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Abstract. We believe there is room for a subject named as in the title of

this paper. Motivating examples are Hardy fields and fields of transseries.

Assuming no previous knowledge of these notions, we introduce both, state
some of their basic properties, and explain connections to o-minimal structures.

We describe a common algebraic framework for these examples: the category

of H-fields. This unified setting leads to a better understanding of Hardy fields
and transseries from an algebraic and model-theoretic perspective.
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Introduction

In taking asymptotic expansions à la Poincaré we deliberately neglect transfinitely
small terms. For example, with f(x) := 1

1−x−1 + x− log x, we have

f(x) ∼ 1 +
1
x

+
1
x2

+ · · · (x→ +∞),

so we lose any information about the transfinitely small term x− log x in passing to
the asymptotic expansion of f in powers of x−1. Hardy fields and transseries both
provide a kind of remedy by taking into account orders of growth different from
. . . , x−2, x−1, 1, x, x2, . . . .

Hardy fields were preceded by du Bois-Reymond’s Infinitärcalcül [9]. Hardy [30]
made sense of [9], and focused on logarithmic-exponential functions (LE-functions
for short). These are the real-valued functions in one variable defined on neigh-
borhoods of +∞ that are obtained from constants and the identity function by
algebraic operations, exponentiation and taking logarithms. The asymptotic be-
havior of non-oscillating real-valued solutions of algebraic differential equations can
often be described in terms of LE-functions (Borel [10], Lindelöf [44], Hardy [29]).
See also [30] for a list of references to the literature on “orders of infinity” prior to
1910. Hardy proved the fundamental fact that the germs at +∞ of LE-functions
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make up an ordered differential field: every LE-function has ultimately constant
sign, is ultimately differentiable, and its derivative is again an LE-function. Bour-
baki [14] took this result as the defining feature of a Hardy field . (See Section
1 for a precise definition of this notion.) The theory of Hardy fields has grown
considerably due to the efforts of Rosenlicht [59]–[63], Boshernitzan [11], [12], [13],
Shackell [67] and others. Recently, Hardy fields have shown up in model theory
and its applications to real analytic geometry, via o-minimal structures on the real
field .

Transseries can be seen as formal counterparts to (germs of) functions in Hardy
fields. The key example of a field of transseries is the field R[[xR]]LE of logarithmic-
exponential series (LE-series for short) over R. It extends the field of Laurent series
R[[xZ]] to an ordered differential field equipped with a natural exponential function,
which agrees with the usual exponential on R. (See Section 2.) It was introduced
independently by Écalle [25] (under the name “trigèbre R[[[x]]] des transséries”) in
his work on Dulac’s Problem, and by the model-theorists Dahn and Göring [15] in
connection with Tarski’s problem on real exponentiation. The subject of transseries
has been further developed by van den Dries, Macintyre and Marker [22], [23], van
der Hoeven [32]–[35], and Schmeling [65]. (The notion of a field of transseries is
first axiomatized formally in [65], (2.2.1).) The papers [32] and [65] construct many
other fields of transseries that strictly extend R[[xR]]LE, and [32] even considers a
complex analogue of R[[xR]]LE. These newer fields of transseries are also beginning
to play a natural role in asymptotic differential algebra. In this paper we focus on
the field R[[xR]]LE of LE-series. Some aspects of transseries can be found already
in the generalized power series of Hahn [27].

We have indicated two approaches to the asymptotic behavior of real-valued
functions: Hardy fields and transseries. How are they related and what do they
have in common? Many Hardy fields, for example the field of germs of Hardy’s
LE-functions, can be embedded into R[[xR]]LE as ordered differential fields. Such
an embedding associates to an element of the Hardy field a series expansion (often
divergent) in logarithmic-exponential monomials. Asymptotic differential algebra
should help in constructing such embeddings.

With this aim in mind we introduced in [4] the purely algebraic notion of H-field.
(In Section 3 we give the precise definition.) Each Hardy field K ⊇ R is an H-field,
as is every ordered differential subfield K ⊇ R of R[[xR]]LE. Every H-field K carries
a valuation v : K \ {0} → Γ, taking values in an ordered abelian group Γ. Thus
H-fields are amenable to the methods of valuation theory, a well-developed chapter
of algebra (see [38] or [53]). In [2], [3] we explored the structure induced by the
derivation on the value group Γ, continuing Rosenlicht [56], [58]. A basic fact is that
the valuation v(f ′) of the derivative f ′ of a non-zero element f of an H-field K only
depends on v(f), if v(f) 6= 0. Consequently, the logarithmic derivative on K yields
a function ψ : Γ \ {0} → Γ via ψ

(
v(f)

)
= v(f ′/f), for f ∈ K \ {0} with v(f) 6= 0.

The pair (Γ, ψ) is called the asymptotic couple of K (Rosenlicht’s terminology). We
investigated abstract asymptotic couples, that is, pairs (Γ, ψ) where Γ is an ordered
abelian group and ψ : Γ \ {0} → Γ a function subject to certain axioms satisfied by
asymptotic couples coming from H-fields. Our results in [3] yield an elimination
theory for the asymptotic relations in the H-field R[[xR]]LE that can be expressed
in terms of its associated asymptotic couple. See Section 3 for an exposition of
some of our results about H-fields and asymptotic couples. Finally, in Section 4 we
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touch upon the subject of algebraic differential equations over H-fields. This is a
vast topic, and at present our understanding of it is only rudimentary. But some
promising first steps have been made already, which we report here.

Ultimately we are interested in the model-theoretic properties of Hardy fields
and fields of transseries. In this paper we will avoid model-theoretic language
altogether, in order to keep the exposition self-contained. We prefer to direct the
reader to [52] for a leisurely introduction to model theory (aimed at geometers) and
to surveys of two subjects in which model theory has been particularly successful:
real algebraic geometry [8] and differential algebra [47]. Among other things, model-
theory suggests what a universal domain in these subjects should be and what it
is good for, in analogy with A. Weil’s universal domains in algebraic geometry. A
key problem in isolating the universal domains for asymptotic differential algebra is
to characterize in some useful way the algebraic differential equations that can be
solved in H-fields. We refer to [5], Section 14 for some questions and speculations
in this direction. Our hope is that the field R[[xR]]LE of logarithmic-exponential
series will turn out to be such a universal domain. (See also Section 4.)

Acknowledgments. This paper is based on lectures in the June 2002 workshop on
analyzable functions and their applications, at the International Centre for Math-
ematical Sciences, Edinburgh. We thank O. Costin, M. Kruskal and A. Macintyre
for inviting us to this interesting meeting.

Preliminaries. Throughout the paper, we letm and n range over the set of natural
numbers N = {0, 1, 2, . . . }. We put S0 := {0} (a one-element set), for any set S.
For a field K, we put K× := K \ {0}. Below we recall some basic notions and facts
from algebra that will be used freely in the sequel. The reader may skip this part
and come back to it for clarification whenever necessary. More detailed information
can be found in [36] (on differential algebra) and [53] (on ordered abelian groups).

Differential algebra. A differential ring is a commutative ring R (with 1)
equipped with a derivation, that is, a map a 7→ a′ : R → R satisfying (a + b)′ =
a′ + b′ and the Leibniz rule (a · b)′ = a′ · b + a · b′, for all a, b ∈ R. A differential
field is a differential ring whose underlying ring is a field. If K is a differential
field, we denote by CK (or C, if no confusion is possible) the field of constants
of K: CK = {c ∈ K : c′ = 0}. If f is a non-zero element of a differential field, we
put f† := f ′/f , the logarithmic derivative of f .

Let R be a differential ring and let Y, Y ′, . . . , Y (n), . . . be distinct indetermi-
nates. The derivation on R extends uniquely to a derivation on the polynomial
ring R{Y } := R[Y, Y ′, . . . ] such that (Y (n))′ = Y (n+1) for all n. The differential
ring R{Y } is called the ring of differential polynomials in Y with coefficients
in R. If R is a domain, then so is R{Y }. Inductively we put R{Y1, . . . , Yn} :=
R{Y1, . . . , Yn−1}{Yn} for distinct differential interderminates Y1, . . . , Yn, n > 0. If
K is a differential field, then the fraction field of K{Y } is denoted by K〈Y 〉 and
is called the field of differential rational functions in Y with coefficients in K.
Given P (Y ) ∈ R{Y } the least n such that P (Y ) ∈ R[Y, Y ′, . . . , Y (n)] is called the
order of P . For i = (i0, . . . , in) ∈ Nn+1 we put |i| := i0 + i1 + · · · + in (the de-
gree of i), and we set Y i := Y i0(Y ′)i1 · · · (Y (n))in . Every differential polynomial
P (Y ) ∈ R{Y } of order at most n can be written in the form

P (Y ) =
∑

i

aiY
i,
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where the sum is understood to range over all i ∈ Nn+1, and ai ∈ R for every i,
with ai 6= 0 for only finitely many i. For P 6= 0 the (total) degree of P is the
largest natural number d such that d = |i| for some i ∈ Nn+1 with ai 6= 0. If
P (Y ) ∈ R{Y } is a differential polynomial and y ∈ R, we obtain an element P (y)
of R by substituting y, y′, . . . for Y, Y ′, . . . , respectively. Hence P gives rise to a
differential polynomial function R→ R : y 7→ P (y).

Let L be a differential field extension of the differential field K. Then K〈y〉 :=
K(y, y′, y′′, . . . ) denotes the differential subfield of L generated overK by an element
y ∈ L. Likewise, K〈y1, . . . , yn〉 denotes the differential subfield of L generated over
K by elements y1, . . . , yn ∈ L. We say that y ∈ L is differentially algebraic
over K if P (y) = 0 for some non-zero P (Y ) ∈ K{Y }. The extension L|K is called
differentially algebraic if every element of L is differentially algebraic over K.

Ordered abelian groups. An ordered abelian group is an abelian group Γ
(here written additively) together with a total ordering 6 of Γ such that

α 6 β ⇒ α+ γ 6 β + γ for all α, β, γ ∈ Γ.

Throughout we let Γ be an ordered abelian group. Put Γ∗ := Γ \ {0}, and

S>α := {γ ∈ S : γ > α}, S<α := {γ ∈ S : γ < α},

for S ⊆ Γ and α ∈ Γ. (Similarly for > and 6 in place of > and <, respectively.)
We say that S ⊆ Γ is convex in Γ if for all α, β, γ ∈ Γ,

α < γ < β & α, β ∈ S ⇒ γ ∈ S.

We define an equivalence relation ∼ on Γ by

α ∼ β :⇐⇒ |α| 6 m|β| and |β| 6 n|α| for some m,n > 0.

Here as usual |α| = max{α,−α} for α ∈ Γ. The equivalence class of an element
α ∈ Γ is written as [α], and is called its archimedean class. By [Γ] we denote
the set of archimedean classes of Γ, and we set [Γ∗] := [Γ] \

{
[0]
}

. If [Γ∗] is
finite, we call the number of elements of [Γ∗] the rank of Γ; otherwise, we say
that Γ has infinite rank. Thus Γ has rank 1 if and only if Γ is isomorphic to an
ordered non-trivial subgroup of the ordered additive group R of real numbers. An
example of an ordered abelian group of rank n is Zn ordered lexicographically, that
is, for a = (a1, . . . , an) ∈ Zn: a > 0 ⇐⇒ there exists i ∈ {1, . . . , n} such that
a1 = · · · = ai−1 = 0 and ai > 0. We linearly order [Γ] by setting

[α] < [β] :⇐⇒ n|α| < |β| for all n

⇐⇒ [α] 6= [β] and |α| < |β|.

We call Γ divisible if for every α ∈ Γ and every n 6= 0 there exists β ∈ Γ with
nβ = α; we denote this unique β by 1

nα. Thus if Γ is divisible, then it has a natural
structure as vector space over the field Q of rational numbers. We consider Γ as a
subgroup of the abelian group QΓ = Q⊗Z Γ by means of the embedding α 7→ 1⊗α.
We equip QΓ with the unique linear ordering that extends the one on Γ and makes
QΓ into a divisible ordered abelian group.
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1. Hardy Fields

After giving the definition and some basic properties, we discuss the dominance
relations and the valuation associated to a Hardy field. We then state several
extension theorems. Finally we show how Hardy fields arise in the subject of o-
minimality.

Definitions and basic properties. Given a property P (x), with x ranging over
real numbers, we say that P (x) holds ultimately (or ultimately P (x)) if there exists
x0 ∈ R such that P (x) holds for all x > x0. We define an equivalence relation
on the collection of real-valued functions defined on subsets of R that contain an
interval of the form (a,+∞) (a ∈ R), by declaring f and g equivalent if ultimately
f(x) = g(x); we denote the equivalence class of such a function f by f , and call it the
germ of f (at +∞). Adding and multiplying functions in this collection respects
the equivalence relation, so we can add and multiply germs by f + g = f + g and
f · g = f · g, making the set of germs into a commutative ring G. If f is ultimately
differentiable, we define f ′ := f ′. From now on we omit the bar and use the same
letter for a function and its germ. In particular, we consider the field R of real
numbers as a subring of G, by identifying r ∈ R with the germ of the constant
function with value r. Given p ∈ N ∪ {∞} we let Gp denote the subring of G
consisting of the germs of functions that are ultimately of class Cp, and we put
G(∞) :=

⋂
p∈N Gp. Thus G(∞) is a differential ring with respect to the operations on

germs indicated above, with G∞ as a (proper) differential subring.

Definition 1.1. (N. Bourbaki, 1961 [14].) A subring K of G1 is called a Hardy
field if K is a field, and f ′ ∈ K for all f ∈ K.

Example. The field R(x) of rational functions is a Hardy field, where x denotes the
germ of the identity function on R (so x′ = 1). (More interesting examples are
given below.)

Let K be a Hardy field. Clearly K is a differential subring of G(∞). Moreover,
for non-zero f ∈ K there is g ∈ K with f · g = 1, so ultimately f(x) 6= 0, hence
either ultimately f(x) < 0 or ultimately f(x) > 0 (by ultimate continuity of f).
We make K into an ordered field by declaring f > 0 (for f ∈ K) if ultimately
f(x) > 0. Given f ∈ K we also have f ′ ∈ K, so either f ′ < 0, or f ′ = 0, or f ′ > 0,
and accordingly, f is either ultimately strictly decreasing, or ultimately constant,
or ultimately strictly increasing, hence the limit lim

x→+∞
f(x) always exists, as an

element of the extended real line R∞ := R ∪ {±∞}.

Dominance relations. Every Hardy field is an ordered differential field, that is,
an ordered field with a derivation on the field. (The constant field of a Hardy field
is a subfield of R.) Every ordered differential field K (with constant field C) comes
equipped with a dominance relation: For f, g ∈ K define

f 4 g ⇐⇒ |f | 6 c|g| for some c ∈ C>0,(1.1)

f ≺ g ⇐⇒ |f | 6 c|g| for all c ∈ C>0.

(Note that f ≺ g if and only if f 4 g and g 64 f .) Here we use Hardy’s notations—
with those of Bachmann and Landau one would write f = O(g) for f 4 g and
f = o(g) instead of f ≺ g. More generally:
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Definition 1.2. Let K be an ordered field. A dominance relation on K is a
binary relation 4 on K such that for all f, g, h ∈ K:

(D1) f 4 f ,
(D2) f 4 g and g 4 h⇒ f 4 h,
(D3) f 4 g or g 4 f ,
(D4) f 4 g ⇒ fh 4 gh,
(D5) f 4 h and g 4 h⇒ f − g 4 h.
(D6) 0 6 f 6 g ⇒ f 4 g,

The relation 4 on an ordered differential field K defined in (1.1) is a dominance
relation, which we call the natural dominance relation of K. (In Section 3 we have
to consider more general dominance relations on ordered differential fields.) If 4 is
a dominance relation on an ordered field K and L an ordered subfield of K, then
the restriction of 4 to L is a dominance relation on L.

Let K be an ordered field and 4 a dominance relation on K. We define

f ≺ g ⇐⇒ f 4 g and g 64 f.

We shall also write f 4 g as g < f and f ≺ g as g � f . We call an element f of
K bounded if f 4 1, infinitesimal if f ≺ 1, and infinite if f � 1. The set of
bounded elements of K and the set of infinitesimal elements of K are convex in K
by (D6). We define an equivalence relation � on K as follows:

f � g ⇐⇒ f 4 g and g 4 f.

(If f � g, we say that f and g are asymptotic.) By (D1)–(D4), the equivalence
classes v(f), where f ∈ K× = K \{0}, are the elements of an ordered abelian group
Γ = v(K×); the group operation and the ordering are given by

v(f) + v(g) = v(f · g) and v(f) > v(g) ⇐⇒ f 4 g,

respectively. We also introduce a symbol ∞ /∈ Γ, and we put Γ∞ := Γ ∪ {∞} and
v(0) := ∞. We extend addition to Γ∞ by setting α + ∞ = ∞ + α = ∞ for all
α ∈ Γ∞, and extend the ordering of Γ to a linear ordering on Γ∞ by setting γ <∞
for γ ∈ Γ. The implications (D4)–(D6) translate into the following rules for the
map v : f 7→ v(f),K → Γ∞: For f, g ∈ K,

(V1) v(f · g) = v(f) + v(g);
(V2) v(f + g) > min

{
v(f), v(g)

}
;

(V3) 0 6 f 6 g ⇒ v(f) > v(g).
The properties (V1) and (V2) express that v is a valuation (in the sense of Krull
[53]) on K with value group Γ. (From (V2) it follows that v(f + g) = v(g) if
v(f) > v(g).) Conversely, any valuation v : K → Γ∞ satisfying (V3) gives rise to a
dominance relation on K by f 4 g ⇐⇒ v(f) > v(g) for f, g ∈ K.

For non-zero f, g ∈ K we define f ∼ g :⇐⇒ f − g ≺ g. It is easy to see that ∼
is an equivalence relation on K×, with f ∼ g ⇒ f � g.

The valuation of a Hardy field. The natural dominance relation 4 of a Hardy
field and the derived asymptotic relations ≺, � ,∼ introduced above allow useful
reinterpretations in terms of limits as x→ +∞:

Lemma 1.3. Let K be a Hardy field. For f, g ∈ K, g 6= 0, we have:

(1) f 4 g ⇐⇒ lim
x→+∞

f(x)
g(x) ∈ R,



ASYMPTOTIC DIFFERENTIAL ALGEBRA 7

(2) f ≺ g ⇐⇒ lim
x→+∞

f(x)
g(x) = 0,

(3) f � g ⇐⇒ lim
x→+∞

f(x)
g(x) ∈ R×,

(4) f ∼ g ⇐⇒ lim
x→+∞

f(x)
g(x) = 1.

So for instance, f � 1 if and only if lim
x→+∞

|f(x)| = +∞.

Remark. According to Rosenlicht ([59], p. 303), this valuation on a Hardy field was
already implicit in du Bois-Reymond’s paper [9], but went unnoticed until the work
of Lightstone and Robinson [43] in the 1970s.

Example. Suppose K = R(x). Then a0+a1x+· · ·+anx
n ∼ anx

n for a0, a1, . . . , an ∈
R, an 6= 0. It follows that Γ = Zv(x) with v(x) < 0 = v(1), and the valuation is
given by v(g/h) = (deg g − deg h)v(x), for g, h ∈ R[x], g, h 6= 0.

Here are some properties of Hardy fields pertaining to the interaction between
the asymptotic relations and the derivation. Recall that f† denotes the logarithmic
derivative f† = f ′/f = (log |f |)′ of f ∈ K×.

Proposition 1.4. Let K be a Hardy field and f, g ∈ K×.
(1) If f � 1, then f† > 0.
(2) If f 4 1, then f − c ≺ 1 for some c ∈ R.
(3) If f 4 1, g 6� 1, then f ′ ≺ g†.
(4) If f, g 6� 1, then f 4 g ⇐⇒ f ′ 4 g′.
(5) If f 4 1, then f ′ ≺ 1.

Proof. Part (1) is clear: if f is positive infinite, say, then f is ultimately strictly
increasing, hence its derivative is ultimately positive. Part (2) follows from the fact
that every bounded element in a Hardy field has a limit in R. For (3), we may
assume that f � 1; otherwise we replace f by f + 1. Now using Lemma 1.3, we see
that lim

x→+∞
f(x) ∈ R× and lim

x→+∞
g(x) ∈ {0,±∞}. Hence by l’Hospital’s rule we

have
f = fg/g ∼ (fg′ + f ′g)/g′ = f + f ′g/g′.

So f ′g/g′ ≺ f � 1 and therefore f ′ ≺ g′/g = g†. The proof of (4) is also essentially
by l’Hospital’s rule and Lemma 1.3 above. Finally, for (5) we use the fact (see
Theorem 1.9 below) that any Hardy field can be enlarged to a Hardy field containing
the germ x of the identity function. We can therefore assume x ∈ K. Then f 4 1
yields f ≺ x, and hence f ′ ≺ x′ = 1 by part (4). �

In particular, by (4) it follows that if f ∈ K×, f 6� 1, then the valuation v(f ′)
of the derivative of f only depends on the valuation v(f) of f , not on f itself.

Comparability and rank. Let K be a Hardy field. Elements f, g of K with
f, g � 1 are called comparable if |f | < |g|n and |g| < |f |n for some n. Compara-
bility is an equivalence relation among infinite elements of K, and we speak of the
comparability class Cl(f) of an infinite element f of K. We linearly order the set
of comparability classes of K by Cl(f) < Cl(g) ⇐⇒ |f |n < |g| for all n. Note that
f, g � 1 are comparable if and only if v(f), v(g) lie in the same archimedean class of
Γ, that is, if

[
v(f)

]
=
[
v(g)

]
in [Γ∗]. The map Cl(f) 7→

[
v(f)

]
is an order-reversing

bijection between the set of comparability classes of infinite elements of K and the
set [Γ∗] of non-zero archimedean classes of Γ. Hence the rank of the value group Γ
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of K agrees with the number of comparability classes of K; we call this common
number the rank of K. For example, a Hardy field K has rank 0 if and only if
K ⊆ R. The Hardy field R(x) has rank 1. The following proposition is due to
Rosenlicht [60]:

Proposition 1.5. Let K ⊆ L be an extension of Hardy fields and t1, . . . , tn ∈ L×
algebraically dependent over K. There are integers a1, . . . , an ∈ Z, not all zero, such
that a1v(t1) + · · · + anv(tn) ∈ Γ = v(K×). In particular, if r is the transcendence
degree of L over K, then there are at most r comparability classes of L that do not
have representatives in K.

In practice, many Hardy fields have finite rank: IfK = R(f, f ′, f ′′, . . . ) is a Hardy
field and f satisfies an algebraic differential equation over R, that is, P (f) = 0
for some non-zero differential polynomial P (Y ) ∈ R{Y }, then K has finite rank
6 order(P ).

Asymptotic analysis in Hardy fields. The properties of the dominance rela-
tion in Proposition 1.4 above show that Hardy fields are very convenient for doing
asymptotic analysis: if the germ of a function f lives in a Hardy field, this yields
a lot of information about the growth of f . Here is one example, again due to
Rosenlicht [62]. (Many more examples can be found in [60]–[63].)

Theorem 1.6. Let K be a Hardy field of finite rank r and f a positive infinite
element of K. Then there is an integer s with |s| 6 r having the following property:
For every n > r there exists an infinitesimal ε in a Hardy field extension of K of
finite rank 6 r + 2n− s+ 1 such that

f = expn

(
logn−s(x) · (1 + ε)

)
.

Here and below expn g and logn h denote exp · · · exp g and log · · · log h (n times),
respectively, for elements g, h of a Hardy field, with h > expn−1(0) if n > 0. (By
convention exp0 g = g, log0 h = h.) Note that since ε lies again in a Hardy field
of finite rank, a similar estimate exists for ε, giving rise to a nested asymptotic
expansion of f . For improvements of this theorem and its algorithmic aspects see
[67] and [32].

On the other hand, it may be difficult to verify that a given germ f ∈ G(∞) lies
in a Hardy field: this requires that for every differential polynomial P (Y ) ∈ R{Y }
the sign of a representative of the germ P (f) ∈ G(∞) is ultimately constant. As an
example how this can be done, we give here the proof by Salvy and Shackell [64] of
a theorem on inverses of germs in Hardy fields.

First some remarks on composition. If f, g ∈ G(∞) and g(t) → +∞ as t→ +∞,
then f ◦g ∈ G(∞) is by definition the germ in G(∞) such that ultimately (f ◦g)(t) =
f(g(t)). If f ∈ G(∞) is ultimately strictly increasing, and f(t) → +∞ as t→ +∞,
then there is a unique g ∈ G(∞) such that g(t) → +∞ as t → +∞ and f ◦ g = x;
this g is then also ultimately strictly increasing, and is called the inverse of f .

Theorem 1.7. Let f be a positive infinite element in a Hardy field K (so f is
ultimately strictly increasing, and f(t) → +∞ as t→ +∞). Then the inverse of f
also belongs to a Hardy field.

We do not know if this inverse always lies in some Hardy field extension of K.
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Proof. Let g be the inverse of f . Using g′ = 1
f ′◦g , induction on n > 1 yields

g(n) = Rn

(
f ′ ◦ g, f ′′ ◦ g, . . . , f (n) ◦ g

)
/(f ′ ◦ g)N(n)

with Rn(X1, . . . , Xn) ∈ R[X1, . . . , Xn] and 0 < N(n) ∈ N. Let P (Y ) ∈ R{Y } be
a differential polynomial over R such that (a representative of) P (g) ∈ G(∞) has
arbitrarily large real zeros. We show that then P (g) = 0 in G(∞). The identi-
ties above for the g(n) yield P (g) = R(f) ◦ g where R(Z) ∈ 1

(Z′)N R(x){Z} is a
differential rational function over R(x). Hence R(f) is an element of the Hardy
field R(x, f, f ′, . . . ) and (a representative of it) has arbitrarily large real zeros, so
R(f) = 0, and thus P (g) = 0. �

Next we discuss some tools to construct new Hardy fields from old ones.

Extension theorems. Until the end of Theorem 1.12 we let K denote a Hardy
field. Here are some theorems that allow one to enlarge K by solutions of certain
algebraic differential equations.

Algebraic equations. An ordered field F is said to be real closed if it has the inter-
mediate value property for polynomials in one variable, that is, given P (Y ) ∈ F [Y ]
and a < b in F such that P (a) and P (b) are non-zero and of opposite sign, there
exists y ∈ F with P (y) = 0. (For example, the field R of real numbers is real
closed.) Every ordered field F has a real closure, that is, a real closed ordered
field extension of F which is algebraic over F ; such a real closure is unique up to
isomorphism of ordered fields over F , so we can speak of the real closure of F ,
denoted by F rc. (See [8] or [51] for this and other basic facts about ordered fields.)

Theorem 1.8. The set of all germs y ∈ G0 that satisfy a polynomial equation
P (y) = 0 for non-zero P (Y ) ∈ K[Y ] is a Hardy field, and is a real closure of the
ordered field K.

This theorem is due to A. Robinson [54]. An earlier proof for K ⊆ G∞ by Sjödin
[71] has a gap (see the first sentence of the proof of Lemma 1 on p. 219). An efficient
proof is in Rosenlicht [59].

First-order equations. After algebraic equations, the simplest algebraic differential
equations are the ones of order 1. The following theorem is due to M. Singer [70],
[59], with less general versions by Hardy [29] and Marić [46].

Theorem 1.9. Let F (Y ), G(Y ) ∈ K[Y ] and y ∈ G1 be such that

G(y) 6= 0 and y′G(y) = F (y) (in G1).

Then the ring of germs K[y] is an integral domain with fraction field K(y) ⊆ G1,
and K(y) is a Hardy field.

Call a Hardy field Liouville closed if it is real closed and contains with each el-
ement f also an antiderivative

∫
f and its exponential exp f . The last two theorems

immediately imply:

Corollary 1.10. (Bourbaki [14].) There exists a smallest Hardy field Li(K), called
the Liouville closure of K, which contains R and is Liouville closed. �
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In particular, every Hardy field K extends to a smallest Hardy field L ⊇ R which
is closed under powers, that is, fc ∈ L for all f ∈ L>0 and c ∈ R. If K has
finite rank, then so does L, see [61]. Hardy fields of finite rank which contain R
and are closed under powers were termed Rosenlicht fields in [67]. They play a
role in the asymptotics of Hardy field solutions to algebraic differential equations
with constant coefficients; see [67], [69].

Let P (Y ) ∈ K{Y } be a differential polynomial of order 1. In [59], Theorem 3,
Rosenlicht gives a necessary and sufficient condition on a germ y ∈ G1 with P (y) = 0
to be such that there exists a Hardy field extension of K containing y. This allows
one to show that all solutions in G1 of an equation like

(Y ′)2 + 3Y Y ′ + Y 2 = 1

lie in a Hardy field. ([59], p. 303.) A related fact is the following intermediate value
property for first-order differential polynomials in [20]:

Theorem 1.11. Suppose P (a) and P (b) are non-zero and of opposite sign in K,
where a, b ∈ K and a < b. Then there exists an element y in a Hardy field extension
of K such that a < y < b and P (y) = 0.

There are examples for K, P , a and b satisfying the hypothesis of the theorem
and an ultimately analytic germ y such that a < y < b and P (y) = 0, but y does
not lie in any Hardy field (see [20], Remark 3).

Higher-order equations. Here, our knowledge is rudimentary compared to the case
of equations of order 1. The next theorem is in Boshernitzan [12] (Theorem 17.7)
and Rosenlicht [63], and concerns linear differential equations of order 2. Note first
that an equation of the form

u′′ + au′ + bu = 0

with a, b in a Hardy field K can be transformed into an equation of the form

(1.2) 4y′′ − fy = 0

by a change of variables u = gy, where f = a2 − 4b and g = e−
1
2

R
a is a non-zero

solution to the equation 2g′ + ag = 0 in a Hardy field extension of K (which can
be taken of finite rank, provided K is of finite rank, Proposition 1.5). Henceforth
we may restrict attention to linear differential equations of the form (1.2).

Theorem 1.12. Suppose that K has finite rank, and let f ∈ K. Then the equation
(1.2) has a non-trivial solution in a Hardy field extension of K of finite rank if and
only if

(1.3) f > −
(

1
(`0)2

+
1

(`0`1)2
+

1
(`0`1`2)2

+ · · ·+ 1
(`0`1 · · · `n)2

)
for some n, where `n := logn x.

The proof of the “only if” direction uses valuation theory, see [63], Theorem 3,
part (3). The statement there is not quite correct: after “has a nonzero solution
in some Hardy field” add “each infinitely increasing element of which is > `n for
some n.” (This is connected with the gap problem discussed in Section 4 below.)
For the converse, one passes to the first-order Ricatti equation

(1.4) 2z′ + z2 = f
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associated to (1.2) which is satisfied by z = 2y† whenever y is a non-zero solution to
(1.2). An oscillating solution to (1.4) is a non-zero germ z ∈ G1 satisfying (1.4)
for which there exists a sequence {xn} of real numbers with xn → +∞ as n→ +∞
and z(xn) = 0 for all sufficiently large n. We say that f generates oscillations
if (1.4) has an oscillating solution. In this case, every non-zero solution of (1.4)
in G1 is oscillating. Also, if f satisfies the inequalities (1.3) for all n, then f does
not generate oscillations ([31], p. 325), and every solution z ∈ G1 to (1.4) lives in
a Hardy field extension of K. By finding a non-trivial solution to the first-order
equation 2y′ − zy = 0 in a bigger Hardy field we obtain the desired non-trivial
solution y to our original equation (1.2). With some effort, it is possible to describe
the asymptotic expansions at +∞ of two linearly independent solutions to (1.2),
see [63].

Hardy fields via o-minimal structures. An important natural source for Hardy
fields are o-minimal structures on the field R of real numbers.

Definition 1.13. A structure S on the field R is a family (Sn)n∈N where each
Sn is a collection of subsets of Rn, such that

(1) Rn ∈ Sn, and if A,B ∈ Sn, then A ∪B and Rn \A belong to Sn;
(2) ∆ :=

{
(x, y) ∈ R2 : x = y

}
∈ S2;

(3) the graphs of addition and multiplication on R belong to S3;
(4) if A ∈ Sn, then A× R ∈ Sn+1 and R×A ∈ S1+n;
(5) if A ∈ Sn+1, then π(A) ∈ Sn, where π : Rn+1 → Rn is the projection onto

the first n coordinates: π(x1, . . . , xn+1) = (x1, . . . , xn).

It is because of condition (3) that we are dealing with a structure on the field R,
and not just with a structure on the set R. It is easy to see that for any structure
S on the field R, the ordering {

(x, y) ∈ R2 : x < y
}

of the real line belongs to S2. Usually, such a structure is generated from a collection
A of subsets of the cartesian spaces Rn (for various n) which contains the graphs
of + and × by adding to A the equality relation ∆ and closing off under union,
complement, cartesian products with R and projections. In this way we obtain
S = RA, the smallest structure on the field R containing A. The sets in a structure
S on the field R are traditionally called definable when S is clear from context. If
S is given in the form S = RA, we also say that a set A ∈ S is definable from A.

Let S be a structure on the field R. If every singleton {r} with r ∈ R is definable,
then every interval is definable. Here and below, interval always refers to an open
interval (a, b) with a < b in R∞ = R ∪ {±∞}. It is often a routine matter to
check that a geometric construction of finitary nature, when applied to definable
sets, again produces definable sets. For example, the interior and the closure of a
definable subset of Rn are also definable. (We refer to [18] for proofs of these and
other basic facts about structures.) A map f : A→ Rn with A ⊆ Rm is said to be
definable, if its graph is a definable subset of Rm+n.

Example. Let alg be the collection whose elements are the singletons {r} with
r ∈ R and the graphs of addition and multiplication (as subsets of R3). Then Ralg

is the smallest structure on the field R in which all singletons are definable. The
definable subsets of Rn are exactly the semialgebraic subsets of Rn, that is, boolean
combinations of sets of the form

{
x ∈ Rn : f(x) > 0

}
where f is a polynomial with
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real coefficients in n indeterminates. (That every semialgebraic subset is definable
is easy to show— that they are exactly the definable sets is the content of the
Tarski-Seidenberg Theorem [66], [72].)

Semialgebraic sets have many remarkable finiteness properties, see [8]. For ex-
ample, every semialgebraic set has only finitely many connected components, each
of which is again semialgebraic. In general, however, the sets definable from a
given collection A may be much more complex than the sets in A, even patho-
logical. (For instance, if we add to alg from the previous example also the set Z
of integers, then each Borel subset of each Rn becomes definable; see [18], p. 16.)
One is usually interested in structures whose sets have tame topological properties
(similar to the semialgebraic sets). A simple condition which ensures this is the
o-minimality axiom:

Definition 1.14. A structure S on the field R is called o-minimal (abbreviating
order-minimal) if the sets in S1 are exactly the subsets of R which have only finitely
many connected components (i.e., are finite unions of intervals and points).

This definition of o-minimality concerns only the definable subsets of R, but it
yields the kind of finiteness properties of subsets of higher cartesian power Rn that
are familiar from semialgebraic geometry. For example, every set in an o-minimal
structure on the field R has only finitely many connected components, each of which
also belongs to the same o-minimal structure. We refer to [18] for a development
of this kind of tame topology. Of relevance here is the following result describing
the one-variable definable functions:

Theorem 1.15. (Smooth Monotonicity Theorem, [16].) Let S be an o-minimal
structure on the field R, and let f : I → R be a definable function on an interval
I = (a, b), where a, b ∈ R∞ = R ∪ {±∞}, a < b. Given a positive integer p, there
are real numbers a1, . . . , ak with a = a0 < a1 < · · · < ak < ak+1 = b such that for
each i = 0, . . . , k the restriction f |(ai, ai+1) is of class Cp, and either constant, or
strictly increasing, or strictly decreasing.

(For all presently known o-minimal structures on the field R, the Smooth Mono-
tonicity Theorem holds even with p = ∞. There are, however, o-minimal struc-
tures on R containing definable functions which are not piecewise analytic, see
Example (2) below.)

The class of semialgebraic sets is clearly o-minimal. In the last 20 years there
have been many constructions of o-minimal structures on the field R that strictly
extend Ralg, with interesting consequences also in geometry. We shall only mention
a few such constructions, referring the reader to [19] for more examples and further
details concerning Examples (1) and (3) below:

Example 1. Let an be the collection which consists of alg as well as the graphs
of all analytic functions f on In (for various n), that is, f = g|In for some real
analytic function g on an open neighborhood of In; here and in the next example
I = [−1, 1]. The subsets of Rn definable from an are exactly the sets that are
subanalytic in the projective space Pn(R), as was shown in [17] using Gabrielov’s
theorem of the complement [26]. Equivalently, a set S ⊆ Rn is definable from an
if and only if τ(S) is the image under the projection map In+k → In of the zero
set of an analytic function on In+k, for some k. Here τ : Rn → In is the map
(x1, . . . , xn) 7→

(
x1/
√

1 + x2
1, . . . , xn/

√
1 + x2

n

)
. It is a result of  Lojasiewicz [45]
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that zerosets of analytic functions on cubes IN have only finitely many connected
components; it follows that Ran is o-minimal.

Example 2. A remarkable recent generalization of Example (1) is due to Rolin,
Speissegger and Wilkie [55]. Fix a sequence M = (M0,M1, . . . ) of real numbers
with 1 6 M0 6 M1 6 · · · which satisfies

∞∑
i=0

Mi

Mi+1
= +∞ and

(
Mi

i!

)2

6
Mi−1

(i− 1)!
· Mi+1

(i+ 1)!
for all i > 0.

Let Cn(M) be the class of all functions f : In → R with f = g|In for some C∞-
function g on an open neighborhood U of In such that for some A ∈ R>0,

|g(i)(x)| 6 A|i|+1M|i| for all x ∈ U and i ∈ Nn.

We call Cn(M) the Denjoy-Carleman class on In associated to M . It is
well-known that Cn(M) is a quasi-analytic class, that is, the Taylor series of any
f ∈ Cn(M) at any point of (−1, 1)n uniquely determines f among all functions in
Cn(M). Put M (j) := (Mj ,Mj+1, . . . ) for j ∈ N, and let C(M) be the collection
consisting of alg as well as the graphs of all functions f that belong to Cn(M (j))
for some n and j. The main result of [55] is that RC(M) is an o-minimal structure
on the real field. If Mi = i! for all i > 0, then RC(M) = Ran.

Example 3. Let alg, exp be the collection consisting of alg and the graph of the
usual exponential function on R. By a remarkable theorem of Wilkie [73], the sets
definable from alg, exp are exactly the subexponential sets: An exponential
set in Rn is a set of the form{

x ∈ Rn : P (x1, . . . , xn, e
x1 , . . . , exn) = 0

}
,

where P is a polynomial with real coefficients in 2n indeterminates, and a subex-
ponential set in Rn is the image of an exponential set in Rn+k (for some k) under
the projection Rn+k → Rn onto the first n coordinates. By Khovanskii [37] the
exponential sets, and hence the subexponential sets, have only finitely many con-
nected components. Thus Ralg,exp is o-minimal. By adapting Wilkie’s methods,
one may also show that Ran,exp is o-minimal, where an, exp consists of an together
with the graph of the exponential function [24].

An important consequence of the Smooth Monotonicity Theorem is the following:

Corollary 1.16. Let S be an o-minimal structure on R. The germs of definable
real valued functions on half-lines (a,+∞), a ∈ R, form a Hardy field, which we
denote by H(S).

For some o-minimal structures on R, the associated Hardy fields can be described
explicitly:

Examples. A Puiseux series in x−1 with real coefficients is a formal series

(1.5) f =
∞∑

i=k

aix
−i/d with d, k ∈ Z, d > 0, and ai ∈ R for all i ∈ Z, i > k.

For d = 1 we have a (formal) Laurent series in x−1 with coefficients in R. We add
and multiply Puiseux series in the natural way, and with these operations the set
P(R) of Puiseux series is a field containing the set R[[xZ]] = R((x−1)) of Laurent
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series in x−1 as a subfield. We make P(R) into an ordered differential field by means
of the ordering given by

f > 0 :⇐⇒ ak > 0,

for f as in (1.5) with ak 6= 0, and the derivation

f =
∞∑

i=k

aix
−i/d 7→ f ′ :=

∞∑
i=k

ai(−i/d)x−(i+d)/d.

The ordered differential field H(Ralg) is isomorphic to the ordered differential sub-
field of P(R) consisting of all Puiseux series that are algebraic over the field of
rational functions R(x). The ordered differential field H(Ran) is isomorphic to the
ordered differential subfield of P(R) consisting of the real Puiseux series in x−1 that
converge for all sufficiently large values of x. In both cases, the isomorphism from
series field to Hardy field is given by summing the convergent series for sufficiently
large real values of x. The Hardy field H(Ralg,exp) contains Hardy’s field of germs
of logarithmic-exponential functions (as an ordered differential subfield).

While o-minimal structures on the field R yield interesting examples of Hardy
fields, conversely, Hardy field theory also has striking applications to o-minimality.
An example, is the following dichotomy found by C. Miller [48].

Theorem 1.17. Let S be an o-minimal structure on the field R. Then either the
exponential function is definable, or for each each f ∈ H(S) there exists n such
that |f | < xn.

The proof of this theorem, besides special properties of H(S) (closure under
composition) uses the following observation on Hardy fields due to Rosenlicht [60]
(Proposition 6): if a germ f belongs to a Hardy field K ⊇ R and f > xn for all n,
then there is g ∈ K such that g ∼ log f .

If the second alternative in the theorem above holds, we say that S is polynomi-
ally bounded. (For example, Ran and RC(M) are polynomially bounded, whereas
Ralg,exp clearly is not.) If S is a polynomially bounded o-minimal structure on
the field R, then the value group of H(S) is naturally isomorphic to the ordered
additive group of a subfield of R, see [48]. In particular, H(S) has rank 1.

2. The Field of Logarithmic-Exponential Series

In this section, we first introduce fields of transseries with monomials from an
ordered abelian group. An important example is the field of logarithmic-exponential
series. We discuss some of its basic properties and outline its construction.

Transseries fields. Let M be an ordered abelian group, written multiplicatively,
with identity 1. We refer to the elements of M as monomials, write the ordering
on M as 4, and put m ≺ n if m 4 n and m 6= n, for m, n ∈ M. Let C be a field.
(Usually, C = R.) A transseries with coefficients in C and monomials from M is
a mapping f : M → C whose support

supp f :=
{
m ∈ M : f(m) 6= 0

}
is noetherian (or anti-well-ordered), that is, there exists no infinite sequence
m1,m2, . . . of monomials in supp f with m1 ≺ m2 ≺ · · · . We put fm = f(m), and



ASYMPTOTIC DIFFERENTIAL ALGEBRA 15

we usually write f as a formal sum

f =
∑

m∈M

fmm.

We denote the set of transseries with coefficients in C and monomials from M by
C[[M]]. It was first noted by Hahn [27] that C[[M]] is a field with respect to the
natural addition and multiplication of transseries:

f + g =
∑

m∈M

(fm + gm) m, f · g =
∑

m∈M

( ∑
u·v=m

fu · gv

)
m.

We call C[[M]] the transseries field with coefficients in C and monomials from
M. It contains C as a subfield, identifying c ∈ C with the series f ∈ C[[M]] such
that f1 = c and fm = 0 for m 6= 1. Given f ∈ C[[M]] we call f1 ∈ C the constant
term of f .

Example. Let R be an ordered subgroup of the ordered additive group R, and
let M = xR be a multiplicative copy of R, with order-preserving isomorphism
r 7→ xr : R → xR. Then C[[M]] = C[[xR]] is a transseries field with coefficients
in C and monomials of the form xr, r ∈ R. Taking R = Z we obtain the field of
formal Laurent series in descending powers of x with coefficients in C. Moreover
we have P(R) =

⋃
n>0 R[[x

1
n Z]] (inside R[[xQ]]).

The support of any non-zero transseries f ∈ C[[M]], being noetherian, has a
maximal element (with respect to 4), called the dominant monomial

d(f) = max supp f

of f . We also set d(0) := 0, and extend 4 to a linear ordering on {0} ∪ M by
declaring 0 4 m for m ∈ M. This linear ordering is extended to a binary relation
on C[[M]] by

f 4 g :⇐⇒ d(f) 4 d(g).
Every transseries f ∈ C[[M]] can be decomposed as

f = f↑ + f1 + f↓

where

f↑ =
∑
m�1

fmm (infinite part of f),

f↓ =
∑
m≺1

fmm (infinitesimal part of f).

This gives rise to a decomposition of C[[M]] into a direct sum of C-vector spaces:

C[[M]] = C[[M]]↑ ⊕ C ⊕ C[[M]]↓

where

C[[M]]↑ :=
{
f ∈ C[[M]] : m � 1 for all m ∈ supp f

}
C[[M]]↓ :=

{
f ∈ C[[M]] : m ≺ 1 for all m ∈ supp f

}
.

(These notations are from [32].)
The field C[[M]] comes with a natural notion of summation of (possibly infinite)

families of elements of C[[M]]: Such a family (fi)i∈I is called noetherian if the
union

⋃
i∈I supp fi is noetherian, and given m ∈ M there are only finitely many
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i ∈ I with m ∈ supp fi; in this case we define
∑

i∈I fi to be the element of C[[M]]
such that

(∑
i∈I fi

)
(m) =

∑
i∈I fi(m) for all m ∈ M.

Ordering of transseries. Suppose that C is an ordered field. Then we make
C[[M]] into an ordered field extension of C as follows: for 0 6= f ∈ C[[M]] define

f > 0 :⇐⇒ fd(f) > 0.

The ordered field C[[M]] is real closed if and only if C is real closed and M is
divisible (see, e.g., [51], §8). Note that for f, g ∈ C[[M]],

f 4 g ⇐⇒ |f | 6 c|g| for some c ∈ C>0,

and that 4 is a dominance relation on the ordered field C[[M]]. The map

m 7→ v(m) : M → Γ

is an isomorphism from the multiplicatively written group M of monomials of
C[[M]] onto the additively written value group Γ of C[[M]]. This group isomor-
phism is order-reversing:

m 4 n ⇐⇒ v(m) > v(n).

Suppose M1 and M2 are subgroups of M with M1 convex in M, M = M1 · M2,
and M1 ∩M2 = {1}. Then we have an ordered field isomorphism

f =
∑

m∈M

fmm 7→
∑

m2∈M2

( ∑
m1∈M1

fm1m2m1

)
m2 : C[[M]] → C[[M1]][[M2]]

which is the identity on C. We identify C[[M]] and C[[M1]][[M2]] via this isomor-
phism whenever convenient.

Logarithmic-exponential series. Alling [1] (and Laugwitz [42] in a special case)
extended analytic functions to the field R[[M]] as follows. Every analytic function
f : I → R, where I = (a, b) ⊆ R is an interval (a, b ∈ R∞, a < b) extends naturally
to f̂ : Î → R[[M]], where

Î :=
{
g ∈ R[[M]] : a < g < b

}
=
{
c+ ε : c ∈ I, ε ∈ R[[M]]↓

}
,

f̂(c+ ε) :=
∞∑

n=0

f (n)(c)
n!

εn for c ∈ I and ε ∈ R[[M]]↓.

The infinite sum on the right-hand side makes sense in R[[M]] since the family( f(n)(c)
n! εn

)
n∈N is noetherian; see [21]. For example, the real exponential function

c 7→ ec : R → R>0 extends to the function

(2.1) c+ ε 7→ ec+ε := ec ·
∞∑

n=0

εn

n!
(c ∈ R and ε ∈ R[[M]]↓)

from R̂ = R⊕R[[M]]↓ to R[[M]]>0. Likewise, every analytic function U → R, where
U ⊆ Rn is open, extends naturally to an R[[M]]-valued function with domain the set
of all points in R[[M]]n at infinitesimal distance to a point in U . It follows that the
analytic functions on cubes [−1, 1]N extend naturally to the corresponding cubes
over R[[M]]; this leads to a better understanding of Ran, see [21].

One drawback is that R[[M]] does not support a reasonable (total) exponential
function if M 6= {1}. For example, since x > R in R[[xZ]], we must expect any such
operation on R[[xZ]] to satisfy expx > xn for all n, which is clearly impossible.
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The next theorem, due to F.-V. Kuhlmann, S. Kuhlmann and S. Shelah [40] (see
also [41]) is a general negative result of this kind. Here and below, an exponential
function on an ordered field K is an isomorphism f 7→ exp(f) between the ordered
additive group of K and the ordered multiplicative group K>0 of positive elements
of K. (In this case we often write ef instead of exp(f), and the inverse of exp is
usually denoted by log : K>0 → K.)

Theorem 2.1. If M 6= {1}, then there does not exist an exponential function on
the ordered field R[[M]].

Nonetheless, we can extend xZ canonically to a large ordered multiplicative group
MLE of so-called LE-monomials, and R[[xZ]] to a real closed subfield R[[xR]]LE of
the transseries field R[[MLE]], such that MLE ⊆

(
R[[xR]]LE

)>0 inside R[[MLE]], and
such that the usual exponential function on R extends canonically to an exponential
function on R[[xR]]LE. We call R[[xR]]LE the field of logarithmic-exponential
series (or LE-series). (In [23] the notation R((x−1))LE was used.) The elements
of R[[xR]]LE are infinite series of LE-monomials arranged from left to right in de-
creasing order and multiplied by real coefficients. Typical example:

eex

+
√

2ex − log x︸ ︷︷ ︸
infinite part

+ 42 + x−1 + x−2 + · · ·+ e−x + e−x2
+ · · ·︸ ︷︷ ︸

infinitesimal part

.

We construct R[[xR]]LE at the end of this section. Here are some of its properties
(from [23]):

Differentiation. The field of LE-series has a natural derivation f 7→ f ′ respecting
infinite summation, with constant field R, x′ = 1 and (ef )′ = f ′ · ef . For example,

(e−x + e−x2
+ e−x3

+ · · · )′ = −(e−x + 2xe−x2
+ 3x2e−x3

+ · · · ).

Integration. Every LE-series f has an antiderivative, that is, an LE-series g ∈
R[[xR]]LE with g′ = f . Hence R[[xR]]LE has a natural integration operator f 7→

∫
f

associating to f its unique antiderivative in R[[xR]]LE with constant term zero. For
example, ∫

ex

x
=

∞∑
n=0

n!x−1−nex.

The operator
∫

also commutes with infinite summation.

Composition. Given LE-series f, g with g > R it is possible to substitute g for x
in f , in this way forming the composite f ◦ g = f(g) ∈ R[[xR]]LE. For example, if
f = eex

+
√

2ex − log x and g = x+ log x, then

f(g) = exex

+
√

2xex − log(x+ log x)

= exex

+
√

2xex −
(

log x+ log
(

1 +
log x
x

))
= exex

+
√

2xex − log x+
∞∑

n=1

(−1)n

n

(
log x
x

)n

Put R[[xR]]LE
∞ :=

{
f ∈ R[[xR]]LE : f > R

}
, the set of positive infinite elements of

R[[xR]]LE. Substituting any fixed g ∈ R[[xR]]LE
∞ is an ordered field embedding

f 7→ f ◦ g : R[[xR]]LE → R[[xR]]LE
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obeying the chain rule (f ◦ g)′ = (f ′ ◦ g) · g′. Also, R[[xR]]LE
∞ is a group under the

composition operation ◦, with identity element x.

Cofinality of iterated exponentials. The sequence

`0 := x, `1 := log x, . . . , `n := log log · · · log x (n times), . . .

is coinitial in R[[xR]]LE
∞ : for every f ∈ R[[xR]]LE

∞ there exists n such that `n < f .
Dually, the sequence of iterated exponentials

e0 := x, e1 := expx, . . . , en := exp exp · · · expx (n times), . . .

is cofinal in R[[xR]]LE: for every f ∈ R[[xR]]LE there exists n with f < en.

Although the construction of R[[xR]]LE is purely algebraic, many LE-series do
have an analytic origin: they often arise as asymptotic expansions of real-valued
functions at +∞ in terms of LE-monomials.

Example. The Stirling expansion for Euler’s Γ-function: as x→ +∞,

log Γ(x) ∼
(
x− 1

2

)
log x− x+

1
2

log(2π) +
∞∑

k=1

B2k

2k(2k − 1)
x1−2k,

where B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , . . . are the Bernoulli numbers with positive

even index. The series on the right hand side diverges for all x > 0.

A profound analytic source for LE-series are the analyzable functions encountered
in the work of Écalle [25] on Hilbert’s 16th problem about limit cycles of planar
polynomial vector fields. A smaller natural class of LE-series in [25] emerges also
in [21] as part of a characterization of the functions definable in Ran,exp:

Theorem 2.2. There exists an embedding

e : H(Ran,exp) → R[[xR]]LE

of ordered differential fields which is the identity on R and sends the germ x to the
element x of R[[xR]]LE.

The series in the image of e can be seen as convergent LE-series; in [25] they
are called “transséries convergentes.” They arise as asymptotic expansions, for
x→ +∞, of solutions y ∈ G1 to implicit equations like P (x, y, log x, ex, ey, ey2

) = 0,
where P is a polynomial with real coefficients in six indeterminates.

The embedding e in Theorem 2.2 may be regarded as a formal expansion operator
which associates to a germ f ∈ H(Ran,exp) an asymptotic expansion in terms of
LE-monomials. It respects the algebraic operations and the ordering on H(Ran,exp)
and R[[xR]]LE, respectively, but also the analytic and exponential structure on these
two fields. This has several interesting applications, of which we mention two.

First, since e0, e1, . . . is cofinal in R[[xR]]LE, every germ f ∈ H(Ran,exp) is
bounded by an iterate of the exponential function: the o-minimal structure Ran,exp

on R is exponentially bounded. It is unknown whether there exist o-minimal
structures on the field R that are not exponentially bounded. (By [13] there do
exist Hardy fields with germs f such that f > expn x for all n.)

A second application concerns a question from [28]: is there a positive infi-
nite LE-function whose compositional inverse is not asymptotic to an LE-function?
Hardy suggested the LE-function (log x)(log log x) as a counterexample. Shackell
[68] answered the question positively by showing that the compositional inverse
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of (log log x)(log log log x) is not asymptotic to an LE-function; his techniques did
not apply to (log x)(log log x). The embedding e is used in [22] to confirm Hardy’s
suggestion that the compositional inverse of (log x)(log log x) is not asymptotic to
an LE-function. (Another proof of this suggestion is by van der Hoeven [32].)

The derivation of R[[xR]]LE. We equip the ordered differential field of LE-series
with the restriction of the dominance relation on R[[MLE]] to R[[xR]]LE, also de-
noted by 4. The rules of Proposition 1.4, which relate the derivation of a Hardy
field with its ordering and dominance relation, remain true for the field of LE-series:

Proposition 2.3. Let 0 6= f, g ∈ R[[xR]]LE.
(1) If f � 1, then f† > 0.
(2) If f 4 1, then f − c ≺ 1 for some c ∈ R.
(3) If f 4 1, g 6� 1, then f ′ ≺ g†.
(4) If f, g 6� 1, then f 4 g ⇐⇒ f ′ 4 g′.
(5) If f 4 1, then f ′ ≺ 1.

For a proof, see [23], Propositions 4.1 and 4.3. Many more asymptotic-differential
properties of Hardy fields are valid for the field of LE-series. As an example, here
is an analogue of Theorem 1.12:

Theorem 2.4. Let f ∈ R[[xR]]LE. Then the equation

4y′′ − fy = 0

has a non-trivial solution in R[[xR]]LE if and only if

f > −
(

1
(`0)2

+
1

(`0`1)2
+

1
(`0`1`2)2

+ · · ·+ 1
(`0`1 · · · `n)2

)
for some n.

This theorem was stated in [23]; for a proof in the right setting, see [7].

Construction of R[[xR]]LE. The field of LE-series is obtained from the field

K0 := R[[M0]], with M0 := xR,

by an inductive procedure of exponentiation and taking logarithms. Since there
is no reasonable way to define exp f as an element of K0 for f ∈ K↑

0 , we enlarge
K0 = R[[M0]] to a bigger series field K1 = R[[M1]] such that exp f ∈ K1 for all
f ∈ K↑

0 : take a multiplicative copy exp(K↑
0 ) of the ordered additive subgroup K↑

0

of K0, with order-preserving isomorphism

f 7→ exp f : K↑
0 → exp(K↑

0 ),

and form the direct product of multiplicative groups

M1 := exp
(
K↑

0

)
·M0.

Order M1 lexicographically: for f ∈ K↑
0 , m ∈ M0, put

exp(f) ·m < 1 ⇐⇒ f > 0 or (f = 0 and m < 1 in M0).

The natural identification of M0 with an ordered subgroup of M1 makes K0 an
ordered subfield of K1. Define exp g ∈ K>0

1 for g ∈ K0 by

exp(f + c+ ε) := exp(f) · ec+ε (f ∈ K↑
0 , c ∈ R, ε ∈ K↓

0 ),
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with ec+ε as in (2.1). Now K1 has the same defect as K0: there is no reasonable
way to define exp f as an element of K1 for f ∈ K1 with d(f) � M0. In order to
add the exponentials of such elements to K1, enlarge K1 to a field K2 just as K0

was enlarged to K1. More generally, consider a tuple (K,A,B, exp) where
(1) K is an ordered field;
(2) A and B are additive subgroups of K with K = A⊕B and B convex in K;
(3) exp: B → K>0 is a strictly increasing homomorphism.

We call such a tuple a pre-exponential ordered field. So (K0, A0, B0, exp0) with
A0 := K↑

0 , B0 := R ⊕K↓
0 and exp0 : B0 → K>0

0 given by (2.1) (for M = xR) is a
pre-exponential ordered field. Given a pre-exponential ordered field (K,A,B, exp),
define a pre-exponential ordered field (K ′, A′, B′, exp′) as follows: Take a multiplica-
tive copy exp(A) of the ordered additive group A with order-preserving isomorphism
expA : A→ exp(A), and put

K ′ := K[[exp(A)]], A′ := (K ′)↑, B′ := K ⊕ (K ′)↓,

and we define exp′ : B′ → (K ′)>0 by

exp′(a+ b+ ε) := expA(a) · exp(b) ·
∞∑

n=0

εn

n!

for a ∈ A, b ∈ B, ε ∈ (K ′)↓. Note that then exp′ is defined on the whole field K
and extends exp. Moreover, if K = R[[M]] for some multiplicative ordered abelian
group M, then K ′ = R[[M′]] where M′ = exp(A) · M, ordered lexicographically.
Inductively, set

(Kn+1, An+1, Bn+1, expn+1) := (K ′
n, A

′
n, B

′
n, exp′n).

Then Kn = R[[Mn]] with Mn = xR · expn(An−1 ⊕ · · · ⊕A0), and we put

R[[xR]]E :=
⋃
n

R[[Mn]], ME :=
⋃
n

Mn,

the field of exponential series, and the group of exponential monomials, re-
spectively. Thus R[[xR]]E ⊆ R[[ME]], as ordered field. Let

exp: R[[xR]]E →
(
R[[xR]]E

)>0

be the common extension of all the expn. This map is a strictly increasing group
homomorphism, but is not surjective since x 6= exp(f) for every f ∈ R[[xR]]E. We
now indicate how to remove this defect by enlarging R[[xR]]E.

Take distinct symbols `0, `1, `2, . . . with `0 = x. Replace, for each n, the formal
variable x in R[[xR]]E by `n, turning the ordered field R[[xR]]E into an isomorphic
copy R[[`Rn]]E, with the function exp on R[[xR]]E turning into a function on R[[`Rn]]E

also denoted by exp, and ME ⊆
(
R[[xR]]E

)>0 turning into an ordered subgroup
M(n) of

(
R[[`Rn]]E

)>0.
One can show there is a unique ordered field embedding R[[`Rn]]E → R[[`Rn+1]]E

that sends `n to exp(`n+1), and that respects infinite summation and exp. (It
maps M(n) into M(n + 1).) Identify R[[`Rn]]E with its image in R[[`Rn+1]]E under
this embedding; so `n = exp(`n+1) and M(n) ⊆ M(n+ 1). Finally, put

R[[xR]]LE :=
⋃
n

R[[`Rn]]E, MLE :=
⋃
n

M(n),
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so R[[xR]]LE ⊆ R[[MLE]]; let exp: R[[xR]]LE →
(
R[[xR]]LE

)>0 be the common ex-
tension of the functions exp on R[[`Rn]]E. For more details, see [23].

3. H-Fields and Asymptotic Couples

Motivated by the similarities between Hardy fields and the field of LE-series (as
ordered differential fields), we introduced in [4] the class of H-fields:

Definition 3.1. An H-field is an ordered differential field K whose natural dom-
inance relation 4 satisfies the following two conditions, for all f ∈ K:

(H1) If f � 1, then f† > 0.
(H2) If f 4 1, then f − c ≺ 1 for some c ∈ C.

Every Hardy field K ⊇ R is an H-field, as is every ordered differential subfield
K ⊇ R of the field of LE-series, by parts (1) and (2) of Proposition 1.4 and 2.3,
respectively. Part (3) of these propositions turns out to be a formal consequence of
the H-field axioms:

Lemma 3.2. Let K be an H-field, and f, g ∈ K×. If f 4 1, g 6� 1, then f ′ ≺ g†.

Proof. By (H2) there exists c ∈ C with f−c ≺ 1; replacing f by f−c if necessary we
may assume f ≺ 1. If g � 1 we replace g by 1/g ≺ 1, noting that (1/g)† = −g† � g†.
So we may assume g ≺ 1. Then, if g < 0 we replace g by −g; hence we may assume
0 < g ≺ 1. By (H1) applied to 1/g in place of f it follows that g′ < 0. Let now
c > 0 in C. Then (c + f)/g > C and (c − f)/g > C, hence taking derivatives in
the last two relations gives f ′g − (c+ f)g′ > 0 and −f ′g − (c− f)g′ > 0, by (H1).
Dividing by g′ < 0 gives

−c+ f < f ′g/g′ < c+ f.

This holds for all positive c ∈ C, so f ′ ≺ g′/g = g†. �

An H-field K is said to be Liouville closed if K is real closed and for each
f ∈ K there exist y, z ∈ K× such that y′ = f and z† = f . Every Liouville closed
Hardy field (as defined in Section 1) containing R is a Liouville closed H-field. The
field R[[xR]]LE of LE-series, or more generally every ordered differential subfield of
R[[xR]]LE which contains R and is closed under exp and

∫
, is a Liouville closed

H-field.

Pre-H-fields. If L is an H-field and K an ordered differential subfield of L, then
the restriction of the natural dominance relation of L to K does not necessarily
agree with the natural dominance relation of K, and even if it does, K need not be
an H-field. However, K with this restricted dominance relation is a pre-H-field in
the following sense:

Definition 3.3. A pre-H-field is an ordered differential field K with a dominance
relation 4 on K such that for all f, g ∈ K:
(PH1) if f 4 1 and 0 6= g ≺ 1, then f ′ ≺ g†;
(PH2) if f � 1, then f† > 0.
Every H-field with its natural dominance relation is a pre-H-field, and every Hardy
field (not necessarily extending R) with its natural dominance relation is a pre-H-
field.
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Remarks. Let K be a pre-H-field (H-field, Liouville closed H-field) and a ∈ K>0.
ThenK with its derivation ∂ replaced by a∂ is again a pre-H-field (H-field, Liouville
closed H-field, respectively). If K is a Hardy field and a = x ∈ K>0, such a change
of derivation amounts to passing from K to the Hardy field

K ◦ ex :=
{
f ◦ ex : f ∈ K

}
,

in other words, a change of the independent variable. Likewise, if K is an ordered
differential subfield of the H-field R[[xR]]LE containing x, then K with its derivation
∂ replaced by x∂ is naturally isomorphic to the ordered differential subfield

K ◦ ex :=
{
f ◦ ex : f ∈ K

}
of R[[xR]]LE. In [32] the notations f↑ := f ◦ ex and f↑n := f↑↑ · · · ↑ (n times)
for f ∈ R[[xR]]LE are used. For every f ∈ R[[xR]]LE there exists n such that
f↑n ∈ R[[xR]]E. This fact is immediate from the construction of R[[xR]]LE, and
often allows one to reduce questions about arbitrary LE-series to the simpler case
of exponential series.

Let K and L be pre-H-fields, with dominance relations 4 and 4L, respectively.
An embedding ϕ : K → L of ordered differential fields is an embedding of pre-
H-fields if f 4 g ⇐⇒ ϕ(f) 4L ϕ(g), for all f, g ∈ K. If K ⊆ L as sets and
the natural inclusion K → L is an embedding of pre-H-fields, we say that L is
a pre-H-field extension of K, and if in addition L is an H-field, we call L an
H-field extension of K. Does every pre-H-field K have an H-field extension? In
other words, does every pre-H-field arise by taking an ordered differential subfield
of an H-field and restricting the natural dominance relation to this subfield, as
indicated before Definition 3.3? In [4] (Corollary 4.6) we gave a positive answer to
this question:

Theorem 3.4. Let K be a pre-H-field. Then K has an H-field extension K̂ such
that any embedding of K into an H-field L extends uniquely to an embedding from
K̂ into L.

An H-field K̂ as in the theorem is necessarily unique, up to unique isomorphism
(of pre-H-fields) over K.

The theorem is proved as follows: Suppose K is a pre-H-field, but not an H-
field. This is witnessed by a bounded r ∈ K such that r′ 6= ε′ for all infinitesimal
ε ∈ K. Thus for K to extend to an H-field, there must exist an element y in
some H-field extension of K such that y′ = r′, y ≺ 1, and K(y) with its induced
ordering, derivation and dominance relation is a pre-H-field. In order to construct
an H-field extension of K, we consider the field extension L = K(y) of K, with y
transcendental over K, and we extend the derivation and the dominance relation
of K to a derivation and dominance relation on K(y) such that y′ = r′ and y ≺ 1.
The key fact shown in the proof of Theorem 3.4 is that (under mild assumptions
on K) this can be done in a unique way such that K(y) remains a pre-H-field. See
[4], Section 4 for details.

The asymptotic couple of a pre-H-field. Part (4) of Proposition 1.4 and 2.3
hold in every pre-H-field, that is: If f and g are non-zero elements of a pre-H-field
K with f, g 6� 1, then by [57], proof of Corollary 1,

f 4 g ⇐⇒ f ′ 4 g′.
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In particular, the valuation v(f ′) of f ′ is uniquely determined by the valuation
v(f) of f ∈ K×, provided f 6� 1. Hence the derivation of K induces a map
ψ : Γ∗ = Γ \ {0} → Γ given by

ψ
(
v(f)

)
= v(f ′)− v(f) = v(f†) for f ∈ K× with v(f) 6= 0.

We also put ψ(0) := ∞ ∈ Γ∞. Following Rosenlicht [56], [58] we call the pair (Γ, ψ)
the asymptotic couple of K. This invariant of a pre-H-field encodes key features
of the interaction between the derivation and the dominance relation:

Lemma 3.5. Let α, β ∈ Γ. Then
(1) ψ(α+ β) > min

{
ψ(α), ψ(β)

}
(so ψ is a valuation on Γ);

(2) ψ(rα) = ψ(α) for r ∈ Z \ {0};
(3) ψ(α) < ψ(β) + |β| for α 6= 0;
(4) If 0 < α 6 β, then ψ(α) > ψ(β).

Proof. Part (1) follows from property (V2) of the valuation v and the logarithmic
derivative identity (fg)† = f† + g†, valid for any non-zero f, g ∈ K. This identity
also implies (fn)† = nf† for all f ∈ K× and all n, from which (2) follows. Part
(3) is just a reformulation of axiom (PH1) for pre-H-fields. For a proof of (4) see
Lemma 2.2 in [4]. �

With id denoting the identity function on Γ, we have

ΨK := ψ(Γ∗) = ψ
(
Γ>0

)
=
{
v(f†) : 0 6= f ≺ 1

}
,

(id +ψ)(Γ∗) =
{
v(f ′) : 0 6= f 6� 1

}
,

(id +ψ)
(
Γ>0

)
=
{
v(f ′) : 0 6= f ≺ 1

}
.

Let K be an H-field. If f ∈ K× and v(f) ∈ (id +ψ)(Γ∗), then f is asymptotically
integrable in K in the sense that there exists g ∈ K with g′ ∼ f . We say that
K is closed under asymptotic integration if every f ∈ K× is asymptotically
integrable.

Examples. If K = R(x), then Γ = Zv(x) with v(x) < 0, so ψ(α) = v(x−1) = −v(x)
for all α ∈ Γ∗. Next, consider the Hardy field K = R(x, ex). Then

Γ = Zv(e−x)⊕ Zv(x−1), ordered lexicographically,

i.e., for r, s ∈ Z: rv(e−x) + sv(x−1) > 0 ⇐⇒ either r > 0, or r = 0 and s > 0. We
can describe ψ : Γ∗ → Γ by

ψ(α) =

{
0 if r 6= 0
v(x−1) if r = 0

for α = rv(e−x) + sv(x−1) with r, s ∈ Z, not both zero. An element f ∈ K× is
asymptotically integrable in K if and only if f 6� x−1.

Asymptotic couples. Abstractly, Rosenlicht [58] defined an asymptotic couple
to be a pair (Γ, ψ) where Γ is an ordered abelian group and ψ : Γ∗ = Γ \ {0} → Γ is
a function such that Lemma 3.5, (1)–(3) hold for all α, β ∈ Γ, where ψ is extended
to all of Γ by setting ψ(0) := ∞. In a series of papers [56], [57], [58] he studied
algebraic properties of asymptotic couples, focusing on the case where the ordered
abelian group Γ has finite rank. Our papers [3] and [2] continue this work, but with
another focus.
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H-asymptotic couples. The map ψ of an asymptotic couple coming from a pre-
H-field is decreasing on Γ>0, as stated in Lemma 3.5, (4). We say that an asymp-
totic couple (Γ, ψ) is of H-type, or an H-asymptotic couple for short, if (4) in
Lemma 3.5 holds. We will refer to (1), (2), (3), (4) of Lemma 3.5 as axioms (1),
(2), (3), (4), respectively, for H-asymptotic couples. Below we deal mainly with
H-asymptotic couples whose underlying ordered abelian group is divisible. We can
always put ourselves in this situation: If (Γ, ψ) is an asymptotic couple of H-type,
then there is a unique function ψ′ : (QΓ)∗ → Γ such that (QΓ, ψ′) is an asymptotic
couple of H-type and ψ′|Γ∗ = ψ. ([4], Lemma 2.14.)

Properties of the map ψ. Below, (Γ, ψ) is an H-asymptotic couple, and we put
Ψ := ψ(Γ∗). By axioms (2) and (4) of H-asymptotic couples, the function ψ is
constant on archimedean classes of Γ. (Therefore, if Γ has finite rank, then Ψ is
finite.) Moreover, ψ is contracting :

α, β ∈ Γ∗, α 6= β =⇒
[
ψ(α)− ψ(β)

]
< [α− β].

Hence the map x 7→ x + ψ(x) : Γ∗ → Γ is strictly increasing. We refer to [2] for
proofs of these and the following facts, due to Rosenlicht [58]: The set (id +ψ)

(
Γ>0

)
is closed upward, the set (id +ψ)

(
Γ<0

)
is closed downward, and

(− id +ψ)
(
Γ>0

)
= (id +ψ)

(
Γ<0

)
=
{
α ∈ Γ : α < ψ(x) for some x ∈ Γ∗

}
.

Moreover, three mutually exclusive alternatives arise:

(A1) id +ψ : Γ∗ → Γ is surjective;
(A2) Ψ has a largest element;
(A3) there is an element γ ∈ Γ such that Ψ < γ < (id +ψ)

(
Γ>0

)
.

There can only be one γ as in (A3).

Examples. The asymptotic couple associated to a Liouville closed H-field satisfies
(A1). In fact, the asymptotic couple of an H-field K satisfies (A1) if and only if K
is closed under asymptotic integration. If Γ has finite non-zero rank, then (Γ, ψ)
satisfies (A2). If Γ = {0}, then (A3) holds. For an example of an H-field whose
asymptotic couple (Γ, ψ) satisfies (A3) and Γ 6= {0}, see Section 4 below.

Figure 1 shows the qualitative behavior of the functions ψ and id +ψ.

Comparability in pre-H-fields. If (Γ, ψ) is the asymptotic couple associated to
a Hardy field K, then we have an order-reversing bijection [γ] 7→ ψ(γ) from the set
[Γ∗] of non-zero archimedean classes of Γ onto the set Ψ = ψ(Γ∗). Hence

Cl(f) 7→ ψ
(
v(f)

)
= v(f†) (where 1 ≺ f ∈ K)

is an order-reversing bijection between the set of comparability classes of K and the
set Ψ, see [60]. The last assertion is true for all pre-H-fields, if we use the correct
generalization of comparability class:

Definition 3.6. Let K be a pre-H-field and 1 ≺ f, g ∈ K. We set

(1) f �� g :⇐⇒ f† 4 g† ⇐⇒ ψ
(
v(f)

)
> ψ

(
v(g)

)
,

(2) f −� g :⇐⇒ f† � g† ⇐⇒ ψ
(
v(f)

)
= ψ

(
v(g)

)
,

(3) f ≺≺ g :⇐⇒ f† ≺ g† ⇐⇒ ψ
(
v(f)

)
> ψ

(
v(g)

)
.
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Γ ↑

→ Γ
◦

β = α+ ψ(α)

β = ψ(α)

Figure 1

We say that f is flatter than g if f ≺≺ g, and that f and g are comparable
if f −� g. Comparability is an equivalence relation on {f ∈ K : f � 1}. The
corresponding equivalence class of f � 1 is called its comparability class, and
written as Cl(f). We linearly order the set of comparability classes by setting

Cl(f) 6 Cl(g) :⇐⇒ f �� g.

We then have an order reversing bijection

Cl(f) 7→ ψ
(
v(f)

)
= v(f†)

from the set of comparability classes onto the subset Ψ of Γ.

Example. In R[[xR]]LE we have

· · · ≺≺ `n+1 ≺≺ `n ≺≺ · · · ≺≺ `1 ≺≺ `0 = e0 ≺≺ e1 ≺≺ · · · ≺≺ en ≺≺ en+1 ≺≺ · · · .
The ordering on the set of comparability classes of K = R[[xR]]LE (in fact, of any
Liouville closed H-field K) is dense: if Cl(f) < Cl(g), where 1 ≺ f, g ∈ K, then
Cl(f) < Cl(h) < Cl(g) for some 1 ≺ h ∈ K.

Remark 3.7. Proposition 1.5 above remains true for extensions of H-fields, with
the notion of comparability class defined above.

H-asymptotic triples. Our aim is to describe an elimination theory for the H-
asymptotic couples of Liouville closed H-fields. Towards this goal we introduce
the notions of cut and H-asymptotic triple. A cut of an H-asymptotic couple
(Γ, ψ) is a set P ⊆ Γ which is closed downward in Γ, contains Ψ, and is disjoint
from (id +ψ)

(
Γ>0

)
. (So P < (id +ψ)

(
Γ>0

)
.) If (A1) or (A2) holds, then the set

P1 := Γ \ (id +ψ)
(
Γ>0

)
is the only cut of (Γ, ψ). If (A3) holds, that is,

Ψ < γ < (id +ψ)
(
Γ>0

)
,

for a (necessarily unique) γ ∈ Γ, then (Γ, ψ) has exactly two cuts, namely

P1 := Γ \ (id +ψ)
(
Γ>0

)
= Γ6γ , P2 := P1 \ {γ} = Γ<γ .
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In [3], Definition 6.2, we introduced the following notion, under the somewhat
technical name “H0-triple”:

Definition 3.8. An asymptotic triple of H-type, or H-asymptotic triple for
short, is a triple (Γ, ψ, P ), where (Γ, ψ) is an H-asymptotic couple and P a cut of
(Γ, ψ), such that

(1) Γ is divisible and
(2) there exists a positive element 1 of Γ with ψ(1) = 1; equivalently, 0 ∈

(id +ψ)
(
Γ<0

)
.

The element 1 ∈ Γ in (2) is unique, since id +ψ is strictly increasing on Γ∗. An
H-asymptotic triple (Γ, ψ, P ) is said to be closed if

(1) (id +ψ)(Γ∗) = Γ and
(2) Ψ = (id +ψ)

(
Γ<0

)
.

(In this case, Ψ is the only cut of (Γ, ψ), so necessarily P = Ψ.)

Example. The derivation of an H-field K preserves infinitesimals if ε′ ≺ 1 for
all ε ≺ 1 in K. Suppose K is a Liouville closed H-field whose derivation preserves
infinitesimals, and let (Γ, ψ) be the asymptotic couple of K. Then we associate to
K the H-asymptotic triple (Γ, ψ,Ψ), with 1 = v(x−1), where x ∈ K satisfies x′ = 1.
This asymptotic triple is closed.

The role of the element 1 ∈ Γ is just to provide a convenient normalization: If K
is any H-field with derivation ∂, then there exists a ∈ K>0 such that a∂ preserves
infinitesimals. (See the remarks following Definition 3.3.)

Closure of H-asymptotic triples. Let (Γ, ψ, P ) and (Γ′, ψ′, P ′) beH-asymptotic
triples. An embedding

ϕ : (Γ, ψ, P ) → (Γ′, ψ′, P ′)

is by definition an embedding ϕ : Γ → Γ′ of ordered abelian groups such that
ϕ(ψ(α)) = ψ′(ϕ(α)) for all α ∈ Γ∗ and ϕ−1(P ′) = P . If Γ ⊆ Γ′ as sets, and the
natural inclusion Γ → Γ′ is an embedding (Γ, ψ, P ) → (Γ′, ψ′, P ′), then (Γ′, ψ′, P ′)
is called an extension of the H-asymptotic triple (Γ, ψ, P ), and we indicate this
by writing (Γ, ψ, P ) ⊆ (Γ′, ψ′, P ′). Every H-asymptotic triple extends to a closed
one ([3], Corollaries 5.3 and 6.1):

Theorem 3.9. Every H-asymptotic triple (Γ, ψ, P ) has a closure, that is, a closed
H-asymptotic triple (Γc, ψc, P c) extending (Γ, ψ, P ) with the property that any em-
bedding (Γ, ψ, P ) → (Γ′, ψ′, P ′) into a closed H-asymptotic triple (Γ′, ψ′, P ′) ex-
tends to an embedding (Γc, ψc, P c) → (Γ′, ψ′, P ′). Any two closures of (Γ, ψ, P ) are
isomorphic over (Γ, ψ, P ).

Elimination theory for closed H-asymptotic triples. The main result of [3]
says that the class of closed H-asymptotic triples has an elimination theory. This
kind of theorem is perhaps best understood in a model-theoretic framework, but
here we state this elimination theory in terms of so-called ψ-sets and ψ-functions.

Definition 3.10. Let (Γ, ψ, P ) be an H-asymptotic triple. The class of absolute
ψ-functions (with respect to (Γ, ψ, P )) is the smallest class of functions Γn

∞ → Γ∞
(for n = 0, 1, 2, . . . ) with the following properties:

(1) the constants 0, 1, and ∞, viewed as functions Γ0
∞ → Γ∞, are absolute

ψ-functions;
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(2) any projection map (x1, . . . , xn) 7→ xi : Γn
∞ → Γ∞, i ∈ {1, . . . , n}, is an

absolute ψ-function;
(3) if F : Γn

∞ → Γ∞ and G1, . . . , Gn : Γm
∞ → Γ∞ are absolute ψ-functions, then

F (G1, . . . , Gn) : Γm
∞ → Γ∞

is an absolute ψ-function;
(4) addition (α, β) 7→ α+ β : Γ∞ × Γ∞ → Γ∞ is an absolute ψ-function;
(5) inversion γ 7→ −γ : Γ∞ → Γ∞ is an absolute ψ-function, where −∞ := ∞;
(6) γ 7→ ψ(γ) : Γ∞ → Γ∞ is an absolute ψ-function, where ψ(∞) = ∞;
(7) for any n > 0, the map γ 7→ 1

nγ : Γ∞ → Γ∞ (division by n) is an absolute
ψ-function, where we put 1

n∞ := ∞.

So every absolute ψ-function is given by an expression built up from variables
and symbols for the constants 0, 1 and ∞, and for the functions +, −, ψ and
multiplication by 1

n (n > 0). An absolute ψ-set in Γn
∞ is a boolean combination

(inside Γn
∞) of sets of the form

(3.1)
{
x ∈ Γn

∞ : F (x) 6 G(x)
}

and
{
x ∈ Γn

∞ : F (x) ∈ P
}
,

where F,G : Γn
∞ → Γ∞ are absolute ψ-functions. An absolute ψ-map is a map

Γm
∞ → Γn

∞ whose graph is an absolute ψ-set in Γm+n
∞ .

Theorem 3.11. Let (Γ, ψ,Ψ) be a closed H-asymptotic triple. The image F (S) of
an absolute ψ-set S ⊆ Γm

∞ under an absolute ψ-map F : Γm
∞ → Γn

∞ is an absolute
ψ-set.

Using the identity F (S) = Π
(
M ∩ (S × Γn

∞)
)
, where Π: Γm+n

∞ → Γn
∞ is the

obvious projection map and M ⊆ Γm+n
∞ is the graph of F , it is easy to reduce

the proof of the theorem to the case that m = n + 1 and F = π : Γn+1
∞ → Γn

∞
is the projection map (x1, . . . , xn+1) 7→ (x1, . . . , xn). In fact, this elimination can
be done constructively: there is an algorithm which, given as input a “boolean”
description of an absolute ψ-set S ⊆ Γn+1

∞ , outputs a similar description for π(S).
(See Corollary 6.2 in [3].)

The theorem above has the following consequence. Define a ψ-set in Γn
∞ to be a

set of the form {x ∈ Γn
∞ : (a, x) ∈ S}, where a ∈ Γm

∞ and S ⊆ Γm+n
∞ is an absolute

ψ-set, and define a ψ-map to be a map Γm
∞ → Γn

∞ whose graph is a ψ-set.

Corollary 3.12. Let (Γ, ψ,Ψ) be a closed H-asymptotic triple. The image of a
ψ-set under a ψ-map is a ψ-set. �

Let K be an H-field such that for every c ∈ C and f ∈ K×, the equation
y† = cf† has a solution y = g ∈ K×. (If K ⊇ R is a Hardy field, this amounts to
K being closed under powers.) Then the element v(g) ∈ Γ = v(K×) only depends
on (c, γ) where γ = v(f) (and not on the choice of f and g), and the value group Γ
has a natural structure of an ordered vector space over the ordered constant field C
of K, with scalar multiplication given by (c, γ) 7→ cγ := v(g). (See [5], Section 7.)
The above results on H-asymptotic triples remain true, mutatis mutandis, for H-
asymptotic triples with this extra structure; see [3] for details.

The H-field R[[xR]]LE has the property above that makes its value group ΓLE

into an ordered vector space over R. This vector space has infinite dimension. On
the other hand:
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Proposition 3.13. If K = R〈f1, . . . , fN 〉 is a differential subfield of R[[xR]]LE

generated over R by finitely many elements f1, . . . , fN , then the R-linear subspace
RΓ generated by Γ := v(K×) in ΓLE is finite-dimensional.

It follows that the rank r of Γ is finite (in fact r = dim RΓ); see [3], Example 3.2.
Hence ΨK :=

{
v(f†) : 1 6� f ∈ K×} has at most r elements. In the proof of this

proposition we use the notations in Section 2, Construction of R[[xR]]LE.

Proof. The case that f1, . . . , fN ∈ K0 is clear, since K0 has value group Rv(x).
Assume inductively that the proposition holds whenever f1, . . . , fN ∈ Kn. Let
f1, . . . , fN ∈ Kn+1. We can assume f1, . . . , fN > 0. Then log fi = gi + ci log x
with gi ∈ Kn and ci ∈ R, for i = 1, . . . , N . Below we introduce H-subfields
Fi of R[[xR]]LE, and let Γi denote the value group of Fi, for i = 0, 1, 2. Put
F0 := R〈x, g1, . . . , gN 〉; then dim RΓ0 < ∞ by our inductive assumption. Put
F1 := F0〈log x〉; then F1 = F0(log x), so dim RΓ1 6 1 + dim RΓ0 by Remark 3.7.
The fi’s are solutions of differential equations of the form y′ = ay with 0 6= a ∈ F1,
so F2 := F1〈f1, . . . , fN 〉 satisfies F2 = F1(f1, . . . , fN ); hence

dim RΓ 6 dim RΓ2 6 N + dim RΓ1 <∞.

This takes care of the case that f1, . . . , fN ∈ R[[xR]]E. For arbitrary f1, . . . , fN ∈
R[[xR]]LE, take n such that gi := fi↑n ∈ R[[xR]]E for i = 1, . . . , N . The automor-
phism ↑n of the ordered field R[[xR]]LE is the identity on R and commutes with
each operation f 7→ fc := exp(c log f) on (R[[xR]]LE)>0, c ∈ R. Hence it induces an
R-linear automorphism v(f) 7→ v(f↑n) of ΓLE. Now ↑n maps K into the ordered
differential subfield R〈g0, g1, . . . , gN 〉 of R[[xR]]E, where g0 :=

∏n
i=1 x↑i; thus RΓ is

finite-dimensional. �

The finitely generated H-subfields of R[[xR]]LE are somewhat special: the H-field
R〈%〉, from the Example after Corollary 4.11 below, is generated as a differential
field by just one element % over its constant field R, but ΨR〈%〉 is infinite. Results
in [3], Section 5, suggest the following question:

Question. If the H-field K is finitely generated as a differential field over C, does
it follow that ΨK is a well-ordered set of order type 6 ωn for some n?

4. Algebraic Differential Equations over H-Fields

In this section we report various results motivated by the question: Given an H-field
K, which algebraic differential equations over K have solutions in H-field exten-
sions of K? We first discuss algebraic equations and first-order linear differential
equations, for which complete answers are available. We then state some general
theorems concerning higher-order equations, and finish by posing some open ques-
tions which motivate our work.

The real closure of an H-field. Let K be a pre-H-field. By basic differential
algebra, the real closure Krc of K carries a unique derivation extending the one
on K. The constant field of Krc is a real closure of the constant field of K. The
dominance relation on K extends to a dominance relation on Krc by setting

f 4 g :⇐⇒ |f | 6 h|g| for some h 4 1 in K>0,

for f, g ∈ Krc. The next result is proved in [4], Section 3, using valuation theory.
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Theorem 4.1. The real closure Krc of a pre-H-field K is again a pre-H-field. If
K is an H-field, then Krc is also an H-field.

If (Γ, ψ) is the H-couple associated to K, then the H-couple associated to Krc

is (QΓ, ψ′), where ψ′ : (QΓ)∗ → Γ is the unique function such that ψ′|Γ∗ = ψ and
(QΓ, ψ′) is an H-asymptotic couple; see the previous section.

The Liouville closure of an H-field. In Section 1 we already mentioned that
every Hardy field extends to a smallest Liouville closed Hardy field Li(K) containing
R (the Liouville closure of K). A similar but more subtle statement holds for H-
fields, as we explain now.

Definition 4.2. A simple Liouville extension of a differential field K is a
differential field extension L = K(y) of K such that CL is algebraic over C and one
of the following holds:

(1) y is algebraic over K,
(2) y′ ∈ K,
(3) y 6= 0 and y† ∈ K.

A Liouville extension of K is a differential field extension L of K with the
property that for each a ∈ L there are differential subfields

K = K0 ⊆ K1 ⊆ · · · ⊆ Kn

of L such that a ∈ Kn and for each i = 1, . . . , n, Ki is a simple Liouville extension
of Ki−1.

A Liouville closure of an H-field K is a Liouville closed H-field extension L
of K such that L is a Liouville extension of K. (If K is a Hardy field extending R,
then Li(K) as defined in Section 1 is indeed a Liouville closure of K in this sense.)
The following is the main result of [4]:

Theorem 4.3. Let K be an H-field. Then one of the following occurs:
(I) K has exactly one Liouville closure up to isomorphism over K,

(II) K has exactly two Liouville closures up to isomorphism over K.

Some remarks about this dichotomy are in order. If alternative (A2) about the
asymptotic couple (Γ, ψ) of K from the last section holds, that is, if Ψ has a largest
element, then Case (I) of the theorem occurs. Recall that (Γ, ψ) satisfies (A3) if
and only if Ψ < γ < (id +ψ)

(
Γ>0

)
for some γ ∈ Γ. We call such an element γ ∈ Γ

a gap in K. Every H-field has at most one gap, and if K has a gap, then Case (II)
of the theorem occurs and in one Liouville closure of K, all s ∈ K with v(s) = γ
have the form b′ with b � 1, while in another Liouville closure of K all s ∈ K with
v(s) = γ have the form b′ with b ≺ 1. In fact, (II) is equivalent to the existence of
a Liouville H-field extension of K with a gap.

Gaps in H-fields. Here are some basic facts about gaps (see [4], Section 6 and
[5], Section 12):

Lemma 4.4. Let K be an H-field.
(1) If Ψ has a largest element, then K has no gap.
(2) If every element of K has an anti-derivative in K, then K has no gap.
(3) Let L be an H-field extension of K such that Γ>0 is coinitial in Γ>0

L . Then
a gap in K remains a gap in L.
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(4) A gap in K remains a gap in the real closure of K.
(5) If K is a directed union of pre-H-subfields that have a smallest comparability

class, then K has no gap.

It follows that no H-subfield of R[[xR]]LE containing R and no differentially
algebraic H-field extension of R[[xR]]LE has a gap. (See [4], Lemma 6.6 and [5],
Corollary 12.2, respectively.) The first of these facts yields the following theorem
in [4] about extending expansion operators (cf. Theorem 2.2):

Theorem 4.5. Let e : K → R[[xR]]LE be an H-field embedding of the Hardy field
K ⊇ R into the field of real LE-series such that e(r) = r for r ∈ R. Then e extends
to an H-field embedding of the Liouville closure Li(K) of K into R[[xR]]LE.

This theorem, the remark after Proposition 1.5, and Proposition 3.13 suggest:

Question. Suppose K ⊇ R is a Hardy field of finite rank. Is there necessarily an
H-field embedding K → R[[xR]]LE that is the identity on R?

Understanding how gaps appear in passing to differentially algebraic H-field
extensions seems crucial for a satisfactory answer to the question posed at the
beginning of this section. Many basic problems in this direction are as yet unsolved.
Let us mention some things that we do know.

By [4], adjoining antiderivatives to real closed H-fields does not create gaps:

Lemma 4.6. Let K be a real closed H-field. If L = K(y) is an H-field extension
of K with y′ ∈ K, then K has a gap if and only if L has a gap.

The other two types of simple Liouville extensions are less well behaved: There
is an example of an H-field without a gap, whose real closure has a gap (see [5]),
and there is also an example of a real closed H-field without a gap which has a
Liouville extension with a gap. Here are details of the latter:

Example. Let L denote the ordered subgroup of the multiplicative group MLE of
LE-monomials generated by the real powers `an (a ∈ R) of the iterated logarithms
`n of x. Thus L is the set of products

`a0
0 `

a1
1 · · · `an

n with a0, . . . , an ∈ R.

The ordering on L is as follows, for a0, . . . , an, b0, . . . , bn ∈ R:

`a0
0 `

a1
1 · · · `an

n < `b00 `
b1
1 · · · `bn

n ⇐⇒ (a0, . . . , an) < (b0, . . . , bn) lexicographically.

We equip the ordered field R[[L]] of logarithmic transseries with the derivation
that is trivial on R, sends `an to a`a−1

n /`0`1 · · · `n−1 (in particular xa to axa−1), and
commutes with infinite summation in R[[L]]. This derivation makes R[[L]] into a
real closed H-field extension of the H-subfield E = R(`n : n ∈ N) of R[[xR]]LE. The
H-field R[[L]] does not have a gap. (See [5] for proofs of these facts.) As in [25],
p. 289, (7.9), we now put

Λ := `1 + `2 + `3 + · · · ∈ R[[L]],

so
λ := Λ′ =

1
`0

+
1
`0`1

+
1

`0`1`2
+ · · · ∈ R[[L]].

Let M = exp(R[[L]]↑) be a multiplicative copy of the additive ordered abelian group
R[[L]]↑, with isomorphism f 7→ exp(f). For l = `a0

0 `
a1
1 · · · `an

n ∈ L we have

log l := a0`1 + · · ·+ an`n+1 ∈ R[[L]]↑.
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This gives an ordered group embedding l 7→ exp(log l) : L → M, and we identify L
with a subgroup of M via this embedding, thus making R[[L]] an ordered subfield
of R[[M]]. The derivation on R[[L]] extends uniquely to a derivation on R[[M]]
commuting with infinite summation and satisfying exp(f)′ = f ′ exp(f), where f ∈
R[[L]]↑. (See [32], Chapter 2.) With this derivation, R[[M]] is an H-field extension
of R[[L]] with the same constant field R, and y := exp(−Λ) ∈ M represents a gap
in R[[M]]: The sequence (1/`n) is cofinal in M≺1 and

(1/`n)′ ≺ exp(−Λ) ≺ (1/`n)† for all n,

since
(`n)† = (`n+1)′ = exp

(
−(`1 + `2 + · · ·+ `n+1)

)
.

Let nowK be the real closure inside R[[L]] of theH-subfield E〈λ〉 of R[[L]] generated
by λ over E. The asymptotic couple of K satisfies (A1). We have y† = −λ, and
K(y) is a simple Liouville H-field extension of K with gap v(y).

These examples raised the question (called the “gap problem” in [4]) whether
the creation of gaps in differentially algebraic H-field extensions can be confined to
Liouville extensions. More precisely, we asked the following:

Let K be a Liouville closed H-field and L = K〈y〉 an H-field extension of K
with y differentially algebraic over K. Can L have a gap?

In [6] we give an example showing that, unfortunately, the answer is “yes”:

Example. We continue to use the notation introduced in the last example. Let
% := 2λ′ + λ2. A computation in R[[L]] shows that

% = −
(

1
(`0)2

+
1

(`0`1)2
+

1
(`0`1`2)2

+ · · ·+ 1
(`0`1 · · · `n)2

+ · · ·
)
.

In [6] we consider an H-field extension T of R[[M]] in which the sequence (1/`n)
remains cofinal in its set of positive infinitesimals, and such that T contains a Li-
ouville closed H-field subfield K ⊇ E〈%〉. It follows that K(y), where y = exp(−Λ)
as above, is a differentially algebraic H-field extension of K with gap v(y). The
ambient H-field T is a certain field of transseries (called the field of “well-ordered
transseries of finite exponential depth and logarithmic depth at most ω”) intro-
duced in [32]. It contains R[[xR]]LE as an H-subfield and comes equipped with an
exponential function extending the one on R[[xR]]LE. Note that we have encoun-
tered the series % in R[[L]] before: the cut in R[[xR]]LE determined by % can be used
to describe when the linear differential equation Y ′′ = fY has a non-zero solution in
an H-subfield of R[[xR]]LE (for f ∈ R[[xR]]LE) or in a Hardy field of finite rank (for
f in a Hardy field of finite rank), see Theorems 1.12 and 2.4, respectively. See [49]
for some observations about the role of gaps in Hardy fields, and of the transseries
Λ, in the theory of o-minimal structures on the field R.

Much remains to be done to understand how gaps appear in differentially alge-
braic H-field extensions, even in Liouville H-field extensions. The appearance of a
gap after a simple Liouville extension of an H-field K is witnessed in K itself, by
the realization of a certain cut in K:

Lemma 4.7. ([5], 12.4) Let K be a real closed H-field closed under asymptotic
integration. The following are equivalent for s ∈ K:

(1) For each ε ∈ K× with ε ≺ 1, we have ε′† < s < ε††.
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(2) For every H-field extension L = K(y) of K such that y 6= 0 and y† = s,
v(y) is a gap in L.

Liouville closures and closures of H-asymptotic triples. These two closure
operations are related as follows. Suppose K is a real closed H-field with an element
x such that x � 1 and x′ = 1. Let P be a cut of the asymptotic couple (Γ, ψ)
of K, so (Γ, ψ, P ) is an H-asymptotic triple with distinguished positive element
1 = v(x−1). If K is Liouville closed, then P = Ψ and (Γ, ψ, P ) is closed. In
general, K has a Liouville closure L such that ΨL ∩ Γ = P , by [4]. Fix such an L.
Then (ΓL, ψL,ΨL) extends (Γ, ψ, P ), and we have an embedding ϕ of the closure
(Γc, ψc, P c) of (Γ, ψ, P ) into the closed H-asymptotic triple (ΓL, ψL,ΨL) such that
ϕ is the identity on Γ (Theorem 3.9):

(Γc, ψc, P c) ϕ - (ΓL, ψL,ΨL)

6
⊆

�
����*

⊆

(Γ, ψ, P )

There is no proper Liouville closed H-subfield of L containing K, see [4], Section 6.
This is in contrast to the non-minimality of the closure of H-asymptotic triples
(see [2]): if (Γ, ψ, P ) is not closed, then there exists a closed H-asymptotic triple
(Γ′, ψ′,Ψ′) such that

(Γ, ψ, P ) ⊆ (Γ′, ψ′,Ψ′) ⊆ (Γc, ψc, P c), Γ′ 6= Γc.

Moreover, if K has two Liouville closures that are not isomorphic over K and Ψ
has no supremum in Γ, then the embedding

ϕ : (Γc, ψc, P c) → (ΓL, ψL,ΨL)

is not surjective.
Next we give an example of a real closed H-field K with an x ∈ K satisfying

x � 1 and x′ = 1, and with an H-cut P of its asymptotic couple (Γ, ψ), such that K
has only one Liouville closure L, up to K-isomorphism, and such that (ΓL, ψL,ΨL)
is not an H-closure of (Γ, ψ, P ); in particular, the map ϕ above is not surjective.
(In the description of the example we assume familiarity with [22].)

Example. Let e : K = H(Ran,exp) → R[[xR]]LE be the embedding of Theorem 2.2.
Then K has only one Liouville closure, up to isomorphism over K, namely the
Hardy field L = Li(K), and by Theorem 4.5, e can be extended to an embedding
Li(K) → R[[xR]]LE. We identify Li(K) with its image in R[[xR]]LE under this
embedding. It is easy to see that the H-asymptotic triple (Γ, ψ,Ψ) of K is closed.
(See [39] for more on the structure of Γ.) We claim that ΓL 6= Γ: Consider the
function f : (0,+∞) → R given by

f(x) :=
∫ x

0

et2dt.

By [22], Corollaries 3.9 and 5.2, if
∑∞

n=0 anx
−n + ε ∈ K where an ∈ R for all n

and ε ∈ R[[xR]]LE with ε ≺ x−n for all n, then
∑

n anX
n ∈ R[[X]] converges in a

neighborhood of 0. The function f has asymptotic expansion

f(x) ∼ a :=
∞∑

n=0

a2n+1
ex2

x2n+1
,
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where the coefficients a2n+1 are given by

a1 = 1/2, a2n+1 =
(
1 · 3 · · · (2n− 1)

)
/2n+1 for n > 1.

(See (5.10) in [22].) Hence f = a + ε with ε ≺ ex2
/x2n+1 for all n > 1. Since the

series
∑

n a2n+1X
2n+1 does not converge near 0, we have e−x2

f /∈ K and hence
f /∈ K. However, f ′(x) = ex2 − 1, so f ∈ Li(K). Let g := log f ∈ Li(K). We
claim that v(g) /∈ Γ. Otherwise, we can find h ∈ K such that g ∼ h. Hence
δ := f − log h ≺ 1, and thus log h = a + ε − δ ∈ K with ε − δ ≺ ex2

/x2n+1 for all
n > 1: a contradiction.

Generalities on zeros of differential polynomials. Let now K be an H-field
and P (Y ) ∈ K{Y } be a non-zero differential polynomial of order n. The derivation
f 7→ f ′ on K is continuous with respect to the order topology. In particular,
P (Y ) gives rise to a continuous function y 7→ P (y) : K → K. Such a differential
polynomial function cannot vanish identically on any non-empty open subset of K
if C 6= K. ([5], Lemma 3.3.)

Notation. Let L be a Liouville closed H-field. Given f ∈ L we choose E(f) ∈ L>0

such that E(f)† = f ′, and given f ∈ L>0 we let L(f) ∈ L such that L(f)′ = f†.
(The map E behaves much like an exponential function on L, and the map L much
like a logarithmic function.) If CL = R, then E : L→ L>0 can be chosen to be an
exponential function on L extending the usual exponential function r 7→ er on R.
(See [5], Section 7.) We have for each n the nth iterate En of E, with E0 = idL.
The function L maps L>C into itself, so we have also for each n the nth iterate Ln

of L as a function from L>C into itself.

Theorem 4.8. Let x ∈ K be such that x > C and x′ = 1. Then there exists an
element f of the subfield of K generated by x and the coefficients of P such that
either P (y) > 0 for all y > En(f) in all Liouville closed H-field extensions of K,
or P (y) < 0 for all y > En(f) in all Liouville closed H-field extensions of K.

An x as in the hypothesis of the theorem exists if K is Liouville closed K and
its derivation preserves infinitesimals.

Corollary 4.9. If K has an element x > C with x′ = 1, and y in a Liouville closed
H-field extension of K satisfies P (y) = 0, then |y| < En(f) for some f ∈ K. �

The case n = 0 of this corollary is well-known. (See [8], Lemma 1.2.11.) For
n = 1 and K the Hardy field R(x) the corollary is due to Borel ([10], p. 30). The
proof of Theorem 4.8 in [5] generalizes the main idea of Borel’s argument. See also
[29], [12], [59] and [70] for related results on Hardy fields.

Another consequence of Theorem 4.8 is that if K is Liouville closed, then given
a ∈ K there exists ε ∈ K>0 such that either P (y) > 0 for all y ∈ K such that
a < y < a+ ε, or P (y) < 0 for all y ∈ K such that a < y < a+ ε. In particular, the
zero set of P in K is discrete. (Here the condition that K is Liouville closed cannot
be omitted: the conclusion fails for the Hardy field K = R(x) and the differential
polynomial

P (Y ) := Y Y ′′x− (Y ′)2x+ Y Y ′

whose zero set is {cxk : c ∈ R, k ∈ Z}.) In fact, if a is a simple zero of P , that
is, if ∂P

∂Y (n) (a) 6= 0, then there exists an interval I = (r, s) around a in K such that
y 7→ P (y) : I → K is strictly increasing or strictly descreasing.
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Corollary 4.9 can be interpreted as giving a bound on the size of large infinite
zeros of differential polynomials. Bounding the size of small infinite zeros of differ-
ential polynomials in H-fields is a more delicate matter. Here is one positive result
from [5]:

Theorem 4.10. Suppose the coefficients of P lie in some pre-H-subfield of K with
a smallest comparability class Cl(f), f ∈ K>C . Then P (y) 6= 0 for all y in all
Liouville closed H-field extensions L of K with CL < y < Ln+1(f).

The hypothesis on the coefficients of P is automatically satisfied if K is a directed
union of pre-H-subfields each of which has a smallest comparability class. For
example,

R[[xR]]LE =
⋃
n

R[[`Rn]]E

is such a representation of R[[xR]]LE as directed union, with `n representing the
smallest comparability class of R[[`Rn]]E. We conclude:

Corollary 4.11. Let K = R[[xR]]LE. There is no element b in any differentially
algebraic H-field extension L of K such that CL < b < a for all a ∈ K>R. �

The condition on the coefficients of P in Theorem 4.10 can be omitted if P is of
order 1 or homogeneous of order 2, see [5]. The condition cannot be omitted for P
of order 3:

Example. Let K, y and % be as in the example preceding Lemma 4.7. If z � 1 is
an antiderivative of y in a Liouville closure of the H-field K(y), then z is a zero
of a differential polynomial of order 3 over K, and 1 ≺ z ≺ `n for all n. It follows
that the H-subfield R〈%〉 of K is not a directed union of pre-H-subfields each of
which has a smallest comparability class. The value group of R〈%〉 is

⊕
n Zv(`n),

and ΨR〈%〉 =
{
−v(`0 · · · `n) : n ∈ N

}
has order type ω.

Van der Hoeven [33] proves the remarkable fact that differential polynomials (in
a single indeterminate) over R[[xR]]LE have the intermediate value property:

Theorem 4.12. Let K = R[[xR]]LE, and let a, b ∈ K be such that a < b, and P (a)
and P (b) are non-zero of opposite sign. Then there exists an element y ∈ K such
that a < y < b and P (y) = 0.

The following analogue of Theorem 1.11 for the class of H-fields is shown in [5]:

Theorem 4.13. Suppose that P has order 1, and a, b ∈ K with a < b are such that
P (a) and P (b) are non-zero of opposite sign. Then there exists an element y in an
H-field extension of K such that a < y < b and P (y) = 0.

It would be interesting to remove the “order 1” assumption in this theorem.

Linear differential equations over H-fields. Chapter 4 of J. van der Hoeven’s
Thèse [32] studies the solution sets in R[[xR]]LE of linear differential equations of
any order in R[[xR]]LE. In [7] we extend the results of this Chapter 4 to the setting
of H-fields. We mention here only one byproduct of [7], Theorem 4.14, because it
can be stated with minimal prerequisites, and is new even for R[[xR]]LE.

Every linear differential polynomial a0Y + a1Y
′ + · · ·+ anY

(n) with coefficients
a0, . . . , an in an H-field K defines a linear differential operator a0+a1∂+· · ·+an∂

n.
These linear differential operators with coefficients in K form a ring K[∂] containing
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K as a subring, with ∂h = h∂ + h′ for h ∈ K. This ring K[∂] is not commutative
unless the derivation of K is trivial.

Every irreducible one-variable polynomial over R is of degree 1 or 2; this fact
has an analogue for linear differential operators over R[[xR]]LE:

Theorem 4.14. Let K := R[[xR]]LE. Every operator in K[∂] \K is a product of
order 1 factors a∂ + b and order 2 factors a∂2 + b∂ + c, where a, b, c ∈ K, a 6= 0.

Existentially closed H-fields. Let K be an H-field. We consider systems of
equations, inequalities and asymptotic inequalities of the following form:

(4.1)


A1(Y ) %1 B1(Y )
A2(Y ) %2 B2(Y )

...
...

...
Am(Y ) %m Bm(Y )

where Ai(Y ), Bi(Y ) ∈ K{Y }, Y = (Y1, . . . , Yn), and %i ∈ {=,6, <,4,≺}. We
say that K is existentially closed if every system (4.1) with a solution in an
H-field extension of K has a solution in K itself. (It is enough to require this for
systems consisting of a single equation, see [5], Lemma 14.1.) Every H-field can be
embedded into an existentially closed H-field; every existentially closed H-field is
Liouville closed. Our work on H-fields is motivated by the following open questions:

Is the H-field R[[xR]]LE existentially closed? Is the class of existentially closed
H-fields an elementary class in the sense of model theory?

A positive answer to the second question would mean that existentially closed H-
fields play a similar role in the category of H-fields as real closed fields do in the
category of ordered fields, and algebraically closed fields in the the category of fields:
they would truly be the universal domains for asymptotic differential algebra.

By Zorn’s Lemma every Hardy field is contained in a maximal one; this leads
naturally to the question whether every maximal Hardy field is an existentially
closed H-field. See [5], Section 14 for more on existentially closed H-fields.
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66. A. Seidenberg, A new decision method for elementary algebra, Ann. Math. 60 (1954), 365–
374.

67. J. Shackell, Rosenlicht fields, Trans. Amer. Math. Soc. 335 (1993), no. 2, 579–595.
68. , Inverses of Hardy L-functions, Bull. London Math. Soc. 25 (1993), 150–156.
69. , An Approach to Symbolic Asymptotics, book manuscript.

70. M. Singer, Asymptotic behavior of solutions of differential equations and Hardy fields: pre-
liminary report, unpublished.
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