN | GENE codes for PROTEIN | PROTEIN
-codes for GENE. In this example, not only can we handle genes and proteins in a uniform
manner, but we also allow for paths with an incoming edge to a gene and the outgoing edge
from the protein it codes for, or vice versa. This also serves as an example on how taxonomies
can be imposed on vertex-types; SEQUENCE subsumes both GENE and PROTEIN. Taxonomies
can be formed for edge-like non-terminals and terminals in the same way.

2.3 Querying

We propose a simple syntax for subgraph queries taking as input one or two sets of vertices and
possibly an upper limit for path length. Together these specify the set of paths to be considered.
In the query, the user also specifies the root level production rules for the starting non-terminal
Q = QUERY (other non-terminals are defined in a background knowledge file). The following
sample query finds paths from protein ACHB3 HUMAN (start-vertices are given in ’FROM’
clause) to the Alzheimer disease (end-vertices are given in ’TO’ clause) that match non-terminal
IS ASSOCIATED TO and are of length 5 or less edges.

FROM Protein(ACHB3_HUMAN)

TO Phenotype(AD)

MAXLEN 5

QUERY -> SEQUENCE IS_ASSOCIATED_TO PHENOTYPE

The system returns the connection subgraph induced by all the accepted paths, i.e., contains
the edges and only the edges that occur in at least one accepted path. Figure 3 shows the
parse-tree corresponding to a matching path. In this example we assume that productions
for non-terminals SEQUENCE, IS SIMILAR TO, GENE, PROTEIN, and BIOLOGICALPROCESS are
defined as outlined above, and nonterminal IS ASSOCIATED TO has at least production rule
IS ASSOCIATED TO -> -refers to ARTICLE refers to defined for it.

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 6

3 Algorithms for Parsing Subgraphs

Our parsing algorithm is based on the well-known Earley parser [10] (the original algorithm
handles character strings as input, instead of graphs). The Earley parser can handle arbitrary
CFGs, and has time complexity O(n3) (O(n2) for unambiguous grammars), where n is the length
of the parsed string. Let us first recall the basics of the standard Earley parser (without look-
ahead). Throughout this section we denote strings of nonterminal and terminal symbols (includ-
ing the empty string) by Greek letters, single terminals by small letters and single nonterminals
by capital letters. For each position in the input string, the parser maintains a set of states of
form (A→ α · β, n), where n is the origin pointer, input position at which parsing of the dotted
rule began. The interpretation of the dot condition A → α · β is that a parse exists for the
substring from position n to the current input position for rule A → α. If β is the empty string,
then the state is completed.

The algorithm processes the input string from left-to-right. For each input position i, it iterates
over the respective stateset S (i), and performs at most one of three operations for each state
(A→ α · Xβ, n) ∈ S (i), where X is any symbol or the empty string if the state is completed:

• Prediction If X is non-terminal, then add state (X → ·δ, i) to S (i) for each rule X → δ in
the grammar.

• Scanning If X is terminal and the ith input symbol is also X, then add state (A→ αX·β, n)
to S (i + 1).

• Completion If Xβ is the empty string, then the state is completed; add state (B →
δA · γ,m) to S (i) for each state (B→ δ · Aγ,m) ∈ S (n).

At the beginning, stateset S (1) contains initial states (Q → ·α, 1), where Q is the starting non-
terminal, for each rule Q → α in the grammar. A successful parse is found, when an accepted
state of form (Q→ α·, 1) is added to S (` + 1), where ` is the length of the input string.

3.1 Earley parser for subgraph queries

In this paper, we assume that the complete data graph fits into RAM (stored as adjacency lists),
which allows for efficient vertex neighbor queries. We thus concentrate on the parsing aspect of
the queries, and not on the physical representation of data. The search proceeds in breadth-first
manner in the graph, which means that presented algorithms could also straightforwardly be
used for graphs stored into e.g. a relational database, by performing neighborhood queries for
all vertices within the same path length in one batch.

To adapt the Earley parser for handling data in graph format, let us first transform the original
edge and vertex-labeled graph G = (V, E) into a bipartite edge-labeled graph G′ = (V ∪ V ′, E′),
in which edges of the original graph are represented as edges from V to V ′, and vertex types
are are represented as edges from V ′ to V . The rationale behind this is that in the transformed
graph the parsed strings are strings of edge types only, which eliminates the need to process
vertex types and edge types as separate cases.

Formally, let b : V → V ′ be a bijection. Then, (u, t, v) ∈ E ⇔ (u, t, b(v)) ∈ E′ and for each
v ∈ V : (b(v), type(v), v) ∈ E′. All paths in G′ alternate between edges that correspond to edges

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 7

in G, and edges that correspond to vertices in G. Consequently, a string of edge types of a
V → V ′ path or a V ′ → V path in G′ coincides with the open-ended path type or the path type
of the corresponding path in G, respectively.

The most straightforward way of applying the Earley parser to graphs is to parse each (length-
limited) path between the start-vertices (VS) and the end-vertices (VT) as a separate string.
A trivial improvement is achieved by organizing paths originating from a starting vertex into
a tree, and parsing each path prefix only once. In this kind of algorithm state sets are main-
tained for all path prefixes (i.e., path prefixes have the role of input position of the standard
algorithm). This may still be too expensive computationally, since the number of prefixes can
be exponential in the number of vertices visited during parsing.

3.2 Improved parser

The key idea in the improved algorithm presented next is that in any dot condition A → α · β
the actual paths matching α traversed from the vertex in which the state was predicted to the
current vertex do not affect subsequent parsing (bar cycle elimination). This means that we can
avoid redundant work by collapsing partial parses for paths between the same pair of vertices
in the same dot condition into a single state. We need to, however, make sure that the origin
pointers do not form cycles (except in case of left-recursion) to guarantee correct behavior of
the algorithm. This is done by maintaining state set S (j, v) for all (path length, vertex)-pairs:
the interpretation of state (A → α · β, i, u) in a state set for a (path length, vertex)-pair (j, v) is
that parsing of the dot condition started from vertex u at path length i, and there is at least one
path of length j − i from vertex u to v that satisfies rule A→ α.

A drawback of this algorithm is that cycles can only be avoided at the level of a single non-
terminal; e.g., in rule A → aBa for an edge-like nonterminal A, we can guarantee that the first
and last vertex on the path matching A are distinct vertices, but we cannot effectively test if
there is a path matching a non-terminal B that does not visit either end of the path matching A.

At the beginning, state sets S (0, v) for all start-vertices v ∈ VS are initialized to contain states
(Q → ·α, 0, v), where Q is the starting non-terminal, for each rule Q → α in the grammar.
When state s = (Q → α·, 0, v), where v ∈ VS , is added to S (`, u), where u ∈ VT , state s is
accepted, i.e., corresponds to a successful parse. For neighborhood queries, condition u ∈ VT

is ignored (VT is not specified).

Completion and prediction are no different from the standard Earley parser, except that com-
pletion is not performed for state (A → α·, i, u) ∈ S (j, v), if (1) A is an edge-like non-terminal
and v = b(u), or (2) A is a vertex-like non-terminal, u = b(v) and j − i > 1. The purpose of
these conditions is to eliminate cycles where a path matching a non-terminal starts and ends
at the same vertex in graph G. Scanning is performed as follows: If t is terminal in state
(A → α · tβ, i, u) ∈ S (j, v), then add state (A → αt · β, i, u) to all sets S (j + 1,w) such that
(v, t,w) ∈ E′.

The algorithm needs to proceed in breadth-first order to work correctly: all scanning operations
that add states to any given state set must be performed before processing the state set. First,
all state sets at path length 0 are processed, then all state sets at path length 1, and so on.

The subgraph induced by all accepted paths is the set of edges scanned in any parse leading to an
accepted state. Obtaining this set requires backtracking the parse graph induced by the origin

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 8

pointers. First, we add each accepted state s ∈ S (i, u) to the corresponding set of accepted
states A(i, u). Next we process the accepted state sets in reverse order of path length using
inverse operations of scanning and completion. For each state (A→ αX · β, i, u) ∈ A(j, v):

• Reverse scanning If X is terminal: For each state s = (A→ α·Xβ, i, u) ∈ S (j−1,w) such
that (w, X, v) ∈ E′ add s to A(j − 1,w), and add edge (w, X, v) to the resulting connection
subgraph.

• Inverse prediction If X is non-terminal: For each completed state s1 = (X → δ·, k,w) ∈
S (j, v), if state s2 = (A→ α · Xβ, i, u) ∈ S (k,w), then add s1 to A(j, v) and s2 to A(k,w).

Worst case time complexity of the algorithm is O(n3m3), where n = |V ∪ V ′| and m is the
maximum path length: there are at most nm state sets, each containing at most O(nm) states
(the number of possible dot conditions is a constant), out of which at most O(nm) are completed,
and each completed state may have O(nm) states from which it is predicted. The backtracking
phase performs inverse operations only for a subset of the operations of the forward phase, and
thus does not affect the asymptotic time complexity. In practice, typically only a small portion
of all possible states is explored by the algorithm, and the results in Section 4 give a better
picture of the real-world performance of the algorithm than the cubic asymptotic worst-case
time complexity.

3.3 Bidirectional parsing

Our main target application is subgraph queries between two (possibly singleton) sets of ver-
tices VS and VT . Such queries are more efficient to implement using bidirectional breadth-first
search, alternating between left-to-right (starting from VS) and right-to-left (starting from VT)
iterations. This is because the search frontier, i.e., the set of states at a given path length, may
grow very fast with path length (depending on the grammar and graph structure, exponentially
in the worst case). Right-to-left searching is done the in the same way as left-to-right searching,
except that the dot movement is from right-to-left in the dot conditions. We denote the state set
in left-to-right and right-to-left direction with S L and S R, respectively.

Bidirectional search adds another layer of complexity: when left-to-right and right-to-left
search frontiers collide in vertex v at path lengths j and j′, respectively, we must check if
there are pairs of states from S L(j, v) and S R(j′, v) that, combined, form a valid parse for at
least one path from VS to VT . Algorithmic details and proof of correctness of this operation are
given in the Appendix.

4 Experiments

The goal of the experiments was to compare the performance of the proposed algorithms to each
other and the baseline provided by an algorithm that enumerates all individual paths, as well as
to verify their sufficient computational efficiency. Due to the novelty of the problem definition,
we could not perform comparisons to existing methods. Randomly generated graphs were used
for comparing the methods to each other in a controlled manner, while a large data warehouse
derived from public biological databases was used to test their practical efficiency.

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 9

4.1 Data

A simple model was used to generate random graphs for the experiments: the number of ver-
tices was fixed to 10000, and a varying number of undirected edges were added between ran-
domly chosen pairs of vertices. The density of the graphs was varied by using 25000 to 250000
edges (in increments of 25000), which corresponds to probabilities between 0.0005 and 0.0050
for having an edge between a random pair of vertices. The type of each vertex and edge was
drawn from a uniform distribution, where the number of edge and vertex types were 5 and 2,
respectively. For each density, we generated 10 independent replicates.

A real biological data set was obtained by downloading a set of publicly available data re-
sources: UniProt (proteins), Entrez Gene (genes), Gene Ontology (protein functions, biological
processes, and cellular locations), InterPro (protein families and conserved domains), KEGG
(pathways), OMIM (gene-phenotype relationships), HomoloGene (gene homology groups),
and STRING (protein interactions). The data from the source databases is transformed into
a labeled graph representation, and stored into a local data warehouse. The data was restricted
to a set of five organisms: Homo sapiens, Rattus norvegicus, Mus musculus, D. melanogaster
and C. elegans. As a result of combining the data of the selected organisms from all the source
databases, we get a graph consisting of approximately one million vertices and 5.7 million
edges.

4.2 Comparison of algorithms with randomly generated graphs

The randomly generated graphs consist of five edge types a,b,c,d,h and two vertex types
Vm,Vn. In these experiments, we used a grammar which represents a class of paths conferring
similarity between the end-vertices. The grammar consists of a set of rules of form E -> e V
-e | h; V -> V E v | v, where e is instantiated with edge types a,b,c,d and pair (V,v)
is instantiated with vertex nonterminal–terminal-pairs ((VN,Vn),(VM,Vm)). Edge type h has a
special role; an edge of type h indicates a direct similarity annotation between its end-vertices.
The starting non-terminal of the grammar is E. The paths accepted by the grammar consists
of nested palindromes, where the vertex-like non-terminal V can be expanded to a sequence of
palindromes, with the addition of allowing a similarity edge h in the middle of the palindrome.

Four different parsing algorithms were tested. The trivial alternative is the prefix-tree algorithm
(described in Section 3.1), which effectively enumerates all matching paths and returns their
union. We implemented two variants of the prefix tree algorithm; PrefixCycElimwith complete
and Prefix with incomplete (equivalent to the other algorithms) cycle elimination. The other
tested algorithms are the improved connection subgraph algorithm (Improved, Section 3.2) and
its bidirectional variant (ImprovedBidir, Section 3.3).

All the algorithms were implemented using the Python programming language. Experiments
were run on a standard PC with 1 GB of memory, running Linux. Each experiment was run
separately for the the 10 independently generated graphs with same density, and we report
average results over them. The number of states generated during the algorithm is directly
proportional to the memory consumption of the algorithm. To avoid running out of memory,
the the maximum number of states was fixed to 4 million; in practice this limit is always reached
in less than approximately 6 minutes (when it is reached at all); in many settings, this limits the
experiments with the more inefficient algorithms to small path lengths and/or densities.

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 10

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.001 0.002 0.003 0.004 0.005 0.006

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Density (edge probability)

grammar=SP, max path length=6

Prefix
PrefixCycElim

Improved
improvedBidir

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Maximum path length

grammar=SP, max path length=6

Prefix
PrefixCycElim

Improved
improvedBidir

(b)

Figure 4: Average running times as a function of graph density (a) and maximum path length (b).

In each run of the algorithm, two end-vertices were randomly chosen, and a connection sub-
graph query was run with a specified maximum path length and the above-described grammar.
Two factors were varied to control the difficulty of the parsing task: maximum path length of
accepted paths and the density of the input graph.

We compared the algorithms to each other on randomly generated graphs with varying density
(with maximum path length was fixed at 6) and varying maximum path length (between 3 and
10, with density fixed at 0.0015). Unlike in the Algorithms section, here path length is the num-
ber of edges in the original vertex and edge labeled graph; maximum path length n corresponds
to maximum length 2n−1 of open-ended path type (path length in the edge-only-labeled graph)
for the parser. The average running times (over the 10 replicates) are shown in Figure 4. These
experiments show significant differences between the algorithms; ImprovedBidir is clearly su-
perior to the other algorithms, essentially allowing twice as long paths to be discovered as with
Improved. The prefix-tree algorithms are clearly worst; however, it can be seen that Prefix-
CycElim is more efficient of these two. The line of each algorithm ends with the largest value
of the varied parameter that the algorithm could be run with without exceeding the maximum
state limit; e.g., with densities above 0.006, the ImprovedBidir algorithm would have exceeded
the limit.

4.3 Tests with real data

To test the efficiency of the method on real data, we ran a series of experiments using our
biological data warehouse. For this experiment, we randomly sampled 300 pairs of genes, and
used the ImprovedBidir algorithm to find connections between each of these pairs. We used a
grammar similar to the one used in the experiments with the random graphs (of course replacing
the vertex and edge types with ones from the real database; the complete grammar is too large
to describe here).

For each pair of genes, we ran the algorithm with three different maximum path lengths: 4, 6
and 8. Figure 5 illustrates the results of this experiment as a scatter plot; each point in the figure
represents a single run of the algorithm, with result size (number of edges in the connection
subgraph) on the x-axis and running time on the y-axis. Of course, in most cases there are no
significant connections between a pair of randomly chosen genes. On the other hand, in cases

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 11

where there are short connecting paths between the genes, the returned connection subgraph
may be very large, in which case it may be sensible to use a smaller maximum path length
constraint. Therefore, the figure only shows runs where size of the result is within a reasonable
range (1–200 edges); runs in which a connection does not exist are not displayed (in the cases
where connections do not exist, the average running times were 0.3, 3.1 and 27.6 seconds
for path lengths 4, 6 and 8, respectively). The results indicate that the algorithm works in
reasonable time also with the real, large database and a relatively complex grammar.

 0

 50

 100

 150

 200

 250

 20 40 60 80 100 120 140 160 180 200

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

Number of edges in result graph

grammar=SP, max path length=6

max path length = 8
max path length = 6
max path length = 4

Figure 5: Running times with real data

5 Conclusions

We proposed a method for querying subgraphs of labeled graphs using a context-free grammar.
Instead of returning all paths matching a query, our method returns a connection subgraph—
the union of all matching paths. We presented algorithms that produce the connection subgraph
directly, without first enumerating all the individual matching paths, and demonstrated its per-
formance superiority on randomly generated graphs.

Tools and techniques for querying heterogeneous data sets are needed in various domains such
as biology, social networks, WWW, and relational databases. Labeled graphs are a natural rep-
resentation for many such data sets. Subgraphs connecting pairs of vertices represent complex
relationships, and can reveal previously unknown links. The algorithms presented in this pa-
per allow performing focused subgraph queries much faster than by using algorithms based on
enumerating all paths matching the query. As a result, our algorithms are more suitable for
interactive use; connection subgraphs induced by substantially longer paths can be extracted in
acceptable waiting time.

The presented algorithms achieve their performance at the cost of incomplete cycle elimination.
How big a problem this is depends on the application and characteristics of the data at hand. As
the experiments in this paper indicate, the prefix-tree algorithm is practically too slow to parse
paths longer than four edges. A similar speed-up to that seen with the improved algorithm
can be achieved using a bidirectional search strategy, but still the relative difference to the
bidirectional improved algorithm would likely be comparable to the difference between the
prefix-tree algorithm and the improved algorithm. One possible solution to obtain cycle-free
paths faster is to first use the bidirectional improved algorithm to produce an intermediate result

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 12

subgraph and subsequently eliminate cyclic paths using the bidirectional prefix-tree algorithm,
which should perform much faster on the smaller intermediate graph.

Acknowledgments

Thanks to Hannu Toivonen for valuable comments and suggestions for improvements. This
research has been supported by Tekes, Jurilab Ltd., Biocomputing Platforms Ltd., and GeneOS
Ltd.

6 Appendix: Bidirectional parsing algorithm

In the bidirectional variant of the parsing algorithm, when left-to-right and right-to-left search
frontiers collide in vertex v at path lengths j and j′, respectively, we must check if there are
pairs of states from S L(j, v) and S R(j′, v) that, combined, form a valid parse for at least one path
from VS to VT . This operation is described below.

Definition 1. (Parent states) States of form p = (X → α ·Aβ, k,w) ∈ S L(i, u) are the left parents

of state s = (A → δ · γ, i, u), p
L
→ s, i.e., states from which (A → ·δγ, i, u) is predicted. The

right parents p′
R
→ s′ are defined symmetrically.

For each generated state sk (in either parsing direction), there is at least one parent-sequence
s0

·
→ s1

·
→ . . .

·
→ sk from an initial state s0 to sk. Note that a state may appear many times in

such sequences (due to recursive productions such as A→ Aa).

Definition 2. (State compatibility) Compatibility is defined recursively: left-to-right state s =

(D, k,w) ∈ S L(i, u) and right-to-left state s′ = (D′, k′,w′) ∈ S R(i′, u′) are compatible, s ∼ s′, if
and only if

1. for some nonterminals A and B, and some α, β : D = A → α · Bβ and D′ = A → αB · β,
and

2. either

• A is the starting non-terminal Q, i = i′ = 0, u ∈ VS , and u′ ∈ VT , or

• a compatible pair of parents p ∼ p′ : p
L
→ s, p′

R
→ s′ exists.

Compatibility of states sk and s′k means that there is a sequence of compatible state pairs (s0 ∼

s′0), (s1 ∼ s′1), . . . , (sk ∼ s′k) from a compatible pair of initial states (s0 ∼ s′0) to (sk ∼ s′k) such

that s0
L
→ s1

L
→ . . .

L
→ sk and s′0

R
→ s′1

R
→ . . .

R
→ s′k. The latter (right-to-left) parenthood

sequence can be viewed as a sequence of completions for the compatible states in the former
parenthood sequence.

Theorem 1. If states s = (A→ α · Bβ, k,w) ∈ S L(i, u) and s′ = (A→ αB · β, k′,w′) ∈ S R(i′, u′)
are compatible and a path in class B exists from u to u′, then there is a valid parse for a path
from VS to VT .

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 13

Proof. The conditions effectively state that there is a path in class A from w to w′. If A is the
starting non-terminal Q, i = i′ = 0, u ∈ VS , and u′ ∈ VT , then the theorem holds trivially.
Otherwise, s and s′ have a compatible pair of parents, p and p′, and we can conclude by
induction that the theorem holds. �

If path p of length k from VS to VT has a valid parse, then the search frontiers collide in some
vertex v0 on p at some left-to-right path length j0 and right-to-left path length k − j0. The
following theorem states the necessary and sufficient conditions for existence of a valid parse
for some path from VS to VT visiting vertex v0 in case of collision at v0.

Theorem 2. Left-to-right state s = (D, i, u) ∈ S L(j0, v0) and right-to-left state s′ = (D′, i′, u′) ∈
S R(k − j0, v0) colliding at vertex v represent a successful parse, if and only if

1. the states have identical dot conditions (D = D′ = A→ α · β), and
2. either

(a) A is the starting non-terminal Q, i = i′ = 0, u ∈ VS , and u′ ∈ VT , or

(b) a compatible pair of parents p ∼ p′ : p
L
→ s, p′

R
→ s′ exists.

Proof. First, we prove that whenever the conditions are satisfied, a successful parse exists for a
path from VS to VT . The first condition effectively states that there is a path in class A from u to
u′. According to Theorem 1 this and compatibility of the states imply that there is a matching
path from VS to VT .

Second, we prove that any path p of length k matching the query satisfies the conditions of the
theorem. We denote the subpath from the ith to the jth vertex on path p by p[i, j]. Either

1. there are states (Q → α · β, 0, u) ∈ S L(j0, v0), u ∈ VS and (Q → α · β, 0, u′) ∈ S R(k −
j0, v0), u′ ∈ VT , in which case conditions 1 and 2a are satisfied, or

2. there are states s = (Q → α · Aβ, 0, u) ∈ S L(j, v), u ∈ VS and s′ = (Q → αA · β, 0, u′) ∈
S R(j′, v′), u′ ∈ VT such that j < k − j′, j ≤ j0 ≤ k − j′, and path p[j, k − j′] is in class A.

In the latter case s ∼ s′.

Suppose that, for some i and i′, subpath p[i, k−i′] is in class A, and states p = (B→ δ·Aγ, n,w) ∈
S L(i, u) and p′ = (B→ δA · γ, n′,w′) ∈ S R(i′, u′) are compatible. Now either

1. there are states (A→ α · β, i, u) ∈ S L(j0, v0) and (A→ α · β, i′, u′) ∈ S R(k − j0, v0), or
2. there are states s = (A → α · Cβ, i, u) ∈ S L(j, v) and s′ = (A → αC · β, i′, u′) ∈ S R(j′, v′)

such that j < k − j′, j ≤ j0 ≤ k − j′ and path p[j, k − j′] is in class C.

In the former case, conditions 1 and 2b are satisfied. In the latter case, because p ∼ p′, p
L
→ s,

p′
R
→ s′ and the dot conditions of s and s′ match, s and s′ are compatible. By induction we

conclude that some subpath p[i, k − i′] always satisfies the former case, completing the second
part of the proof. �

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 14

The parenthood relations form directed graph GS over the coupled state-space
⋃

j,v S L(j, v) ×⋃
j,v S R(j, v): there is an edge from (s, s′) to (p, p′) if p

L
→ s and p′

R
→ s′. Theorem 2 trans-

forms directly into a depth-first search algorithm in GS ; state-pairs are labeled as compatible
or incompatible during backtracking according to the conditions stated in the theorem. The
algorithm uses dynamic programming: since the label of a state-pair only depends on its de-
scendants in the search space, there is no need to continue the search further from an already
labeled state-pair. For ill-defined grammars (e.g., one containing productions A → B, B→ A),
GS may contain cycles. The algorithm can be applied to such grammars; it eliminates such
cycles by not revisiting unlabeled state-pairs (i.e., state-pairs on the current search path). If
state-pair (s, s′) ∈ S L(i, u) × S R(i′, u′) is deemed compatible, states s and s′ are added to their
respective sets of accepted states, AL(i, u) and AR(i′, u′).

The algorithm outlined above does not as such address partial elimination of cycles emerging
from combining the partial parses. Such cycles can be eliminated by modifying the algorithm
to check each state-pair for cyclicity. State-pairs failing the acyclicity test are left unlabeled; a
subsequent test for the same pair might pass the test.

The backtracking phase can be done in the same way as in the unidirectional algorithm, but
separately for each direction, starting from the respective set of accepted states,

⋃
j,v AL(j, v) or⋃

j,v AR(j, v).

References

[1] L. Getoor and C. P. Diehl. Link mining: A survey. ACM SIGKDD Explorations Newslet-
ter, 7(2):3–12, 2005.

[2] M. P. Consens and A. O. Mendelson. GraphLog: a visual formalism for real life recursion.
In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 404–416, New York, NY, USA, 1990. ACM Press.

[3] S. Abiteboul and V. Vianu. Regular path queries with constraints. Journal of Computer
and System Sciences, 58(3):428–452, 1999.

[4] S. Flesca and S. Greco. Querying graph databases. In Proceedings of EDBT 2000: 7th
International Conference on Extending Database Technology, pages 510–524, London,
UK, 2000. Springer.

[5] Z. Lacroix, L. Raschid, and M.-E. Vidal. Efficient techniques to explore and rank paths
in life science data sources. In Proceedings of Data Integration in the Life Sciences, First
International Workshop (DILS 2004), pages 187–202, 2004.

[6] A. O. Mendelson and P. T. Wood. Finding regular simple paths in graph databases. SIAM
Journal on Computing, 24:1235–1258, 1995.

[7] P. Mork, R. Shaker, A. Halevy, and P. Tarczy-Hornoch. PQL: A declarative query lan-
guage over dynamic biological schemata. In Proceedings of the American Medical Infor-
matics Association Annual Symposium 2002, pages 533–537, 2002.

[8] U. Leser. A query language for biological networks. Bioinformatics, 21(Suppl 2):ii33–
ii39, 2005.

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 15

[9] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language supporting
recursion. In SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD International Con-
ference on Management of Data, pages 323–330, New York, NY, USA, 1987. ACM Press.

[10] J. Earley. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102, 1970.

Journal of Integrative Bioinformatics, 5(2):100, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-100 16

	Introduction
	Subgraph queries
	Context-free Grammar for Path Types
	Examples
	Querying

	Algorithms for Parsing Subgraphs
	Earley parser for subgraph queries
	Improved parser
	Bidirectional parsing

	Experiments
	Data
	Comparison of algorithms with randomly generated graphs
	Tests with real data

	Conclusions
	Appendix: Bidirectional parsing algorithm

