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Abstract

The vast majority of the research efforts in project scheduling assume complete information about the scheduling

problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be

executed. However, in the real world, project activities are subject to considerable uncertainty, which is gradually re-

solved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty:

reactive scheduling, stochastic project scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity

analysis. We discuss the potentials of these approaches for scheduling under uncertainty projects with deterministic

network evolution structure.
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1. Introduction

The project scheduling literature largely con-

centrates on the generation of a precedence and
resource feasible schedule that ‘‘optimizes’’ the

scheduling objective(s) (most often the project

duration) and that should serve as a baseline

schedule for executing the project. Such a baseline
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schedule (also called a predictive schedule or pre-

schedule) serves very important functions (Aytug

et al., in press; Mehta and Uzsoy, 1998). The first

is to allocate resources to the different activities to
optimize some measure of performance. The sec-

ond, as also pointed out by Wu et al. (1993), is to

serve as a basis for planning external activities

such as material procurement, preventive mainte-

nance and delivery of orders to external or internal

customers. Baseline schedules serve as a basis for

communication and coordination with external

entities in the company’s inbound and outbound
supply chain. Based on the baseline schedule,

commitments are made to subcontractors to de-

liver materials, support activities are planned (set-

ups, supporting personnel), and due dates are set
ed.
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for the delivery of project results. Moreover, from
a modelling viewpoint, many real-life scheduling

problems such as course scheduling, sports time-

tabling, railway and airline scheduling, can be

modelled as variations of resource-constrained

project scheduling problems. In these environ-

ments executing activities according to the pre-

schedule is a must that is imposed by the customer:

although ‘‘technically’’ possible, activities are not
started prior to their scheduled starting time.

During project execution, however, project

activities are subject to considerable uncertainty

that may lead to numerous schedule disruptions.

This uncertainty may stem from a number of pos-

sible sources: activities may take more or less time

than originally estimated, resources may become

unavailable, material may arrive behind schedule,
ready times and due dates may have to be changed,

new activities may have to be incorporated or

activities may have to be dropped due to changes in

the project scope, weather conditions may cause

severe delays, etc. A disrupted schedule incurs

higher costs due to missed due dates and deadlines,

resource idleness, higher work-in-process inventory

and increased system nervousness due to frequent
rescheduling. As a result, the validity of static

deterministic scheduling has been questioned and/

or heavily criticised (Goldratt, 1997).

In general, we can distinguish between five ap-

proaches to dealing with uncertainty in a sched-

uling environment where the evolution structure

of the precedence network is deterministic: reac-

tive scheduling, stochastic scheduling, scheduling
under fuzziness, proactive (robust) scheduling, and

sensitivity analysis. In this paper we will discuss

these approaches mainly from a project scheduling

viewpoint. In those situations where the ap-

proaches were clearly conceived in a machine

scheduling context, our aim is to reveal their

potentials for scheduling projects under uncer-

tainty. Stochastic project networks that have a
stochastic evolution structure and feedback

(GERT networks) are not the subject of this paper.

A state-of-the-art survey of GERT network

scheduling can be found in Neumann (1999).

The paper is organised as follows. In the next

section, we survey the research efforts in the field

of reactive scheduling. In Section 3 we present a
classification scheme for schedule construction
techniques under uncertainty. Stochastic project

scheduling is discussed in Section 4. Section 5 is

devoted to fuzzy project scheduling. In Section 6

we characterize robust baseline schedules and re-

view various robustness/stability measures as well

as methods for generating robust and stable

schedules that may have potential application for

scheduling projects under uncertainty. Sensitivity
analysis is discussed in Section 7. A summary

and suggestions for further research conclude the

paper.
2. Reactive scheduling

Reactive scheduling does not try to cope with
uncertainty in creating the baseline schedule but

revises or re-optimizes the baseline schedule when

an unexpected event occurs. Basically most efforts

concentrate on ‘‘repairing’’ the baseline schedule

(predictive-reactive scheduling) to take into account

the unexpected events that have come up. For a

review of the extensive literature in manufacturing

environments we refer to Sabuncuoglu and Bayiz
(2000), Szelke and Kerr (1994) and Vieira et al.

(2003).

The reactive scheduling action may be based on

various underlying strategies. At one extreme, the

reactive effort may rely on very simple techniques

aimed at a quick schedule consistency restoration.

We shall refer to these approaches as schedule re-

pair actions. A typical example of such a sim-
ple control rule is the well-known right shift rule

(Sadeh et al., 1993; Smith, 1994). This rule will

move forward in time all the activities that are

affected by the schedule breakdown because they

were executing on the resource(s) causing the

breakage or because of the precedence relations. It

should be clear that this strategy may lead to poor

results as it does not re-sequence activities.
At the other extreme, the reactive scheduling

approach may involve a full scheduling pass of

that part of the project that remains to be executed

at the time the reaction is initiated. Such an ap-

proach will be referred to as (full) rescheduling and

may use any deterministic performance measure,

such as the new project makespan. In a sense,



Table 1

Different methods for schedule generation under uncertainty

Baseline schedule During project execu-

tion

(i) No baseline schedule (i) Dynamic scheduling

(scheduling policies)

(ii) Baseline scheduling with no

anticipation of variability

(ii) Reactive scheduling

(iii) Proactive (robust) scheduling (iii) Management

decisionsQuality robustness

Solution robustness

Flexibility

(iv) Sensitivity analysis
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schedule repair is a heuristic rescheduling pass. If
our objective were to generate a new schedule that

deviates from the original schedule as little as

possible, we would be in the particular reschedul-

ing case where we want to induce ex post stability

(the ex ante case will be discussed in the next sec-

tion). Such a minimum perturbation strategy may

rely on the use of exact and suboptimal algorithms

using as objective function the minimization of the
sum of the (weighted) absolute differences between

the start time of each activity in the repaired

schedule and the original start time of that activity

(El Sakkout and Wallace, 2000). Alag€oz and Azi-

zoglu (2003) study the case in which the stability

measure is the number of jobs processed on dif-

ferent machines in the initial and the new schedule.

Calhoun et al. (2002) use goal programming to
revise project schedules with the initial objectives

and the objective of minimizing the number of

changed activities. Match-up scheduling matches

up with the pre-schedule at a certain time in the

future, whenever a deviation from the initial

parameter values (mainly deviations from the

activity duration projections) arises (Bean et al.,

1991; Wu et al., 1993; Akturk and Gorgulu, 1999;
Alag€oz and Azizoglu, 2003).

Artigues and Roubellat (2000) study the case

where, in a multi-project, multi-mode setting with

ready times and due dates, it is desired to insert a

new unexpected activity into a given baseline sche-

dule such that the resulting impact on maximum

lateness is minimized. The authors perform a cle-

ver rescheduling pass in which they restrict the
solution to those schedules in which the resource

allocation remains unchanged. Using a resource

flow network representation they develop a step-

wise procedure for generating a set of dominant

‘insertion cuts’ for the network. From each dom-

inant insertion cut, they then derive the best exe-

cution mode and valid insertion arc subset for the

new activity.
3. Generating a baseline schedule

The first column of Table 1 distinguishes be-

tween three basic approaches for the development

of a baseline schedule. In the first approach, no
baseline schedule is generated. In the second
scheme, a baseline schedule is developed using a

deterministic scheduling method without any

anticipation of variability in the input parameters

that may occur during project execution. Single

point estimates are used for parameters such as

activity durations. The third approach is to de-

velop a baseline schedule that incorporates a degree

of anticipation of variability during project execu-
tion. This setting will be referred to as proactive or

robust scheduling. This approach may use infor-

mation about the particular variability character-

istics (for example probability distributions for

activity durations) and/or information about the

reactive scheduling approach that will be adhered

to during project execution (mostly very simple

repair operations). The special case where the
baseline objective is to minimize a function of the

deviation between the baseline and the final sche-

dule, focuses on ex ante stability. Often the term

quality robustness is used when referring to the

sensitivity of the schedule performance in terms of

the objective value, while the term stability or

solution robustness is used to refer to the insensi-

tivity of the activity start times to changes in the
input data. Robustness is closely related to flexi-

bility (Sevaux and S€orensen, 2002b). A schedule is

called flexible if it can be easily repaired, i.e.

changed into a new high quality schedule. The

informal French association of researchers in

scheduling GOThA (Groupe de recherche en Or-

donnancement Th�eorique et Appliqu�e––http://
www-poleia.lip6.fr/~sourd/gotha/) has established
a ‘‘Flexibility working group’’ that regularly

reflects on how to define, measure and use

http://www-poleia.lip6.fr/~sourd/gotha/
http://www-poleia.lip6.fr/~sourd/gotha/
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flexibility and also maintains a web page listing
recent references (http://www.loria.fr/~aloulou/

pages/biblio_gotha.html).

A second distinction can be made with regard

to the way in which decisions will be taken during

project execution on how to react to disruptions

and when to start new activities. Three possibilities

are listed in the second column of Table 1: (i) no

baseline schedule is generated, but before the start
of the project, a scheduling policy is chosen that

will determine how to act during schedule execu-

tion; (ii) when a baseline exists, we reschedule,

using any of the options that were discussed in the

previous section (predictive-reactive scheduling);

and (iii) instead of using preset scheduling policies,

project management makes decisions as the project

develops.
Apart from these methods for construction of

the final schedule, techniques have also been de-

vised to provide the project manager with infor-

mation about allowable deviations in project

parameters, which will aid the manager in deter-

mining which parts of the project require the most

attention (the inherent assumption is that the

sources of uncertainty are more or less manage-
able). Sensitivity analysis, to be discussed in Sec-

tion 7, is a clear example of such an approach.
4. Stochastic project scheduling

The literature on stochastic project scheduling

is rather sparse (for a detailed discussion, see
Chapter 9 in Demeulemeester and Herroelen,

2002). Most efforts concentrate on the so-called

stochastic resource-constrained project scheduling

problem which will be discussed in Section 4.1. The

related special case of stochastic activity interrup-

tions, time/cost trade-off problems and stochastic

multi-mode problems are the subject of Sections

4.2, 4.3 and 4.4, respectively.

4.1. Stochastic resource-constrained project

scheduling

The stochastic resource-constrained project

scheduling problem aims at scheduling project

activities with uncertain durations in order to
minimize the expected project duration subject to
zero-lag finish-start precedence constraints and

renewable resource constraints. The project is

represented by an activity-on-the-node network

G ¼ ðV ;EÞ, where the set V ¼ f1; 2; . . . ; ng denotes

the set of activities. Activity 1 and n are dummy

activities, representing the start and end of the

project. The durations of the other activities are

given by a random vector d ¼ ðd2; d3; . . . ; dn�1Þ,
where d i denotes the random duration of activity i.
We denote a particular realization or sample of d
as d ¼ ðd2; d3; . . . ; dn�1Þ 2 Rn

þ. The arcs of set E
define the zero-lag finish-start precedence relations

among the activities. The renewable resources

ðk ¼ 1; 2; . . . ;KqÞ are available in constant integer

amounts aqk . The non-dummy activities require an

amount of rqik 6 aqk units of renewable resource type
k. Given the presence of both resource constraints

and random activity durations, schedules are

generated through the application of so-called

scheduling policies or scheduling strategies, and no

baseline schedule is used.

According to the definitions given in Igelmund

and Radermacher (1983a,b) and M€ohring et al.

(1984, 1985), a scheduling policy Pmakes decisions
at the decision points t ¼ 0 (the start of the project)

and the completion times of activities. A decision at

time t is to start at time t a precedence and resource

feasible set of activities SðtÞ, exploiting only

information that has become available up to time

t. As soon as the activities have been finished, the

activity durations are known yielding a realization

d of activity durations. The application of policyP
leads to the creation of a schedule PðdÞ ¼ ðs1;
s2; . . . ; snÞ of activity starting times and a resulting

schedule makespan CmaxðPðdÞÞ. The common

objective considered in the literature is to create a

policy that minimizes the expected project dura-

tion EðCmaxðPðdÞÞÞ over a class of policies. Fer-

nandez (1995), Fernandez et al. (1996, 1998) and

Pet-Edwards et al. (1998) show how to write the
corresponding optimization problem in its general

form as a multi-stage stochastic programming

problem.

4.1.1. Scheduling policies

A complete characterization of policies and

corresponding subclasses can be found in M€ohring

http://www.loria.fr/~aloulou/pages/biblio_gotha.html
http://www.loria.fr/~aloulou/pages/biblio_gotha.html
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et al. (1984, 1985). Radermacher (1985) describes
early start (ES) policies using the concept of min-

imal forbidden sets. Minimal forbidden sets are

inclusion minimal sets of pair-wise not precedence

related activities that cannot be scheduled simul-

taneously because they share limited resources.

‘Inclusion minimal’ means that each proper subset

of a forbidden set can be executed simultaneously

without violating any resource constraints. The
number of forbidden sets may grow exponentially

in the number of activities. A policy P is an ES-

policy if for each minimal forbidden set F there

exists a pair ði; jÞ, i, j 2 F , i 6¼ j, such that for each

sample d of activity durations, j cannot be started
before i has finished. ES-policies can easily be

implemented by adding the pairs (i; j) to the ori-

ginal set of precedence relations and computing
the earliest activity start times as s1 ¼ 0 (starting

dummy) and sj ¼ maxði;jÞ2E ðsi þ diÞ, j 2 V n f1g.
Igelmund and Radermacher (1983a,b) intro-

duced pre-selective (PRS) policies. A policy P is

pre-selective if for each minimal forbidden set F
there exists an activity j 2 F (the pre-selected or

waiting activity), such that for each sample d of

activity durations, j is not started before at least
one activity i 2 F n fjg has finished. A selection is a

sequence of waiting activities for all minimal for-

bidden sets. M€ohring and Stork (2000) have

introduced a very useful representation of pre-

selective policies using so-called waiting conditions.

Waiting conditions can be modelled as AND/OR

precedence constraints (Gillies and Liu, 1995;

M€ohring et al., 2000). A waiting condition is given
by a pair ðX ; jÞ, X � V , j 2 V n X , where activity j
cannot be started before at least one activity i 2 X
has finished. Each restriction imposed by a mini-

mal forbidden set F and its pre-selected activity j
can be represented by the waiting condition

ðF n fjg; jÞ. Obviously, each given precedence

constraint ði; jÞ 2 E can be represented by the

waiting condition ðfig; jÞ. A set W of waiting
conditions induces a digraph D that contains a

node for each activity as well as for each waiting

condition ðX ; jÞ, directed arcs ði;wÞ are included

for each i 2 X , with w the node representing ðX ; jÞ,
along with an extra arc ðw; jÞ (Stork, 2000).

We alert the reader to the fact that pre-selective

policies do have severe computational limitations.
This inspired M€ohring and Stork (2000) to define
linear pre-selective policies. Linear pre-selective

policies (LIN) are a subclass of the class of pre-

selective policies. The authors define a selection by

a priority ordering L of the activities (respecting

the original precedence constraints) in such a way

that the preselected waiting activity of the minimal

forbidden set F is the activity with the smallest

priority, i.e., the last activity in the list L.
A policy is job based (JBP) if it is linear pre-

selective (according to some ordering L of the

activities) and if si 6 sj for each sample d and for

i �L j. For a given sample d, the earliest activity

start times can be computed by starting each

activity in the order imposed by L as early as

possible, but not earlier than the start time of its

predecessors in L. Clearly, the job-based policies
use an ‘‘activity based’’ point of view and not a

‘‘resource based’’ view. As a result, job-based

policies do not require the use of the forbidden

sets. This is a very efficiency gaining characteristic

since activity based policies can easily be applied

to very large projects, for which the number of

forbidden sets may be exorbitant.
4.1.2. Branch-and-bound

Stork (2000, 2001) has implemented branch-

and-bound algorithms to compute optimal ES-,

PRS-, LIN- and JBP-policies, using two branching

schemes, lower bound calculation and various

dominance rules. He validates the algorithms on

test instances generated using the problem gener-

ator ProGen (Kolisch and Sprecher, 1996). Pre-
selective policies yielded the smallest expected

makespan among all considered classes of policies,

which is logical because the set of PRS-policies

embraces all LIN- and JBP-policies, and clearly

dominates the ES-policies.
4.1.3. Heuristic procedures

Research on heuristic procedures for solving the
stochastic RCPSP is just emerging (Pet-Edwards,

1996; Golenko-Ginzburg and Gonik, 1997; Tsai

and Gemmil, 1996, 1998). As an illustration, we

briefly discuss the procedures of Golenko-Ginz-

burg and Gonik (1997) and the tabu search pro-

cedure of Tsai and Gemmil (1998).
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Golenko-Ginzburg and Gonik (1997) consider
PERT type activity-on-the-arc networks where the

duration of an activity is a random variable with

given density function (beta, uniform and normal

distributions are used) and where a pre-given

lower and upper bound on the activity duration is

available. The activities require a constant amount

of renewable resources during their execution. The

renewable resources are available in constant
amounts throughout time. The objective is to

minimize the expected project duration. At each

decision point, when at least one activity is ready

to be scheduled, resource contention is resolved by

solving a zero–one integer programming problem

to maximize the total contribution of the accepted

activities to the expected project duration. For

each activity, this contribution is computed as the
product of its average duration and the probability

(determined by simulation) of it lying on the crit-

ical path. The procedure is illustrated on a

numerical example.

Tsai and Gemmil (1998) report computational

results for the well-known 110 Patterson test

problems (Patterson, 1984) using a tabu search

algorithm. They assume a beta distribution to
model activity durations and use an optimistic,

most likely and pessimistic time estimate to cal-

culate the parameters of the beta distribution.

Using the expected activity durations, they

compute an initial feasible solution using the

minimum slack rule. The expected project dura-

tion of a feasible solution is computed as follows:

(a) a duration for each activity is drawn from the
beta distribution with the parameters calculated

using the three time estimates, (b) given the fea-

sible sequence and the randomly generated activ-

ity durations, the project duration is computed,

(c) the calculation of the project duration is re-

peated 100 times and then the average project

duration for the particular feasible sequence is

reported as the expected project duration. It
should be noted that this approach to estimate the

expected project duration violates the so-called

non-anticipativity constraint (Fernandez et al.,

1996). The approach implicitly assumes that all

uncertainty with regard to activity durations is

resolved before the start of project execution

(‘anticipative’), which will only rarely be the case.
Rather, information will normally become avail-
able only gradually as time progresses, making

the use of scheduling policies, as described above,

more appropriate.

4.2. Stochastic activity interruptions

Valls et al. (1999) have studied the problem of

scheduling resource-constrained project activities
that are either deterministic (i.e. have a known

duration and cannot be interrupted) or stochastic

(i.e. may be interrupted for an uncertain amount

of time and resumed later). The initial processing

time di1 of an activity i that may be interrupted is

assumed to be known with certainty, however, the

length of the interruption wi and the remaining

processing time after the interruption di2 are
uncertain. An example of such a situation may be

a project in which some activities are submitted to

an approval process before they can be completed.

The time to review and approve the work per-

formed during the initial processing determines the

length of the interruption, while the outcome of

the approval process may determine the length of

the final processing. Each activity has a due date di
and a tardiness penalty ci. Each activity requires a

constant per period amount of a renewable re-

source during its execution. The renewable re-

source types are available in a constant per-period

amount. The two parts of an interrupted activity

require the same number of units from each re-

source. The processing time of the second part di2

of an interrupted activity i is independent of the
length of the interruption wi. The objective is to

schedule the activities subject to the zero-lag finish-

start precedence constraints and the resource

constraints in order to minimize the expected total

weighted tardiness.

The authors have developed a scenario-based

approach. The scenarios are generated by speci-

fying three time estimates both for the interruption
and for the second part of each stochastic activity.

The solution algorithm is a hybrid algorithm based

on the scatter search methodology. The authors

report on promising computational results ob-

tained on a set of randomly generated test prob-

lems. They have extended the approach to the

problem of minimizing the weighted tardiness of
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jobs with stochastic interruptions in a parallel
machine environment (Laguna et al., 2000).

4.3. The stochastic discrete time/cost trade-off

problem

The literature on the stochastic version of the

discrete time/cost trade-off problem is virtually

void. Wollmer (1985) discusses a stochastic version
of the deterministic linear time/cost trade-off

problem for activity-on-the-arc networks in which

the duration of an activity can be described as

yij þ nij, where the decision variable yij is bounded
from below by the activity crash duration lij and is

bounded from above by the normal duration of

the activity uij. nij is a bounded discrete random

variable, independent of yij, with an expected value
of 0. Each activity (except dummies) has an asso-

ciated non-negative cost cij, which is the cost per

unit decrease in yij within the range of lij and uij.
The objective then is to determine activity dura-

tions yij and event realization times that minimize

the expected project completion time subject to a

budget constraint, or achieve a feasible fixed ex-

pected project completion time at minimum cost.
Gutjahr et al. (2000) describe a stochastic

branch-and-bound procedure for solving a specific

version of the stochastic discrete time/cost trade-

off problem where so-called measures (e.g. the use

of manpower, the assignment of highly-skilled la-

bour or the substitution of equipment) may be

used to increase the probability of meeting the

project due date and thus avoid penalty costs. The
authors assume that the duration of an activity

ði; jÞ in an activity-on-the-arc network is modelled

by a beta distributed random variable d ij. The

distribution of each d ij can be measured and the

random variables d ij are assumed to be indepen-

dent. It is assumed that the distributions of the d ij

can be changed by certain crashing measures

m ¼ 1; . . . ;M . Typically, measure m reduces the
expected time required for one or several activities

by a certain amount. As such, the duration of

activity ði; jÞ becomes dependent on the vector

x ¼ ðx1; x2; . . . ; xMÞ, where xm ¼ 1 if measure m is

chosen and xm ¼ 0 otherwise. d ijðxÞ will denote the
duration of activity ði; jÞ on the condition that a

measure combination described by the vector x has
been chosen (in their experiments, the authors as-
sign each measure randomly to an activity). Each

measure m incurs an additional cost of cm currency

units. For each x, the project duration CmaxðdðxÞÞ
can be computed on the basis of the values of

d ijðxÞ using standard critical path calculations.

Since CmaxðdðxÞÞ depends on the stochastic dura-

tions dðxÞ, it is also a random variable.

It is assumed that penalty costs occur if the
project is completed after its pre-specified due

date. These costs are described by a loss function

K, where KðtÞ is the loss occurring if the project

finishes at time t. The authors assume that K is a

step function that implies that no penalty occurs if

the project is completed on time. The loss

KðCmaxðdðxÞÞÞ is also a random variable. The

objective is to minimize the expected overall loss,
which is equal to the crashing costs and the ex-

pected penalty costs. The authors report on

promising computational results obtained on 33

random problem instances with 25, 50 and 100

nodes, beta distributed activity durations and 10,

15 or 20 crashing measures.

Scholl (2001) uses a scenario-based approach to

formulate mathematical programming models for
the stochastic linear time/cost trade-off problem.

Using the 110 Patterson networks (Patterson,

1984) in activity-on-the-arc format as a test set, he

reaches the conclusion that the so-called compen-

sation models yield the best results for several

solution robustness measures. These models as-

sume that, given the scenario-dependent normal

activity durations with corresponding crashing
rates and associated crashing costs, the planned

event realization times may suffer from a scenario-

based delay penalized by scenario-dependent event

delay costs. The objective is then to minimize the

expected indirect and direct costs subject to the

precedence and budget constraints.

4.4. Multi-mode trade-off problems in stochastic

networks

At the time of writing, the literature on the

stochastic multi-mode problem was virtually void.

Jørgenson (1999) and Elmaghraby (2000) focus on

a dynamic stochastic resource allocation problem

in activity-on-the-arc networks where an activity a
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requires total work content WaðkÞ, a random
variable, of resource k ¼ 1; . . . ;K specified as

renewable or nonrenewable over the entire plan-

ning horizon. An allocation of xaðk; tÞ units of re-
source k to activity a at time t costs ckðxaðk;
tÞ;WaðxaÞÞ per unit of time, also a random vari-

able. The resulting activity duration is denoted by

the random variable ykðxaÞ ¼ gkðWaðxaÞÞ. The

total activity cost is then the random variable
C kðxaÞ ¼ ckðxaðk; tÞ;WaðxaÞÞ:gkðWaðxaÞÞ. The pro-

ject is assumed to have a fixed due date dn and a

penalty function pðtn � dnÞ, where tn is the random
variable denoting the time of realization of node n.
The penalty function is assumed to be linear with

proportionality constant pL; i.e. pðtn � dnÞ ¼
pL �maxf0; tn � dng. The objective then is to

determine the resource allocation vector Xa to all
the project activities such that the total expected

cost is minimized. In the case of nonrenewable

resources, the objective is taken to be the mini-

mization of the project duration.

Elmaghraby (2000) describes two dynamic

programming models for solving the problem and

illustrates them on a problem example. A new

state space is introduced based on the concept of
uniformly directed cutsets. For details, we refer the

reader to Elmaghraby (2000) and Tereso (2002).

Tereso et al. (2003) report on computational re-

sults obtained on a set of four projects that range

in size from 5 to 18 activities. The solution times

varied from a few seconds to five days on a Pen-

tium III processor running at 650 MHz.

Jørgenson (1999) and Elmaghraby (2000) dem-
onstrate that the dynamic resource allocation ap-

proach is superior to static optimization, which

assumes certainty equivalents given by expected

values. Deterministic static time/cost trade-off

models underestimate the total expected project

costs and neglect the value of flexibility. Updating

the plans as new information becomes available by

adjusting the amount of resources to be allocated
may well lead to superior results. Additional

computational experience in this area would be

more than welcome.

Golenko-Ginzburg and Gonik (1998) assume a

deterministic work content but random activity

durations which are the result of performing an

activity at a random speed which depends linearly
on the renewable resource amounts assigned to it
at its random start time. They illustrate an exten-

sion of their heuristic procedure for the fixed

resource capacity case discussed above (Golenko-

Ginzburg and Gonik, 1997) on a numerical

problem example. Laslo (2003) describes four

stochastic models for computing time/cost trade-

offs of a single activity using activity duration

fractiles. The author illustrates on a small example
how to determine the performance speed of a

single activity, i.e. how to allocate the required

budget in order to obtain the desired activity

duration under both cost chance constraints and

time chance constraints.
5. Fuzzy project scheduling

The advocates of the fuzzy activity duration

approach argue that probability distributions for

the activity durations are unknown due to the

lack of historical data. As activity durations have

to be estimated by human experts, often in a

non-repetitive or even unique setting, project

management is often confronted with judgmental
statements that are vague and imprecise. In those

situations, which involve imprecision rather than

uncertainty, the fuzzy set scheduling literature

recommends the use of fuzzy numbers for model-

ling activity durations, rather than stochastic

variables. Instead of probability distributions,

these quantities make use of membership functions,

based on possibility theory.
A fuzzy set is a function that measures the de-

gree of membership to a set. Set A in a base set X
can be described by a membership function

lA : X ! f0; 1g with lAðxÞ ¼ 1 if x 2 A and

lAðxÞ ¼ 0 if x 62 A. If it is uncertain whether or not

element x belongs to set A, the above model can be

extended such that the membership function maps

into the interval ½0; 1�. A high value of this mem-
bership function implies a high possibility, while a

low value implies a poor possibility. This leads to

the definition of a fuzzy set eA in X as a set of or-

dered pairs eA ¼ fðx;lA~ðxÞÞjx 2 Xg, where lA~ðxÞ,
06lA~ðxÞ6 1, is called the membership function or

grade of membership of x in eA. In the classical case

where lA~ðxÞ ¼ 0 or 1, eA is said to be a crisp set.
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A fuzzy number eA ¼ fðx; lA~ðxÞÞjx 2 Xg, where
lA~ is the membership function of eA, is a special

kind of a fuzzy set defined as a fuzzy subset of the

real line R that is convex, which means that

8a; b 2 R, 8c 2 ½a; b�, lA~ðcÞP minðlA~ðaÞ; lA~ðbÞÞ. It
is also required that 9a 2 R : lA~ðaÞ ¼ 1. The

advocates of fuzzy scheduling admit that the pre-

cise form of a fuzzy number is difficult to describe

by an expert (Hapke et al., 1999). A practical way
of getting suitable membership functions of fuzzy

data has been proposed by Rommelfanger (1990).

He recommends that the expert express his/her

optimistic and pessimistic information about

parameter uncertainty on some prominent mem-

bership levels by specifying intervals on R: the

smallest interval ½m; �m� for which lðxÞ ¼ 1, mean-

ing that x certainly belongs to the set of possible
values; a larger interval ½mk; �mk�, containing ½m; �m�,
for which it holds that values x have a good chance

P k of belonging to the set of possible values; and a

third interval ½me; �me�, containing the second, for

which all values x have lðxÞ < e. Values x with

lðxÞ < e have a very small chance of belonging to

the set of possible values; i.e. the expert is willing

to neglect the corresponding values of x. Using a
six-point representation, a fuzzy number eM is then

represented by the list of symbols eM ¼ ðme;
mk;m; �m; �mk; �meÞ as shown in Fig. 1.

The output of a fuzzy scheduling pass will

normally be a fuzzy schedule, which indicates fuzzy

starting and ending times for the activities. Such

fuzzy time instances may be interpreted as start or

completion to a certain extent only. As can be
conceived from, amongst others, Dorn et al.
m m m m m m

1

x

)(~ x
M

1

λ

µ

ε
ελε λ

Fig. 1. Fuzzy number eM in six-point representation (Hapke

et al., 1999).
(1995), a fuzzy schedule assists in the explicit rep-
resentation of certain degrees of freedom in the

predictive schedule to represent the discretion

management has to start certain jobs a little earlier

or later when duly propagating certain hard and

soft constraints that may be imposed. In this sense,

a fuzzy schedule comprises multiple crisp sched-

ules.

The recent volume edited by Slowinski and
Hapke (2000) gathers important recent work in

fuzzy scheduling. At the time of writing, the liter-

ature on fuzzy resource-constrained project

scheduling was in its burn-in phase (Hapke et al.,

1994, 1999; Hapke and Slowinski, 1996, 2000;
€Ozdamar and Alanya, 2000; Wang, 1999, 2002,

2004).

The study of a fuzzy model of resource-con-
strained project scheduling has been initiated in

Hapke et al. (1994) and Hapke and Slowinski

(1996). They have extended the priority rule based

serial and parallel scheduling schemes to deal with

fuzzy parameters.

Hapke and Slowinski (2000) discuss the appli-

cation of simulated annealing for solving the

multi-objective fuzzy resource-constrained project
scheduling problem. The procedure is an adapta-

tion of the Pareto simulated annealing procedure

developed by Czyzak and Jaskievicz (1996) for

solving crisp multi-objective combinatorial prob-

lems. The procedure has been incorporated in an

integrated software package. For details we refer

to Hapke and Slowinski (2000).
€Ozdamar and Alanya (2000) study software

development projects and offer a nonlinear mixed-

binary mathematical problem formulation and

accompanying solution heuristics. Their model

incorporates uncertainties related to activity

durations and network topology. Activities may be

performed in one of different modes with a corre-

sponding fuzzy duration. The objective function is

to minimize the project duration. €Ozdamar and
Alanya (2000) illustrate the use of four priority

based heuristics: the standard minimum slack rule,

the latest finish time rule, the maximum number of

immediate successor rule and a minimum risk rule

on a case study.

Wang (1999) has developed a fuzzy set ap-

proach to schedule product development projects
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having imprecise temporal information. The pro-
ject has a fuzzy ready time and fuzzy deadline and

the activities are assumed to have a fuzzy duration,

all described by trapezoidal fuzzy numbers. The

objective is to determine a start time for each

activity such that the fuzzy ready time, deadline,

precedence and resource constraints are satisfied.

A beam search procedure, based on the generation

of groups of activities the delay of which resolves
the resource conflicts (i.e. delaying alternatives

(Demeulemeester and Herroelen, 2002)), that se-

lects only the most promising nodes at each level

of the search tree (the so-called beam-width) for

further expansion is developed to produce a set of

fuzzy start times for each activity. Then, the crisp

start time of each activity is determined based on

possibility theory, to maximize the satisfaction
degrees of all fuzzy constraints. Wang (2002) has

presented a fuzzy beam search approach for solv-

ing the problem under the objective of minimizing

the schedule risk. Wang (2004) describes a genetic

algorithm for solving the problem under the

objective of maximizing the worst case schedule

performance.
6. Proactive (robust) project scheduling

Numerous techniques for proactive (robust)

scheduling have recently been published. The

majority of publications are in the machine

scheduling literature (Davenport and Beck, 2002).

6.1. Redundancy-based techniques

Fault tolerance has been studied in real-time

pre-emptive single machine scheduling environ-

ments to ensure that faults in the system do not

lead to overall system failure. Fault tolerance can

be achieved through resource redundancy (multi-

ple identical sets of resources kept in standby
(Ghosh, 1996)) or time redundancy (scheduling of

back-up tasks that simply reserve time for re-exe-

cution in the event of a fault (Ghosh et al., 1995)).

Pure resource redundancy is rather unrealistic

in a project environment: doubling the various

resources would be cost prohibitive. Time redun-

dancy may be relevant, but unfortunately a
(multi-) project environment is far off from the
pre-emptive polynomially solvable single machine

settings studied in a real-time environment.

Temporal protection (Gao, 1995) extends the

duration of activities based on the uncertainty

statistics of the resources that are used for their

execution. Resources that have a non-zero prob-

ability of breakdown are called breakable re-

sources. The durations of activities requiring
breakable resources are extended to provide extra

time with which to cope with a breakdown. The

‘‘protected’’ duration of each activity equals its

original duration augmented with the duration of

breakdowns that are expected to occur during

activity execution, based on breakdown statistics

for the performing resources (mean time to failure,

mean time to repair, which makes this approach
less applicable in a project setting, where most

resources are human beings). The baseline sche-

dule is then obtained by solving the scheduling

problem with protected durations.

Davenport et al. (2001) propose improvements

of this temporal protection technique with their

time window slack and focused time window slack

approaches in which they do not include slack into
activity durations, but explicitly compute available

slack time per activity in solution schedules. In this

way, they are able to utilize the same slack time for

protecting more than activity, and concentrate

slack in areas of the schedule that are most

important or most vulnerable.

Mehta and Uzsoy (1998, 1999) insert additional

idle time into the predictive schedule to absorb the
impact of machine breakdowns. Mehta and Uzsoy

(1999) consider the problem of minimizing total

tardiness on a single machine with dynamic job

arrival and random breakdowns. They compute an

initial sequence by a heuristic and then insert

additional idle times into the schedule. Mehta and

Uzsoy (1998) study the problem of minimizing the

maximum lateness in a job shop subject to ma-
chine breakdowns. Assuming the distributions of

the time between breakdowns and the time to re-

pair for the machines to be available, they generate

a baseline schedule using the shifting bottleneck

heuristic (Adams et al., 1988). They invoke earli-

ness and lateness penalties whenever the last

operation of a job ends sooner or later than
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planned. They use two heuristics to insert idle time
to minimize expected job completion time devia-

tions. In the ‘‘linear programming based heuristic’’

(LPH), the idea is to develop a schedule with ex-

pected durations for all the activities, and minimize

the summed deviation of the pre-schedule from

this ‘blown up schedule’.

Tavares et al. (1998) study the risk of a project

as a function of the uncertainty of the duration
and the cost of each activity and the adopted

schedule. The adoption of an early (late) start

schedule reduces (increases) the risk of an overall

delay but increases (decreases) the project’s dis-

counted cost, which calls for the difficult determi-

nation of an optimal compromise. The authors

suggest that the start time of each activity i be set

equal to siðaÞ ¼ esi þ aðlsi � esiÞ, where esi and lsi
denote the earliest, respectively, latest start time of

activity i given project deadline dn, and a,
06 a6 1, denotes the so-called float factor. The

late start (early start) schedule is obtained with

a ¼ 1 (a ¼ 0). The authors prove that the use of

siðaÞ yields a feasible schedule.

6.2. Robust machine scheduling techniques

Leon et al. (1994) describe a genetic algorithm

for generating robust schedules for job shops.

They define the schedule robustness of a job shop

schedule S as

RðSÞ ¼ r � E½MðSÞ� þ ð1� rÞE½dðSÞ�;
where MðSÞ is a random variable denoting the

actual makespan of S in the presence of disrup-

tions, r is a real-valued weight in the interval ½0; 1�,
and dðSÞ ¼ MðSÞ �MoðSÞ represents the schedule

delay, defined as a random variable expressing the

difference between executed and pre-schedule

makespan. Since MoðSÞ is deterministic, the ex-

pected values of MðSÞ and dðSÞ equate as
E½MðSÞ� ¼ E½dðSÞ� þMoðSÞ. The authors assume a

right-shift reactive policy that restarts the dis-

rupted operations immediately after the disruption

period. They demonstrate that schedule robustness

RðSÞ can be computed directly for a schedule with

a single disruption. When there is more than one

disruption, the authors have tested three surrogate

robustness measures.
Sevaux and S€orensen (2002a,b) study the single
machine scheduling problem with ready times

under the objective of minimizing the weighted

number of late jobs. They rely on a genetic algo-

rithm for generating quality robust schedules, i.e.,

schedules whose quality does not change when the

input data (i.e., the ready times) change.

The approach of Sevaux and S€orensen is closely

related to the one proposed by Jensen (2001), who
provides extensive theoretical and experimental

results for a job shop environment. Whereas the

foregoing studies use the expected value objective,

Jensen also studies minimization of worst case

performance and of worst case deviation perfor-

mance (absolute and relative). These correspond

with minimax and minimax regret objectives in

decision analysis. The minimax objective minimizes
the consequences of the worst case scenario and

tends to generate very conservative schedules.

Minimax regret techniques associate schedule

robustness with the schedule with the best worst-

case regret performance over all potential realiza-

tions of job processing times, with ‘regret’ for a

particular scenario measured either as absolute

difference or as percentage difference between the
resulting cost and the cost that would have re-

sulted from perfect information for that scenario.

As explained by Kouvelis and Yu (1997), minimax

regret objectives will yield less conservative

schedules, since they take into account the mag-

nitude of missed opportunities of a decision by

benchmarking its performance with the perfor-

mance of the optimal ‘ex post’ solution.
Daniels and Kouvelis (1995) study the single

machine problem under the total flow time objec-

tive. For a given schedule and a set of processing

times for the single machine problem, the regret is

measured as the absolute difference between the

total flow time of the schedule for that scenario

and the flow time obtained using the (optimal)

shortest processing time rule. Kouvelis et al. (2000)
focus on the two-machine flow shop environment,

in which the deviation is computed between the

makespan of the schedule for a scenario and the

makespan of the (optimal) Johnson schedule for

that scenario. The authors develop branch-and-

bound algorithms and heuristics for determining

robust schedules.
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As a continuation of the research on minimax
regret objectives, Daniels and Carrillo (1997)

investigate a combination of average system per-

formance and performance variability in deter-

mining the optimal schedule. Focusing on a single

machine environment and a set of activity pro-

cessing time scenarios, their scheduling objective is

to determine a b-robust schedule, i.e., the schedule
with the maximum likelihood of achieving flow
time performance no greater than a particular

target level. Having established NP-hardness of

the problem, the authors offer a branch-and-

bound procedure and a heuristic. They also extend

the analysis to those situations where a single re-

source, available in limited supply, can be applied

to individual jobs to linearly decrease the associ-

ated processing time variance. Computational
experience indicated that b-robust schedules pro-

vide effective hedges against processing time

uncertainty while maintaining near-optimal per-

formance with respect to expected flow time.

6.3. Robust project scheduling

6.3.1. Abstraction of resource usage

Herroelen and Leus (2004) develop mathemati-

cal programming models for the generation of sta-

ble baseline schedules in a project environment. The

authors make abstraction of resource usage,
assuming that a proper allocation of resources has

been performed. They use the concept of pair-wise

float, FijðSÞ ¼ sjðSÞ � fiðSÞ, defined as the difference

between the start time of activity j and the finish

time of activity i in a schedule S. The pair-wise float
is only defined for activities ði; jÞ 2 TA, where TA

denotes the transitive closure of A, meaning that

ði; jÞ 2 TA if and only if a path from i to j exists in
the activity-on-the-node project network

G ¼ ðN ;AÞ. The authors assign a project deadline

dn and a probability of disruption pi to every

activity i (i ¼ 1; 2; . . . ; n), with
Pn

i¼1 pi ¼ 1. The

dummy end node has disruption probability pn ¼ 0,

while p1 denotes the probability that the dummy

start node, i.e. the entire project, starts later than

initially anticipated. They use a random variable Li

to denote the disturbance length of activity i if it is
disturbed, and a non-negative cost ci per unit time

overrun on the start time of activity i.
The authors propose to use as stability measure
the expected weighted deviation in start times in

the realized schedule from those in the pre-sche-

dule. In other words, the expression they wish to

minimize is
Pn

j¼1 cjðE½sj� � sjðSÞÞ, with E the

expectation operator, sjðSÞ the start time of

activity j in the pre-schedule S, and sj a random

variable representing the actually achieved start

time of activity j (after project execution). If for all
arcs ði; jÞ 2 TA, MSPFij denotes the minimal sum

of pairwise floats of all edges on any path leading

from i to j, then E½sj� can be computed as sjðSÞþP
i2pTðjÞ piEðmaxf0;Li �MSPFijgji disturbedÞ,

where pTðjÞ is the set of all immediate and tran-

sitive predecessors of j. Hence, the objective can be

rewritten as min
P

ði;jÞ2TA cjpiEðmaxf0;Li �
MSPFijgji disturbedÞ. Assuming a single disrup-
tion and all Li to be discrete with probability mass

function gið�Þ which associates nonzero probability

with positive values lik that correspond with the

elements k in Di, the set of disturbance scenarios

for activity i, the authors solve the following linear

programming model:

min
X

ði;jÞ2TA

X
k2Di

cjpigiðlikÞDijk ð1Þ

subject to

si þ di þ Fij ¼ sj 8ði; jÞ 2 A; ð2Þ
sn 6 dn; ð3Þ
lik �MSPFij 6Dijk 8ði; jÞ 2 TA; 8k 2 Di; ð4Þ
si þ di þ kij þMSPFij ¼ sj8ði; jÞ 2 TA; ð5Þ
all Dijk; si; Fij;MSPFij P 0; ð6Þ

where Dijk is the delay in the start time of activity j
due to a disturbance according to scenario k of

activity i, and kij is the length of the path from i to
j (not including i and j) for which MSPFij is
achieved. This linear program can be rewritten as

the dual of a minimum cost network flow problem.

The authors have extended the model to cope with

multiple disturbances. They report on very prom-

ising computational results obtained on a set of

randomly generated test instances.

Herroelen and Leus (2004) have adapted the

float factor model of Tavares et al. (1998) and the
model of Mehta and Uzsoy (1998, 1999) discussed
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in Section 6.1 to a project environment. Results
obtained on a dataset consisting of 300 instances

generated using the problem generator RanGen

(Demeulemeester et al., 2003) demonstrate that

both models are clearly outperformed by the

model given earlier in Eqs. (1)–(6).

6.3.2. Restricted resources and robust resource

allocation

If the unrestricted resource availability

assumption is dropped from the analysis, Leus and

Herroelen (2004) use a so-called resource flow

network to represent the flow of resources across

the activities of the project network (the concept of

a resource flow network has been presented by

Naegler and Schoenherr (1989), Bowers (1995) and

Artigues and Roubellat (2000)). An interesting
question is whether we can find a feasible resource

allocation corresponding with a given feasible

input schedule S such thatX
ði;jÞ2TA[F

X
k2Di

cjpigiðlikÞDijk 6U ;

where F is the set of extra resource links. Leus

(2003) has shown that this decision problem is NP-

complete even when all activities have a single

disruption scenario, by establishing that the par-

allel machine problem with weighted completion

time objective (Bruno et al., 1974) can be reduced
to it.

Leus and Herroelen (2004) have studied the

problem of generating a robust resource allocation

under the assumption that a feasible baseline

schedule exists and that some advance knowledge

about the probability distribution of the activity

durations is available. The authors explore the fact

that checking the feasibility of a resource alloca-
tion can easily be done using maximal flow com-

putations in the resource flow network. As such,
Table 2

Data for the 4 job-2 resource problem

(job/operation)

(1,1) (1,2) (2,1) (2,2)

Machine 1 2 1 2

Processing time 1 1 1 1
the search for an optimal allocation is reduced to
the search for an associated resource flow network

with desirable robustness characteristics. The au-

thors propose a branch-and-bound algorithm that

solves the robust resource allocation problem in

exact and approximate formulations. The proce-

dure heavily relies on constraint propagation

during its search. The authors report on promising

results obtained on a set of problem instances
generated using the problem generator RanGen

(Demeulemeester et al., 2003).

6.4. Multiple schedules (contingent scheduling)

The contingent scheduling approach is based on

the generation of multiple baseline schedules (or

baseline schedule fragments) before and/or during
project execution that optimally respond to antic-

ipated disruptive events, or are equivalent in per-

formance. Responding to anticipated or even

unexpected events during schedule execution is

then simply done by switching to the schedule

(fragment) that corresponds to the events that

have occurred. This approach focuses on flexibil-

ity, rather than robustness, and is especially valu-
able for time-critical reactive scheduling.

Billaut and Roubellat (1996a) suggest to gen-

erate for every resource a so-called group sequence,

i.e. a totally or partially ordered set of groups of

operations, and to consider all the schedules ob-

tained by an arbitrary choice of the ordering of the

operations inside each group. Maugui�ere et al.

(2002) and Aloulou et al. (2002) explore this se-
quence flexibility idea in the context of single

machine scheduling.

The gist of the approach can be sketched using

the 4 job–2 machine example borrowed from Bil-

laut and Roubellat (1996a). The four jobs are

subject to ready times q1 ¼ 1, q2 ¼ q3 ¼ q4 ¼ 0
(3,1) (3,2) (4,1) (4,2)

2 1 2 1

1 1 1 1
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and due dates d2 ¼ 4, d1 ¼ d3 ¼ d4 ¼ 5. Additional
data are shown in Table 2. The notation ði; jÞ re-
fers to operation j of job i. Consider the following
group sequence:

Resource 1: group 1: {(1,1),(2,1)} group 2:

{(3,2),(4,2)}

Resource 2: group 1: {(3,1),(4,1)} group 2:

{(1,2),(2,2)}

Table 3 enumerates the 16 schedules that can be

generated from this group sequence by choosing

an arbitrary processing order for the operations

inside each group (a � b means a strictly precedes

b). All 16 schedules are feasible. In this way the

decision maker is not just provided with one fea-

sible schedule but with several ones. The hope is
that during the real-time execution of the schedule,

it becomes possible to switch from one solution to

the other in the presence of a disruption without

any loss of performance.

Billaut and Roubellat (1996a,b) extend the

group sequence concept to the multiple renewable

resource case by adding the condition that the

operations in a group should use the same amount
of a resource type, and the operations in a group

are assigned to the same subset of units of the

resource type. Briand et al. (2002) extend the

methodology used by Billaut and Roubellat
Table 3

Set of schedules (Billaut and Roubellat, 1996a)

Resource 1 Resource 2

(1,1)� (2,1)� (3,2)� (4,2) (3,1)� (4,1)� (1,2)� (2,2)

(2,1)� (1,1)� (3,2)� (4,2) (3,1)� (4,1)� (1,2)� (2,2)

(1,1)� (2,1)� (4,2)� (3,2) (3,1)� (4,1)� (1,2)� (2,2)

(2,1)� (1,1)� (4,2)� (3,2) (3,1)� (4,1)� (1,2)� (2,2)

(1,1)� (2,1)� (3,2)� (4,2) (4,1)� (3,1)� (1,2)� (2,2)

(2,1)� (1,1)� (3,2)� (4,2) (4,1)� (3,1)� (1,2)� (2,2)

(1,1)� (2,1)� (4,2)� (3,2) (4,1)� (3,1)� (1,2)� (2,2)

(2,1)� (1,1)� (4,2)� (3,2) (4,1)� (3,1)� (1,2)� (2,2)

(1,1)� (2,1)� (3,2)� (4,2) (3,1)� (4,1)� (2,2)� (1,2)

(2,1)� (1,1)� (3,2)� (4,2) (3,1)� (4,1)� (2,2)� (1,2)

(1,1)� (2,1)� (4,2)� (3,2) (3,1)� (4,1)� (2,2)� (1,2)

(2,1)� (1,1)� (4,2)� (3,2) (3,1)� (4,1)� (2,2)� (1,2)

(1,1)� (2,1)� (3,2)� (4,2) (4,1)� (3,1)� (2,2)� (1,2)

(2,1)� (1,1)� (3,2)� (4,2) (4,1)� (3,1)� (2,2)� (1,2)

(1,1)� (2,1)� (4,2)� (3,2) (4,1)� (3,1)� (2,2)� (1,2)

(2,1)� (1,1)� (4,2)� (3,2) (4,1)� (3,1)� (2,2)� (1,2)
(1996b) to the case of multi-mode scheduling with
minimal and maximal time-lags.

Artigues et al. (1999) study multi-mode project

scheduling problems where the projects have a

release date and a due date. They propose a gen-

eration procedure for finding group sequences

based on a new priority rule. They also propose

and test an efficient local search procedure to im-

prove the feasibility of a group sequence. The
procedures are integrated in a commercial real-

time scheduling package (ORDO�).
7. Sensitivity analysis

A number of recent research efforts focus on the

sensitivity analysis of machine scheduling prob-
lems (Hall and Posner, 2000a,b). Sensitivity anal-

ysis addresses ‘‘What if. . .?’’ types of questions

that arise from parameter changes. The authors

study polynomially solvable and intractable ma-

chine scheduling problems and try to provide

answers to a number of fundamental questions

such as (a) what are the limits to the change of a

parameter such that the solution remains optimal?
(b) Given a specific change of a parameter, what is

the new optimal cost? (c) Given a specific change

of a parameter, what is a new optimal solution? (d)

When does a baseline schedule remain optimal? (e)

When does the objective function value remain

optimal? (f) What types of sensitivity analysis are

useful to evaluate the robustness of optimal solu-

tions? (g) What types of sensitivity analysis can be
performed without using the full details of the

solution? etc. An interesting area of future re-

search is to pose and answer similar questions in a

project scheduling setting. An additional interest-

ing and as yet unexplored research topic is to

determine what parameter changes are allowed to

guarantee full rescheduling optimality by means of

a ‘simple’ repair action (e.g. right shift).
Penz et al. (2001) determine the sensitivity

guarantee of off-line scheduling algorithms for

single and parallel machine scheduling problems

where the actual duration of a task i is equal to

ð1þ eiÞdi, with ei 2� � 1;þ1½ representing the

percentage of confidence we have on the corre-

sponding estimated duration. Values 1þ ei are the
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components of the perturbation vector ~e. The
sensitivity guarantee of an off-line algorithm ALG

is a function sALGðeÞ such that for any off-line in-

stance I and any e-perturbation ~e, sALGðeÞ is the

smallest real value verifying q~eALGðIÞ6 sALGðeÞ�
qALGðIÞ, with k e*k6 e. In this expression,

qALGðIÞ ¼ fALGðIÞ=fOPTðIÞ denotes the theoreti-

cal or off-line performance ratio of algorithm

ALG, for which fALGðIÞ denotes the objective
value achieved by algorithm ALG on I and

fOPTðIÞ denotes the optimal objective value for the

instance. q~eALGðIÞ ¼ f~eALGðIÞ=f~eOPTðIÞ denotes the

effective performance ratio, i.e. obtained after

execution. The numerator and denominator in the

right-hand side of the expression represent the

objective value of the ALG schedule for I, applied

to I perturbed by~e, and the optimal value ex post,
with perfect knowledge, respectively.
8. Summary and suggestions for further research

The majority of research efforts in project

scheduling assume complete information about the

scheduling problem to be solved and assume a
static deterministic environment. Basically the re-

search efforts aim at the generation of feasible

baseline schedules that ‘satisfice’ or optimize single

or multiple objective functions. The literature on

project scheduling under risk and uncertainty is

rather sparse. In this paper we offer a review of the

major approaches to deal with scheduling risk and

uncertainty, many of which have been mainly or
solely studied in a machine scheduling environ-

ment.

The methodologies for stochastic project sched-

uling basically view the project scheduling problem

as a multi-stage decision process. Scheduling pol-

icies are used that define which activities are to be

started at random decision points through time,

based on the observed past and the a priori
knowledge about the processing time distributions.

As such they share the disadvantage that they do

not explicitly generate a pre-schedule that can be

used as the baseline plan for making advance

commitments to both subcontractors and cus-

tomers. The dynamic programming approaches

developed to tackle the stochastic multi-mode
problem determine the resource allocation vectors
for the project activities in order to minimize total

expected cost and rely on the assumption that the

uncertainty resides in the work content of the

activities and not in their duration.

The fuzzy project scheduling approach rejects

the use of probability distributions for the activity

durations but relies on membership functions that

may be as difficult to generate. As such uncertainty
is captured by the notion of ‘‘belonging’’ rather

than in terms of ‘‘frequency’’ of occurrence. The

literature is still in its burn-in phase.

Research in proactive (robust) scheduling has

widely prospered in the field of machine schedul-

ing. Redundancy-based techniques have already

found their way to the field of project scheduling.

The buffer insertion approach, the fundamental
ingredient of Goldratt’s critical chain methodol-

ogy (Goldratt, 1997), is gaining increasing popu-

larity among project management practitioners.

While this methodology has acted as an important

eye-opener, its pitfalls, mainly due to severe over-

simplifications, have been revealed recently. The

generation of robust multi-resource baseline

schedules in combination with efficient and effec-
tive reactive schedule repair mechanisms consti-

tutes a viable area of future research. Whereas

numerous reactive scheduling mechanisms have

been developed and tested in real-time machine

scheduling environments, the field is in need for

further research aimed at their implementation

and validation in a project scheduling environ-

ment.
Research on sensitivity analysis has just

emerged in the area of machine scheduling. Efforts

to seek answers to the various types of ‘‘what if

. . .’’ questions in a project setting still need to be

initiated, and would offer useful information to

project management.
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