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This dissertation presents a set of methods by which a learning agent, called a \critter," can learn

a sequence of increasingly abstract and powerful interfaces to control a robot whose sensorimotor

apparatus and environment are initially unknown. The result of the learning is a rich, hierarchical

model of the robot's world (its sensorimotor apparatus and environment). The learning methods

rely on generic properties of the robot's world such as almost-everywhere smooth e�ects of actions

on sensory features.

At the lowest level of the hierarchy, the critter analyzes the e�ects of its actions in order to

de�ne control signals, one for each of the robot's degrees of freedom. It uses a generate-and-

test approach to de�ne sensory features that capture important aspects of the environment. It

uses linear regression to learn action models that characterize context-dependent e�ects of the

control signals on the learned features. It uses these models to de�ne high-level control laws for

�nding and following paths de�ned using constraints on the learned features. The critter abstracts

these control laws, which interact with the continuous environment, to a �nite set of actions that

implement discrete state transitions. At this point, the critter has abstracted the robot's world to

a �nite-state machine and can use existing methods to learn its structure.
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Chapter 1

Introduction

This dissertation addresses the following problem: Given a robot with an uninterpreted sensori-

motor apparatus situated in a continuous, static environment, how can a learning agent (henceforth

called a \critter") learn descriptions of the structure of the sensorimotor apparatus and environ-

ment suitable for prediction and navigation? Here, and in the rest of the dissertation, I make

a distinction between the critter and the robot. The robot is a machine (physical or simulated)

and the critter is a learning agent that learns how to use that machine. The robot's sensorimotor

apparatus is comprised of a set of sensors and e�ectors. By \uninterpreted," I mean that the critter

does not initially know what the robot's sensors are sensing nor how the e�ectors move the robot

about in its environment. From the critter's perspective, the sensorimotor apparatus is represented

as a raw sense vector s and a raw motor control vector u. The former is a vector of real numbers

giving the current values of all of the sensors. The latter is a vector of real numbers, called control

signals, produced by the critter and sent to the robot's motor apparatus. The critter's situation is

illustrated in Figure 1.1.

This dissertation solves the learning problem by presenting a set of methods that the critter can

use to learn (1) a model of the robot's set of sensors, (2) a model of the robot's motor apparatus,

and (3) a set of behaviors that allow the critter to abstract the robot's continuous world to a

discrete world of places and paths. These methods have been demonstrated on a simulated mobile

robot with a ring of distance sensors.

These learning methods comprise a body of knowledge that is given to the critter a priori .

They incorporate a knowledge of basic mathematics, multivariate analysis, computer vision, and

control theory. A list of the learning methods and the a priori knowledge that they embody will

be given in Section 1.10. The learning methods are domain independent in that they are not based

on a particular set of sensors or e�ectors and do not make assumptions about the structure or even

the dimensionality of the robot's environment.

To better understand the problem that the critter faces, imagine yourself in its place. Imagine

that you are in front of the control console for a teleoperated robot. At the left of the console is

a display giving your sensory input from the robot. All that you will ever see of the environment

comes via that vector of numbers. Next to this display is a joystick. You know that this can

be used to move the robot through its environment and you know that the robot does not move

when the joystick is in its zero position but you have no idea how the joystick a�ects the robot's

motion. Your mission is to develop a model of the robot's environment as well as its sensorimotor

interface to that environment. At the lowest level, you need to develop an understanding of the

robot's sensorimotor apparatus | you need to know the e�ects of the control signals on the sense

1



Sensory input Control

a0

a1

Robot & World

Critter

Figure 1.1: The learning problem addressed in this dissertation is illustrated by this interface between
a learning agent, called a \critter," and a teleoperated robot in an unknown environment. The critter's
problem is to learn a model of the robot and its environment with no initial knowledge of the meanings of
the sensors or the e�ects of the control signals.

vector. At a higher level, you need to understand the robot's environment. The robot could be

a mobile robot in an o�ce building or laboratory or it could be a submarine swimming in the

ocean. The problem you face is analogous to that faced by a cryptanalyst trying to decipher an

enemy's code. Like the cryptanalyst, you need a set of tools to apply to the problem. Developing

a set of appropriate tools is the subject of this dissertation. Sections 1.2 through 1.7 introduce a

number of these tools (i.e., learning methods) and show how they are used by a critter as it develops

an understanding of a robot's world by learning a sequence of increasingly abstract and powerful

interfaces to the robot. Section 1.8 gives a formal de�nition of the general learning problem and

solution.

1.1 Example: Learning to control a mobile robot

For concreteness, the learning methods will be illustrated with a particular robot and environ-

ment. The robot's world is simulated as a rectangular room of dimensions 6 meters by 4 meters.

The room has a number of walls and obstacles in it. The robot itself is modeled as a point. The

robot has 29 sensors. Each sensor's value lies between 0:0 and 1:0. Collectively, these de�ne the

raw sense vector s, which is the input from the robot to the critter. The �rst 24 components of the

raw sense vector give the distances to the nearest objects in each of 24 directions. These have a

maximum value of 1.0 which they take on when the nearest object is beyond one meter away. The

sonars are numbered clockwise from the front. The 21st component is defective and always returns

a value of 0.2. The 25th component is a sensor giving the battery's voltage, which decreases slowly

2



Figure 1.2: The robot that the critter learns to control has 24 distance sensors (one of which is defective),
a battery-voltage sensor, and a digital compass. The robot lives in a 6m x 4m rectangular room.

from an initial value of 1.0. The 26th through 29th components comprise a digital compass. The

component with value 1 corresponds to the direction (E, N, W, or S) in which the robot is most

nearly facing. The robot has a \tank-style" motor apparatus. Its two motor control signals a0 and

a1 tell how fast to move the right and left treads. Moving the treads together at the same speed

produces pure forward or backward motion; moving them in opposition at the same speed produces

pure rotation. Moving the treads at di�erent speeds causes the robot to move in a circular arc.

The robot and its environment are shown in Figure 1.2.

The critter does not know what any of these sensors or e�ectors do. The critter only knows that

that robot's raw sense vector has 29 elements and its raw motor control vector has two elements.

1.2 Learning a model of the sensory apparatus

The critter's �rst task is to model the robot's sensory apparatus. The critter develops an

understanding of the robot's sensory apparatus by learning new features . A feature, as de�ned

in this dissertation, is a function over time whose current value is completely determined by the

history of current and past values of the robot's raw sense vector. The type of the feature is

determined by the type of that function's value. The types of features used in this dissertation

include the following: scalar , vector , matrix , image, and �eld . The �rst three types are based on

standard mathematical constructs. The image and �eld features will be de�ned later. Examples of

features are the raw sense vector (a vector feature) and the elements of the raw sense vector (scalar

features).

The critter produces new features using feature generators . A feature generator is a rule that

creates a new feature or set of features based on already existing features.

1.2.1 The group feature generator

A sensory apparatus may contain a structured array of similar sensors. Examples of such arrays

are a ring of distance sensors, an array of photoreceptors in a video camera, and an array of touch

sensors. The critter uses the group feature generator to recognize such arrays of similar sensors. A

group feature is a vector feature whose elements are all related in some way (e.g., all correspond to

sensors in an array of similar sensors).

3



Figure 1.3: Before it has any knowledge of how the sensorimotor apparatus works, the critter chooses
random actions, executing each for one second (ten time steps).

The group feature generator is based on the following observation. A well-engineered array of

sensors (e.g., a ring a distance sensors) that measure a property (e.g., distance between the robot

and a nearby object) that typically varies continuously with position in the array will satisfy the

following: if two sensors are physically close together in the array, then they will \behave similarly"

in the following two ways: (1) the two sensors' values at each instant in time will be similar and (2)

the two sensors' frequency distributions1 will be similar. Corresponding to these two ways are two

distance metrics (examples of matrix features) that are used by the group feature generator. This

generator computes these two distance metrics over a period of several minutes while the critter

moves the robot using the following strategy (Figure 1.3): choose a random motor control vector;

execute it for one second (10 time steps); repeat.2 The result of the analysis is a set of distance

metrics that tell, for each pair of sensors, how similar they are. The group generator uses these

metrics to group similar subsets of sensors together.3 The result is a new interface to the robot

illustrated in the Figure 1.4. Notice that the 23 working distance sensors have been isolated from

the rest.

1.2.2 The image feature generator

The grouping of the sensors into subgroups is a �rst step but it tells nothing about the positions

of the sensors in the array. This is accomplished by the image feature generator . The image feature

generator is a rule that takes a group feature and associates a position vector with each element of

the group feature in order to produce an image feature: a function over time, completely determined

by the current and past values of the raw sense vector, whose value at any given time is an image.

An image is an ordered list of image-elements . An image-element is a scalar with an associated

position vector. An example of the use of an image feature is to represent the pattern of light

intensities hitting the photoreceptors in a camera.

The image feature generator uses the �rst of the two distance metrics used by the group feature

1The frequency distribution of a variable gives, for each of a set of subintervals in the variable's domain, the
percentage of time that the variable assumes a value in that subinterval.

2My experiments with the critter have shown that this strategy is more e�ective for e�ciently exploring a large
subset of the robot's state space than choosing motor control vectors randomly at each time step.

3Section 3.1.1 gives the details of this operation.
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Sensory input

Figure 1.4: Applying the group generator is a �rst step toward modeling the robot's sensorimotor apparatus.
The 23-element group feature at the left corresponds to a structured array of sensors and will be given special
consideration.

Image Feature Motion Feature

(a) (b)

Figure 1.5: (a) The image feature generator produces an image feature that represents the physical structure
of a group of related sensors. In this example, it is clear from the image feature that the robot's sensors
are organized in a ring. Once a sensory array is represented as an image feature, then new features such as
local minima, local maxima, and motion may be de�ned. (b) The motion generator is applied to the image
feature to produce the motion feature which uses spatial and temporal derivatives of the image feature to
measure the magnitude and direction of the \optical ow" at each point in the image feature.

generator. It uses a mathematical technique called metric scaling and a relaxation algorithm to

map the sensors onto a two-dimensional surface in such a way that sensors that are similar to each

other according to the distance metric are close together in the resulting 2-D representation.4 This

new representation is illustrated in Figure 1.5a.

1.3 Learning a model of the motor apparatus

The techniques that the critter has used so far have applied to the sensory system but not to the

motor apparatus. The e�ects of the robot's motor control vectors must be de�ned using the robot's

sensory system, its only source of information about its environment. One way to characterize a

motor control vector's e�ect is in terms of motion. Once the image feature is learned, a new tool, the

motion feature generator , becomes applicable and is used to de�ne a motion feature (Figure 1.5b),

an example of a �eld feature. A �eld is an ordered list of �eld elements . A �eld element is a vector

4See Section 3.1.2 for a discussion of the techniques and how they may be used to determine the appropriate
number of dimensions for the image.
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Figure 1.6: The critter de�nes a new motor control interface that abstracts away the details of the motor
apparatus. (a) The robot's motor control signals control the right and left treads of a tank-style motor appa-
ratus. Associated with each motor control vector is an average motion vector �eld (amvf ) that characterizes
the e�ect of the motor control vector. (b) The critter uses principal component analysis to discover a basis
set of amvf 's, one per degree of freedom, and corresponding primitive actions and control signals. For this
robot, these signals tell it how fast to turn and advance.

(e.g., a velocity vector) and an associated position vector. Even without knowledge of the physical

structure of the environment, it is possible to de�ne motion detectors, using only knowledge of

spatial and temporal derivatives which can be de�ned directly from the image feature.5 The value

of a motion feature corresponds to what researchers in vision call an optical-ow pattern.

The critter uses the new motion feature to analyze its motor apparatus using the following

steps: (1) The in�nite space of all possible motor control vectors is discretized into a �nite set of

representative motor control vectors uniformly distributed over the space of motor control vectors.

(2) While randomly executing these representative motor control vectors, the critter maintains

an average motion vector �eld (amvf ) for each of the motor control vectors. The amvf for a

motor control vector is the average of the motion feature's value over all the times in which the

motor control vector is used. The e�ect of each motor control vector is represented by its amvf .

Eight of the motor control vectors and their amvf 's are shown in Figure 1.6a. (The amvf 's in

the �gure are only illustrative | the actual amvf 's are shown in Figure 5.1.) (3) The critter

uses principal component analysis6 to analyze the space of amvf 's and identify a set of principal

eigenvectors that collectively capture the motion e�ects that the motor apparatus is capable of

producing. For the robot of the example, the �rst principal eigenvector (v0 in Figure 1.6b) is an

optical-ow pattern produced as the result of turning in place and the second eigenvector (v1 in

5The details will be given in Section 2.6.5
6Principal component analysis is a multivariate-analysis technique that will be described in Section 5.1.3
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the �gure) is an optical-ow pattern produced as the result of advancing. 4) The critter identi�es

primitive actions : A motor control vector is identi�ed as a primitive action if the amvf for the

motor control vector matches a principal eigenvector, in which case the motor control vector can

be used to produce motion for one of the robot's degrees of freedom. For the example robot, the

�rst principal eigenvector is matched by the primitive action (0:7;�0:7) which moves the treads in

opposite directions resulting in a pure rotation; the second principal eigenvector is matched by the

primitive action (0:7; 0:7) which moves the treads together resulting in a pure advancing motion.

For the third and subsequent principal eigenvectors, no motor control vector's amvf matches. 5)

The critter de�nes a new interface to the motor apparatus using the new control signals u0 and u1
that specify the magnitudes of the two primitive actions. The motor control vector is now given by

u = u0u
0 + u1u

1

where u0 = (0:7;�0:7) and u1 = (0:7; 0:7) are the primitive actions, and u0 and u1 are the new

control signals that specify how fast to turn and advance respectively. The new interface, illustrated

in Figure 1.6b, abstracts away unimportant details of the motor apparatus. The interface looks

the same for a tank-style motor apparatus as it does for a synchro-drive robot whose two control

signals specify how fast to turn and advance, respectively. The representation of the robot's actions

is now based on sensory e�ects rather than raw motor control signals.

1.4 Discovering local state variables

The learned image feature (Figure 1.5) is important because it can be used by a number of

feature generators to produce new features. An example is the motion feature which has already

been discussed. Other feature generators use the learned image feature to produce, for example,

local minima detectors and local maxima detectors. A more comprehensive list of feature generators

will be given in Chapter 3.

The question remains, while generating new features, how does the critter know when it has

found one that is useful? What does it mean for a feature to be useful? One component of

understanding the robot's world is to be able to know the position of the robot, that is, to know

where the robot is in its state space. Consider the example of a mobile robot that lives on a oor

of an o�ce building. Its state is completely determined by three variables | two for position

(e.g., latitude and longitude) and one for orientation. Since the critter is not given the robot's

state variables, the critter must de�ne state variables for itself. A natural way to do this is to use

features de�ned as functions on the sensory system as local state variables . These features locally

determine the state of the robot. As an example, consider the case of a mobile robot, equipped

with distance sensors, in the corner of a room. The position of the robot is locally determined by

the minimum distances from the robot to the two corner walls. These distances serve as local state

variables. They are local in the sense that they only exist as long as the robot is able to see the

walls.

The critter's goal, while generating new features, is to recognize features that are suitable as

local state variables. Without going into the details (see Chapter 6), a feature can serve as a local
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�lmin vs. u0�t �lmin vs. u1�t

Figure 1.7: The critter uses linear regression to investigate the e�ect of the control signals on the local-
minimum features. It learns that u0 has no appreciable e�ect. It also learns (since the standard deviation
of _y is large when u1 is large) that u1 does have an e�ect but that the e�ect is unpredictable. Context
information will be necessary in order to predict the e�ects of u1 on the features.

state variable if its derivative with respect to time can be approximated as a linear, nonzero function

of the motor control vector. Discovering local state variables involves a process of generate and

test. New features are de�ned using feature generators such as those already described. Testing

a feature to con�rm that its derivative is a linear, nonzero function of the motor control vector is

done when the critter learns the static action model , described below.

1.4.1 Learning the static action model.

The static action model expresses the e�ects of the motor control signals on each scalar feature

as a function of the current context (i.e., the current state of the robot as reected by its current

sense vector). Consider a local-minimum feature (lmin) that is derived from the image feature as

the value of an element that is less than all of its neighbors in the image (see Section 2.6.5). To

model the e�ects of the control signals on the feature, linear regression is used to test the hypothesis

that _yi = mij uj where _yi is the derivative of the i
th feature's value, mij is a constant, and uj is the

jth control signal. Linear regression provides both an estimate of mij and a measure of the validity

of the hypothesis. This measure, the correlation, will be close to 1 or -1 if the hypothesis is valid,

in which case the critter can use the equation _yi = mij uj to know how to set uj in order to change

yi.

The linear regressions for the two control signals and a local-minimum feature are shown in

Figure 1.7. From these, the critter learns that the �rst control signal u0 (for turning) has no e�ect

on the feature and that the second control signal u1 (for advancing) does, but that the e�ect is

not consistent. It may be that the e�ect of the control signal is context dependent | that in some

contexts it will increase the feature's value and in others it will decrease it. To test this hypothesis,

the critter breaks the robot's state space up into di�erent contexts and then performs a separate

linear regression for each context. In this way, it attempts to model the e�ect of the control signal

on the feature by the equation _yi = mijk uj where the constant mijk depends on the context.

One way to partition state space into a set of contexts is to choose a feature and divide its

range of values into a �nite set of intervals, each de�ning its own context. Using feature x to de�ne

8



_yi vs. u0, k=0 _yi vs. u0, k=6 _yi vs. u0, k=12

Figure 1.8: Three representative linear regressions used in learning the static action model. A local-
minimum feature yi's position in the image from which it is derived is found to provide valuable context
information for predicting the e�ect of control signal u1 on the feature's value. Linear regression is used for
each context (i.e., each of the 23 possible positions) to determine the relationship between u1 and yi. The
critter discovers that, for contexts 0 through 5 and 19 through 22, yi decreases when u1 is positive. For
contexts 7 through 17, yi increases when u1 is positive. For contexts 6 and 18, yi does not change no matter
what the value of u1 is. This information is recorded in the static action model for feature yi.

a set of contexts is appropriate if the value of x is a good predictor of the e�ect of a given control

signal uj on a given feature yi. To test the hypothesis that x is a good predictor for the e�ect of

uj on yi, linear regression can be used to determine uj's e�ect on yi for each context de�ned using

a subinterval of x's range. If the relationship between uj and yi is linear when x's value lies in a

certain interval Ik, then the equation x 2 Ik de�nes a region in state space in which yi can serve as

a local state variable.

Testing each of a large set of features to see if they improve the predictability of a control signal's

e�ect is expensive. One heuristic to reduce the expense is to �rst look at features closely related to

the feature being analyzed. In the current example, the critter wants to know how control signal

u1 a�ects a local-minimum feature yi. A feature closely related to yi is the position in the image

from which it is de�ned. The position is already conveniently discretized: there are 23 possible

positions from which 23 contexts may be de�ned. For each of these contexts, the critter performs a

context-dependent linear regression to discover the relationship between the control signal u1 and

the local-minimum feature (see Figure 1.8).

The results gained from all of these linear regressions are used to de�ne a static action model

for local-minimum features which tells, given the robot's current context, how the control signals

a�ect the features. In the example, the critter learns that for contexts 0 through 5, 7 through 17,

and 19 through 22, it can reliably a�ect the value of a local-minimum feature yi using control signal

u1. In these contexts, the feature yi is a local state variable: the derivative of yi is a linear nonzero

function of the motor control vector u. In contexts 6 and 18, the control signal leaves the value of

the feature invariant. The learned local state variables are illustrated in Figure 1.9.
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Sensory input

LSVs

Figure 1.9: A generate-and-test approach is used to learn a set of features that can serve as local state
variables. Here, the local-minimum generator is used to produce suitable features. From the critter's
perspective, these are local minima of an image whose structure is based on intersensor correlations. From
our perspective, these are minimum distances to nearby objects.

1.5 Learning behaviors

In order to actively explore its world, the critter needs to learn behaviors for navigation through

the environment. The approach the critter takes is to learn robust path-following behaviors . The

heart of a behavior is a control law that tells the robot what motor control vector to use given the

current sense vector. The control law for a path-following behavior constrains the robot to move

along a well-de�ned one-dimensional path. This is to ensure that the e�ect of following the path

will be the same each time the critter chooses that path. For example, consider a mobile robot in

an o�ce. A behavior that involves moving the robot along the edge of the o�ce while maintaining

a constant distance to the wall is a good path-following behavior. It is consistent in that it will

always take the robot to the same place, e.g., the place where the wall forms a corner with another

wall.

Path-following behaviors are learned in three steps: (1) continuous error signals are de�ned; (2)

behaviors are learned for minimizing the error signals; (3) behaviors are learned for moving while

keeping the error signals near zero.

1.5.1 De�ning error signals for control laws

The critter's approach to learning path-following behaviors is to �rst de�ne error signals of the

form e = y�� y where y is a local state variable and y� is a constant called a target value. Without

any a priori knowledge of the environment, the choice of y� is arbitrary. The critter chooses a

nominal value of y�i = 0:5 since the features' values range from 0 to 1. The subsequent sections tell

how to use these error signals to de�ne path-following behaviors.

1.5.2 Learning homing behaviors

The second step of the process of learning path-following behaviors is to use the static action

model to de�ne homing behaviors . These are the behaviors that move the robot to a state where a

given feature yi has a desired value y�i . These behaviors are used to establish the prerequisites for
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Figure 1.10: An example of a homing behavior. The critter has learned and recorded in its static action
model that primitive action u1 will decrease the value of the feature yi in any context in which the robot is
facing toward the wall. It uses this knowledge to de�ne a control law that moves the robot to a state where
yi = y�i .

path-following behaviors, behaviors that move the robot while maintaining a feature at its desired

value.

For each local state variable yi and control signal uj , a homing behavior is de�ned that uses the

control signal to move the local state variable to its target value. The behavior is applicable when

the static action model predicts that the control signal can be used to reliably a�ect the feature's

value. The behavior is done when the feature is at its target y�i . The behavior's output is given by

a simple control law. A homing behavior for moving to a speci�c distance from a wall is illustrated

in Figure 1.10.

1.5.3 Learning path-following behaviors

The previous section presented a method for learning homing behaviors that minimize a given

error signal. In this section, a method is presented for moving while minimizing the error signal.

The result is a path-following behavior. Learning a path-following behavior involves two steps: 1)

learning how to move in the general direction that keeps the error near zero and 2) learning the

necessary feedback for error correction to avoid straying o� the path de�ned by the minimum of

the error signal.

1. Learning open-loop path-following behaviors. The �rst step toward learning path-

following behaviors is to use the static action model to de�ne open-loop path-following behaviors .

An open-loop path-following behavior is a preliminary form of path-following behavior that lacks

error correction but that is useful for learning the dynamic action model which is in turn useful

for de�ning path-following behaviors with error correction. For each local state variable yi and

primitive action uj , for each context in which uj has no e�ect on yi according to the static action

model, two behaviors are de�ned that are applicable when yi is at its target value y
� and the static

action model predicts that the primitive action does not a�ect the feature. The behaviors' outputs

are given by

u = u� +
X
� 6=j

u� u
�

where u� = �uj and ju�j � 1. The u� components will be used in learning the dynamic action

model. The purpose of an open-loop path-following behavior is to allow the critter to learn the
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(a) (b)

Figure 1.11: Two examples of open-loop path-following behaviors. (a) A behavior based on u0 (for turning)
and constraint yi = y�i is applicable whenever yi = y�i since u0 never changes the value of yi. (b) A behavior
based on primitive action u1 (advancing) and constraint yi = y�i is applicable whenever yi = y�i and the
robot's heading is parallel to the wall on its left since in this context u1 maintains the constraint yi = y�i .

e�ects of the other primitive actions on the feature while motor control vector u� is used. With

this knowledge, it will be possible to use these other control signals for error correction.

For the robot of the running example, there is an open-loop path-following behavior based on

u0 (for turning) for each local state variable yi. It is applicable whenever yi = y�i since, according

to the static action model, turning has no e�ect on yi. There is also an open-loop path-following

behavior based on u1 (for advancing) and each feature yi for each of the constant contexts 6 and

18. These are contexts in which the critter has a wall on its right or left.

The dynamic action model. Whereas the static action model predicts the context-dependent

e�ects of a primitive action on the local state variables, the dynamic action model predicts the

context-dependent e�ects of primitive actions on local state variables while an open-loop path-

following behavior is being executed. Consider the mobile robot of the example and suppose that

there is a wall to its left and that it is facing parallel to the wall (Figure 1.11). In this context,

primitive action u1 (advancing) will maintain the distance to the wall, yi, invariant. Therefore,

the open-loop path-following behavior based on u1 and yi will be applicable. While executing

this behavior, the e�ects of other primitive actions (e.g., u0) can be diagnosed (Figure 1.12).

The relationship between u0 and yi is discovered using linear regression to test the hypotheses

_yi = mi0 u0 and �yi = mi0 u0: (Recall that u = u0u
0 + u1u

1.) In this example, the second equation

better captures the relationship between u0 and yi than does the �rst. This is because turning

changes the robot's direction of motion relative to the wall and this direction determines how fast

the robot moves toward or away from the wall as it advances. To summarize this step: for each

open-loop path-following behavior, based on motor control vector u� = �uj and feature yi, for

each primitive action u� 6= uj, linear regression is used to learn the e�ect of u� on yi while the

open-loop path-following behavior is running. This e�ect is represented by the equation

y
(n)
i = mij�n u�

where y(n)i is the nth derivative of yi and n 2 f1; 2g.7

7See Section 7.4.2 for the details including the reason why both the �rst and second derivatives need to be
considered.
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_yi vs. u0 �yi vs. u0

Figure 1.12: Learning the dynamic action model for control signal u0. While an open-loop path-following
behavior based on control signal u1 is running, the critter diagnoses the e�ect of a small superimposed
orthogonal control signal. The motor control vector is computed by the equation u = u1u

1 + u0 u
0 where

u1 = 1 and u0 varies between -0.1 and 0.1. Linear regression is used to characterize the relationship between
u0 and both _yi and �yi. The critter discovers that the e�ect of u0 on yi is best characterized by �yi = mi0 u0.

Figure 1.13: Learning closed-loop path-following behaviors. The critter uses the learned dynamic action
model to add error correction to an open-loop path-following behavior in order to obtain a closed-loop path-
following behavior. In this example, a small turning motion is used to keep the robot on the path as it
advances.

2. Learning closed-loop path-following behaviors. The �nal step in learning path-following

behaviors is to add error correction to the open-loop path-following behaviors in order to de�ne

closed-loop path-following behaviors. If the robot wanders away from the path, the control law

should steer it back to the path. A closed-loop behavior is one that receives feedback from the

environment in the form of an error signal which it uses to modify its motor control signals so as to

minimize the error. The details are given in Section 7.4.3. Consider again the case where the robot

is facing parallel to a wall on its left. In this context, the critter knows, because of its static action

model, that control signal u1 will leave feature yi (the distance to the wall) invariant. Moreover, the

critter knows, because of its dynamic action model, how control signal u0 (turning) a�ects yi while

u1 is being taken. Together, this information is su�cient to de�ne a closed-loop path-following

behavior that robustly moves the robot along the wall. If yi goes below its target value (i.e., if the

robot gets too close to the wall), then the critter knows to increase the value of u0 (i.e., to turn

right as shown in Figure 1.13). Because of the error correction implemented using control signal

u0, the path-following behavior is robust in the face of noise in the sensorimotor apparatus, small

perturbations in the shape of the wall, and even inaccuracies in the action models themselves.

Two closed-loop path-following behaviors are de�ned for each primitive action uj for each

subset y of the set of all local state variables, and for each context in which the static action model

predicts that primitive action u� will maintain the invariant y = y�. A behavior based on ui and y

is applicable when all of the components of y are at their target values, i.e., y = y�. The behavior
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Figure 1.14: The critter de�nes a high-level interface to the robot using learned homing and path-following
behaviors. The state of the control panel corresponds to the state of the robot shown at the right. The local
state variables y0 and y1 are the distances to the south and east walls, respectively. For each local state
variable, a homing behavior is de�ned using primitive action u1 (the only primitive action that a�ects the
variables). For each subvector y of (y0; y1) and each primitive action ui, two path-following behaviors are
de�ned for moving using �ui while maintaining the invariant y = y�. A circle around a behavior button
indicates that the behavior is applicable. The path-following behavior based on +u1 and y1 is highlighted
indicating that it is the behavior currently selected by the critter. Its e�ect is to move the robot north along
the right wall.

is done when a new path-following behavior becomes applicable indicating that the the critter now

has a choice | to continue the current path-following behavior or to choose a new one.

For the running example, the set of path-following behaviors contains behaviors for turning

in place as well as for following walls. In both cases, the behavior is de�ned using a base action

(turning or advancing) while maintaining an invariant (e.g., a constant distance to the wall).

By learning the path-following behaviors, the critter has de�ned a higher-level interface to the

robot, illustrated in Figure 1.14. The e�ects of these high-level behaviors are demonstrated in

Figure 1.15.

1.6 De�ning a discrete sensorimotor apparatus

Beginning with a raw sense vector and a raw motor control vector, the critter has learned a set

of local state variables and high-level behaviors. Its next step is to abstract from the continuous

sensorimotor apparatus to a discrete sensorimotor apparatus by de�ning �nite sets of views and

actions .

For any given state of the robot, there is a �nite set of homing and path-following behaviors.

These behaviors are the actions of the discrete sensorimotor apparatus. Executing one of the actions
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Figure 1.15: A demonstration of the learned homing and path-following behaviors. Here, the critter wanders
by randomly choosing applicable path-following behaviors. If no path-following behavior is applicable, it
chooses a homing behavior. If no behavior is applicable, it wanders randomly until one becomes applicable.

involves running the corresponding behavior until it terminates. A behavior terminates when the

local state variable or variables on which it is based are no longer de�ned or when a new behavior

becomes applicable indicating that the critter may now choose to continue the current behavior

or select a new one. The set of states in which actions terminate are named via a mapping from

sense vectors to symbols called views . This mapping uses a matching predicate that tells whether

two sense vectors are similar. If the current sense vector is new then a new view is created and

associated with it. If the current sense vector matches one previously seen, it is associated with

the same view as the previous sense vector.

The resulting interface is illustrated in Figure 1.16. While a path-following behavior is executing,

the interface is unde�ned. When the behavior terminates, the interface identi�es the current view

and lists the current set of applicable behaviors.

1.7 Learning the topology of the environment

The critter has made a very important change of representation by abstracting a continuous

sensorimotor apparatus to a discrete sensorimotor apparatus with a �nite set of sense values and

actions. Understanding a continuous world is very di�cult but the problem of understanding a

discrete world has been extensively studied.

The robot's path-following behaviors constrain its motion to a one-dimensional subspace of

the robot's complete state space. This 1-D skeleton is the basis for an abstraction of the robot's

environment as a graph (a set of nodes and a set of edges connecting the nodes together). The edges

correspond to paths | trajectories in the robot's state space produced by path-following behaviors.

The nodes correspond to states where paths terminate, that is, states where a new path-following

behavior becomes applicable and the critter stops to choose one of the currently applicable paths.

The critter's goal is to construct this graph.

In the case where views uniquely identify states, the problem is straightforward. For each state

it sees, the critter keeps track of all the actions applicable at that state. Each time it takes an
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Figure 1.16: The discrete sensorimotor apparatus. The critter abstracts from an in�nite space of sense
vectors to a �nite set of views and from an in�nite space of motion trajectories to a �nite set of actions.
The current view is a symbol (v7 above) that identi�es the current sense vector. The set of actions (a0 to
a3 above) is the set of currently applicable path-following behaviors. Selecting a behavior causes it to be
executed until it terminates, at which point a new view and action set is presented. For this example, a0
and a1 are based on primitive action u0 and maintain the constraint y0 = y1 = 0:5; a2 and a3 are based on
primitive action u1 and maintain the constraint y1 = 0:5.

action, aj , that takes it from view vi to vk, it adds the edge (vi; aj; vk) to the graph. It continues

to explore (intelligently or randomly) until there are no state-action pairs that it has not explored.

In the case that views do not uniquely identify states, a more sophisticated exploration strategy

is required. Such strategies will be discussed in Section 9.5.1. They are all based on the following

idea: If the current view does not uniquely identify the current state, the critter supplements the

current sense vector with the sense vectors of nearby states. With enough information about the

surrounding area, the current state can be uniquely identi�ed.

1.8 The abstract-interfaces approach

The preceding scenario illustrates how the critter can learn a model of a robot's sensorimotor

apparatus and environment without being given knowledge of the robot's particular set of sensors

and e�ectors. This scenario demonstrates what I call the abstract-interfaces approach to learning

the model. In this Chapter, Figure 1.1 shows the intial interface between the robot and the critter.

Figures 1.4, 1.5, 1.6b, 1.9, 1.14, and 1.16 show a sequence of learned abstract interfaces between

the robot and the critter. Each abstract interface gives the critter a new way of understanding

the robot's sensory input or of interacting with the robot's environment. The problem and solu-

tion, exempli�ed by the critter learning to understand the mobile robot, are given formally below,
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followed by de�nitions of the italicized terms:

Problem

Given: a robot with an uninterpreted sensorimotor apparatus in a continuous , static envi-

ronment.

Learn: descriptions of the structure of the robot's sensorimotor apparatus and environment

and an abstract interface to the robot suitable for prediction and navigation.

Solution

Representation: a hierarchical model. At the bottom of the hierarchy are egocentric models

of the robot's sensorimotor apparatus. At the top of the hierarchy is a discrete abstraction

of the robot's environment de�ned by a set of discrete views and actions.

Method: a sequence of statistical and evolutionary methods for learning the objects of the

hierarchical model.

The sensorimotor apparatus is uninterpreted meaning that the critter that is learning how to use

the robot has no a priori knowledge of the meaning of the sensors, of the structure of the sensory

system, or of the e�ects of the motor's control signals. A continuous world (which includes both

the robot and its environment) is one whose state can be represented by a vector x of continuous,

real-valued state variables. A discrete world, on the other hand, is represented by a �nite set of

states. The mobile robot of the example lives in a continuous world with three state variables: two

for its position (e.g., longitude and latitude) and one for its orientation (i.e., the direction in which

it is facing). A static world is one whose state does not change except as the result of a nonzero

motor control vector. A static world exhibits no inertia. When the motor controls go to zero, the

robot comes to an immediate stop. In a static world, there are no active agents (e.g., pedestrians)

besides the robot itself.

The critter's goal is to understand its world, that is, to learn a model of it suitable for prediction

and navigation. Prediction refers to the ability to predict the e�ects of motor control vectors.

Navigation refers to the ability to move e�ciently from one place to another. These de�nitions do

not apply perfectly to a critter's world: places do not exist a priori | they must be discovered or

invented by the critter itself. The raw sense vector and the raw motor control vectors are at the

wrong level of abstraction for describing the global structure of a world. People do not understand

their world in terms of sequences of high-resolution visual images | they use abstractions from

visual scenes to places and objects. In order to understand its continuous world, the critter must

also use abstractions. Instead of trying to make predictions based on the raw sense vector, it needs

to learn high-level features and behaviors. Understanding the world thus requires a hierarchy of

features, behaviors, and accompanying descriptions. The hierarchy that the critter uses is called

the spatial semantic hierarchy . It is de�ned in the next section.
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Figure 1.17: By applying a series of operators to an uninterpreted sensorimotor apparatus, the critter learns
a sequence of abstract interfaces that de�ne the sensorimotor, control, and procedural levels of the spatial
semantic hierarchy .
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1.9 The spatial semantic hierarchy

The spatial semantic hierarchy (Figure 1.17) is comprised of �ve levels: sensorimotor, control,

procedural, topological, and metrical. At the sensorimotor level, the interface to the robot is de�ned

by the raw sense vector, a set of primitive actions (one for each degree of freedom of the robot),

and a set of learned features. At the control level, action models are learned in order to predict the

context-dependent e�ects of motor control vectors on features. Local state variables are learned

and behaviors for homing and path-following are de�ned. The interface to the robot is de�ned by

the set of local state variables, homing behaviors, and path-following behaviors. At the procedural

level, sense vectors are abstracted to a �nite set of views and behaviors are abstracted to a �nite

set of actions. The interface gives the current view and the set of currently applicable actions.

The contribution of this dissertation is a set of methods for learning these �rst three levels.

This dissertation's work is complementary to work done by Kuipers and Byun (1988) who have

demonstrated a robot and learning agent for which the �rst three levels of the spatial semantic

hierarchy were engineered by hand. Their learning agent learns the topological and metrical levels

autonomously. At the topological level, perceptual ambiguities (in which multiple states map to

the same view) are resolved and a global representation of the world's structure as a �nite-state

graph is learned. At the metrical level, the topological map is supplemented with the lengths of

paths in terms of time or e�ort involved in traversing the paths.

By showing how to learn the �rst three levels of the spatial semantic hierarchy, this dissertation

lays the groundwork for building a learning agent that can learn the entire spatial semantic hierarchy

using only domain-independent knowledge.

1.10 Learning methods and a priori knowledge

The critter can be viewed as an expert system whose goal is to learn (1) a model of a mobile

robot's set of sensors, (2) a model of the robot's motor apparatus, and (3) a set of path-following

behaviors, without being given domain-speci�c knowledge of the robot's sensorimotor apparatus

and environment. Designing the critter so that it can achieve this goal using domain-independent

knowledge is the subject of this dissertation. The following list summarizes this a priori knowledge

while pointing out which knowledge is used in which step of the critter's learning process.

� The group feature uses a set of distance metrics that explicitly represent di�erent ways to

recognize similar sensors.

� The image feature generator uses one of the distance metrics used by the group generator. It

also uses metric scaling (a technique from multivariate analysis) and a relaxation algorithm

to construct the image feature from the distance metric.

� The motion feature generator uses a method from the �eld of computer vision to de�ne the

motion feature using the learned image feature.

� The method for learning the set of primitive actions uses principal component analysis (an-

other multivariate-analysis technique).
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� The method for generating the scalar features that are candidates for local state variables

uses a set of feature generators. These generators (described in Chapter 3) use concepts from

basic mathematics such as minimum, maximum, and di�erentiation with respect to time.

� The method for learning the static action model uses linear regression to learn the e�ects of

the primitive actions on the scalar features. Its a priori knowledge includes a heuristic that

tells which context feature to associate with scalar features derived from image features.

� The method for de�ning error signals uses the fact that the sensors' values range from 0 to 1.

� The method for learning the homing and path-following behaviors uses linear regression (for

the dynamic action model) and two controller templates drawn from control theory.

� The critter is given a set of rules telling it how to choose its motor control vectors. The critter

initially chooses motor control vectors randomly, repeating each 10 times. After the homing

and open-loop path-following behaviors are learned, it randomly selects from among these

behaviors in order to learn the dynamic action model which it uses to de�ne the closed-loop

path-following behaviors.

1.11 The importance of the problem

There are a number of reasons for studying the problem of autonomously learning a model of

a mobile robot with an uninterpreted sensorimotor apparatus in an unknown environment.

Practical. A practical motivation is a desire to build robots that can autonomously learn to use

their sensors and e�ectors. Robots with the capability of learning a new sensorimotor apparatus

will also be able to learn to deal with a faulty sensorimotor apparatus. Such robots will be more

robust than ones which are programmed to use a speci�c apparatus in a speci�c environment. By

developing its own understanding of its own sensorimotor apparatus, the robot is not limited by

the designers' ideas of what sensors are important or useful. The designer is relieved of the task of

coding representations and behaviors for every new sensorimotor apparatus (which includes taking

into account the idiosyncrasies of each particular sensorimotor apparatus).

Philosophical. A philosophical motivation is to identify sources of structure-revealing information

that are implicit in the behavior of an uninterpreted sensorimotor apparatus. This information can

be used to make sense of the sensory information to which a newborn infant or robot is exposed.

The learning methods of this dissertation demonstrate a number of examples of sources of structure-

revealing information:

� Similarities among sensors (as measured by the distance metrics used by the group and image

feature generators) comprise one source of information. This information is based solely on

the sequence of those sensors' values over time (as opposed to a priori knowledge about the

sensors). This information is used to build a model of the structure (i.e., organization and

layout as represented by the group and image features, respectively) of a set of sensors.
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� The sequence of images produced by the image feature comprise another source of information.

This information is used by the motion feature to provide a characterization of the robot's

motor control vectors in terms of average motion vector �elds. The critter uses these amvf 's

to build a model of the structure of the robot's motor apparatus. This structure is represented

by a set of primitive actions, one for each of the robot's degrees of freedom.

Psychological. A psychological motivation is to learn how to acquire and exploit this structure-

revealing information, i.e., to model an organism's perceptual and motor development in a realistic

spatial world. Animals' sensory and motor systems are not completely programmed by genetic

information. Instead, they are programmed to develop in a certain type of environment. The an-

imals' predispositions together with the information gained by interacting with their environment

allow them to learn how to perceive and act. The critter embodies an analogous learning process.

The critter's a priori , domain-independent knowledge is analogous to the animals' genetic predis-

positions. The critter's process of using its feature generators to learn a model of its sensorimotor

apparatus is analogous to the animals' process of motor and perceptual development.

1.12 Overview

Chapter 2 introduces a language of features and feature generators, the building blocks with

which the abstract interfaces are built. Chapter 3 uses this language to de�ne a generate-and-

test approach to feature learning. Chapter 4 describes the group and image feature generators in

detail and demonstrates their use in learning structural descriptions of two very di�erent sensory

apparatuses. Chapter 5 describes the methods for learning a model of a robot's motor apparatus

and demonstrates them on two di�erent simulated robots. Chapter 6 describes the method for

discovering a set of local state variables. Chapter 7 uses the results of the preceding chapters to

de�ne a set of homing and path-following behaviors, the basis for navigation in large-scale space.

The learning methods described in Chapters 2 through 7 are used to learn the sensorimotor and

control levels of the spatial semantic hierarchy. Chapter 8 describes a number of experiments that

demonstrate the generality and some limitations of these learning methods. Chapter 9 shows how

the learned homing and path-following behaviors are used to de�ne a discrete abstract interface that

allows the critter to treat the robot's environment as a �nite-state environment. It then discusses

various methods for inferring the structure of �nite-state environments. Chapter 9 also discusses

the relationships between this and other work.
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Chapter 2

A Language of Features

This dissertation addresses the problem of a learning agent, called a \critter" that must develop

an understanding of a robot's world to the point where it can intelligently navigate through that

world. The solution involves an abstract interfaces approach in which the critter de�nes increasingly

sophisticated sensorimotor interfaces to the robot. On the sensory side, this is accomplished by

de�ning new features , functions de�ned on the raw sensory input. On the motor side, this is

accomplished by de�ning new control laws. This chapter presents a language of feature types

and operators that the critter will use in subsequent chapters to learn a rich model of the robot's

sensorimotor apparatus and environment.

2.1 Introduction

A feature is a mathematical object (that will be formally de�ned in Section 2.3) intended

to measure a property of an object or of the environment that can be detected by a sensory

apparatus. Consider a few examples from biological vision. In the human retina are about 125

million photoreceptors (Rosenzweig & Leiman, 1982). Each photoreceptor measures the intensity

of light impinging on it. The photoreceptor is a feature detector | the feature it detects is the

light intensity at a speci�c point in the visual image. The retina itself is a structured array of

photoreceptors. It can be viewed as a feature detector where the feature is an entire image |

a structured array of light intensities. In the visual cortex are motion detectors. Individually,

these detectors measure local motion. Collectively, these detectors detect an optical ow pattern, a

feature that assigns to each point in the retinal image a vector giving the direction and magnitude

of motion. Analogously, there are feature detectors in the visual cortex that respond to oriented

edges. Collectively, these detect a pattern of edges, a feature that assigns to each point in the

retinal image a vector giving the orientation and magnitude of the edge detected at that point.

There are also feature detectors for speci�c objects. For example, frogs are capable of detecting

ies in motion. The y-spotting feature tells whether a moving y (or any object that looks like a

moving y) is present and, if so, where it is located with respect to the frog's retinal image.

Another example of a detector is a thermometer that measures ambient air temperature. There

is an interesting di�erence between this feature detector and a frog's y-spotting detector. The

temperature of the room is always de�ned whereas the y-spotting feature is de�ned only when

there is a y present to be seen. In this work, the former type of feature is called persistent ;

the latter type is called ephemeral . A feature language should be able to represent both types of

features.

These examples illustrate a wide variety of feature detectors, without committing to a precise

de�nition of the word \feature." They demonstrate a number of properties of features that a
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language of features should provide:

� Features are detected through the processing of sensory data.

� Features come in many di�erent types, and these types correspond to di�erent mathematical

objects such as scalars and vectors.

� Features can be ephemeral or persistent.

A formal de�nition of \feature" will be given in Section 2.3.

2.2 Goals of feature learning

A language of features is a valuable tool for machine learning. It provides a means for changes

of representation, focus of attention, and dimensionality reduction. Moreover, it facilitates the

process of programming robots, whether that programming is done by hand or automatically.

2.2.1 Change of representation

Consider the robot, described in Chapter 1, with a ring of distance sensors. Representing this

distance information as a vector feature does not capture the important structure of the sensory

array. Changing the representation from a vector feature to an image feature (see page 27) opens

up many possibilities for exploiting the information from the distance sensors.

An image feature represents relationships such as relative positions of image elements. This

spatial information is necessary for de�ning features such as edge detectors that are based on

spatial derivatives. Motion detectors use both spatial and temporal derivatives. Chapter 5 will

give an example of the use of motion detectors.

2.2.2 Focus of attention

A visual image can be a very large, complex feature, containing much more information than

can be attended to all at once. A mechanism is needed to provide focus of attention. Consider the

case of a robot with a camera looking at a red object on a white background. When the robot's head

moves, the red object's image-relative position changes. In order to focus attention on the object,

a mechanism is needed to abstract above the level of the raw visual image and explicitly represent

the object. A feature generator called a tracker (see Section 3.1.4) will be shown to implement this

type of focus of attention. It can produce a new image-element feature (see page 27) that represents

the object and its position. Unlike the image feature in which each element has a constant position

associated with it, the position of the image-element feature will change, tracking the red object as

the robot's camera moves.

2.2.3 Dimensionality reduction

In a sensory apparatus, a high-dimensional feature, such as a visual image, may have a great

amount of redundancy. For example, consider a pan and tilt camera with 2500 photoreceptors
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organized in a 50 � 50 grid. If it detects a two-dimensional motion vector at each location in the

grid, the resulting motion-�eld feature will have 5000 elements. Yet the camera itself has only

two degrees of freedom|it can produce motion in only two directions. Here is an example where

dimensionality reduction is clearly appropriate|a 5000-element motion �eld can be reduced to a

two-element motion vector. Chapter 5 will give examples in which principal component analysis is

used to perform this reduction.

2.2.4 Robot programming

A language of features is very useful in the context of programming robots. A complementary

language of behaviors will be presented in Chapter 7. Consider the problem of obstacle avoidance

for a mobile robot with a ring of distance sensors in which the goal is to prevent the robot from

coming too close to any wall or obstacle. The problem is simpli�ed if the programmer can de�ne

features that express distances and directions to obstacles as functions of the raw sensory input.

Section 2.5 will show how to apply a sequence of simple operators to the raw sense vector in order

to de�ne an image element feature that encodes distances and directions to obstacles.

2.2.5 Automated robot programming

A language that makes programming easier for humans also makes programming easier for

computers. If a desired property for a feature can be expressed in the feature language, then a

generate-and-test approach can be used to search for a feature that satis�es the property. Chapter 6

will use this method to discover a set of features that can serve as local state variables, the basis

for de�ning control laws for exploration and navigation.

2.3 Features de�ned

Features are de�ned in terms of a sensory apparatus which, for the present purposes, can be

completely characterized by a function over time giving, for any time t, the value of the raw sense

vector at time t. This function is called the raw sensory feature and is denoted by s. Here, time is

represented by the in�nite sequence [0,1,2,...]. If t is the current time, then it is assumed that the

feature s is de�ned for all time values � � t. For any feature x, the feature history H(x; t) is a set

of time-value pairs f (�; x(�)) j � 2 [0::t] ^ x(�) is de�nedg. All of the information that is available

to the critter from the environment is contained in the history of the raw sensory feature. With

these preliminary de�nitions in place, a general de�nition of \feature" can be given:

feature: a partial function x over the sequence [0; 1; 2; : : :] whose value at time t,

denoted x(t), is completely determined by the history of raw sensory values H(s; t).

Here, a partial function over time is one that may not be de�ned for all time values. The possible

types for the value x(t) are described in the next section. This de�nition satis�es the criteria given

in Section 2.1: a feature is detected through processing of sensory data (i.e., the raw sensory feature

s); a feature can be ephemeral (i.e., a partial function that is not de�ned at all times); and, as is

shown in the next section, features are of many di�erent types.
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2.4 Feature types

Features are typed objects. A feature is de�ned as a function. In general, the type of a function

is given by the expression D! R where D is the type of the function's domain and R is the type of

the function's range. The arrow in the expression is suggestive of the fact that the function is from

D to R. For features, as de�ned here, D is equal to the sequence [0; 1; 2; : : :]. Since the domain

of a feature's function is always the same, the type of the feature's range will be subsequently be

used to identify the type of the feature itself.

In mathematical texts, the typeface used to print the name of an object often reects that

object's type. For example, lower-case script letters are used for scalars, lower-case bold-face

letters for vectors, and upper case letters for matrices. In order to avoid a proliferation of di�erent

type faces, all features will generally be denoted using lower-case script letters. The type of the

feature, when it is important, should be clear from context. In some cases, lower-case, bold-face

letters will be used when it is important to denote that the feature is a vector. In many cases

the type of the feature will not be important. As will be discussed in Section 2.5, many operators

are polymorphic | they are de�ned for many di�erent types of features. There are eight basic

feature value types (i.e., types of values that a feature may assume): scalar , vector , matrix , image

element , image, �eld element , �eld , and histogram. Other types such as group and focused image

are special cases of other types. Features are implemented on the computer as objects in the sense

used in object-oriented programming. The set of possible feature types is organized in a hierarchy

(see Figure 2.1).

group

n

S
n

S
n

histogram:

Sscalar:

vector:

matrix: image: field:

  field
element:

S
m n

( ) S
m

S
m

, )(
n

S S
m

( ),

  image
element: S S

m
( ), S

m
S

m
, )(

focused
image

Figure 2.1: The hierarchy of feature types. A scalar is a vector of length 1 and thus inherits all of the
operators that apply to vectors. Similarly, a vector is a matrix of dimensions 1� n, an image element is an
image of length 1, and a �eld element is a �eld of length 1.

The scalar (Figure 2.2) is the most basic type | all of the other types are built out of it. The

temperature of a room is an example of a scalar feature as is the intensity associated with a single

photoreceptor. A scalar v, for the purposes of this dissertation, has two components, both real

numbers. The �rst is called the value and is denoted by v:value; the second is called the strength

and is denoted by v:strength. In many cases it is the value that is important (e.g., if the strength of

the scalar under discussion is always 1) so the expression v:value will often be abbreviated to v when

the meaning is unambiguous. The strength of a feature has several purposes. For an ephemeral

feature, the strength is 1 when the feature is de�ned, and 0 otherwise. For structured features such

as images, it may be that some elements are more important than others. The strength associated

with each element tells how important that element is. For many features, the strength will always
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Figure 2.2: A scalar.

be 1 and can be ignored. The set of scalars is denoted by S. The type of a feature will be taken to

be the set of all features of that type. Thus the type of a scalar is S.

A vector of length n is an n-tuple of scalars (see Figure 2.3). The set of vectors of length n will

0.0

100.0

50.0

Figure 2.3: A vector of type S9.

be denoted by Sn. The intensity values of all of the photoreceptors in a retina can be represented as

one vector feature. In this case, the positions of the photoreceptors are not encoded in the feature.

A group feature is a special type of vector feature in which the elements of the vector are all

related in some meaningful way. For example, the set of distance sensors on a mobile robot can

be represented as a group feature where the grouping is intended to reect the fact that all of the

elements in the group are of the same type. The raw sensory feature is an example of a vector

feature that is not a group feature. One reason to distinguish between vector features and group

features is that there are certain feature generators that apply speci�cally to group features but

not to vector features in general.

A matrix of dimensions m and n is an n-tuple of vectors of length m (see Figure 2.4). If the
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Figure 2.4: An example of a matrix of type (S6)5.
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matrix is viewed as having columns and rows, then n is the number of rows and m is the number

columns. The set of all real-valued matrices with n rows and m columns is denoted by (Sm)n.

An image element of dimension m is a pair in which the �rst component is a scalar and the

second is a vector of length m (see Figure 2.5a). The set of m-dimensional image elements is

p1

p2

v

(a) (b) (c)

Figure 2.5: a) An example of a two-dimensional image element of type (S ;S2). The position vector is
represented by the arrow; the value is represented by the size of the disk. b) An example of an image of type
(S;S2)12, a sequence of image-elements. c) An example of a focused image. The circled elements are local
minima and have been assigned a strength of 1.

denoted by (S;Sm). An example of such a feature is a photoreceptor with an associated position

in the retinal array where the position is represented by a two-dimensional vector.

An image of dimension m and length n is an n-tuple of image elements of dimension m (see

Figure 2.5b). The set of m-dimensional images of length n is denoted by (S;Sm)n. An example of

such a feature is a retinal image feature, a set of photoreceptor features in which each photoreceptor

has its own associated value and position.

A focused image is a special type of image in which the strengths associated with the elements

tell which elements are important (see Figure 2.5c). An example of such a feature is an image in

which the local minima are identi�ed by being given a strength of 1.

A �eld element of dimension m is a pair in which both components are vectors of length m

(see Figure 2.6a). The set of �eld elements of dimension m will be denoted by (Sm;Sm). The local

motion feature is an example of this type of feature. The �rst component of the pair is a vector

giving the direction and magnitude of the detected motion. The second component is a vector

giving the position in the retina of that motion detector.

A �eld of dimension m and length n is an n-tuple of �eld elements of dimension m (see Fig-

ure 2.6b). The set of m-dimensional �elds of length n will be denoted by (Sm;Sm)n. An example

of a feature of this type is a set of local motion features that collectively detect an optical ow

pattern describing the motion detected over the entire retina.

A histogram is an approximation of a function of the type R ! R, the set of functions from

the reals into the reals. The approximation works like this: the domain of the function is limited

to an interval [vlo; vhi] instead of the entire interval R = (�1;1). This interval is broken up

into n subintervals f[v0; v1); [v1; v2); : : : ; [vn�1; vn]g where v0 = vlo and vn = vhi. Associated with

each subinterval is a value xi that approximates the value of the function for any value in that
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Figure 2.6: a) An example of a �eld element of type (S2;S2). The position and value vectors are both
represented by arrows. b) An example of a �eld, a sequence of �eld-elements, of type (S2;S2)12.

subinterval. The histogram can thus be viewed as a vector of length n | operators that apply

to vectors will also apply to histograms (see Section 2.5). A typical use of the histogram is to

approximate a probability density function or frequency distribution. For example, xi could be the

number of times that another feature's value was in the range [vi; vi+1). Figure 2.7 illustrates a

histogram.
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0.0 1.0

Figure 2.7: An example of a histogram approximating a frequency distribution.

2.5 Feature operators

The language of features has two components. The objects of the language are the features

themselves. The tools used to analyze and de�ne new features are the feature operators . These two

components are illustrated by the human visual system which can be modeled by a hierarchical set

of features and operators. In the visual system, information of many di�erent types is represented

at di�erent levels, from the retina to the visual cortex. This information can be modeled by a set of

features. Processing in the visual system that de�nes feature values in terms of values of features

lower in the hierarchy can be modeled by a set of feature operators. Feature operators will be used

in Chapter 3 to de�ne feature generators and testers.

Whereas features are de�ned to be partial functions over time, feature operators are func-

tionals|they map functions into functions or, more speci�cally, they map features into features.

Consider the expression

x+ y
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where x and y denote scalar features. This expression denotes a new feature de�ned in terms of x

and y. In this expression, \+" is a feature operator. It is de�ned by the equation

(x+ y)(t) = x(t) + y(t)

itself an abbreviation for ((x+y)(t)):value = x(t):value+y(t):value: In these equations, the second

\+" is the ordinary one that applies to numbers.

2.5.1 Polymorphism

The preceding example illustrates the concept of polymorphism, the use of one operator to

denote functions (or functionals) of di�erent types. For example, the + operator applies to scalars

and vectors as well as scalar features and vector features. The expression x+ y denotes a scalar if

x and y are scalars, a scalar feature if x and y are scalar features, a vector feature if x and y are

vector features, etc.

2.5.2 Inheritance

As is shown in Figure 2.1, the types of features are organized in a hierarchy. One property

of this hierarchy is that a feature inherits the operators of all of its ancestors in the hierarchy.

Thus, for example, any operator that applies to matrix features will also apply to vector and scalar

features.

2.6 A catalog of operators

The presentation of the feature operators will proceed in a bottom-up fashion. First, operators

will be de�ned that apply to scalar values . Then, these operators will be extended in a straight-

forward way to apply to scalar features and additional operators will be introduced that apply to

scalar features but not to scalar values. The scalar-feature operators will then be extended so that

they apply to vector features and new vector-feature operators will be introduced.1 The process

will be repeated for matrix features, image features, �eld features, and �nally histogram features.

A number of conventions are used in this dissertation. Parentheses serve two purposes. The

�rst is in the shorthand notation of the eval operator (Section 2.6.2): x(t) denotes the value of

feature x at time t. Application of an operator f to a feature x is denoted using juxtaposition, not

parentheses: f x rather than f(x). The second use of parentheses is to group terms together to

explicitly show how to parse a mathematical expression. For example, the application of operator f

to the feature obtained by applying operator g to feature x is written f(g x): Here the parentheses

indicate that g is applied before f.

2.6.1 Scalar-value operators

A scalar has two components: a value and a strength. These components, for scalar v, are de-

noted by v:value and v:strength. The operator set-strength is a binary operator. The expression

1The new vector-feature operators will apply to the scalar features as well since scalar features are also vector
features.

29



(set-strength x y), also written (x j y), denotes the scalar de�ned by

(x j y):value
def
= x:value

(x j y):strength
def
= y:value:

Mathematical operators (arithmetical operators +, �, �, and �; relational operators =, <, �, >,

and �; trigonometric operators sin, cos, and tan; and others, including abs (absolute value)) are

de�ned on scalars in the following way:

(op v0 : : :):value
def
= op v0:value : : : (2.1)

(op v0 : : :):strength
def
= minfv0:strength; : : :g (2.2)

where the second \op" is the ordinary operator for numbers. Here the scalar (op v0 : : :) is de�ned

by de�ning its value and strength components in terms of ordinary mathematical operators. The

ellipsis is a placeholder for the rest of the arguments, if any. Here and in the rest of the dissertation,

pre�x notation is used for operator application: the operator is given, followed by its arguments.

For binary operators, in�x notation will sometimes be used when it makes an expression more

readable. Thus the expression + v w will sometimes be written v + w:

2.6.2 Scalar-feature operators

Scalar-value operators are extended to scalar-feature operators using the eval operator. This

operator takes two arguments: a feature x and a time index t. The expression (eval x t), also

written x(t), denotes the value of feature x at time t. The type of the value is determined by the

type of the feature, in this case, scalar. This is the most basic feature operator in the following

sense: de�ning a new feature x means specifying x(t), the value of x at time t, for all values of t.

For example, when de�ning a binary operator op, it is necessary and su�cient to de�ne (x op y)(t)

for all values of t. All of the operators de�ned on scalar values are extended to scalar features in

the following way:

(op x0 : : :)(t)
def
= op x0(t) : : : : (2.3)

Here the eval operator is used to de�ne the feature (op x0 : : :) by de�ning its value as a function

of time in terms of an expression (right-hand side) that was de�ned in Equations 2.1 and 2.2.

Temporal operators. The operators tsum, tmin, tmax, delay, and ddt are operators that

apply to scalar features but not scalar values. This is because they use history information and

thus deal explicitly with time.

(tsum x)(t)
def
=

tX
�=0

x(�)

(tmin x)(t)
def
=

t

min
�=0

x(�)

(tmax x)(t)
def
=

t
max
�=0

x(�)
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(delay x)(t)
def
= x(t� 1)

(ddt x)(t)
def
= x(t)� x(t� 1)

Thus the tsum operator sums up the values of a feature over time; the tmin operator �nds

the minimum value over time, and the tmax operator �nds the maximum value over time. The

expression (delay x) denotes a feature whose value at time t is equal to the value of x at time t�1.

The expression (ddt x), also written d
dt
x, denotes a feature whose value at time t is equal to the

temporal derivative of x at time t.

Statistical operators. The operators mean and sdev also deal explicitly with time. They

compute averages and standard deviations respectively. The expression (mean x), also written

(� x), denotes the feature whose value at time t is the average of all of the values of x seen up to

time t:

(� x)(t)
def
=

Pt
�=0 x(�) x(�):strengthPt

�=0 x(�):strength

The expression (sdev x), also written (� x), denotes the feature whose value at time t is the

standard deviation of x: Pt
�=0(x(�))

2 x(�):strength� (
Pt

�=0 x(�):strength)[(� x)(t)]2Pt
�=0 x(�):strength

!1=2

:

2.6.3 Vector-feature operators

Scalar feature operators are extended to vector feature operators using the index operator. This

operator is �rst de�ned for vectors and then extended to vector features. For vector v, (index v i),

also written vi, denotes the i
th element of the vector, a scalar. For vector feature x, (index x i),

also written xi, is de�ned as a function over time by the equation

xi(t)
def
= (x(t))i:

Here the eval operator is used to de�ne scalar feature xi in terms of an expression that involves the

index operator applied to a vector. Now that the index operator is de�ned for vector features, it

can be used to extend all of the scalar-feature operators so that they apply to vector features:

(op x0 : : :)i
def
= (op x0i : : :): (2.4)

Here the index operator is used to de�ne the feature (op x0 : : :) in terms of an expression that is

de�ned by Equation 2.3 or elsewhere in Section 2.6.2.

The length operator returns the number of elements in a vector or vector feature. For feature

x, (length x) is an integer, not a feature. The implicit assumption is that the length of a feature

never changes. The select operator is a generalization of the index operator. Instead of extracting

an element of a vector feature, it extracts a subsequence of elements from a vector feature. The
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operator takes two arguments: a feature x of length n and a sequence of nonnegative integers

I = (I0; I1; : : :Im�1) satisfying 8j : 0 � Ij < n: The expression (select x I), also written xI ,

denotes a new feature of length m de�ned by the equation

(xI)j
def
= xIj for j = 0; 1; : : :m� 1:

Notice that the new feature can be longer than the old one.

Reduction operators. The reduction operators vsum, vmin, and vmax all reduce vector fea-

tures to scalar features:

(vsum x)(t)
def
=

X
i

xi(t)

(vmin x)(t)
def
= min

i
xi(t)

(vmax x)(t)
def
= max

i
xi(t)

Thus the sum operator sums up the elements of a vector feature; the min operator �nds the

minimum element, and the max operator �nds the maximum element. For (vmin x) [(vmax x)],

the strength of the output feature is equal to the strength of the minimal [maximal] element of x.

A constructor. The cat operator takes a list of vector features as arguments. The expression

(cat x0 : : :) denotes a vector feature whose length is equal to the sum of the lengths of the arguments.

The value of the feature is a vector obtained by concatenating the values of the input features

together.

2.6.4 Matrix-feature operators

A matrix feature is a vector of vector features. Vector-feature operators are extended to matrix

features using the index operator. For matrix feature x, xi is a vector feature: xi(t) is the ith

row vector of matrix x(t). All of the operators de�ned on vector features are extended to matrix

features in the following way:

(op x0 : : :)i
def
= (op x0i : : :): (2.5)

Here the index operator is used to de�ne the feature (op x0 : : :) one element at a time in terms

of an expression (right-hand side) that was de�ned in Equation 2.4 or elsewhere in Section 2.6.3.

The ith element of (op x0 : : :) is a vector feature that is obtained by applying the operator to the

ith element of x. For operators that are de�ned for scalar features, this equation can be taken one

step further by using a second index:

(op x0 : : :)ij
def
= (op x0ij : : :): (2.6)

Here the feature (op x0 : : :) is de�ned by applying the operator to each scalar-feature element of

matrix feature x.
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The transpose operator takes one argument, a matrix feature x of type (Sm)n. The expression

(transpose x), also written xT , denotes a feature of type (Sn)m and is de�ned by the equation

xTij
def
= xji:

The mtimes operator takes two arguments, matrix features of types (Sn)m and (Sp)n. The ex-

pression (mtimes x y) denotes a feature of type (Sp)m and is de�ned by the equation

(mtimes x y)ij
def
=

n�1X
k=0

xikykj:

The xprod (cross-product) operator takes two arguments, vector features of length m and n. The

expression (xprod x y) denotes a matrix feature of type (Sn)m and is de�ned by

(xprod x y)ij
def
= xiyj:

Similarly, the xdi� (cross-di�erence) operator takes two arguments, vector features of length m

and n. The expression (xdi� x y) denotes a feature of type (Sn)m and is de�ned by

(xdi� x y)ij
def
= xi � yj :

The norm (normalize) operator takes one argument, a matrix feature x. The expression (norm x)

denotes a matrix feature de�ned by the equation

(norm x)ij = xij=max
kl
jxklj:

2.6.5 Image-feature operators

For the purposes of the length, index, select, and cat operators, an image feature is treated

as a vector of image-element features. The length of an image feature is equal to the number of

image elements in the feature. Given image v, vi denotes an image element, the ith value-position

pair of the image. The select operator applied to an image feature yields a new image feature

comprised of selected image elements of the input feature. The cat operator combines a number of

image features of the same dimensions into a new image feature whose length is equal to the sum

of the lengths of the input image features.

Constructors and selectors. The image operator is a constructor that creates an image feature

of dimension m and length n from a vector feature of length n and a matrix feature of dimensions

m� n. The val (for \value") and pos (for \position") operators are complementary selectors. For

image feature x = ((v1; p1); (v2; p2); : : : ; (vn; pn)) 2 (S;S
m)n;

(val x) = (v1; v2; : : : ; vn) and

(pos x) = (p1; p2; : : : ; pn):
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Here, (val x) is a vector feature of length m and (pos x) is a matrix feature of dimensions m� n.

Note that the val operator is di�erent from the \.value" operator. The relationship between the

image operator and the val and pos operators is given by the equations:

val (image x p)
def
= x (2.7)

pos (image x p)
def
= p (2.8)

(2.9)

All of the operators de�ned on vector features are extended to image features in the following

way, where the input features must all have the same positions vector:

op x0 : : : = image (op (val x0) : : :) (pos x0): (2.10)

Here the image, val, and pos operators are used to de�ne the feature (op x0) in terms of an

expression that was de�ned in Equation 2.4 or elsewhere in Section 2.6.3. The values vector of

(op x0 : : :) is a vector feature that is obtained by applying the operator to the values vectors of

x0 : : :. The positions vector of (op x0 : : :) is the same as the positions vector of the input features.

The local-optima operators. The local-minimum operator lmin is analogous to the min oper-

ator but applies to images. Whereas (min x) computes a single global minimum of the elements of

a vector, (lmin x) computes multiple local minima for an image feature. The expression (lmin x)

denotes a focused-image feature in which the local minima are the elements with strength 1. To

determine whether an element is minimal, it is compared with its neighbors | elements whose

positions in the image are close to its position. The operator is de�ned as follows:

(pos (lmin x))
def
= (pos x)

(val (lmin x))i(t):value
def
= (val x)i(t):value

(val (lmin x))i(t):strength
def
= 8j 2 (nbrs i) : xi < xj _ (xi = xj ^ i < j)

nbrs i = fj j dij < �g

dij = k(pos x)i � (pos x)jk

The distance dij between elements i and j is the Euclidean distance between their associated

position vectors. The set (nbrs i) is the set of elements close to i in the image, where the de�nition

of \close" is parameterized by the variable �. The strength associated with element i is 1 if its value

is less than that of all of its neighbors, otherwise 0. In the case that two neighboring elements have

the same value, the tie goes to the one with the smaller index. The local-maximum operator lmax

is analogous.

The motion operator. Given image feature x, (motion x) denotes a �eld feature whose elements

are local-motion detectors. Each element of the �eld feature measures the amount of motion

detected at the corresponding point in the image.
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The detection of motion requires both spatial and temporal information, both of which are

provided by an image feature. The spatial information is provided by the positions of the elements

of the image; the temporal information is provided by the derivatives of the elements' values with

respect to time. A temporal sequence of images, represented as vectors of values and associated

positions, can be viewed as an intensity function E(p; t) that maps image positions to values, called

intensities, as a function of time. Such a function has both a spatial derivative, ~Ep and a temporal

derivative, Et.
2 The spatial derivative ~Ep, also called the gradient of E, is a vector in image-position

coordinates that gives the direction in which the intensity increases most rapidly.

A large gradient in an image detected by a robot's sensory array corresponds to a detectable

property of the environment such as the edge of an object. If the object moves relative to a robot's

sensory array (or vice versa), the edges detected in the image will move. This motion will result in

a change in intensity. A point in the image with a large gradient will, in the presence of motion,

also have a large temporal derivative. This is an informal motivation for the optical ow constraint

equation (Horn 1986) which de�nes the optical ow at a point in an image to have magnitude

�Et=k ~Epk and direction ~Ep:

v = �
Et

k ~Epk

~Ep

k ~Epk
= �

Et
~Ep

k ~Epk2

A problem with this formulation is that if the magnitude of ~Ep is small (or zero), then the calculation

will be prone to error (or will be unde�ned). Since the motion operator will be used to measure

average motion over time (Chapter 5) and since the measurement of the optical ow is more precise

at edges or, in general, when the gradient ~Epis large, we have found it useful to weight the expression

using the term k ~Epk
2 and measure the value of:

v = �Et
~Ep

In most computer vision applications, images are represented as regularly spaced arrays of pixels

(picture elements). With such a representation, it is straightforward to de�ne an approximation

for the spatial derivative at a point in the image. The images as de�ned here, however, do not

have such a regular structure so a di�erent approach to de�ning the optical ow �eld is used. The

optical ow measured at element i is taken to be a weighted sum of local motion vectors vij in

the direction from element i to element j where j ranges over all of the elements close to element

i (see Figure 2.8). The weight is inversely proportional to the distance between elements i and j.

The precise de�nition of the motion operator is given below, where (pos x) denotes the vector of

positions associated with feature x, and (val x) denotes the vector of values associated with feature

x.

pos(motion x)
def
= pos x

(val(motion x))i
def
=

X
j2(nbrs i)

vij=kpijk

2In the description of the motion operator, small arrows or bold-face type will be used for clarity to explicitly
identify vector variables.
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i

j

v

Figure 2.8: The instantaneous motion vector �eld at element i in an image is taken to be the weighted sum
of local motion vectors from element i to other elements in its neighborhood.

pij = (pos xj)� (pos xi)

vij = �Et;i
~Ep;ij

Et;i =
d

dt
(val x)i

~Ep;ij =
((val x)j � (val x)i)

kpijk

pij

kpijk

Here, kpijk is the distance in the image between the positions of elements i and j; Et;i is the

temporal derivative of the intensity function for element i; and ~Ep;ij is the element of gradient ~Ep

at element i in the direction toward element j.

2.6.6 Field-feature operators

For the purposes of the length, index, select, and cat operators, a �eld feature is treated

as a vector of �eld-element features. The length of a �eld feature is equal to the number of �eld

elements in the feature. Given �eld v, vi denotes a �eld element, the ith value-position pair of the

�eld. The select operator applied to a �eld feature yields a new �eld feature comprised of selected

�eld elements of the input feature. The cat operator combines a number of �eld features of the

same dimensions into a new �eld feature whose length is equal to the sum of the lengths of the

input �eld features.

The �eld operator is a constructor that creates a �eld feature of dimension m and length n

from two matrix features of dimensions n � m. The val and pos operators are complementary

selectors. For �eld feature x = ((v1; p1); (v2; p2); : : : ; (vn; pn)) 2 (S
m;Sm)n;

(val x) = (v1; v2; : : : ; vn) and

(pos x) = (p1; p2; : : : ; pn):

Here, (val x) and (pos x) are matrix features of dimensions m� n. The relationship between the
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�eld operator and the val and pos operators is given by the equations:

val (�eld x p)
def
= x (2.11)

pos (�eld x p)
def
= p (2.12)

(2.13)

All of the operators de�ned on matrix features are extended to �eld features in the following

way, where the input features must all have the same positions vector:

op x0 : : := �eld (op (val x0) : : :) (pos x0): (2.14)

Here the �eld, val, and pos operators are used to de�ne the feature (op x0 : : :) in terms of an

expression that was de�ned in Equation 2.5 or elsewhere in Section 2.6.4. The values vector of

(op x0 : : :) is a vector feature that is obtained by applying the operator to the values vector of x.

The positions vector of (op x0 : : :) is the same as the positions vector of the input features.

2.6.7 Histogram-feature operators

Since histograms may be treated as vectors, all of the operators that apply to vector features

also apply to histogram features (though the results may not always be meaningful). For histogram

feature x, (length x) is the number of subintervals in the histogram and xi is a scalar feature whose

value is the value associated with the ith subinterval.

The probability density function operator. The operator pdf takes one argument, a scalar

feature. The expression (pdf x) denotes a feature whose value is a histogram that approximates a

probability density function for feature x. The operator has three parameters: n, vlo, and vhi. The

histogram approximates the probability density function over the interval [vlo; vhi]. This interval is

broken up into n subintervals called \class intervals" where the ith class interval is [vi; vi+1]. The

feature (pdf x) associates with the ith interval the relative frequency with which the value of x falls

in that interval. Let

bi(v) =

(
1; if v 2 [vi; vi+1]
0; otherwise

Then

(pdf x)i(t)
def
=

1

t + 1

tX
�=0

bi(x(�)):

2.6.8 Summary of feature operators

The operators, their de�nitions, and their types are given in Figure 2.9.
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The Feature Language

type de�nition

Scalar-value Operators

(op v0 : : :):value = op v0:value : : :

(op v0 : : :):strength = op v0:strength : : :

Scalar-feature Operators

S� ! S (op x0 : : :)(t) = op v0(t) : : :

S ! S (tsum x)(t) =
Pt

�=0 x(� )
S ! S (tmin x)(t) = mint�=0 x(� )
S ! S (tmax x)(t) = maxt�=0 x(� )
S ! S (delay x)(t) = x(t � 1)

S ! S (�x)(t) = 1
t+1

Pt
�=0 x(� )

S ! S (�x)(t) = 1
t

�Pt
�=0(x(� ))

2 � (t + 1)[(�x)(t)]2
�1=2

( d
dtx)(t) = x(t)� x(t� 1)

Vector-feature Operators

(Sn)� ! Sn (op x0 : : :)i = op v0i : : :

Sn ! S xi(t) = (x(t))i
Sn ! Sm (xI)j = xIj
Sn ! integer (length x) = number of elements in x

Sn ! S (vsum x)(t) =
P

i xi(t)
Sn ! S (vmin x)(t) = mini xi(t)
(Sn)� ! Sm cat x = see text
Matrix-feature Operators

((Sn)m)� ! (Sn)m (op x0 : : :)i = op v0i : : :

(Sn)m ! (Sm)n xTij = xji

(Sn)m � (Sp)n ! (Sp)m (mtimes x y)ij =
Pn�1

k=0 xikykj
Sm � Sn ! (Sn)m (xprod x y)ij = xi yj
Sm � Sn ! (Sn)m (xdi� x y)ij = xi � yj
Image-feature Operators

((S;Sm)n)� ! (S ;Sm)n op x0 : : : = image (op (val x0) : : :) (pos x0)
(S;Sm)n ! (S;Sm)n lmin x = see text
(S;Sm)n ! (S;Sm)n lmax x = see text
(S;Sm)n ! (Sm;Sm)n motion x = see text
Field-feature Operators

((S;Sm)n)� ! (S ;Sm)n op x0 : : : = �eld (op (val x0) : : :) (pos x0)
Histogram-feature Operators

S ! histogram (pdf x)i(t) =
1

t+1

Pt
�=0 x(� ) 2 [vi; vi+1]

Figure 2.9: A summary of the feature language showing a representative set of operators.
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Chapter 3

A Generate-and-Test Approach
to Feature Learning

The feature operators of the previous chapter de�ne a language that can be used in constructing

a perceptual system for a robot. Designing such systems has traditionally been done by hand. The

approach taken here is to automate this process. This automation is demonstrated by the critter,

a learning agent that learns how to use the robot's sensorimotor apparatus in order to accomplish

its goals. For the critter, constructing a perceptual system means learning a set of useful features.

This is accomplished as follows: Initially, the critter has only one feature de�ned, a vector feature

called the raw sensory feature. It applies feature generators to already existing features in order

to produce new features. While this process of searching through the space of possible features

proceeds, the critter uses feature testers to test the learned features to see if they are useful for

achieving its goals.

Section 3.1 describes the language of generators; Section 3.2 describes the language of testers;

and Section 3.3 describes ways to control the search process so that it does not become intractable.

3.1 Feature generators

A feature generator has three components: an input type speci�cation, an antecedent, and an

output speci�cation. The input type speci�cation is an ordered list of feature types, analogous to

the list of parameters for a function in a strongly typed computer language. Most of the generators

described in this chapter take a single input feature. The antecedent is a predicate that may provide

additional constraints on the set of input features. The output speci�cation is an algorithm that

de�nes the output feature or set of output features in terms of the input feature or features. The

output of the generator may be delayed | the output features may be unde�ned until the input

features have been analyzed for a period of time. Any feature operator or legal composition of

feature operators may be used to de�ne a generator. A generator is a typed object: its type is

given by the types of its input and output features.

Designing a critter requires a good set of generators, just as designing an expert system requires

a good set of production rules. With too few generators (or with the wrong generators), the critter

will be unable to learn useful new features. With too many generators, the critter will get bogged

down in a proliferation of useless features.1 The size of the search space can be greatly reduced by

using using a small set of carefully chosen generators. Strong typing of the generators, meaning

that a generator will only be applied to features of the appropriate type, also helps reduce the

1Unlike the expert system, the critter has no need for conict resolution | the features do not interfere with each
other.
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size of the search space. This chapter describes a representative set of generators that have been

su�cient for the robot worlds in which the critter has been tested.

An example of a generator is one whose antecedent matches any vector feature and whose

consequent applies the vmin operator to the vector feature in order to obtain a new scalar feature.

The type of this generator is vector!scalar. This generator simply applies a feature operator to

an input feature. Some generators, such as the group generator , are more complicated. The group

generator (described in Section 3.1.1) does not involve a simple operator but instead analyzes a

vector feature over a period of time before creating any new features.

For a simple example of the use of the generate-and-test approach to feature learning, consider

a critter whose goal is to move a robot to a power source marked with a light beacon. The robot has

attached to its front bumper a row of directed photocells that can detect the beacon. The photocell

that points most directly at the beacon produces the largest value. The closer the robot is to the

beacon, the larger the values returned by the photocells. The critter can learn a number of features

that can help it achieve its goal. For example, if x is the vector feature of photocell values, then

the feature (vsum x), when large, indicates the presence of a power source, and, when maximal,

indicates that the robot is at the power source. Applying the image generator (see Section 3.1.2)

yields further possibilities. For example, if y is a generated image feature that captures the structure

of the array of photocells, then (pos (lmax y)) denotes a feature that encodes the orientation of

the robot relative to the beacon. Various methods for learning homing behaviors can be used (see

Section 7.3) in order to achieve the goal of maximizing the learned feature (vsum x) and thereby

moving the robot to the power source.

The rest of Section 3.1 presents de�nitions of a number of di�erent generators.

3.1.1 The group generator

The group generator's type is (vector ! (list group)) where the keyword list indicates that

this generator creates multiple output features. The purpose of this generator is to make a �rst

step toward discovering and representing the structure of a sensory apparatus. The group generator

decomposes a vector feature into subsets of related elements. These subsets are called group features

and are useful for de�ning higher-level features such as image and motion features. Examples of

groups of related features are: an array of tactile sensors, a retina of photoreceptors, and a ring

of distance sensors. The sensory apparatus described in Section 1.1 was comprised of a ring of

distance sensors (one broken), a compass, and a battery-voltage sensor. In this case, the group

generator should recognize that the working distance sensors are related and should organize them

into a separate group.

The operation of the group generator is based on the observation that spatially adjacent sensors

of the same type measure properties of objects that are physically close to each other. Since the

world is approximately continuous, adjacent sensors tend to have similar values.2 This similarity is

exploited by the group generator in three steps: (1) de�nition of one or more intersensor distance

metrics, (2) formation of subgroups of sensors that are similar according to all of the distance

2Marr and Poggio (1976) exploited this fact in their theory of stereo vision.
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metrics, and (3) taking the transitive closure of the similarity relation to form close groups of

related sensors. The use of multiple metrics decreases the chance that unrelated sensors will be

grouped together. For the implemented group generator, two metrics are used.

1. De�nition of distance metrics. The �rst step is to de�ne a set of metrics, based on the

history of values of the input vector feature s, each giving a measure of dissimilarity dk;ij between

pairs of elements. The metrics are designed so that features that belong together in a sensory array

will be similar according to the metrics. For example, the distance between two adjacent distance

sensors and the distance between two adjacent photoreceptors in a retina should be small according

to each metric.

� The �rst metric d1 is based on the principle that in a continuous world, adjacent sensors

generally have similar values. The metric is de�ned as a matrix feature:

d1;ij(t) =
1

t+ 1

tX
�=0

jxi(�)� xj(�)j:

Written in terms of feature operators, the matrix feature is de�ned by

d1 = �(abs (xdi� x x))

� The second metric d2 is based on the observation that sensors in a homogeneous array will have

similar frequency distributions. (A frequency distribution tells, for each interval in a range,

how often the sensor's value falls in that range.) For example, an array of binary touch sensors

can be distinguished from an array of photoreceptors by the fact that the di�erent types of

sensors have radically di�erent frequency distributions. Binary touch sensors can assume

value 0 or 1 whereas photoreceptors can assume any value from a continuous range. d2;ij is

proportional to the sum over the distribution intervals of absolute di�erences in frequency for

elements i and j.

d2;ij =
1

2
(vsum (abs ((pdf xi)� (pdf xj))))

Here, (pdf xi) is a histogram feature that approximates the frequency distribution for feature

xi. The distance between two elements will have a maximum value of 1.0 if the frequency

distributions of the elements do not overlap at all.

2. Formation of subgroups of similar sensors. The group generator's second step is to

use the distance metrics dk to form subgroups of similar sensors. Elements i and j are similar,

written i � j, if they are similar according to each distance metric dk:

i � j i� 8k : i �k j:

The de�nition of i �k j requires the use of a threshold. One way to de�ne this threshold, that has

proven to be more robust than the use of a constant, is this:

�k;i = 2 min
j
fdk;ijg:
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Each element i has its own threshold based on the minimum distance from i to any of its neighbors.

Elements i and j are considered similar if and only if both dk;ij < �k;i and dk;ij < �k;j, that is if j

is close to i from i's perspective and vice versa. Combining these constraints gives

i �k j if dk;ij < minf�k;i; �k;jg:

3. Formation of closed subgroups. The group generator's third step is to take the transitive

closure of the similarity relation to produce the related-to relation �. Consider again the ring

of distance sensors. Adjacent sensors tend to be very similar according to the distance metric,

but sensors on opposite sides of the ring may be dissimilar (according to d1) since they detect

information from distinct and uncorrelated regions of the environment. In spite of this fact, the

entire array of distance sensors should be grouped together. This is accomplished by de�ning the

related-to relation � as the transitive closure of the similarity relation �. Two elements i and j

are related to each other, written i � j, if i � j or if there exists some other element k such that

i � k and k � j:

i � j i� i � j _ 9k : (i � k) ^ (k � j):

The related-to relation � is clearly reexive, symmetric, and transitive and is therefore an equiva-

lence relation. Computing the relation � for i and j given the relation � is straightforward (e.g.,

Cormen et al., 1990).

The de�nition of \group of related features" is given in terms of the � relation. The group of

all elements of vector feature x that are related to element xi is given by xGi
where

Gi = fj j i � jg:

Here, Gi is the set of indices that are related to i, as de�ned above, and xGi
is a new group feature

derived from feature x using the select operator (Section 2.6.3). The group generator creates a

new group feature for each element of its input feature:

group x = fxGi
j 0 � i < ng

where n is the length of feature x. Note that Gi = Gj if i � j so that the number of output features

of the group generator may be less than n.

For the robot described in the introduction (Section 1.1), the raw sensory feature has 29 ele-

ments. In order, these are: 24 distance sensors (one of which is defective), a battery-voltage sensor,

and a four-element digital compass. The distance metric is computed while the robot wanders

randomly for 2,500 steps. For each element of the raw sensory feature, the set of similar elements

fj j i � jg is computed and shown below:

(0 1 22 23) (0 1 2 3) (1 2 3) (1 2 3 4 5) (3 4 5) (3 4 5 6) (5 6 7 8) (6 7 8) (6 7 8 9)

(8 9 10 11) (9 10 11 12) (9 10 11 12 13) (10 11 12 13) (11 12 13 14) (13 14 15) (14 15 16)

(15 16 17) (16 17 18) (17 18 19) (18 19 21) (20) (19 21 22 23) (0 21 22 23) (0 21 22 23)

(24) (25) (26) (27) (28)
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Notice that neighboring distance sensors are grouped together. For example, the group (0 1 22 23)

contains two elements on each side of element 0. The related-to relation � is obtained by taking

the transitive closure of the relation � and is described by the following equivalence classes:

(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23)
(20) defective
(24) battery voltage
(25) east
(26) north
(27) west
(28) south

The distance sensors have all been grouped together into a group containing no other sensors.

Further examples of the application of this generator are given in Chapter 4.

3.1.2 The image generator

The image generator takes a group feature x and associates a position with each element thus

producing an image feature y. Its type is (group ! image). The point of the image generator is

to �nd an assignment of positions to elements that captures the structure of an array of sensors as

reected in the distance metric d1. The reason that d1 is used is that it is based on instantaneous

di�erences that should, on average, be small for sensors that are close together in a well-designed

sensory array. The distance between the positions of any two elements in the constructed image

should be equal to the distance between those elements according to the metric d1. Expressed

mathematically, image y should satisfy

k(pos yi)� (pos yj)k = d1;ij

where (pos yi) is the position vector associated with the ith element in the image and k(pos yi)�

(pos yj)k is the Euclidean distance between the positions of the ith and jth elements.

Finding a set of positions satisfying the above equation is a constraint-satisfaction problem. If

the group feature x has n elements, then the metric d1 provides n(n�1)=2 constraints.
3 Specifying

the positions of n points in n � 1 dimensions requires n(n � 1)=2 variables: 0 for the �rst point,

which is placed at the origin; 1 for the second, which is placed somewhere on the x axis; 2 for

the third, which is placed somewhere on the x � y plane; etc. Thus, to satisfy the constraints, n

position vectors of dimension n�1 are required. Solving for the position vectors given the distance

constraints can be done using a technique called metric scaling (Krzanowski, 1988).

The problem remains that n points of dimension n� 1 are inconvenient to use, if not meaning-

less, for large n. In general, sensory arrays are 1-, 2-, or 3-dimensional objects. What is needed

is a method for �nding the smallest number of dimensions that are needed to satisfy the given

constraints without excessive error, where the error can be de�ned by the equation

E =
1

2

X
ij

(k(pos yi)� (pos yj)k � dij)
2:

3The metric can be represented as a symmetric matrix with zeros on the diagonal. Such a matrix has n(n� 1)=2
free parameters.
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Metric scaling helps by ordering the dimensions according to their contribution toward minimizing

the error term.

Ignoring all but the �rst dimension (i.e., using only the �rst element of the position vectors),

yields a rough description of the sensory array with large error (unless the array really is a one-

dimensional object). Using all n�1 dimensions yields a description that has zero error but contains

a lot of useless information. Statisticians use a graph called a \scree diagram" (Figure 3.1a), which

shows the amount of variance in the data that is accounted for by each dimension, to subjectively

choose the right number of dimensions. The image generator chooses the number of dimensions to

be equal tom where m maximizes the expression �2(m)��2(m+1) where �2(m) is the variance in

the data accounted for by the mth dimension. For the example, m = 2. The set of two-dimensional

positions found by metric scaling for the group of distance sensors is shown in Figure 3.1b.
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Figure 3.1: Learning a structural model of a ring of distance sensors. (a) The scree diagram shows that
the �rst two dimensions account for most of the variance. (b) Metric scaling is used to assign positions to
elements of the group of distance sensors. The 22-dimensional position vectors are projected onto the �rst
two dimensions to produce the representation shown above. (c) A relaxation algorithm is used to �nd a set of
two-dimensional positions for the group of distance sensors that best satis�es the constraints kpi�pjk = dij:

Notice the gap corresponding to the defective distance sensor. The element with index 0 corresponds to the
robot's forward sensor.

The set of (n� 1)-dimensional position vectors optimally describe the structure of a group, but

when these positions are projected onto a subspace of lower dimensionality, the resulting description

is no longer optimal. Elements that were the right distance apart in n�1 dimensions will generally

be too close together in the two-dimensional projection. To compensate for this, a relaxation

algorithm is used to �nd the best set of positions in a small-dimension space to approximate the

given distances in n� 1 dimensions.

The relaxation algorithm associates an m-dimensional point pi with each element i of the group

feature, where m is the number of dimensions for the resulting image feature. For the running

example, m = 2. The algorithm repeats the following loop until no appreciable change occurs:

1. Compute the \force" fi on each point pi from all the other points

fi =
X

fij

where fij = (kpi � pjk � dij)(pj � pi)=kpj � pik
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2. Move each point pi a small distance in the direction of the force acting on it:

pi  pi + � fi

where � is a small constant.

Dewdney (1987) presents a similar algorithm.

This relaxation algorithm could be used without metric scaling by simply initializing the vector

of positions randomly. Metric scaling provides two bene�ts. It helps decide how many dimensions

are needed for the image feature, and it provides a starting point for the relaxation algorithm,

decreasing the chance that the algorithm will �nd a local but not global minimum of the error

function. The application of the relaxation algorithm to the group of distance sensors is illustrated

in Figure 3.1c.

To summarize, the image generator takes a group feature x and produces an image feature y

de�ned by

(val yi) = xi

(pos yi) = pi

where the values for the position vectors are found using metric scaling and a relaxation algorithm

so that they approximately satisfy the constraints

kpi � pjk = k
X
t

jxi(t)� xj(t)j

while keeping the dimensionality of the position vectors pi small. Further examples of the applica-

tion of this generator are given in Chapter 4.

3.1.3 The local-optima generators

While any operator can be used to de�ne a generator, some, such as the local-optima operators,

are more relevant for the purposes of this dissertation and will be given special mention. A local-

optima generator takes an image feature as input and produces a focused-image feature. Its type

is thus (image ! focused-image) The two types of local-optima generators are the local-minima

generator, which uses the lmin operator, and the local-maxima generator, which uses the lmax op-

erator. The local-optima generators provide a method for focus of attention. The feature (lmin x)

focuses attention on just those elements that are less than all of their neighbors. This generator

will be demonstrated in Chapter 6.

3.1.4 The tracker generator

The tracker generator takes a focused-image feature as input and produces a list of image-

element features. Its type is thus (focused-image ! (list image-element)). It uses a special-purpose

operator called a tracker .

The purpose and operation of the tracker will be described using the example of a robot with a

ring of distance sensors. Suppose that the robot is near a corner in a large room. The corner is an
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interesting \feature" (in the non-technical sense) of the robot's environment: the presence of the

corner is a property of the local region that can distinguish it from other regions in the environment.

The corner can be used as a point of reference | the robot's position can be described relative to

the corner.

With the tracker, it is possible to de�ne an image-element feature that captures these properties

and can be used as a representation of the corner. Let x be the robot's image feature of distance

sensors. This feature may have been given to the robot by design, or de�ned using the image

generator. The corner is manifested in feature x as a local maximum, since the distance to the

corner is greater than the distance to points on the wall near the corner. Let y be the focused-image

feature (lmax x). The corner is then represented by an element of y with strength 1. An element

of a focused-image feature with strength 1 will be called an active image element .

For the active image element z = (v;p) that corresponds to the corner, the value v is the

distance to the corner and the position vector p is an encoding of the direction to the corner from

the robot. What is missing from the focused-image representation of the corner is a concept of

identity over time. The location of the local maximum in the image will move from one element to

another when the robot moves | several di�erent elements will detect the same corner.

The tracker maintains a list of active image-element features in the input focused-image feature.

An output image-element feature that exists at time t continues to exist at time t + 1 if there is a

matching active image element in the new focused-image, where two image elements match if their

values and positions are approximately equal. Speci�cally, if an output image-element feature has

value (vi(t);pi) at time t, then at time t + 1, it will have value (vj(t + 1);pj) where (vj(t+ 1);pj)

is an active image element in the input image at time t + 1 satisfying

(jvi(t)� vj(t+ 1)j < �v)^ (i � j)

if such an active image element exists, where �v is a small constant and the relation � is the same

one that was de�ned on page 41. If more than one exists, the choice of which to use is arbitrary. If

none exists, then the output feature ceases to exist.

The tracker implements a form of focus of attention. It abstracts away the small changes in value

and position of an active image element in order to produce a feature which tracks an interesting

property of the robot's environment. The tracker generator is an example of a generator that

produces an ephemeral feature (Section 2.1). When the robot moves away from a corner, the

strength of the image-element feature that was tracking the corner goes to zero | the feature

ceases to exist. An application of this generator for the purpose of de�ning local state variables is

described in Chapter 6.

3.2 Feature testers

The feature testers provide the second half of the generate-and-test approach to feature learning.

A feature tester is any feature generator whose output feature is used in some way to characterize

a set of one or more input features. The output feature's associated strength is used to tell how

much con�dence to place in the feature's value. Like the feature generators, the feature testers are

typed according to the type of features to which they apply.

46



Testers come in di�erent types. A Boolean tester produces a Boolean-valued feature. An

example is a tester that determines whether an input feature is constant. The tester's output value

is 1 as long as the input feature does not change. If the input ever changes, then the tester's

output is permanently set to 0. The strength of the tester's output feature increases slowly from

zero asymptotically to 1. The longer the input feature remains constant, the higher the tester's

con�dence that it is indeed a constant feature.

Examples of real-valued testers are mean (�) and sdev (�). The values of (� x) and (� x) can

be used to characterize the range of values that feature x assumes.

An example of a more complex tester is the correlator (Section 3.2.3) which characterizes

the relationship between two input features while testing the hypothesis that there is a linear

relationship between them.

3.2.1 Learning hill-climbing functions

Other work (Pierce & Kuipers, 1991) has demonstrated the use of a number of feature testers to

identify features that could be used in the de�nition of goal-directed behaviors for a mobile robot.

In that work, a goal was given a priori and a reward signal was provided to the learning agent that

told it when it had achieved the goal. The learning agent's task was to learn how to achieve the

goal reliably and e�ciently. It solved the task using the following two steps:

1. Derive a function de�ned in terms of the raw sense vector such that this function is maximized

at the goal state and is suitable for hill-climbing.

2. Learn a behavior that does gradient ascent on this hill-climbing function.

What is of interest for the current discussion is the �rst step. The critter applied feature testers

including the continuity tester (Section 3.2.2) to its raw sensory feature to determine which sensors

were both smoothly varying and useful in predicting the value of the reward signal. These features

were then used to de�ne a hill-climbing function which was in turn used to train a reactive behavior

for moving e�ciently to the goal state.

In that work, the emphasis was on the testing portion of the generate-and-test process of feature

learning.4 In the work described here, the emphasis is on the generation of new features. Features

such as the group and image features are an end in themselves | they provide information about

the physical structure of a robot's sensory apparatus. The only tester that will be used in the

generate-and-test process of learning local state variables (Chapter 6) is the correlator, a type of

linear regression tester.

3.2.2 The continuity tester

The continuity tester determines whether a scalar feature varies continuously as the robot moves

around in state space. Its value is equal to the standard deviation of the time derivative of the

4See the original paper for the descriptions of the testers used.
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feature divided by the standard deviation of the feature:

C x = �(
d

dt
x)=�(x)

where x is the scalar feature being tested. The standard deviation is a statistical measure and as

such becomes more reliable with larger sample sizes. To be useful, the continuity tester should be

computed while the robot explores a representative subset of its state space.

3.2.3 The linear-regression tester

The linear regression tester can be used to determine whether one scalar feature's value is a

good predictor of the value of another scalar feature. Given scalar features x and y, it uses linear

regression (see, for example, Press et al., 1988) to determine the best values of m and b in the

equation

y(t) = mx(t) + b+ e(t):

Here, m and b are scalars and e is the error term. Linear regression �nds the values of m and b

that minimize the value of
Pt

�=0[e(�)]
2: Their values are de�ned by the equations

m =
SxxSy � SxSxy

(t+ 1)Sxx � (Sx)2

b =
(t+ 1)Sxy � SxSy
(t+ 1)Sxx � (Sx)2

where

Sx =
tX

�=0

x(�)

Sy =
tX

�=0

y(�)

Sxx =
tX

�=0

(x(�))2

Sxy =
tX

�=0

x(�) y(�):

The linear correlation coe�cient

r =

P
�(x(�)� � x)(y(�)� � y)

[
P

� (x(�)� � x)2
P

� (y(�)� � y)2]1=2

gives a measure of the strength of the correlation between x and y. If jrj is near one, then the two

features are highly correlated. If jrj is near zero, then they are uncorrelated. If two features are

highly correlated, then the approximation y = mx + b can be used to reliably predict the value

of y given a knowledge of the value of x. The linear regression tester will be used in the dynamic

action model to model the e�ects of the robot's actions on its local state variables (Section 7.4.2).

48



3.2.4 The correlator

The correlator is a specialization of the linear-regression tester that is useful for determining

the best value of m in the equation:

_y(t) = mx

where y and x are scalar features andm is a real-valued constant. The correlator uses an additional

input feature, a reset signal. Instead of directly applying linear regression to x and _y,5 the correlator

�rst integrates both sides of the equation, computing the new features

�y(t) = y(t)� y(t0)

Sx(t) =
tX

�=t0

x(�)

where t0 is reset to t whenever the reset signal is on (equal to 1). When the reset signal is o�, t0
does not change. The correlator applies linear regression to features Sx and �y to produce output

features m an r. In addition, the correlator produces the feature

 = �(�y)=�(Sx);

a feature that is useful for testing whether there is a causal relationship between x and y. If 

is small relative to (� y), then x does not a�ect y. Without additional information, the converse

is not necessarily true. The correlator will be used in Section 6.2 to characterize the e�ects of a

robot's motor control signals on a set of features.

3.3 Search Control

The generate-and-test process of learning potentially useful features executes the following steps

in a continuous loop. Initially, there is only one feature, the raw sensory feature. This feature is

marked as new .

1. Each tester is applied to each new feature to which it is applicable.

2. Each generator is applied to each new feature to which it is applicable.

3. The features that were new are marked as old, and the features just generated are marked as

new.

The critter initially explores by randomly choosing motor control vectors. Later (see Chapter 7), it

learns more sophisticated behaviors that allow it to explore more intelligently. The generate-and-

test process continues until a termination criterion is satis�ed. That criterion will depend on the

goal of the learning task. It may be de�ned in terms of a Boolean tester that returns true when

it has found an appropriate feature.

5The problem with using the signal _y directly is that any noise or quantization error in feature y is enhanced by
the process of di�erentiation.
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For the task of learning local state variables (Chapter 6), the correlator will be used to �nd

features whose derivatives can be approximated by linear functions of the robot's motor control

signals. Such features will be used as local state variables .

In generate-and-test approaches to learning, controlling the search through a large space of

possibilities is an important concern. Without any constraints, the number of features generated

on each iteration of the generate-and-test loop may grow exponentially. There are several ways to

constrain a search algorithm.

One way is to limit the depth of the search. In the current implementation of the generate-and-

test algorithm, it is possible to set a limit on the number of generations of new features that are

created.

A second way is to limit the breadth of the search. This method is used in genetic algorithms

where population size is constrained to a certain number. This method requires a �tness measure

to tell which members of the population are worthy of survival. Such a �tness measure can be

de�ned as a feature tester, though this has not been done for any of the experiments described in

this dissertation. This is an instance of a more general approach: to de�ne a Boolean tester that

heuristically identi�es features to be pruned from the tree of generated features.

A third way to constrain a search space is to limit the branching factor. For the feature-

learning problem, this is the average number of new features that are generated for each old

feature at each step of the generate-and-test process. The branching factor for the feature learning

problem is limited in two ways. First, the number of generators is kept reasonably small. Second,

the generators are strongly typed which means that not every generator applies to every feature.

Strong typing is enhanced by the use of a well developed hierarchy of feature types. For example,

the distinction between a vector feature and a group feature limits the number of features to which

an image generator will apply. Vector features and group features are structurally equivalent, but

the image generator only applies to the latter.

In the experiments described in this dissertation, the combinatorial explosion of features has

not been an issue. The generators form deep but narrow search trees.
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Chapter 4

Learning a Model of a Sensory Apparatus

The previous chapters introduced a language that is appropriate for analyzing a robot's sensory

apparatus and de�ning new features. This feature language is useful for solving the problem of

modeling the robot's sensorimotor apparatus. The �rst half of the problem, modeling the sensory

apparatus, is described in this chapter. The second half, modeling the motor apparatus, is described

in Chapter 5.

A sensory apparatus may contain a structured array of homogeneous sensors. Examples of such

arrays are a ring of distance sensors, a retina of photoreceptors, and an array of touch sensors. This

chapter describes experiments in which the group and image generators (Sections 3.1.1 and 3.1.2)

are used to learn and represent this structure. In Section 4.1, the generators are demonstrated for

the robot and environment described in Chapter 1. In Section 4.2, they are applied to a robot with

a simple visual system.

4.1 A robot with distance sensors

This experiment involves a simulated mobile robot with a ring of distance sensors. The goal

is to use the group and image generators to de�ne an image feature that captures the physical

structure of the sensor ring.

The robot's environment. The robot's world for this experiment is simulated as a rectangular

room of dimensions 6 meters by 4 meters. The robot itself is modeled as a point.

The robot's sensory apparatus. The robot's sensorimotor apparatus is illustrated in Figure 4.1.

Each sensor's value lies between 0:0 and 1:0. Collectively, the sensors de�ne the raw sense vector

s. The �rst 24 elements of the raw sense vector give the distances to the nearest objects in each

N

EW

S

distance sensors battery voltage digital compass

Figure 4.1: The robot's sensory apparatus includes a ring of 24 distance sensors, of which one is defective
and always returns a value of 0.2; a battery-voltage sensor; and a digital compass that tells which direction
the robot is most nearly facing.
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tank

Figure 4.2: The robot has a tank-style motor apparatus with two control signals that tell how fast to move
the right and left treads.

of 24 directions. These have a maximum value of 1.0 which they take on when the nearest object

is beyond one meter away. The sensors are numbered clockwise from the front. The 21st element

is defective and always returns a value of 0.2. The 25th element is a sensor giving the robot's

battery's voltage, which decreases slowly from an initial value of one. The 26th through 29th

elements comprise a digital compass. The element with value 1 corresponds to the direction (E, N,

W, or S) in which the robot is most nearly facing.

The robot's motor apparatus. The robot has a \tank-style" motor apparatus (Figure 4.2).

Its two motor control signals a0 and a1 tell how fast to move the right and left treads. Moving

the treads together produces forward or backward motion; moving them in opposition produces

rotation. The robot's maximum speed is 0.25 meters per second. Its maximum rotational speed is

100 degrees per second.

The critter controlling the robot uses the following exploration strategy: choose a random motor

control vector; execute it for one second (10 time steps); repeat. Experience has shown that this

strategy is more e�ective for e�ciently exploring a large subset of the robot's state space than

choosing actions randomly at each time step.

4.1.1 Discovering related sensory subgroups.

The group generator (see Section 3.1.1) can be used to recognize groups of related sensors, for

example, the group of distance sensors. The grouping is based on two distance metrics dk that give

measures of dissimilarity between any two elements of vector feature. The �rst distance metric is

de�ned by the equation

d1;ij(t) =
1

t + 1

tX
�=0

jxi(�)� xj(�)j:

Its value after the robot has explored for �ve minutes is given in Figure 4.3. The second distance

metric is de�ned by the equation

d2;ij =
1

2
(vsum (abs ((pdf xi)� (pdf xj)))):

Its value after 5 minutes is shown in Figure 4.4. These distance metrics are used to identify, for each

element si of feature s, the set of elements that are similar to si according to the distance metrics
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Figure 4.3: The value of distance metric d1 after the robot has wandered for �ve minutes. The axes give the
values for i and j; the height of the plot gives the value of d1;ij. The ijth entry in the matrix is a measure
of the dissimilarity between the ith and jth elements of the raw sense vector.
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Figure 4.4: The value of distance metric d2 after the robot has wandered for �ve minutes.
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(0 1 22 23) (0 1 2 3) (1 2 3) (1 2 3 4 5) (3 4 5) (3 4 5 6) (5 6 7 8)
(6 7 8) (6 7 8 9) (8 9 10 11) (9 10 11 12) (9 10 11 12 13) (10 11 12 13)
(11 12 13 14) (13 14 15) (14 15 16) (15 16 17) (16 17 18) (17 18 19)
(18 19 21) (20) (19 21 22 23) (0 21 22 23) (0 21 22 23) (24) (25) (26)
(27) (28)

Figure 4.5: For each element of the raw sense vector, the set of similar elements is shown.

(see Section 3.1.1 for the details). These sets of elements are shown in Figure 4.5. Treating these

sets as equivalence classes and taking the transitive closure yields the groups of related elements

shown in Figure 4.6.

(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23)
(20) defective
(24) battery voltage
(25) east
(26) north
(27) west
(28) south

Figure 4.6: By taking the transitive closure of the groups of similar elements, a list of related subgroups is
produced. The working distance sensors have all been grouped together.

4.1.2 A structural model of the sensory apparatus.

The group generator identi�ed seven groups of related sensors. The largest group is a candidate

for application of the image generator (Section 3.1.2). The image generator's �rst step is to apply

metric scaling to the distance metric d1. The value of this distance metric is shown in Figure 4.7.

Metric scaling produces the scree diagram of Figure 4.8a indicating that the sensory array is best

modeled as a two-dimensional object. Metric scaling assigns positions to each element of the group

feature. Projecting these positions onto the �rst two dimensions produces the mapping shown

in Figure 4.8b. The set of positions produced by metric scaling is improved using a relaxation

algorithm so that the distances in the resulting image more closely match distance metric d1. The

resulting set of positions is shown in Figure 4.8c. The result of the experiment is a structural

description of the robot's sensory apparatus (Figures 4.6 and 4.8) that will be used in Chapter 5

to analyze the robot's motor apparatus.
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Figure 4.7: This �gure shows the intersensor distances d1;ij for all of the distance sensors. It is this matrix
that the image generator uses to construct the image feature that captures the structure of the ring of
distance sensors.
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Figure 4.8: (a) The metric-scaling scree diagram for the group of distance sensors indicates that the sensors
are organized in a two-dimensional array. (b) The two-dimensional projection of the set of positions produced
by metric scaling for the group of distance sensors provides an initial approximation of the ring structure
of the array of distance sensors. (c) The �nal set of positions is produced using a constraint-satisfaction
relaxation algorithm that uses the previous set of positions as initial values.
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4.2 The roving eye

This experiment involves a more fanciful, simulated robot called a \roving eye." It's primary

sensory array is a retina of photoreceptors.

The robot's environment. This robot is a simulation of a small camera mounted on the movable

platform of an X-Y plotter, pointing down at a square picture 10 centimeters on a side. The

camera sees one square centimeter of the picture at a time. The robot has three degrees of freedom

(translation in two directions and rotation) and its state space is described by three state variables

(two for position and one for orientation). The robot's structure is shown in Figure 4.9a. The

x

y θ

Picture

Camera
image

a b

Figure 4.9: (a) The robot is a \roving eye" that can see a 1 centimeter wide image that is part of a picture
that is 10 centimeters wide. (b) The picture used for the roving-eye experiment is a close-up view of the
Oregon coast.

actual picture used is shown in Figure 4.9b.

The robot's sensory apparatus. The sensory apparatus is as before except that the ring of

distance sensors has been replaced by a 5 by 5 retinal array looking down on a picture. The sensory

apparatus is illustrated in Figure 4.10.

The robot's motor apparatus. The motor apparatus is illustrated in Figure 4.11. Unlike the

robot of the previous experiment, this robot has three degrees of freedom instead of two. The three

elements (control signals) of the motor control vector are rotate, slip (for motion to the left or right),

and slide (for motion forward or backward). Positive values of the �rst turn it counterclockwise

(up to 100 degrees per second) and negative values clockwise. The second determines how fast the

robot advances (up to 2.5 centimeters per second). Negative values move it backwards. The third

determines how fast the robot moves to the right (for positive values) or left (for negative values).
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retinal array battery voltage digital compass

Figure 4.10: The roving eye's sensorimotor apparatus includes a 5 by 5 retinal array of photoreceptors.
The image on the retina corresponds to a 1-centimeter square area of the 10-centimeter square picture. The
sensory apparatus also includes the battery-voltage sensor and the digital compass.

turn: a0
slip: a1

slide: a2

turn-slip-slide

Figure 4.11: The robot is able to move forward and backward, left and right, and can rotate in either
direction. The robot's maximum speed is 2.5 centimeters per second. Its maximum rotational speed is 100
degrees per second.

4.2.1 Discovering related sensory subgroups.

The experimental results for this experiment parallel those of the previous experiment. The

value of the distance metrics used in discovering groups of related sensors are shown in Figures 4.12

and 4.13.

As before, these distance metrics are used to identify, for each element si of feature s, the set

of elements that are similar to si. These sets of elements are shown in Figure 4.14. Treating these

sets as equivalence classes and taking the transitive closure yields the groups of related elements

shown in Figure 4.15.

4.2.2 A structural model of the sensory apparatus.

The group generator identi�ed six groups of related sensors. Again, the largest group is a

candidate for application of the image generator. The image generator's �rst step is to apply

metric scaling to the distance metric d1. The value of this distance metric is shown in Figure 4.16.

Metric scaling produces the scree diagram of Figure 4.17a indicating that the sensory array is best

modeled as a two-dimensional object. The set of positions produced by metric scaling (Figure 4.17b)

is improved so that the distances in the resulting image more closely match distance metric d1
(Figure 4.17c).
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Figure 4.12: The value of distance metric d1 after the robot has wandered randomly for �ve minutes.
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Figure 4.13: The value of distance metric d2 after the robot has wandered randomly for �ve minutes.
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(1 2 5 6 7 8 9 11 12 13 14 15 16 17 18 20 21 22 23 24)
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Figure 4.14: For each element of the raw sense vector, the set of similar elements is shown.

(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
(25) battery voltage
(26) east
(27) north
(28) west
(29) south

Figure 4.15: The photoreceptors have all been grouped together.
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Figure 4.16: The metric d1 is represented as a matrix. This �gure shows the intersensor distances for all
of the photoreceptors. It is this matrix that the image generator uses to construct the image feature that
captures the structure of the retinal array.
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Figure 4.17: (a) The metric-scaling scree diagram for the group of photoreceptors indicates that the sensors
are organized in a two-dimensional array. (b) The two-dimensional projection of the set of positions produced
by metric scaling for the group of photoreceptors provides an initial approximation of the grid structure of the
array of photoreceptors. (c) The �nal set of positions are produced using a constraint-satisfaction relaxation
algorithm that uses the previous set of positions as initial values.
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Chapter 5

Learning a Model of a Motor Apparatus

Recall that the critter's goal is to understand a robot's sensorimotor apparatus and environment

well enough to navigate through that environment. The previous chapter presented a method for

learning a model of the robot's sensory apparatus. This chapter presents a method for learning a

model of the robot's motor apparatus. Modeling the motor apparatus means modeling the e�ects

of the robot's control signals.

5.1 The learning method

The e�ects of the robot's control signals must be de�ned using the robot's sensory system,

the critter's only source of information about its environment. One way to characterize a control

signal's e�ect is in terms of motion. Once the image feature is de�ned, themotion feature operator

(page 34) becomes applicable. The image feature makes it possible to de�ne spatial attributes of

the sensory input in terms of the locations of sensors in the image. With spatial attributes, it is

possible to de�ne spatial as well as temporal derivatives, so motion features can be de�ned, even

without knowledge of the physical structure of the environment. The critter uses the new motion

feature to analyze its motor apparatus using the following steps:

1. Discretize the space of motor control vectors. The robot's in�nite space of motor

control vectors is discretized into a �nite set of representative vectors, fuig.

2. Compute average motion vector �elds (amvf 's). The critter repeatedly executes each

representative motor control vector many times in di�erent locations and measures the average

value of the resulting motion feature. It is this average value that characterizes the e�ect of

that control vector.

3. Apply principal component analysis. The set of computed amvf 's is a representation of

the e�ects that the motor apparatus is capable of producing. Principal component analysis

is used to decompose this set into a basis set of principal eigenvectors , a set of representative

amvf 's from which all amvf 's may be produced by linear combination.

4. Identify primitive actions. Each principal eigenvector is matched against the amvf 's

produced by the representative control vectors to �nd a control vector that produces that

e�ect or its opposite. Such a motor control vector, if it exists, is identi�ed as a primitive

action and can be used to produce motion for one of the robot's degrees of freedom.

5. De�ne a new abstract interface. For each degree of freedom, a new control signal is

de�ned that allows the critter to specify the amount of motion for that degree of freedom.
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The result of the learning is a new abstract interface to the robot comprised of a new set of control

signals, one per degree of freedom of the robot. The new interface hides the details of the motor

apparatus. For example, whether a mobile robot's motor apparatus uses tank-style treads or a

synchro-drive mechanism, the learned interface will present the critter with two control signals:

one for rotating and one for advancing. These learned control signals will be used in Chapters 6

and 7 to further characterize the robot's motor apparatus using the static and dynamic action

models .

Steps 1 through 5 are explained in detail in the next �ve sections using the robot and environ-

ment described in Chapter 1 as an example. Section 5.2 describes additional experiments.

5.1.1 Discretize the space of motor control vectors

The choice of the set of representative motor control vectors must satisfy two criteria: �rst,

they must adequately cover the space of possible motor control vectors so that the space of possible

e�ects (amvf 's) will be adequately represented. Second, the distribution of motor control vectors

must be dense enough so that, given a desired e�ect (e.g., an amvf that corresponds to one of the

robot's degrees of freedom), a motor control vector that produces that e�ect can be found.

The approach taken here is to use a set of unit motor control vectors uniformly distributed over

the space of unit motor control vectors. (A unit vector has a magnitude of 1 where its magnitude is

equal to the square root of the sum of squares of its components.) For two- and three-dimensional

spaces of motor control vectors, respectively, 32 and 100 vectors have been found to be adequate.

For the 2-D case, it is easy to �nd a set of vectors that are uniformly distributed on the unit

circle. The ith of n vectors has value (cos(2�i=n); sin(2�i=n)): For the 3-D case, �nding a set of

vectors that are uniformly distributed on the unit sphere is more complicated. The solution used

here involves the same relaxation algorithm that was used by the image generator (Section 3.1.2).

The vectors are constrained to lie on the unit sphere (i.e., to have magnitude 1), and the target

distance between any pair of points is much larger than 2. The resulting con�guration of vectors is

analogous to a collection of electrons on a charged sphere | each vector is as far from its neighbors

as possible. These vectors are used as the representative motor control vectors for sampling the

continuous space of average motion vector �elds. This method generalizes to any dimension.

5.1.2 Compute average motion vector �elds

The learning method of this chapter is based on the observation that the representation of the

space of motor control vectors is arbitrary whereas the space of e�ects is meaningful. The former

depends on the details of the robot's motor apparatus whereas the latter is based on sensory

perception. In the experiments described here, the e�ect of a motor control vector is the average

motion vector �eld that it produces.

The hard work in de�ning amvf 's has already been done in Section 2.6.5 where the motion

operator was de�ned. Using that operator, the de�nition of the amvf associated with the ith

representative motor control vector ui is

amvfi = � ((motion x) j (= u ui))
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where x is the image feature that has already been learned (Section 4.1.2) and u is the motor control

vector used to control the motor apparatus. Recall that the � operator computes the weighted

average of a feature where the weight is given by that feature's strength. The expression above

computes the average of the motion feature for all time steps during which ui was taken. Examples

are shown in Figure 5.1. These are obtained after the critter has wandered for 20 minutes using

the exploration strategy of randomly choosing a representative motor control vector and executing

it for one second (ten time steps).

(1.00 -0.01) (0.74 0.68) (-0.05 1.00) (-0.72 0.69)

(-1.00 0.01) (-0.74 -0.68) (0.05 -1.00) (0.72 -0.69)

Figure 5.1: Examples of average motion vector �elds (amvf 's) and their associated motor control vectors.
An amvf associates an average local motion vector with each position in the image (see Figure 4.8). The
examples in this section were all produced in an experiment involving the robot and environment described
in Section 4.1.

5.1.3 Apply principal component analysis

The goal of this step is to �nd a basis set for the space of e�ects of the motor apparatus, i.e., a

set of representative motion vector �elds from which all of the motion vector �elds may be produced

by linear combination. This type of decomposition may be performed using principal component

analysis. (See Mardia et al. (1979) for an introduction and Oja (1982) for a discussion of how a

neural network can function as a principal component analyzer.)

Principal component analysis of a set of values for a variable y produces a set of orthogonal

unit vectors fvig, called eigenvectors , which may be viewed as a basis set for the variable y. The

ith principal component of y is the dot product of y and eigenvector vi. In practice, y may be

approximated as a linear combination of the �rst few eigenvectors while throwing the remaining

ones away. The principal components are ordered according to their standard deviations. This

means that the �rst eigenvector accounts for the most variance in the set of observed values for

y, and so forth. The application of principal component analysis to a two-dimensional variable is

illustrated in Figure 5.2.
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Figure 5.2: Principal component analysis applied to a two-dimensional random variable. The two basis
vectors v0 and v1 are shown. Each dot represents one sample value of the variable.

Principal component analysis may be performed using a technique called singular value decom-

position (Press et al., 1988) which identi�es the eigenvectors and computes the standard deviation

of each principal component. The relative magnitudes of the standard deviations tell how important

each eigenvector is for the purposes of approximating the sample values for y.

To perform the analysis, the sample values of y are organized as the rows of matrix Y . In the

experiment with the robot with the ring of 23 working distance sensors, the sample values of y are

the amvf 's produced by the 32 representative motor control vectors, each having 46 components.1

The singular value decomposition of Y is

Ym�n = Rm�nWn�nVn�n

whereW is a diagonal matrix whose elements are the singular values of Y and the rows of V are the

desired eigenvectors. Matrix R tells how to express each sample vector y as a linear combination

of the eigenvectors. The singular value associated with an eigenvector gives a measure of that

vector's importance in terms of explaining variation in the input set of amvf 's. Here, m = 32, the

number of average motion vector �elds, and n = 46, the number of components in each amvf . The

equation below makes explicit the relationship among the four matrices. The decomposition orders

the singular values according to magnitude, with the largest in the upper left corner.

2
6666664

y0

...

ym�1

3
7777775
=

2
6666664

r0

...

rm�1

3
7777775

2
64
w0

. . .

wn�1

3
75
2
64

v0

...
vn�1

3
75

This equation shows how each of the amvf vectors yi is written as a linear combination of the

eigenvectors in V :

yi =
n�1X
j=0

rijwjv
j

1The motion feature has 23 elements, one per element of the image on which it is based. Each element of the
motion feature is a vector with two components for a total of 46.
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Thus the row vectors of V form a basis set for the space of amvf' s. The amvf' s may be approximated

by throwing away all but the most important basis vectors. Thus, for example, vector yi may be

approximated by

yi � ri0w0v
0 + ri1w1v

1;

keeping only the �rst two eigenvectors. The �rst four eigenvectors obtained in the experiment are

shown in Figure 5.3.

1.61 0.35 0.27 0.15

u0= (-0.66 0.74) u1= (0.74 0.68)

Figure 5.3: The �rst four eigenvectors and the standard deviations of the associated principal components
for the space of average motion vector �elds. The �rst corresponds to a pure rotation motion and the second
corresponds to a forward translation motion. (The top-left elements in these diagrams are associated with
the robot's front sensor s0). The robot's motor apparatus can produce the �rst two e�ects directly using the
motor control vectors shown.

5.1.4 Identify primitive actions

In the previous step, principal component analysis was used to determine a basis set of e�ects

for the motor apparatus, namely, the set of eigenvectors. The goal of this step is to discover which

motor control vectors can be used to produce those e�ects. This is accomplished by matching

the eigenvectors with the amvf 's of all of the representative motor control vectors. The matching

involves computing the angle between each eigenvector and each amvf . An angle near zero indicates

that the amvf is similar to the eigenvector. An angle near 180 degrees indicates that the amvf is

similar to the opposite of the eigenvector. If any amvf 's match the ith eigenvector to within 45

degrees, then motor control vector ui+ is de�ned to be the motor control vector whose amvf is

most collinear with the ith eigenvector and ui� is de�ned to be the motor control vector whose

amvf is most antilinear. The de�nitions of control laws (Chapter 7) assume that the robot's

motor apparatus is linear, implying that ui+ = �ui�. In the case that ui+ � �ui�, they can be

approximated by plus and minus ui, respectively, where ui
def
= 1

2
(ui+�ui�). Subsequently, this will

be used as the de�nition of the ith primitive action. The values of ui are given in Figure 5.3.

To conclude, here is the characterization of the robot's motor apparatus after this step: The

motor apparatus has two degrees of freedom (from the perspective of the distance-sensor image).

The motor control vector u0 can be used for motion for the �rst degree of freedom and the motor

control vector u1 can be used for motion for the second degree of freedom.
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5.1.5 De�ne a new abstract interface

The goal of this step is to de�ne a new interface to the robot that abstracts away the details

of the motor apparatus. For each of the robot's degrees of freedom, a new control signal is de�ned

for producing motion along that degree of freedom. Negative values of the control signal will move

the robot in the opposite direction. For the robot of the example, there will be two control signals,

one for turning (left and right) and one for advancing (forward and backward). The e�ect of the

control signals is de�ned by the following equation:

u = u0u
0 + u1u

1

where u0 and u1 are the new control signals and u0 and u1 are the primitive actions corresponding

to the �rst two principal eigenvectors.

The above de�nition of the control signals assumes that the motor apparatus can be approxi-

mated as linear, i.e., that the e�ect of the sum of two motor control vectors is equal to the sum of the

e�ects of each motor control vector individually. This assumption holds for all of the experiments

described in this dissertation. Even if the assumption does not hold, the results of the analysis of

primitive actions is still useful. Instead of composing primitive actions simultaneously, they may

be composed over time by alternately executing one primitive action then another. Suppose, for

example, that the robot has four discrete actions corresponding to the four cardinal directions and

that only one action may be taken at a time. The analysis of primitive actions will still correctly

identify these four actions as primitive actions. However, the de�nition of the abstract interface

would be more complicated. The critter would have to recognize that the motor apparatus is not

linear and de�ne an interface that decomposed complex actions such as \move northeast" into

sequences of primitive actions. This extension is not currently implemented.

5.2 Additional experiments

The techniques for characterizing the e�ects of the motor apparatus have been applied to two

additional simulated robots. The �rst is similar to the \tank-style" robot described in Section 5.1

except that the motor apparatus is now a synchro-drive robot base. The second robot is the roving

eye.

5.2.1 The synchro-drive robot

The robot's environment is the same as that for the robot in Section 5.1. The synchro-drive

gives the robot the same capabilities as the tank-style robot, but the control signals are interpreted

di�erently. Instead of specifying how fast to move the left and right treads, the control signals

specify how fast to turn and advance, respectively.

The critter's learning proceeds as in the experiment of Section 4.1. After learning the image

feature, it applies the motion generator to that feature to obtain the motion feature. The critter

explores by randomly selecting one of 32 representative motor control vectors, executing it for one

second, and repeating. While exploring, it computes average values of the motion feature resulting
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(1.00 -0.05) (0.74 0.67) (0.05 1.00) (-0.67 0.74)

(-1.00 0.05) (-0.74 -0.67) (-0.05 -1.00) (0.67 -0.74)

Figure 5.4: Examples of average motion vector �elds and their associated motor control vectors for the
synchro-drive robot with distance sensors.

from each of the 32 motor control vectors, producing a set of 32 amvf 's. Eight of these are shown

in Figure 5.4.

Applying principal component analysis to the 32 amvf 's, the critter obtains a set of eigenvectors

ordered by their importance in explaining the variance in the set of amvf's. The �rst four eigen-

vectors are shown in Figure 5.5. The �rst two eigenvectors correspond to rotation and advancing

respectively. The values of the two primitive actions u0 and u1 are shown in the �gure. The third

and subsequent eigenvectors do not correspond to any motor control vectors.

2.27 0.40 0.22 0.20

u0= (-0.96 -0.14) u1= (0.05 1.00)

Figure 5.5: The �rst four eigenvectors and standard deviations for the synchro-drive robot with distance
sensors. The �rst corresponds to a pure rotation motion and the second corresponds to a pure translation
motion. The robot's motor apparatus can produce the �rst two e�ects directly using the motor control
vectors shown.

5.2.2 The roving eye

The robot's environment and sensorimotor apparatus for this experiment are the same as in

Section 4.2. The motor apparatus has three control signals, for rotating (clockwise and coun-

terclockwise), for advancing (forward and backward), and for moving sideways (left and right).
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Examples of average motion vector �elds are shown in Figure 5.6. The �rst four eigenvectors for

(1.00 0.01 -0.03) (-0.15 0.99 0.04) (-0.08 0.05 1.00)

(0.62 0.78 -0.06) (0.65 0.14 0.75) (0.16 0.67 0.72)

Figure 5.6: Examples of average motion vector �elds and their associated motor control vectors for the
roving eye.

this robot are shown in Figure 5.7. The �rst three eigenvectors correspond to forward motion,

sideways motion, and rotation respectively. The values of the three primitive actions u0, u1, and

u2 are shown in the �gure. The fourth, and subsequent, eigenvectors do not correspond to any

motor control vectors. To conclude, here is the characterization of this robot's motor apparatus:

0.43 0.37 0.21 0.04

(-0.16 -0.99 -0.04) (0.05 0.03 -0.99) (-0.98 0.13 0.03)

Figure 5.7: The �rst four eigenvectors and standard deviations for the roving eye.

The motor apparatus has three degrees of freedom (from the perspective of the distance-sensor

image). The motor control vector u0 can be used for motion for the �rst degree of freedom, the

motor control vector u1 can be used for motion for the second degree of freedom, and the motor

control vector u2 can be used for motion in the third degree of freedom.

5.3 Conclusions

The abstract interface de�ned by this step abstracts away the details of the motor apparatus.

The synchro-drive and tank-style robots demonstrate two di�erent motor apparatuses with identical

capabilities. The learned abstract interface, since it is based on sensory e�ects rather than motor
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control signals, is the same for both: it abstracts away the details of the motor apparatus, providing

a new set of control signals, one for each of the robot's degrees of freedom.

The learning method of this section is based on the observation that the representation of the

space of motor control vectors is arbitrary whereas the space of e�ects is meaningful. The former

depends on the details of the robot's motor apparatus whereas the latter is based on sensory

perception. In the experiments described here, the sensor-based e�ect of a motor control vector is

represented as an average motion vector �eld. An interesting line of research would be to explore

alternative methods for representing the e�ects of motor control vectors. In place of the amvf , one

might use the temporal derivative of the image feature (or of any feature, for that matter).

The learning methods described in this chapter build on the sensory image structure learned in

the previous chapter. The result is a new abstract interface whose control signals will be used in

Chapter 7 to de�ne behaviors for navigation.
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Chapter 6

Local State Variables

The state of a dynamic system (e.g., the robot in its environment) is a description of the system

that captures everything that is important about the history of the system with respect to the goal

of predicting the future behavior of the system. For a robot in a deterministic environment, the

e�ects of future actions are completely determined by the state of the robot and environment. In

a continuous world, the state of a robot is represented by a state vector whose elements are called

state variables. For a mobile robot, these variables typically describe its position and orientation

with respect to an absolute coordinate system.

For the critter that is trying to understand a robot's world, an important goal is to be able

to determine the robot's current state at any time. This involves �rst de�ning a representation

of the state. For a robot in a continuous world, this means de�ning an appropriate set of state

variables and then computing their values. Since the critter does not have access to the robot's state

variables, it uses features de�ned as functions on the robot's sensory input as local state variables .

These features locally determine the state of the robot and will be used to de�ne behaviors for

exploration and navigation.

For example, consider the case of the mobile robot with distance sensors in the corner of a

room. The position of the robot is locally determined by the minimum distances from the robot

to the two corner walls. These distances serve as local state variables. They are local in the sense

that they only exist as long as the robot is able to see the walls.

The de�nition of local state variable is given below:

Let û be the vector of control signals uj . A scalar feature yi
is a local state variable if the e�ect of the control signals on
yi can be approximated locally by

_yi =mi � û (=
X
j

mij uj) (6.1)

where mi is nonzero.

Determining whether a feature is a local state variable while learning the context-dependent value

of mi is the job of the static action model (Section 6.2).1

Local state variables are analogous to state variables in the following sense. If x is a state

variable, then the constraint _x = 0 reduces the dimensionality of the robot's state space by one.

If y is a local state variable, then the constraint _y = 0 reduces the dimensionality of the robot's

1The critter's assumptions about the robot and its environment imply that, when analyzing the e�ect of û on yi,
the relationship _yi = mi û is the only one to consider. With more relaxed assumptions, other possibilities such as
yi =mi û or �yi =mi û must be considered.
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motor control vector space by one.2 In other words, the constraint reduces the robot's degrees of

freedom by one. Since the critter does not have access to the robot's state space, it de�nes local

state variables using its knowledge of motor control vector space to which it does have access.

An important feature of local state variables is that they are controllable: feature yi may be

moved to a target value y�i using a simple control law. This fact will be exploited in the de�nition

of the homing behaviors (Section 7.3). The discovery of local state variables has two components:

generating new features (Section 6.1), and testing each feature to see if it satis�es the de�nition of

local state variable (Section 6.2).

6.1 Generating new features

If a sensory system does not directly provide useful features, it may be possible to generate

features that are useful. The generate-and-test approach described in Chapter 3 is demonstrated

in the following experiment using the tank-style mobile robot in which the critter learns new scalar

features that are better candidates for local state variables than are the elements of the raw sense

vector. The test portion of the method is performed when the static action model is learned.

6.1.1 A set of feature generators

The following feature generators are used to produce new features as candidates for local state

variables.

� splitter takes a vector feature of length n and produces n scalar features.

� vmin, vmax, and vsum apply to vector features of length greater than 1. They provide

three di�erent ways to reduce a vector feature to a scalar feature.

� group and image identify useful structure in the sensory apparatus. Group and image

features are not scalar features and thus will not be able to serve as local state variables, but

they do serve as the basis for higher-level features that may turn out to be useful.

� lmin (local-min) and lmax (local-max) apply to image features. They produce focused-image

features (image features in which elements have associated strengths as well as values) that

focus attention on particular properties of an image, e.g., local minima or maxima.

� tracker applies to focused-image features and produces image-element features (single value-

position pairs). From the focused image produced by the lmin generator, the tracker gen-

erator produces one image-element feature for each local minimum in the image. The tracker

implements a form of focus of attention, abstracting away small changes in value and position

of an image element in order to produce a feature which tracks an interesting property of the

robot's environment such as the minimum distance to a nearby object.

� val extracts a scalar value feature from an image-element feature.

2If _y = 0, then by Equation 6.1, û must lie in the subspace perpendicular to vector mi.
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6.1.2 An experiment

In this experiment, the critter explores by randomly choosing unit motor control vectors and

executing them for one second (10 time steps) each. Figure 6.1 gives a list of the scalar features

produced by the generators. Each of these will be tested (Section 6.2) to see if it can serve as a

local state variable.

s-vmin s-vmax s0 s1
s2 s3 s4 s5
s6 s7 s8 s9
s10 s11 s12 s13
s14 s15 s16 s17
s18 s19 s20 s21
s22 s23 s24 s25
s26 s27 s28 s-g0-vmin

s-g0-vmax s-g0-im-lmin-tr-val s-g0-im-lmax-tr-val

Figure 6.1: A list of generated scalar features. The names of the features reect their derivation as a
sequence of generators applied to the raw sensory feature s (g=group, im=image, tr=tracker).

6.2 Testing features: The static action model

The purpose of the static action model is to predict the behavior of each scalar feature. The

learning of the static action model for a feature proceeds in three steps. In the �rst step, the

critter tries to predict the behavior of the feature without taking into account which primitive

action is being used. If it fails, then it tries to predict the behavior of the feature as a function

of the action being taken. If this fails for a primitive action, then the critter tries to predict the

context-dependent e�ect of that action on the feature. If a feature is both action dependent and

predictable, then it can serve as a local state variable. With the information contained in the static

action model, it is a simple matter to de�ne homing behaviors for moving the robot so that the

local state variable moves toward its target value.

6.2.1 An action-independent model

The �rst step toward modeling the behavior of a feature yi is to see if it is possible to predict its

behavior independently of the motor control vector being used. The critter explores by repeatedly

choosing a primitive action and executing it for one second (ten time steps). It analyzes the behavior

of the feature using a correlator (Section 3.2.4). This produces a set of statistics based on the plot

of the feature's value as a function of time (Figure 6.2). The coordinate for the horizontal axis is

�t = t � t0 where t0 is the last time the motor control vector changed. The vertical axis gives

�yi = yi(t)� yi(t0).

Recall that the correlator produces the statistics mi, ri, and i. The value of mi is the slope of

the line that best �ts the set of (�t;�yi) points. The value of ri is the correlation between variables
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�s0 vs. �t �s24 vs. �t lmin vs. �t

Figure 6.2: Plots of �yi vs. �t for three features. Whenever a new motor control vector is used, �yi and �t

are reset to 0. These are used to see if it is possible to predict the behavior of the feature independently of the
motor control vector. Here, lmin is short for s-g0-im-lmin-tr-val . The numbers shown are the correlations
between �yi and �t.

�yi and �t. The value of i is the ratio of the standard deviations of �yi and �t. It is a measure of

how fast the feature changes as a function of time. A number of properties are de�ned in terms of

these statistics. The feature is constant if i < 0:001. It is increasing if ri > 0:6 and decreasing

if ri < �0:6. It is predictable if any of these properties holds. Otherwise, it is unpredictable and

the critter will try to predict the behavior of the feature using an action-dependent model.

For the running example, the features s-vmin, s-vmax , s20 (the broken distance sensor), s24
(the battery voltage), and s-g0-vmax are all diagnosed as constant and are thus not suitable for

use as local state variables. The rest are candidates for the next step in the learning of the static

action model.

6.2.2 An action-dependent model

If the previous step failed to produce a model that predicts the behavior of a feature yi, then

the critter uses one correlator for each primitive action to analyze its e�ect on the feature. In this

case, the correlator characterizes the relationship between uj�t and �yi where �t and �yi are

de�ned as before. The critter continues to explore by randomly selecting primitive actions and

executing them for a second at a time. It computes the statistics mij (the slope of the line that

best �ts the set of (uj�t;�yi) points), rij (the correlation between uj�t and �yi), and ij (the

ratio of the standard deviations of uj�t and �yi). A feature is labeled constant for control signal

uj if ij < i=4. The properties increasing, decreasing, and predictable for control signal uj
are de�ned as before. For each predictable feature-control signal pair, a rule of the form

_yi = mij uj

is added to the static action model. If a feature is predictable for all of the primitive actions, then

the feature itself is predictable.

For the running example (Figure 6.3), all of the distance sensors are found to be unpredictable

for the �rst primitive action (rotating). The e�ect of u1 is to decrease features s0, s1, s2, s3, and

s23; to increase features s9 through s14. Its e�ect is unpredictable for features s4{s8, s15{s19, s21,
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�s0 vs. u0�t �s0 vs. u1�t �lmin vs. u0�t �lmin vs. u1�t

Figure 6.3: Plots of �yi vs. uj�t for two features and two primitive actions. These are used to see if it is
possible to predict the behavior of the feature as a function of the motor control vector.

and s22. The discrete compass sensors s25 through s28 are unpredictable for u0 and constant for u1.

The features s-g0-vmin and s-g0-im-lmin-tr-val (a.k.a. lmin) are constant for u0 and unpredictable

for u1. Feature s-g0-im-lmax-tr-val is unpredictable for both primitive actions.

6.2.3 A context-dependent model

If uj has an e�ect on yi that is unpredictable, then the critter tries to �nd a partition of sensory

space into a discrete set of contexts so that the relationship can be approximated by a linear

equation for each context.3 In general, a context feature zij , for local state variable yi and control

signal uj , is an integer-valued feature that takes on a �nite set of values. This set de�nes a partition

of the robot's state space into a �nite set of contexts de�ned by the predicates zij = k. One way to

de�ne a context feature is to �rst choose a feature x and divide its range of values into a �nite set

of intervals, fIkg, where each interval de�nes its own context. The context feature is then de�ned

by zij = k i� x 2 Ik. Using feature x to de�ne a set of contexts is appropriate if the value of x is a

good predictor of the e�ect of the control signal uj on the feature yi. To test the hypothesis that

x is a good predictor for the e�ect of uj on yi, a correlator can be used to determine uj 's e�ect on

yi for each context de�ned by the predicate zij = k.

Testing each of a large set of features to see if they improve the predictability of a control

signal's e�ect is expensive. The proposed alternative is to use heuristics to guide the search for

relevant features to use in de�ning contexts. For example, it makes sense to �rst look at features

that are closely related to the feature being analyzed, in the sense that they are close together in

the tree of features produced by the generate-and-test process.

Currently, only one such heuristic is implemented: if a feature is based on the value of an element

of an image, then use the position of that element to de�ne the context. Since there is a discrete

set of possible positions for an image-element feature, it is trivial to break the space of possible

positions into a discrete set of contexts. For example, in the case of the lmin and lmax features,

there are 23 possible positions and these can be used to break sensory space into a partition of 23

contexts each de�ned by the predicate zij = k where zij is an integer feature whose value is between

0 and 22 and identi�es the position associated with the local minimum or maximum.

3This approach is analogous to Drescher's marginal attribution (Drescher, 1991).
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For each context zij = k, a correlator is used to try to predict the e�ect of uj on yi given that the

robot is in that context. The critter continues to explore randomly while computing the statistics

mijk, rijk, and ijk. The properties constant , increasing , decreasing , and predictable are

de�ned as before. For each predictable context, a rule of the form

_yi = mijk uj, if zij = k

is added to the static action model. If mijk is 0, then the predicate zij = k de�nes a \constant

context" (which will be useful for de�ning path-following behaviors). If the primitive action's e�ect

on the feature is predictable for every context, then the feature is predictable for that action.

For the running example, the only features with associated context features are lmin and lmax .

� lmin is already predictable (constant) for control signal u0.

� The e�ect of u1 on lmin is predictable for every context. Its e�ect is to decrease lmin for

contexts 0{5 and 19{22, and to increase it for contexts 7{17. For contexts 6 and 18 (in which

the robot's heading is parallel to the wall), lmin is constant (see Figure 6.4).

� The e�ect of u0 on lmax is unpredictable for almost every context.

� The e�ect of u1 is to decrease lmax for contexts 0{5 and 20{22 and to increase it for contexts

8{16. The e�ect is unpredictable for contexts 6, 7, 17, and 18.

k=0 k=6 k=12

Figure 6.4: Example plots of �yi vs. u1�t for the s-g0-im-lmin-tr-val feature for three di�erent contexts.
These are used to see if it is possible to predict the behavior of the feature as a function of the motor control
vector and the current context.

At this point the only feature that is both predictable and action-dependent (and is thus a local

state variable) is lmin. Its behavior can be modeled by the equation _yi = mi1k u1 where k is the

current value of the context feature zij, which represents the location of the local minimum in the

image feature. The feature lmin was produced by the tracker generator. This generator actually

produces multiple lmin features, one for each local minimum in the input image feature. The

number of local state variables will depend on the robot's location. There will be two local state

variables in the neighborhood of a corner, three in the neighborhood of a T-intersection, but just

one if only a single wall is within range.
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Chapter 7

Learning Behaviors

The result of the critter's learning so far is an abstract interface that includes a model of

the robot's sensorimotor apparatus. The model of the sensory apparatus is the description of its

physical structure represented primarily by the positions of the components of the learned image

feature. The model of the motor apparatus is the set of learned primitive actions that tells the

critter how many degrees of freedom it has, and how to produce motion for each. In addition to

the sensorimotor model, the critter has learned a set of local state variables.

The critter's ultimate goal is to abstract the continuous world of the robot to a cognitive map

by which the world is viewed as a set of recognizable places with well-de�ned paths connecting

them. This requires that the critter learn behaviors for moving the robot through its state space.

Moreover, these behaviors must be repeatable in the sense that executing a behavior from a given

initial state will always move the robot to the same �nal state.

This chapter discusses the problem in detail and shows how to learn a suitable set of homing

and path-following behaviors, using the results of the preceding chapters, speci�cally, the set of

primitive actions (Chapter 5) and the set of local state variables (Chapter 6). Chapter 9 will show

how to use these learned behaviors to de�ne the discrete abstraction.

Path-following behaviors are learned in three steps: (1) continuous error signals are de�ned; (2)

behaviors are learned for minimizing the error signals; (3) behaviors are learned for moving while

keeping the error signals near zero.

7.1 De�ning error signals for control laws

The critter's approach to exploration, mapping, and navigation uses path-following behaviors in

which the robot moves while maintaining an error signal near zero. An example of a path-following

behavior based on an error signal involves a person walking down a corridor. The error signal is

e = (y��y) where y is the distance from the person to the right side of the corridor (left in Britain)

and y� is a constant that depends on the person, his mood, and the number of other people in

the corridor. The error signal is used in a control law for moving along the corridor. If the error

is positive, the person moves to the left (away from the wall) while walking; if it is negative, he

moves to the right. The control law is e�cient and repeatable. By using the control law, the person

reliably follows an e�cient path from one end of the corridor to the other.

A second example involves CADR (for \constant angle, decreasing range"), a rule familiar to

missile designers. If the angle to an airplane relative to a missile is constant and the distance

between them is decreasing, then the missile's path will reliably lead it to the airplane (a fact

worth remembering when trying to beat a train to an intersection). In this case, the error signal
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is e = �� � � where � is the angle to the airplane relative to the missile and �� is a target angle

between �90� and 90�.

In these examples, y and � are local state variables. The critter's approach to de�ning path-

following behaviors is to �rst de�ne error signals of the form e = y�� y for each local state variable

y.1 The subsequent sections tell how to use these error signals to de�ne path-following behaviors.

But �rst, a de�nition of \behavior" will be given in the next section that will make it clear exactly

what is required when de�ning a new behavior.

7.2 Anatomy of a behavior

So far in this chapter, behaviors and control laws have been treated as if they were synonymous.

In fact, a control law is just one component of a behavior. This section gives a de�nition of behavior

and shows exactly what will be required when de�ning path-following behaviors. A behavior is an

object with four components, called output , app, done, and init .

The output component is a function that returns a vector of motor control signals. The app

component is a scalar function whose value indicates whether the behavior is currently applicable.

The value of this function may be zero (indicating that the behavior is not applicable) or one

(indicating that the behavior is applicable) or some number in between (indicating a certainty less

than 100% that the behavior is applicable). The done signal is a Boolean function that tells when

the behavior has �nished. For example, a behavior used to minimize an error signal will be done

when the error is close enough to zero. The init signal is an input signal that tells the behavior to

initialize itself (in case it has any internal state information that needs to be reset).

The four components just described are required for any behavior. They de�ne the \public

interface" to a behavior. In addition to these, the behavior may have a set of inputs (e.g., sensory

features on which the output , app, and done signals are based) and a set of sub-behaviors. The

general structure of a behavior is shown in Figure 7.1.

The de�nition of behavior was designed to support the de�nition of hierarchies of behaviors.

Figure 7.2 shows how a complex behavior is built using a seq behavior and two sub-behaviors. Any

behavior, since it must honor the protocol shown in Figure 7.1, may be used as a sub-behavior. At

any given time, the critter will have one behavior identi�ed as the top-level behavior. The output of

this behavior is sent directly to the robot's motor apparatus. The critter behaves by continuously

calling the top-level behavior's output function and sending the result to the motor apparatus.

To summarize, a behavior is more than a control law. When de�ning a behavior, it will be

necessary to de�ne the app, done, and init functions as well as the output function (the control

law itself).

7.3 Learning homing behaviors

The purpose of a homing behavior is to move an error signal toward zero so that path-

following behaviors based on that error signal will be applicable. While it would be possible to

1Choosing an optimal target value y� for a feature y is beyond the scope of this dissertation. The implemented
critter chooses a value equal to half the feature's maximum value.
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app done

out

init

Behaviorsensory
  input

subbehaviors

Figure 7.1: A schematic diagram of a behavior. The four signals on the outside of the dotted rectangle
de�ne the \public interface" to the behavior object. Every behavior must provide these four functions.

app done

out

init

sensory
  input

seq

B1

B

B2

Figure 7.2: An example of a complex behavior. When the seq behavior is initialized (by calling its init
function), it initializes its �rst sub-behavior which becomes its current sub-behavior. When the current
sub-behavior is done, the next sub-behavior becomes current. When the last sub-behavior has had its turn
and is done, the seq (for \sequence") behavior is done. When the seq behavior's output (or app) function
is called, it calls the output (or app) function of its current sub-behavior and returns what it returns.

78



use reinforcement-learning methods to learn a homing behavior given an error signal (e.g., Pierce

& Kuipers, 1991; Lin & Hanson, 1993), most of the relevant learning has already been done. The

homing behavior can be de�ned as an instance of the generic, domain-independent control law in

Figure 7.3, drawing on the knowledge in the static action model.

For each local state variable yi and control signal uj, a homing behavior is de�ned for reducing

the error e = y�i � yi. It is applicable in every context zij = k for which the static action model

includes a rule of the form _yi = mijkuj where mijk is nonzero. It is done when the error is zero. Its

output is given by a simple control law. The de�nition is based on the partition of sensory space

used by the static action model to characterize the e�ects of uj on yi. This partition is described

by the set of contexts fkg. The components of the homing behavior (app, output , and done) are

de�ned for each possible context k (Figure 7.3). A homing behavior that the critter learns for the

For each context zij = k,

app(k) = maxf0; 2jrijkj � 1g

output(k) = uijk u
j

done �
jy�i � yij

y�i
< 0:1

where

uijk =
2�!

mijk

ei +
!2

mijk

Z
ei dt

ei = y�i � yi:

Figure 7.3: A homing behavior is de�ned for each local state variable yi and for each primitive action uj

to achieve the goal yi = y�i . The applicability and output are de�ned as functions of the current context as
de�ned by the context feature zij. The applicability has a maximum value of 1.0 if the correlation between
uj and _yi has a magnitude of 1.0 and a minimum value of zero if the correlation has a magnitude of 0.5 or
less. The output is given by a proportional-integral (PI) control law with parameters � = 1:0, ! = 0:05 (see
Kuo 1982) that minimizes the di�erence between yi and y�i . The behavior is done when this di�erence is
close to zero. The init function resets the value of the integral of the error to zero.

mobile robot is illustrated in Figure 7.4.

7.4 Learning path-following behaviors

The previous section presented a method for learning homing behaviors that minimize a given

error signal. In this section, a method is presented for moving while minimizing the error signal.

The result is a path-following behavior. Learning a path-following behavior involves two steps: 1)

learning how to move in the general direction that keeps the error near zero and 2) learning the

necessary feedback for error correction to avoid straying o� the path de�ned by the minimum of

the error signal.
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y=y*

Figure 7.4: An example of a homing behavior for the mobile robot with distance sensors and tank-style
motor apparatus. The critter's static action model predicts that in this context the second primitive action
u1 will decrease the value of local state variable yi. This information is used in the de�nition of a homing
behavior that is (a) applicable in this context, (b) uses primitive action u1 to move the robot so as to
minimize the error e = y�i � yi, and (c) is done when yi � y�i .

For the corridor-following example, motion along the path is produced by walking. Error

correction involves moving away from the wall when it gets too close or moving toward it if it gets

too far away. For the missile example, the motion is provided by the missile's jet engine; error

correction is provided by its �ns which turn the missile so as to maintain the desired angle of the

target relative to the missile.

The critter's solution for de�ning path-following behaviors is to use its static action model to

determine which primitive action to use to provide motion along a path and to learn and use a

dynamic action model to tell how to use the remaining primitive actions to provide error correction.

7.4.1 Learning open-loop path-following behaviors

The static action model does not give the critter enough information to de�ne closed-loop path-

following behaviors with error correction, but it does give the critter enough information to de�ne

open-loop path-following behaviors.2 An open-loop path-following behavior lacks error correction

but is useful for learning the dynamic action model which is in turn useful for de�ning path-

following behaviors with error correction. Recall that the static action model identi�es constant

contexts zij = k in which primitive action uj has no e�ect on local state variable yi.

For each local state variable yi and primitive action uj , for each constant context zij = k, two

open-loop behaviors are de�ned, one for each direction of motion. The behaviors' outputs are given

by

u = u� +
X
� 6=j

u� u
�

where u� = �uj and ju�j � 1. The u� components will be used in learning the dynamic action

model. The purpose of an open-loop path-following behavior is to allow the critter to learn the

e�ects of the orthogonal control signals on the feature while motor control vector u� is used.3 With

this knowledge, it will be possible to use the other control signals for error correction. The de�nition

2In a closed-loop control law, an error signal is used as feedback to determine a motor control vector that minimizes
that error.

3The primitive actions are orthogonal to each other in the sense that their amvf 's are orthogonal to each other
(see Section 5.1.3).
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of open-loop path-following behaviors is summarized in Figure 7.5. A behavior is done when the

app �
jy�i � yij

y�i
< 0:1 ^ zij = k

output = u� +
X
� 6=j

u�u
�

done �
jy�i � yij

y�i
> 0:4

_ (a new behavior becomes applicable)

Figure 7.5: An open-loop path-following behavior is de�ned for each local state variable yi, for each primitive
action (or opposite) u�, and for each constant context zij = k. The predicate zij = k de�nes a constant
context if it implies that u� maintains yi constant according to the static action model. The behavior is
applicable when the error signal y�i � yi is small. The output has two components: a base motor control
vector and a small orthogonal component. During the learning of the dynamic action model, the orthogonal
component changes every 3 seconds. Only one of the u�'s is nonzero at a time. The behavior is done when
the error signal is too large or a new behavior becomes applicable.

robot strays too far o� the path or when a new behavior becomes applicable indicating that the

critter has a choice to make: to continue the current behavior or start a new one.

For the mobile robot of the running example, there is an open-loop path-following behavior

based on u0 (for turning) for each local state variable yi (see Figure 7.6a). It is applicable whenever

y=y*

(a) (b)

Figure 7.6: Two examples of open-loop path-following behaviors. (a) A behavior based on u0 (for turning)
and constraint yi = y�i is applicable whenever yi = y�i since u0 never changes the value of yi. (b) A behavior
based on primitive action u1 (advancing) and constraint yi = y�i is applicable whenever yi = y�i and the
robot's heading is parallel to the wall on its left (i.e., zij = 18) since in this context u1 keeps the error
e = y�i � yi near zero.

yi = y�i since, according to the static action model, turning has no e�ect on yi. There is also an

open-loop path-following behavior based on u1 (for advancing) for each feature yi (see Figure 7.6b).

It is applicable when the robot is facing parallel to the object being detected by yi (that is, when

context feature zij has value 6 or 18). Figure 7.10b shows a trace of the behavior of the robot

that results as the critter uses its learned open-loop path-following behaviors to explore the robot's

environment.
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7.4.2 The dynamic action model

The static action model predicts the context-dependent e�ects of a control signal on the local

state variables. The dynamic action model predicts the context-dependent e�ects of control signals

on the local state variables while an open-loop path-following behavior is being executed.

The dynamic action model tells, for each open-loop path-following behavior, the e�ect of each

orthogonal action (each primitive action other than the path-following behavior's base action),

on the local state variable that is used in the de�nition of the path-following behavior's error

signal. To learn the dynamic action model, an exploration behavior is used that randomly chooses

applicable homing and open-loop path-following behaviors. A behavior runs until it is no longer

applicable, or a new path-following behavior becomes applicable. Linear regression is used to learn

the relationships between the orthogonal actions u� and the features yi in the context of running the

open-loop path-following behavior based on feature yi, motor control vector u
� = �uj , and context

zij = k. While it is running, linear regressors test the hypotheses _yi = mijk�1 u� and �yi = mijk�2 u�
by computing the correlations rijk�n between u� and y

(n)
i . If rijk�1 > rijk�2 and jrijk�1j > 0:6, then

the rule

_yi = mijk�1 u�; if zij = k ^ u = �uj + u�u
�

is added to the dynamic action model. Otherwise, if jrijk�2j > 0:6, then the rule

�yi = mijk�2 u� if zij = k ^ u = �uj + u�u
�

is added to the dynamic action model. Otherwise, the relationship between u� and yi is either zero

or unpredictable.4

Suppose that the mobile robot of the running experiment has a wall to its left and that its

heading is parallel to the wall (Figure 7.6b). In this context, primitive action u1 (advancing) will

maintain the distance to the wall, yi, constant (mijk = 0). Therefore, the open-loop path-following

behavior based on u1 and yi will be applicable. While executing this behavior, the e�ects of other

control signals (i.e., u0) can be diagnosed. In this example, u0 a�ects the second derivative of the

feature: �yi = mi1k0;2u0: This is because turning changes the robot's direction of motion relative to

the wall and this direction determines how fast the robot moves toward or away from the wall as it

advances. Examples of the linear regressors used to learn the dynamic action model for the robot

of the running example are illustrated in Figure 7.7.5According to the dynamic action model, u0

has a predictable e�ect on yi while any of the open-loop behaviors based on u1 is executing. For

the open-loop path-following behaviors based on u0, the e�ect of u1 on yi is unpredictable.

4For the dynamic action model, it is necessary to consider both �rst and second derivatives of the features.
Informally, this is because u� may a�ect the derivative of mij in the equation _yi = mij uj , that is, _mij = mj� u�.
Together, these give �yi = _mij uj = mj� u� uj = mij�2 u�, using the product rule and the fact that uj is constant for
a path-following behavior.

5The linear regressors operate on �ltered versions of yi and uj to remove noise that would otherwise hide the
relationship between the signals. The signals are �ltered using a moving average taken over several seconds.
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0; 0; 0; 1; 1 0; 0; 0; 1; 2 0; 1; 6; 0; 1 0; 1; 6; 0; 2

Figure 7.7: Plots illustrating the relationships measured by the linear regressors used in learning the
dynamic action model. The �rst two plots show the e�ect of u1 (advancing) on _y0 and �y0 respectively while
an open-loop path-following behavior based on u0 is executed. Here y0 is one of the local state variables
(instances of lmin) produced by the tracker generator. The second two plots show the e�ect of u0 (turning)
on _y0 and �y0 respectively while an open-loop path-following behavior based on u1 is executed in context
z0;1 = 6. This is the context in which the robot heading parallel to a wall on its right. The labels under the
plots give the values of i, j, k, �, and n, where n is the number of the derivative of yi being tested.

Figure 7.8: De�ning closed-loop path-following behaviors. The critter uses the dynamic action model to
add error correction to an open-loop path-following behavior in order to obtain a closed-loop path-following
behavior. In this example, a small turning motion is used to keep the robot on the path as it advances.

7.4.3 Learning closed-loop path-following behaviors

The �nal step in learning path-following behaviors is to add error correction to the open-loop

path-following behaviors in order to de�ne closed-loop path-following behaviors. A closed-loop

behavior is one that receives feedback from the environment in the form of an error signal which

it uses to modify its motor control signals so as to minimize the error. Consider again the case

where the robot is facing parallel to a wall on its left. In this context, the critter knows, because

of its static action model, that primitive action u1 will leave feature yi (the distance to the wall)

constant. Moreover, the critter knows, because of its dynamic action model, how control signal

u0 (turning) a�ects yi while u1 is being taken. Together, this information is su�cient to de�ne a

closed-loop path-following behavior that robustly moves the robot along the wall. If yi goes below

its target value (i.e., if the robot gets too close to the wall), then the critter knows to increase the

value of u0 (i.e., to turn right as shown in Figure 7.8). Because of the error correction implemented

using control signal u0, the path-following behavior is robust in the face of noise in the sensorimotor

apparatus, small perturbations in the shape of the wall, and even inaccuracies in the action models

themselves.

A closed-loop path-following behavior is de�ned using the generic template in Figure 7.9 for

each constraint y = y�, for each primitive action or opposite u� = �uj , and for each constant

context z = k. The predicate z = k (where z is a vector of context features zij and k is a vector

of context values ki) de�nes a constant context if for each zij 2 z and ki 2 k, zij = ki de�nes
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a constant context for yi and u
j according to the static action model. The variable rijk�n is the

correlation between u� and y
(n)
i while motor control vector u� is used in context k. The behavior

is applicable when all of the components of y are near their target values (i.e., y � y�) and when

z = k indicating that the static action model predicts that motor control vector u� will keep the

error vector y� � y near zero. The behavior is done when a new path-following behavior becomes

applicable indicating the the critter now has a choice | to continue the current path-following

behavior or to choose a new one.

app � 8yi 2 y :

�
jy�i � yij

y�i
< 0:1

�
^ 8zij 2 z : (zij = ki)

output = u� +
X
� 6=j

u� u
�

done = 9yi 2 y :

�
jy�i � yij

y�i
> 0:4

�
_ (a new behavior becomes applicable)

where

u� =
X
yi2y

u�i

u�i =
2�!

mijk�1
ei +

!2

mijk�1

Z
ei dt if jrijk�1j � jrijk�2j; 0:6

u�i =
!2

mijk�2
ei +

2�!

mijk�2
_ei if jrijk�2j > jrijk�1j; 0:6

u�i = 0; otherwise

ei = y�i � yi:

Figure 7.9: De�nition of a closed-loop path-following behavior. Here, y is a vector of local state variables yi;
y� is the corresponding vector of target values; u� = �uj is one of the primitive actions or their opposites;
z is a vector of context features zi, one for each local state variable yi; and k is the corresponding vector of
context values ki. The equation z = k de�nes a context in which u� maintains y constant according to the
static action model. The values of mijk�n and rijk�n are taken from the dynamic action model. Simple PI
and PD (proportional-derivative) controllers are used depending on whether the primary e�ect of u� is on
_yi or �yi, respectively. Again, �=1.0, !=0.05.

For the example robot, the set of path-following behaviors contains behaviors for turning in

place as well as for following walls. For the behavior based on u1 (advancing), the e�ect of the

orthogonal primitive action u0 on the local state variables is predictable and thus it can be used

for error correction. For the behaviors based on u0(turning), no error correction is used since the

e�ect of u1 is unpredictable.6 Figure 7.10 shows the behavior of the robot at three di�erent stages

6An extension to the current implementation is to learn a context-dependent dynamic action model for each open-
loop path-following behavior. In this way the e�ect of u1 could become predictable and the action could be used for
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(a) (b) (c)

Figure 7.10: Exploring a simple world at three levels of competence. (a) The robot wanders randomly while
learning a model of its sensorimotor apparatus. (b) The robot explores by randomly choosing applicable
homing and open-loop path-following behaviors based on the static action model while learning the dynamic
action model. (c) The robot explores by randomly choosing applicable homing and closed-loop path-following
behaviors based on the dynamic action model.

as the critter learns the set of path-following behaviors. In Chapter 9, the path-following behaviors

learned in this chapter will be used as the basis for an exploration and mapping strategy that allows

the critter to develop a discrete abstraction of the robot's continuous world.

7.5 Discussion

This chapter presents a general solution to the problem of learning path-following behaviors.

The general solution is comprised of three steps: 1) learning a set of error signals, 2) learning a

behavior to minimize each error signal, and 3) learning behaviors for motion while keeping the error

signals near zero.

This chapter also gives a particular solution to the problem of learning path-following behaviors

that exploits the knowledge already learned about the robot's sensorimotor apparatus, speci�cally

the set of primitive actions and the set of local state variables. If the critter had direct access to

the robot's state variables, it could use them to de�ne control laws for path-following. Since it

does not, it uses local state variables instead. These are scalar features whose derivatives can be

approximated as a linear function of the robot's motor control signals. They are useful for de�ning

behaviors because the critter knows how to use the motor control signals to control them.

7.5.1 Handling context dependence

The approach taken by the critter is to use a knowledge of control theory to allow it to directly

de�ne local control strategies once it has learned a set of action models characterizing the e�ects

of the motor control signals on the local state variables. An alternative approach to learning local

control strategies is to use reinforcement learning (e.g., Lin & Hanson 1993). This approach taken

here has several advantages over reinforcement learning. First, it is faster since no additional

learning is necessary once the action models are learned. Second, it handles context dependence

at the feature level instead of the behavior level. This fact is important because the critter can

error correction in a context-dependent control law.
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learn the e�ects of motor control signals on multiple features simultaneously, whereas it is only

possible to train one behavior at a time. Consider three example behaviors: following the right

wall, following the left wall, and following a corridor with walls on both sides. The reinforcement-

learning approach would require that the robot be trained separately for the three di�erent contexts.

The action-model approach, on the other hand, allows the critter to immediately de�ne all three

behaviors once the action models are learned since they take into account the context dependence

of the e�ects of the motor control signals on the distance-to-wall features.

In the Chapter 9, the path-following behaviors learned in this chapter will be used as the basis

for an exploration and mapping strategy that allows the critter to develop a discrete abstraction

of the robot's continuous world.
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Chapter 8

Additional Experiments

The previous chapters have demonstrated a set of learning methods that a critter may use to

learn the sensorimotor and control levels of the spatial semantic hierarchy. The purpose of this

chapter is to describe a number of experiments (in addition to those described in the previous

chapters) that demonstrate the generality and some limitations of the methods for learning the

sensorimotor and control levels.

8.1 Overview

The learning methods will �rst be demonstrated for the mobile robot in a cluttered room. Then,

to demonstrate that the learned model of the sensorimotor apparatus does not apply only to the

particular environment in which the model was learned, the critter will be transferred to a new,

T-shaped environment after its control-level learning has been erased. Here it will re-learn the

control level and demonstrate a set of learned path-following behaviors. Finally, to demonstrate

that the learning of the control level does not apply only to the particular environment in which it

was learned, the critter will be transferred to an empty room where it will again demonstrate the

learned path-following behaviors.

Sections 8.5 through 8.7 will describe three experiments in which various of the learning methods

failed and explain why they failed. Section 8.5 will describe an experiment in which the image

feature generator fails to produce a ring-shaped representation of the structure of the ring of

distance sensors. Section 8.6 will describe an experiment in which the critter fails to discover any

local state variables. Section 8.7 will describe an experiment in which the critter fails to learn

any path-following behaviors. Finally, Section 8.8 will summarize the set of learning methods and

identify a number of ways in which they can be improved.

8.2 A cluttered room

The environment used in this experiment is shown below. It is a rectangular room with a

number of obstacles in it. The room has dimensions six meters by four meters.
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The simulated mobile robot used throughout this chapter is the same as that described earlier in

the dissertation. The robot's raw sense vector has 29 components. The �rst 24 components of

the raw sense vector give the distances to the nearest objects in each of 24 directions. These have

a maximum value of 1.0 which they take on when the nearest object is beyond one meter away.

The sensors are numbered clockwise from the front. The 21st component is defective and always

returns a value of 0.2. The 25th component is a sensor giving the robot's battery's voltage, which

decreases slowly from an initial value of one. The 26th through 29th components comprise a digital

compass. The component with value 1 corresponds to the direction (E, N, W, or S) in which the

robot is most nearly facing.

The robot has a \tank-style" motor apparatus. Its two motor control signals a0 and a1 tell

how fast to move the right and left treads. Moving the treads together produces forward or

backward motion; moving them in opposition produces rotation. The robot's maximum speed is

50 centimeters per second. Its maximum rotational speed is 50 degrees per second.

8.2.1 Modeling the sensory apparatus

The �rst step in modeling the robot's sensory apparatus is to apply the group feature generator.

Recall that the group feature generator uses two distance metrics. The value of the �rst distance

metric, d1, after the robot has wandered for 20 minutes, is shown below:
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The value of distance metric d2 after the robot has wandered for 20 minutes is shown below:
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For each component of the raw sense vector, the set of similar components is shown.

(0 1 22 23) (0 1 2) (1 2 3) (2 3 4) (3 4 5) (4 5 6) (5 6 7) (6 7 8 9) (7 8 9)
(7 8 9 10) (9 10 11) (10 11 12) (11 12 13 14) (12 13 14) (12 13 14 15)
(14 15 16) (15 16 17 18) (16 17 18) (16 17 18 19) (18 19) (20) (21 22)
(0 21 22 23) (0 22 23) (24) (25) (26) (27) (28)

By taking the transitive closure of the similarity relation de�ned by the above sets of similar

components, a list of related groups is produced. Notice that the working distance sensors have all

been grouped together.
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The second step in modeling the robot's sensory apparatus is to apply the image feature generator.

Recall that this feature generator uses the distance metric d1 to �nd a representation capturing the

physical layout of the sensors that have been grouped together by the group feature generator. For

the sensors in the group, the value of distance metric d1 is shown below. This metric was obtained

while the critter wandered randomly for 40 minutes.
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The outputs of the metric scaling and relaxation algorithm are shown below. Notice that the image

feature generator has faithfully reconstructed the physical layout of the set of distance sensors.
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8.2.2 Modeling the motor apparatus

The image feature learned in the previous step serves as input to the motion feature generator

which produces a motion feature. The value of the motion feature at any instant represents the
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motion of the robot at that instant and can be used to characterize the e�ect of the motor control

vector currently being used.

The �rst step in modeling the robot's motor apparatus is to characterize the e�ects of each of

a large set of representative motor control vectors. Here, 100 representative motor control vectors

of unit magnitude are chosen uniformly from the space of all possible motor control vectors. The

e�ect of a motor control vector is represented by an average motion vector �eld (amvf ), computed

as the average of the motion feature's value over all time steps during which that motor control

vector was used.

Eight example amvf 's and their associated motor control vectors are shown below. These were

obtained while the critter wandered for 60 minutes, repeatedly choosing a representative motor

control vector at random and executing it for one second (ten time steps).

(1.00 -0.00) (0.69 0.73) (0.00 1.00) (-0.73 0.69)

(-1.00 0.00) (-0.69 -0.73) (-0.00 -1.00) (0.73 -0.69)

Principal component analysis is used to analyze the set of 100 amvf 's and identify a basis set

of e�ects represented as principal eigenvectors . By matching these eigenvectors against the 100

amvf 's, it is possible to discover which motor control vectors can be used to produce which e�ects.

Motor control vectors that match are identi�ed as primitive actions .

The �rst four eigenvectors for the space of average motion vector �elds are shown below. The

�rst corresponds to a pure rotation motion and the second corresponds to a pure translation motion.

1.40 1.10 0.27 0.22

u0= (-0.706 0.707) u1= (0.728 0.683)

The two motor control vectors identi�ed as primitive actions are shown above under the two

principal eigenvectors. None of the other eigenvectors match any of the amvf 's. The critter

concludes that the robot's motor apparatus has two degrees of freedom and that the above primitive

actions can be used to produce motion for each degree of freedom.
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8.2.3 Learning behaviors

After learning a model of the robot's sensorimotor apparatus, the critter learns a set of homing

and path-following behaviors. These behaviors comprise its acquired knowledge at the control level

of the spatial semantic hierarchy. Its �rst step is to �nd a set of local state variables | features

that are both action dependent and predictable. To �nd a set of local state variables, the critter

�rst generates a set of scalar features (candidate local state variables) and then analyzes them using

linear regression to produce the static action model .1

For this experiment, the result of the analysis is the identi�cation of the set of local-minimum

features as local state variables.2 These are the only generated features that are identi�ed as both

action dependent and predictable.

The information in the static action model is used to de�ne a set of homing behaviors and

open-loop path-following behaviors. The critter experiments with the open-loop path-following

behaviors while learning a dynamic action model that predicts how the primitive actions can be

used for error correction.

In this experiment, the critter discovers that it can use the turning primitive action for error

correction while executing an open-loop path-following behavior based on the advancing primitive

action. It uses this information to de�ne closed-loop path-following behaviors. The following picture

shows a trace of a random exploration behavior demonstrating the critter's learned behaviors.

8.3 Re-learning the behaviors in a T-shaped room

For this experiment, the robot was moved from the cluttered room to a T-shaped environment

and the critter's control-level learning (i.e., static action model, dynamic action model, and learned

behaviors) was erased. Its task was to begin with an intact model of the robot's sensorimotor

apparatus and learn an appropriate set of homing and path-following behaviors. The environment

used in this experiment consists of two corridors connected to form a T. The corridor forming the

1See Chapter 6 for a full description of the set of feature generators used and the set of features produced during
the generate-and-test process.

2These features are produced by applying the composition of the following operators to the raw sense vector s:
group, image, lmin, tracker, and val.

92



top of the T is 6 meters long and 1.5 meters wide. The shorter corridor is 4.5 meters long and 1.5

meters wide.

The critter successfully learns the control-level of the spatial semantic hierarchy. The picture

below shows a trace of a random exploration behavior demonstrating the learned behaviors.

Path-following behaviors based on the advancing primitive action produce the straight-line trajec-

tories that are parallel to the walls. Path-following behaviors based on the turning primitive action

leave the robot in the same place while changing the robot's heading. The homing behaviors based

on the advancing action produce most of the rest of the trajectories shown in the picture. A few of

the trajectories are produced by a random wandering behavior that is used whenever none of the

other behaviors are applicable.3

This experiment demonstrates that both the set of features and the model of the sensorimotor

apparatus that were learned in the �rst environment are applicable in the second environment.

8.4 Using the behaviors in an empty room

For this experiment, the robot was moved from the T-shaped environment to an empty rectan-

gular room (of dimensions 6 meters by 4 meters). The critter's model of the robot's sensorimotor

apparatus and its set of learned behaviors was left intact. The following trace of a random explo-

ration behavior demonstrates that the learned behaviors do not apply only to the environment in

which they were learned.

3The exploration behavior selects its sub-behaviors stochastically and occasionally selects the random wandering
behavior even when other behaviors are applicable.
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8.5 A long and narrow room

This experiment demonstrates an instance in which the image feature generator fails to produce

a ring-shaped representation of the structure of the ring of distance sensors. The environment used

in this experiment is a long, narrow, rectangular room. The room is six meters long and one half

meter wide. This environment is intended to confuse the image feature generator. Since the room

is so narrow, the values of distance sensors on opposite sides of the ring will be often be similar:

If a sensor is detecting the distance to one of the long walls of the room, then the sensor opposite

to it will be detecting the distance to the wall on the opposite side of the room. Both sensors will

produce a small value (less than 0.5). On the other hand, if a sensor is returning a large value,

then there is a good chance that the sensor opposite to it will also be returning a large value.

If opposite sensors return similar values, on average, then the image feature generator will place

them close together in the image feature. It seems unlikely then, that the resulting image feature

will capture the ring structure of the array of distance sensors.

8.5.1 Modeling the sensory apparatus

For each component of the raw sense vector, the set of similar components is shown.

(0 1 23) (0 1 2) (1 2 3) (2 3 4) (3 4 5) (4 5 6) (5 6 7) (6 7 8) (7 8 9)
(8 9 10) (9 10 11) (10 11 12 13) (11 12 13 14) (11 12 13 14 15)
(12 13 14 15) (13 14 15 16) (15 16 17) (16 17 18) (17 18 19) (18 19)
(20) (21 22) (21 22 23) (0 22 23) (24) (25) (26) (27) (28)

The groups of related sensors, produced by taking the transitive closure of the sets of similar sensors,

are shown below. The distance sensors have again all been grouped together.
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The intersensor distances d1;ij for all of the sensors that have been grouped together by the group

feature generator are shown below. Notice that the shape of the plot is qualitatively di�erent from

those seen previously.
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The outputs of the metric scaling and relaxation algorithm are shown below.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

1 2 3 4 5 6 7 8 9 10

Metric scaling eigenvalues

0
1
2

34
5

6

7
8910

11
12

13

14
1516

17
18

19

2122
23

0
1

2
3

4
5

6

7

89
10

11
12
13

14
15

16
17

18 19

21
22
23

According to the metric-scaling scree diagram on the left, the structure of the array of sensors is

best captured by a four-dimensional representation. The middle �gure below shows the projection

onto two dimensions of the set of points generated by the metric-scaling algorithm. The �gure on

the right shows the results of the relaxation algorithm.4 Notice that sensors that are adjacent in

4The metric-scaling algorithm, the relaxation algorithm, and the de�nition of the image and motion features can
all handle images of arbitrary dimension. However, in the current implementation, I have constrained the image
feature to be two-dimensional. A goal for future research is to remove this arti�cial constraint and test the methods
on sensory arrays that are genuinely three-dimensional.
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the ring of sensors are close together in the image. 5

8.5.2 Modeling the motor apparatus

Eight example amvf 's and their associated motor control vectors are shown below.

(1.00 -0.00) (0.69 0.73) (0.00 1.00) (-0.73 0.69)

(-1.00 0.00) (-0.69 -0.73) (-0.00 -1.00) (0.73 -0.69)

The �rst four principal eigenvectors for the space of average motion vector �elds are shown below.

The method actually identi�es the turning motor control vector correctly. The second primitive

action is primarily an advancing action but has a signi�cant turning component to it. The method

erroneously identi�es a third primitive action.

1.36 0.83 0.30 0.27

u0= (-0.723 0.680) u1= (-0.532 -0.837) u2= (-0.877 -0.481)

8.6 A circular room

This experiment demonstrates an instance in which the critter fails to discover any local state

variables. The robot's environment is a circular room 3 meters in diameter.

8.6.1 Modeling the sensory apparatus

The sets of similar sensors identi�ed by the group feature generator are shown below.

5Though the results are not shown here, I have also run the relaxation algorithm for this distance metric in three
dimensions. In that case the resulting pattern of sensors resembles the pattern of stitching on a baseball.
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(0 1 23) (0 1 2) (1 2 3) (2 3 4) (3 4 5) (4 5 6) (5 6 7) (6 7 8)
(7 8 9) (8 9 10) (9 10 11) (10 11 12) (11 12 13) (12 13 14) (13 14 15)
(14 15 16) (15 16 17) (16 17 18) (17 18 19) (18 19) (20) (21 22)
(21 22 23) (0 22 23) (24) (25) (26) (27) (28)

The groups of related sensors, produced by taking the transitive closure of the sets of similar sensors,

are shown below:

(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23)
(20)
(24)
(25)
(26)
(27)
(28)

The value of distance metric d1 (used by the image feature generator) for the sensors in the

group is shown below.
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The outputs of the metric scaling and relaxation algorithm are shown below.
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8.6.2 Modeling the motor apparatus

Eight example amvf 's and their associated motor control vectors are shown below.

(1.00 -0.00) (0.69 0.73) (0.00 1.00) (-0.73 0.69)

(-1.00 0.00) (-0.69 -0.73) (-0.00 -1.00) (0.73 -0.69)

The �rst four principal eigenvectors for the space of average motion vector �elds are shown below.

1.11 0.71 0.24 0.21

u0= (-0.746 0.659) u1= (0.765 0.632)

At this stage, the critter has identi�ed two primitive actions, shown above with the two principal

eigenvectors.

8.6.3 Learning behaviors

In this experiment, the critter fails to discover any local state variables. In order for a feature

to be a local state variable, it must be both action-dependent and predictable. For a feature to

be predictable, the e�ects of the primitive actions on the feature must be known for all possible

contexts.

In the rectangular and T-shaped environments, the local-minimum features (which give dis-

tances from the robot to nearby objects or walls) were identi�ed as local state variables. Here is a

summary of what was learned by the critter (and represented in the static action model) for the

robot in the rectangular environment:

� The �rst primitive action (turning) does not a�ect the local-minimum features. The e�ects

of the primitive action are thus predictable for all contexts.

� The e�ect of the second primitive action (advancing) is context dependent:
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{ When the robot is facing toward a wall, the primitive action reliably decreases the value

of the local-minimum feature.

{ When the robot is facing away from a wall, the primitive action reliably increases the

value of the local-minimum feature.

{ When the robot is facing parallel to the wall (in either direction), the primitive action

leaves the value of the feature constant.

For this experiment (with the circular environment), the critter's learned static action model

is identical to that described above, but with the following exception: When the robot is facing

parallel to the wall, the e�ect of the second primitive action on the local-minimum feature is

unpredictable. Here is an explanation for the di�erence. When facing parallel to a straight wall,

a robot can move for many steps without changing the distance to the wall signi�cantly. This is

why it is possible for the linear regression tester that analyzes the e�ect of the primitive action to

conclude that its e�ect is, to a good approximation, zero in this context. In the circular world, on

the other hand, the robot can only advance a few steps without changing the distance to the wall.

The only conclusion that the critter is able to draw from the linear regression tester is that the

e�ect of advancing is unpredictable in this context.

8.7 A small room

This experiment demonstrates an instance in which the method for learning primitive actions

identi�es primitive actions whose e�ects are combinations of rotation and translation motions.

This is in contrast to the experiment in Section 8.2 in which the primitive actions corresponded to

pure rotation and translation motions. The reason for this di�erence and the consequences for the

control-level learning methods will be given at the end of this section.

The environment used in this experiment is a small rectangular room. The room is 80 centime-

ters long and 60 centimeters wide. Since the range of the distance sensors is one meter, this means

that all of the walls will always be within sensor range, no matter where the robot is.

8.7.1 Modeling the sensory apparatus

The sets of similar sensors identi�ed by the group feature generator are shown below.

(0 1 23) (0 1 2 23) (1 2 3) (2 3 4 5) (3 4 5 6) (3 4 5 6 7) (4 5 6 7 8)
(5 6 7 8) (6 7 8 9) (8 9 10) (9 10 11) (10 11 12 13) (11 12 13)
(11 12 13 14) (13 14 15) (14 15 16 17) (15 16 17 18) (15 16 17 18)
(16 17 18 19) (18 19) (20) (21 22) (21 22 23) (0 1 22 23) (24) (25)
(26) (27) (28)

The groups of related sensors, produced by taking the transitive closure of the sets of similar sensors,

are shown below:
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(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23)
(20)
(24)
(25)
(26)
(27)
(28)

The value of distance metric d1 (used by the image feature generator) for the sensors in the group

is shown below.
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8.7.2 Modeling the motor apparatus

Eight example amvf 's and their associated motor control vectors are shown below.
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(1.00 -0.00) (0.69 0.73) (0.00 1.00) (-0.73 0.69)

(-1.00 0.00) (-0.69 -0.73) (-0.00 -1.00) (0.73 -0.69)

The �rst four eigenvectors and the standard deviations of the associated principal components for

the space of average motion vector �elds are shown below.

0.29 0.26 0.07 0.05

u0= (-0.965 0.185) u1= (0.062 -0.996)

The set of primitive actions identi�ed in this experiment is di�erent from the set of primitive

actions identi�ed in the experiment described in Section 8.2. In the earlier experiment, the motor

control vectors identi�ed as primitive actions corresponded to pure turning and advancing motions,

respectively. In this experiment, the motor control vectors identi�ed as primitive actions correspond

to combinations of turning and advancing motions. The rest of this section will explain why this

happened. Section 8.7.3 will then describe how the di�erent set of primitive actions a�ects the

results of the control-level learning methods.

Recall how principal component analysis works. Given a set of input vectors fxig, principal

component analysis produces a basis set of unit vectors called eigenvectors satisfying the following:

The �rst eigenvector v0 is chosen so that the variance of xi � v0 (where xi ranges over the set of

input vectors) is maximized. Each subsequent eigenvector vj is chosen so that it is orthogonal to all

of the preceding eigenvectors and maximizes the variance of xi � vj. Less formally, v0 accounts for

most of the variation in the input set of vectors, v1 accounts for most of the remaining variation,

etc. The preceding description of principal component analysis explains why the experiment in

Section 8.2 identi�ed a motor control vector for turning as the �rst primitive action. It is because

the magnitude of the e�ect of turning, de�ned as the magnitude of the corresponding amvf , is

signi�cantly larger than the magnitude of the e�ect of advancing.

By contrast, in the small room, the magnitude of the e�ect of turning is similar to the magnitude
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of the e�ect of advancing. The following explains why. The apparent motion6 of an object relative

to the robot while the robot advances is greater if the object is close to the robot than if the object

is far away. For a turning motion, the distance from the robot to the object does not a�ect the

apparent motion. In the small room, the walls are always close to the robot. Thus the apparent

motion resulting from advancing (relative to the apparent motion resulting from turning) is greater

in the small room than in the large room. For the particular room and robot of this experiment,

the magnitudes of the e�ects of turning and advancing turn out to be similar.

The consequence of this is that the �rst principal eigenvector produced by principal component

analysis will not necessarily correspond to a pure turning motion. In the small room, the magnitudes

of the e�ects of all of the unit motor control vectors are similar. The result is that small di�erences

in the values of the measured amvf 's may make a substantial di�erence in the values of the principal

eigenvectors. In this particular case, the result of the analysis is a pair of primitive actions that are

combinations of turning and advancing.

It is important to note that, although the eigenvectors do not correspond to pure turning and

advancing motions, they do span the space of all motions that the robot can produce. The learning

method has produced a valid model of the motor apparatus and has correctly concluded that the

robot's motor apparatus has two degrees of freedom.

8.7.3 Learning behaviors

This section demonstrates that the success of the control-level learning methods can depend on

the set of primitive actions identi�ed by principal component analysis.

The features that are identi�ed as local state variables in this experiment are s0, s1, s11, and

s12. The �rst two measure distances to objects in front of the robot; the second two measure

distances to objects behind the robot. These are the only features that are both action dependent

and predictable. To understand why, consider the e�ects of the learned primitive actions. The �rst

primitive action (u0= (-0.965 0.185) ) moves the robot backwards while turning it counterclockwise;

the second primitive action (u1= (0.062 -0.996) ) moves the robot backwards while turning it

clockwise. Both of the primitive actions move the robot in gently curving arcs. The e�ects of

both primitive actions are roughly similar to the e�ects of simply moving backwards. Both of the

primitive actions reliably increase the values of features s0 and s1 and both reliably decrease the

values of features s11 and s12. The e�ects of the primitive actions on the other features are either

zero or unpredictable (e.g., for both the local-minimum and local-maximum features, the primitive

actions are predictable for some contexts and unpredictable for others).

The critter successfully de�nes homing behaviors for moving the local state variables to their

target values, but since there are no contexts in which any of the primitive actions leave any of the

local state variables constant, no path-following behaviors are de�ned. Since it is clearly possible (as

previous experiments have demonstrated) for the robot to de�ne path-following behaviors based on

the local-minimum features, this experiment points out a limitation of the currently implemented

method for learning local state variables and path-following behaviors. Section 8.8.3 will describe

6By \apparent" motion, I mean the representation produced by the motion feature as opposed to the actual
motion of the robot which cannot be directly detected by the critter.
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alternative methods for learning path-following behaviors that do not depend on the particular set

of learned primitive actions.

8.8 Discussion

Section 8.8.1 will summarize the sequence of methods used to learn the sensorimotor and control

levels of the spatial semantic hierarchy. Section 8.8.2 will then identify a number of limitations of

the methods (i.e., ways in which the methods can fail). Section 8.8.3 will discuss a number of

possible improvements to the particular set of learning methods. Finally, Section 8.8.4 will identify

a general approach, of which the particular approach presented in the dissertation is one example.

8.8.1 Summary of learning methods

The learning methods used by the critter to learn the sensorimotor and control levels of the spa-

tial semantic hierarchy are summarized below. For each method, I identify the source of information

used by that method, and describe the representations or objects produced by the method.

1. Modeling the sensory apparatus. The group and image feature generators exploit the

fact that if two sensors are close together in a array of sensors that adequately samples a

continuous property of the environment, then those sensors will, on average, produce similar

values. The source of information is the sequence of values produced by the sensors while the

critter wanders by choosing motor control vectors randomly. The group and image features

produced by the generators represent the structure of the sensory apparatus.

2. Representing motion. The motion feature generator exploits temporal and spatial infor-

mation in the image feature to produce a motion feature that represents the instantaneous

motion of the robot.

3. Modeling the motor apparatus. This learning method exploits the information in the

motion feature while the critter wanders randomly. The method uses principal component

analysis to produce a basis set of e�ects and corresponding primitive actions.

4. Generating candidate local state variables. A set of feature generators is used to develop

a tree of learned features. Some of the generators apply a simple operator to an existing feature

to produce a new feature. Others (e.g., the group and image feature generators) �rst analyze

an input feature's behavior over time in order to produce a new feature. Any scalar feature

produced by this method is a candidate local state variable.

5. Discovering local state variables. Linear regression is used to try to predict the e�ects

of the primitive actions on the features. Features that are predictable in this way, and hence

controllable, are identi�ed as local state variables. The source of information is the sequence

of scalar-feature values produced while the critter experiments with its primitive actions. The

results of the linear regressions comprise the static action model.
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6. De�ning homing behaviors. The source of information for this step is the static action

model produced in the previous step. Behaviors are de�ned, using the information in the

static action model, that can be used to move a local state variable to a target value.

7. De�ning open-loop path-following behaviors. The static action model is the source of

information for this step as well. It is used to identify hlocal state variable, primitive action,

contexti triples where the primitive action maintains the local state variable constant given

that the robot is in the context. Behaviors are produced that can be used to move the robot

while maintaining a local state variable at its target value.

8. Learning a dynamic action model. The source of information for this step is the se-

quence of values of the local state variables while the critter experiments with its open-loop

path-following behaviors. While one primitive action is used for an open-loop path-following

behavior, linear regression is used to try to predict the e�ects of the other primitive actions

on the local state variable on which the path-following behavior is based. The results of the

linear regressions comprise the dynamic action model.

9. De�ning closed-loop path-following behaviors. The source of information for this step

is the dynamic action model. Primitive actions whose e�ects are predictable are used to

provide error correction, turning the open-loop path-following behaviors into closed-loop path-

following behaviors.

8.8.2 Failure modes

The preceding list gives a number of learning methods that can be used by the critter to learn

the �rst three levels of the spatial semantic hierarchy. This section describes a number of ways in

which the methods can fail.

Modeling the sensory apparatus. If there is no structured array of sensors, then the group

feature generator will produce only small or singleton groups and the image feature generator will

not apply. If there is an array of sensors but the sensors do not adequately sample a continuous

property of the environment, then the group and image features will fail to produce a representation

of the structure of those sensors. For example, if there are only four distance sensors, then the

values of adjacent sensors may not be similar enough for the group feature generator to group them

together. If the environment is large and the critter does not adequately explore the environment

before applying the group and image feature generators, then the measured inter-sensor distance

metrics may not accurately reect the structure of the sensory apparatus. For the robot with

distance sensors, an environment with large open spaces can be problematic { the robot might

spend a great deal of time with no objects in sensor range.

Representing motion. If no image feature is produced, then of course the motion feature

generator will not apply. If the robot's motion is so fast that successive image-feature values are

unrelated, then the motion feature will fail to produce meaningful results.

Modeling the motor apparatus. The matching process that identi�es primitive actions (i.e.,

motor control vectors whose amvf 's match the principal eigenvectors) can fail to correctly identify
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a primitive action if the amvf 's have not converged (i.e., if the critter has not wandered long enough

and the values of the amvf's are still uctuating with time).

Generating candidate local state variables. The discovery of local state variables may fail

if the language of features and feature generators is not general enough. In such a case, none of the

generated scalar features would satisfy the de�nition of local state variable. On the other hand, if

the language of features and generators is too general, the critter will quickly become bogged down

in a combinatorial explosion of mostly useless features.

In this dissertation, I identi�ed a small set of feature generators that are appropriate for a robot

with a rich sensorimotor apparatus and then demonstrated that they are su�cient for a particular

set of environments and sensorimotor apparatuses.

Learning action models. The critter will fail to correctly learn the static and dynamic action

models if it does not explore long enough for the linear-regression calculations to converge. In the

case that the critter must learn the relationships between a motor control vector and a feature for

a large number of contexts, the method requires that the critter experiment with the motor control

vector in each of those contexts.

Learning path-following behaviors. As was mentioned in Section 8.7.3, the learning of path-

following behaviors can depend on the set of learned primitive actions. If none of the primitive

actions can be used to maintain any of the local state variables constant, then no path-following

behaviors will be learned.

8.8.3 Future work

Section 8.8.2 identi�ed a number of ways in which the learning methods can fail. This section

provides suggestions for improvements to the learning methods.

Improved feature testers. One way that several of the learning methods can fail is by

jumping to a conclusion prematurely. For example, if the group generator uses a distance metric

before the distance metric has converged, then the output of the generator may be incorrect. If

primitive actions are identi�ed before the amvf 's have converged, then the model of the motor

apparatus may be incorrect.

In these examples, the distance metrics and the amvf 's are examples of feature testers | features

that are used to characterize other features. A solution to the problem of drawing premature

conclusions is to have each feature tester tell when its output is meaningful. It can do this by

providing a measure of con�dence in addition to its output value. For example, the con�dence level

for a tester might be close to 1 if the tester's output is stable (changing slowly) and close to 0 if

the tester's output is still uctuating.

For a linear regression tester, the con�dence level should be a function of the set of inputs it

has received. Consider, for example, how the static action model uses linear regression testers. It

uses a separate linear regression tester for each hfeature, primitive action, contexti triple. If the

robot is never in a given context, then the con�dence level for any linear regression tester based on

that context should be zero. The con�dence level for a linear regression tester might be de�ned in
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terms of the 90% con�dence interval7 for the correlation betweeen the input variables. The smaller

the con�dence interval, the greater the tester's con�dence level.

An improved static action model. The critter uses the static action model to de�ne a

set of open-loop path-following behaviors | behaviors that move the robot while maintaining a

local state variable constant. In the current implementation, open-loop path-following behaviors are

based on primitive actions. If a primitive action maintains a local state variable constant, according

to the static action model, then it can be used as the \base action" for a path-following behavior.

Using only primitive actions as base actions is a limitation of the current implementation. The

method for learning path-following behaviors would be improved if the static action model could

predict the e�ects of arbitrary motor control vectors, not just the primitive actions. With a more

comprehensive static action model, more path-following behaviors could be de�ned. This would

solve the problem seen in Section 8.7.3 where no path-following behaviors were learned.

One approach to improving the static action model would be to discretize the space of all motor

control vectors into a set of representative motor control vectors and then to learn models of all

of these instead of just the primitive actions. Another approach would be to use a neural network

(e.g., Jordan & Rumelhart, 1992) to learn to predict the context-dependent e�ects of arbitrary

actions. The network could then serve as the static action model and could be used to �nd base

actions for path-following behaviors.

Reinforcement learning. It may be possible to use reinforcement learning to learn homing

and path-following behaviors without the need for the primitive actions or explicit action models.

An advantage of such an approach is that it does not presume that a particular model of the

sensorimotor apparatus has been learned. A disadvantage is that it is only possible to train one

behavior at a time whereas it is possible to learn action models for a large number of features

simultaneously.

8.8.4 A general approach

The sequence of steps described in Section 8.8.1 provide a particular solution to the learning

problem addressed by this dissertation. This particular solution is an instance of the more general

solution outlined below:

1. Apply a generate-and-test algorithm to produce a set of scalar features.

2. Try to learn how to control the generated scalar features. Those that can be controlled are

identi�ed as local state variables.

3. De�ne homing behaviors | behaviors that move a local state variable to a target value.

4. De�ne path-following behaviors | behaviors that move the robot while keeping a local state

variable at its target value.

Clearly, there are other ways to instantiate the above sequence of steps besides the speci�c set

of learning methods identi�ed in this dissertation. Future work will involve both improving the

current set of methods and identifying alternate paths to the solution.

7See, for example, Krzanowski, 1988, p. 415.
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8.8.5 Conclusion

The set of learning methods presented here does not represent the �nal word on the problem of

learning to use an uninterpreted sensorimotor apparatus. Instead it is one path to the goal.

Moreover, the learning methods are interesting in their own right. Each one identi�es a source

of information available through experimentation with an uninterpreted sensorimotor apparatus,

and each provides a method for exploiting that information to give the critter a new way of under-

standing the robot's sensory input or of interacting with the robot's environment.
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Chapter 9

From Continuous World to Discrete World

As a result of its learning so far, the critter has made the transition from raw senses and motor

control vectors to local state variables and high-level behaviors. Its �nal step is to de�ne a new

abstract interface that abstracts the continuous world of a robot to a discrete world whose structure

can be modeled by a �nite-state automaton. This interface, called the discrete abstract interface,

comprises the critter's knowledge at the procedural level of the spatial semantic hierarchy. The

purpose of the discrete abstract interface is to set the stage for learning the topological level of the

spatial semantic hierarchy.

Section 9.1 puts the discrete abstract interface in context by describing a two-level model of a

robot's state space. The �rst level of the model corresponds to the learning that has already been

done at the sensorimotor and control levels of the spatial semantic hierarchy. The second level of

the model corresponds to the topological level. Section 9.2 de�nes the discrete abstract interface

in terms of the set of behaviors that the critter has already learned. Section 9.3 demonstrates the

discrete abstract interface for the robot in the rectangular room. Section 9.4 explains how to use the

discrete abstract interface as the basis for learning a topological model of the robot's environment.

Section 9.5 describes related work dealing with the problem of learning a model of an environment.

Section 9.6 discusses a number of relationships between the work described in this dissertation and

related work. Finally, Section 9.7 summarizes the set of learning methods used by the critter as it

learns the �rst three levels of the spatial semantic hierarchy.

9.1 A two-level model of state space

In general, a model of an environment requires (1) knowledge of the environment's state space,

that is, the set of possible states, (2) the ability to recognize the current state, and (3) the ability

to navigate through state space. These three components are illustrated by two very di�erent

examples | the con�guration space of a six-degree of freedom robot arm and the two-dimensional

world of a hypothetical urban-dwelling mobile robot. These examples illustrate two di�erent levels

at which an agent can model its environment.

Consider �rst the example of a robot arm with a manipulator at the end of it and a video camera

mounted above the arm. The state space (1) of the robot arm is the six-dimensional continuous

space of Euclidean geometry. There are three state variables for position and three for orientation.

Recognition of the current state (2) is accomplished using the camera which determines the position

and orientation of the manipulator. Navigation through state space (3) requires both a knowledge

of the structure of the state space and a knowledge of how the joint motors a�ect the state variables.

A description of the structure of the state space should include the bounds of the state variables
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and the fact that the three orientation variables \wrap around" (i.e., 360 degrees is equal to 0

degrees).

In a simple system like the robot arm, it is fairly clear how to model the system. For a more

complex example, consider how the urban-dwelling mobile robot might model the city in which

it lives. The state space (1) can be modeled as a set of interesting places | home, o�ce, and

hardware store, for example, together with a representation of their locations relative to each

other. Recognition of the current state (2) requires either a sophisticated visual system or a set of

beacons that identify the interesting places. The ability to navigate (3) requires the knowledge of

how to move from any place to any other.

Small-scale vs. large-scale space. The examples of the robot arm and mobile robot illustrate

two types of space which have been called small-scale space and large-scale space, respectively

(Kuipers and Levitt, 1988). Small-scale space refers to the state space that is directly accessible.

In the case of the robot arm, the entire state space is small-scale. For the mobile robot moving

along a road, small-scale space is the part of the world that is directly visible. Large-scale space is

a state space whose structure is at a larger scale than can be directly perceived. Whether a state

space is small or large scale depends on the observer. For a person in a car, a city is a large-scale

space. For a person in a plane ying over the city, the city is a small-scale space.

9.1.1 The critter's model of small-scale space

The critter needs to model the robot's world at both levels. For small-scale space, it models

the state space (1) using the set of currently de�ned local state variables. The current state (2)

is determined by the current values of the local state variables. The critter's knowledge of how to

navigate (3) is contained in its static and dynamic action models. These tell how to use the set of

primitive actions to a�ect the local state variables. The purpose of this chapter is to show how to

learn a model of large-scale space.

9.1.2 The critter's model of large-scale space

One possibility for representing large-scale space is to use global state variables that uniquely

determine the robot's state. In general, people and robots do not have access to global state

information. While global state variables might be obtainable by integrating motion over time,

the results will be error prone due to cumulative error. In some cases, it may be possible to have

direct access to global state information. For example, a global positioning system (GPS) and a

compass can be used to uniquely determine the current state of a person driving through a city.

A disadvantage of using global state variables is that they do not give positions relative to other

objects in the environment. For a person driving through a city, the position of the car with respect

to the road is much more relevant than its longitude and latitude.

Instead of trying to use a set of continuous global state variables to model both small- and

large-scale space, the critter models small-scale space using continuous local state variables and

large-scale space using a �nite-state automaton (to be de�ned formally in Section 9.2). This two-

level model allows the critter to be both graceful and discrete: The continuous model of small-scale
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space provides the critter with enough information to de�ne control laws for smooth motion along

paths. The discrete model of large-scale space allows the critter to e�ciently reason about large-

scale motions. It can plan paths between distant places by applying a shortest-path algorithm to

its topological representation of places and paths.

Learning the the �nite-state automaton involves two steps: (1) de�ning a discrete abstract

interface, and (2) inferring the structure of the underlying automaton de�ned by this interface.

The knowledge gained by the critter after the �rst step is analogous to the knowledge a driver has

when he �rst arrives in a new city | he knows how to explore and remember landmarks but he

has not yet learned a map.

The next section gives a formal de�nition of \�nite-state automaton" and de�nes the abstract

interface that allows the critter to view the robot's world as a �nite-state automaton whose structure

is unknown.

9.2 The discrete abstract interface

A �nite-state automaton is de�ned as a tuple (Q; V;A; �; ) where Q is a �nite set of states , V is

a �nite set of output symbols which I will call views , A is a �nite set of actions , � is the next-state

map, which maps state-action pairs to next states, and  is the output map, which maps states to

views.1

A deterministic �nite-state automaton (DFSA) is an FSA in which � and  are functions. This

means that the current state and action uniquely determine the next state and that the current

state uniquely determines the view. If at time t, the automaton is in state q(t) and action a(t) is

selected, then at time t+1, the automaton will be in state �(q(t); a(t)) and the output will be given

by (q(t+ 1)) 2 V .

A nondeterministic �nite-state automaton (NDFSA) is an FSA in which � and  are general

mappings. A given state and action may nondeterministically map to multiple next states and a

given state may map nondeterministically to multiple views.

Given the tuple (Q; V;A; �; ) for a deterministic �nite-state automaton, the input/output be-

havior of the automaton is easily predicted. Going the other way|inferring the tuple (Q; V;A; �; )

given only the input/output behavior|is a classic machine-learning problem. In that case, the

�nite-state automaton is a black box: the internal workings are not directly observable. At time t,

the output view v(t) is observed and the set of legal actions Aq(t) � A is presented. Selection of an

action a 2 Aq moves the automaton to its next state at which point a new view v(t+ 1) and set of

legal actions Aq(t+1) is presented.

An abstraction of the robot's world as a �nite-state automaton may be de�ned by giving implicit

de�nitions for the values of Q, V , A, �, and :

� Q is the set of states in which path-following behaviors terminate.2

1Some de�nitions also include q0, the automaton's state when it is initialized.
2I have made the simplifying assumption that the resulting automaton is �nite state. It is possible to imagine

robot worlds in which the resulting automaton has an in�nite number of states (e.g., an in�nitely big o�ce building
with a random layout of rooms and corridors). In such an environment, the discrete abstract interface is still well
de�ned, but it would not be possible to model the behavior of the interface using a �nite-state automaton.
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� V is the set of all views , where a view v(q) is a symbol that is uniquely identi�ed by the sense

vector seen at state q. Di�erent states may map to the same view. With each view vi is an

associated raw sense vector si. Upon entering a new state, the current raw sense vector s(t)

is compared with all of those remembered for views previously encountered. If s(t) matches

si, then v(t) = vi. Otherwise, a new view vj is created with associated raw sense vector

sj = s(t).3

� The set of actions is given by A =
S

q2QAq where Aq is the set of behaviors applicable in

state q.

� The next-state mapping, �, is de�ned by the set of all possible (q; a; q0) triples where action

a takes the robot from state q to q0.

� The output mapping, , is de�ned by the set of all possible pairs (q; v) where v is the view

sensed by the robot when it is in state q.

The critter cannot directly recognize states, meaning that it cannot directly tell whether its

current state is the same as one it has seen earlier. However, it can detect the current set of

actions, Aq, and it can detect the current view, v(q). The current view and the current set of

applicable actions de�ne the abstract interface that allows the critter to view the robot's world as a

�nite-state automaton. With this interface, the critter does not observe state transitions directly, it

observes schemas of the form (v; a; v0). General methods for learning the model using the abstract

interface will be described in Section 9.5. Section 9.4 will describe how to learn the model given

the simplifying assumption that views uniquely identify states.

9.2.1 Reducing nondeterminism

Inferring the structure of an �nite-state automaton (e.g., Rivest & Schapire, 1987, 1993), while

an expensive task, is much less expensive than inferring the structure of an NDFSA (Dean et al.,

1992, 1993). For this reason, it is advantageous to use actions that are as constrained as possible.

The discrete abstract interface supports the ability to select constrained actions by identifying

four di�erent types of actions, from completely nondeterministic to as deterministic as possible.

1. A wandering behavior is always included in Aq for each state q to guarantee that there is

at least one action available. This behavior randomly chooses a motor control vector and

executes it for one second. It is the least deterministic.

2. An underconstrained path-following behavior is more deterministic since only one of the

robot's degrees of freedom is used to produce motion. An underconstrained path-following

behavior is one for which not all of the control signals are used for motion or error correction.

3. A homing behavior is still more deterministic since it consistently moves a single local state

variable to its target value.

3In the implementation, the vectors si and sj match if they di�er component-wise by less than a small constant.
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Figure 9.1: A demonstration of the discrete abstract interface. Here, it is used (under human control) to
select appropriate behaviors to drive the robot around the room. At each step, the interface provides the
view name (e.g., v1 ) that identi�es the current state, and a �nite set of applicable homing and path-following
behaviors. The dotted arrows represent behaviors based on left turn motor control vectors (u0 > 0). The
solid arrows represent behaviors based on forward advance motor control vectors (u1 > 0). During this
exploration, the robot identi�es the 12 unique views shown in the �gure on the right.

4. A one degree of freedom (1-DOF) path-following behavior is the most deterministic. A 1-DOF

path-following behavior is one for which one control signal is used to produce motion along

the path and all of the other control signals are used for error correction.

A critter exploring its world using the discrete abstract interface can take advantage of these

distinctions in the following way: It can �rst explore by only selecting the most deterministic

behaviors. If it succeeds in mapping its world in this way, then it can use a more relaxed exploration

strategy and thereby possible discover parts of its world that it would otherwise miss. Suppose, for

example, that the critter begins exploring a large rectangular room with a box in the center that

is not within sensor range when the robot is near a wall. By initially favoring 1-DOF behaviors,

the critter will explore and map the perimeter of the room. When it succeeds at this, it can try

randomly wandering and thereby discover the box in the center of the room.

9.3 A demonstration of the discrete abstract interface

This interface abstracts from continuous time to discrete time. While a path-following behavior

is executing, the interface is unde�ned. When the behavior terminates, the interface identi�es the

current view and lists the current set of applicable behaviors. Figure 9.1 demonstrates this interface.

Initially (v1), no wall is within sensor range and the only available action is the wandering behavior.

When the wandering behavior terminates (v2), a homing behavior is applicable. Selecting this

behavior leads to view v3 where two path-following behaviors based on u0 (turning) are applicable.

Selecting the �rst leads to view v4. Selecting it again leads to view v5. At this point, two 1-DOF

path-following behaviors based on u1 (advancing) are applicable. Choosing the �rst leads to v6.

The �gure shows the behavior of the robot during a user-guided exploration that leads it to v12.

The rest of the exploration around the room (not shown) eventually returns the robot to view v6

(which is correctly recognized as v6).
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9.4 Learning the topology of the environment

The critter has made a critical change of representation by abstracting a continuous sensorimotor

apparatus to a discrete abstract interface with a �nite set of sense values and actions. Understanding

a continuous world is very di�cult but the problem of understanding a discrete world has been

extensively studied.

The robot's path-following behaviors constrain its motion to a one-dimensional subspace of

the robot's complete state space. This 1-D skeleton is the basis for an abstraction of the robot's

environment as a graph (a set of nodes and a set of edges connecting the nodes together). The edges

correspond to paths | trajectories in the robot's state space produced by path-following behaviors.

The nodes correspond to states where paths terminate, that is, states where a new path-following

behavior becomes applicable and the critter stops to choose one of the currently applicable paths.

The critter's goal is to construct this graph.

In the case where views uniquely identify states, the problem is straightforward. The critter

keeps track, for each state it has seen, of all the actions applicable at that state. Each time it

takes an action, Aj , that takes it from view Vi to Vk, it adds the edge (Vi; Aj; Vk) to the graph. It

continues to explore (intelligently or randomly) until there are no state-action pairs that it has not

explored.

In the case that views do not uniquely identify states, a more sophisticated exploration strategy

is required. Such strategies are generally based on the following idea: If the current view does not

uniquely identify the current state, the critter supplements the current sense vector with the sense

vectors of nearby states. With enough information about the surrounding area, the current state

can be uniquely identi�ed.

Metrical information can be added to the topological representation by recording the time it

takes to traverse each path. With this information, navigation including shortest-path planning is

possible.

9.5 Related work

The work mentioned in this section deals with the problem of learning a model of an envi-

ronment. A complete model of an environment is a description that is su�cient for predicting

the input/output behavior of the environment, i.e., for predicting the sensory input that will be

received from the environment in response to any sequence of actions. In some cases, learning a

complete model is impractical, in which case a partial model may be learned.

9.5.1 Inferring the structure of �nite-state worlds

As the name implies, a �nite-state world has a �nite number of discrete states. This is in

contrast to a continuous world in which the state space is in�nite and is represented by a vector of

continuous state variables. The task of inferring the structure of a �nite-state environment is the

task of �nding a �nite-state automaton that accurately captures the input-output behavior of the

environment.

113



Passive learning. In a passive-learning scenario, the learning agent does not choose its actions.

Instead, it is passively given instances of the environment's input/output behavior. An instance is

a sequence of actions and resulting sensory feedback from the environment. It has been shown that

�nding the smallest automaton consistent with a given set of instances is NP-complete (Angluin

1978, Gold, 1978).

Active learning. With active learning, in which the agent actively chooses its actions, the problem

becomes tractable. The problem of inferring the structure of a �nite-state environment is greatly

simpli�ed if there is a reset operation, which allows the agent to return to the initial state at any

time, simply by clicking its heels together. Angluin (1987) gives a polynomial-time algorithm using

active experimentation and passively received counterexamples. When it �nds a complete model

that explains all of the instances it has seen so far, it presents the model to an oracle which must

then either con�rm that the model is correct, or give a counterexample | an instance that is

inconsistent with the hypothesized model.

Situated learning. Rivest & Schapire (1993) improve on Angluin's algorithm and give a version

that does not require the reset operation, an operation that is unavailable to robots situated in the

real world. They also describe a class of environments, called permutation environments , that do

not require the counterexample-producing oracle.

Marker-based exploration. The algorithms mentioned so far all produce the smallest �nite-

state automaton that is consistent with the input/output behavior observed. There is no way for

the learning agent to know whether the model accurately reects the structure of the environment.

As an extreme example, consider an environment with many states in which the sensory output is

the same for every state. The model learned for such an environment will have only one state.

If, however, the learning agent is able to \mark" a state that it has visited, and sense the marker

the next time it visits that state, then it is possible to infer the complete structure of a �nite-state

world in polynomial time (Dudek et al., 1991). The algorithm uses a �nite number of markers (at

least one) that can be dropped and picked up. The more markers the algorithm has, the more

e�cient it is.

Exploration in spatial environments. Kuipers' TOUR model (1978) is a method for modeling

discrete spatial environments based on a theory of cognitive maps. A spatial world in this context

is a deterministic �nite-state automaton with additional assumptions that (1) the states correspond

to positions in a two-dimensional coordinate frame and (2) the actions allow for turning in place

and advancing.

Exploration in stochastic environments. Work has also been done in extending these methods

to stochastic environments. In a stochastic environment, either one or both of the mappings � or 

(de�ned on page 110) are stochastic. Dean et al. (1992) have extended Rivest and Schapire's theory

to handle stochastic FSA's. They assume that actions are deterministic (i.e., that � is deterministic)
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but that the output function mapping states to senses is probabilistic. The key to their method

is \going in circles" until the uncertainty washes out. Dean, Basye, and Kaelbling (1993) give an

excellent review of learning techniques for a variety of stochastic automata. Bachrach (1992) has

demonstrated a connectionist implementation of one of Rivest and Schapire's learning algorithms

which works well in some stochastic environments.

Learning partial models. The algorithms for inferring the structure of arbitrary �nite-state

worlds are very expensive in terms of computational complexity and thus do not scale up to envi-

ronments with many states. An alternative approach is to settle for less than a perfect model.

Learning the mapping � means learning a set of tuples of the form (qi; aj; qk) where qi and qk are

states and aj is an action. Knowing that the environment is in state qi means knowing everything

there is to know about the environment's current state. This is not how learning agents in the real

world work. Humans, animals, and robots in the real world can never know the complete state of

the world | they must be content with partial knowledge.

Drescher's constructivist approach (1991) acknowledges this fact. In his system, the environ-

ment is modeled in terms of schemas , tuples of the form (context, action, result). The context

and result are conjunctions of (possibly negated) items . An item is a discrete state variable whose

set of possible values is fon, o�, unknowng. The action is any event that can a�ect the state

of the world. It can be primitive (one of the agent's innate actions), external (not produced by

the agent), or composite (a higher-level procedure that achieves a speci�c result). Learning new

schemas is accomplished via the schema mechanism which employs a statistical learning method

called marginal attribution. Since schemas emphasize sensory e�ects of actions rather than state

transitions, they are ideal for representing partial knowledge in stochastic worlds with many states.

9.5.2 Inferring the structure of continuous worlds

Map-based approaches. Much of the work that has been done in learning models of continuous

worlds works by abstracting from a continuous environment to a discrete environment. This is

the idea behind the spatial semantic hierarchy (Section 1.9). Kuipers and Byun (1988, 1991)

demonstrate an engineered solution to the continuous-to-discrete abstraction problem for the NX

robot. The target abstraction is the TOUR model (Kuipers, 1977, 1988). NX's distinctive places

correspond to discrete states and its local control strategies implement the turn and travel actions.

These constructs have to be manually redesigned in order to apply to a robot with a di�erent

sensorimotor apparatus.

Kortenkamp & Weymouth (1994) have engineered a similar solution on a physical robot.

They supplement sonar information with visual information, thereby improving the robot's place-

recognition ability. Instead of using locally distinctive places, they use gateways , \places that mark

the transition between one space in the environment and another space."

Mataric (1991, 1992) has used the subsumption architecture (Brooks, 1986) to implement a

novel control system for her robot Toto. In Toto, the representation of the map is fully integrated

into the reactive control system. What is interesting for the present discussion is that the nodes in

the learned map correspond not to distinct places, but to landmarks that are detectable over time
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as the robot moves. Instead of using corners and intersections, Toto uses left walls, right walls, and

corridors as its landmarks.

Lin and Hanson (1993) use a physical robot, called Ratbot, with 16 sonar sensors and 16 infrared

sensors to demonstrate learning of a topological map of locally distinctive places. Their work is

inspired by the work of Byun and Kuipers, but they use reinforcement learning4 to train the local

control strategies, rather than engineering them by hand. The target behaviors (e.g., corridor

following) are speci�ed by a human teacher. For example, when learning the corridor-following

behavior, the robot is rewarded when it moves along the corridor without running into obstacles.

The approach taken in this dissertation is complementary to that of Lin and Hanson. They

specify the desirable behaviors by de�ning appropriate reward signals and then letting the robot

learn on its own how to gain the rewards. The critter, on the other hand, speci�es its own target

behaviors, eliminating the need for the human teacher. It does this by �rst learning a set of local

state variables and then using them to de�ne a set of error signals. Homing and path-following

behaviors are then speci�ed as behaviors that minimize the error signals or move the robot while

maintaining them near zero. All of this is accomplished in a domain-independent manner | the

robot does not need to be given any knowledge about corridors or corridor-following behaviors.

Once the error signals are de�ned, there are a number of ways in which the homing and path-

following behaviors might be learned. Reinforcement learning is one approach.5 The approach

used in this dissertation is to learn static and dynamic action models that characterize the e�ects

of actions on the local state variables and then to use these models to directly de�ne the homing and

path-following behaviors. This approach does require that the critter have a basic understanding

of control theory, but the required knowledge is domain independent. It would be interesting to

combine the approaches used by Lin & Hanson's Ratbot and the implemented critter to produce a

learning method that uses neither domain-dependent knowledge nor a knowledge of control theory.

The error signals would be de�ned as for the critter and then a neural-net version of Q learning

would be used to learn the local control strategies based on those error signals. The control laws

would be implemented as mappings from sensory inputs to motor control signals. If the sensory

inputs include the error signals, their derivatives, and their integrals, then the set of control laws

that can be de�ned in this way includes the PI and PD control laws used by the implemented

critter.

As was mentioned in Section 7.5.1, the approach taken by the critter handles context-dependent

e�ects at the feature level instead of the behavior level. This is important because the critter can

learn the e�ects of motor control signals on multiple features simultaneously, whereas it is only

possible to train one behavior at a time.

Rule-based approaches. The map-based approaches produce a discrete representation of an

environment that is based on the �nite-state automaton: places correspond to states and path-

following behaviors to actions. An alternative approach is to model the behavior of the continuous

4The reinforcement-learning algorithm is a neural-network version of Q learning (Watkins 1989, Lin 1993).
5An earlier version of the critter actually did use reinforcement learning to learn homing behaviors (Pierce &

Kuipers, 1991)
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environment in terms of rules. This is analogous to Drescher's approach where state transitions are

replaced by schemas | rules of the form (context, action, result). This approach is taken by Shen

& Simon (1989). Their live system \is an extension of the GPS problem solving framework with a

learning component that creates and learns rules through environmental exploration" (page 676).

A key component of the system is the set of constructors used to produce new rules and features.

Examples of these constructors are predicates (=, >, etc.), functions (+, �, etc.), and logical

connectives (^, :, and 9, etc.). The approach taken by Shen & Simon and other constructive

inductionists (e.g., Matheus, 1991; Hiraki, 1994) is complementary to the approach presented in

this dissertation and there is the possibility of a rich cross fertilization by combining the approaches.

The critter's learning capabilities could be extended using principles from constructive induc-

tion. Currently, the critter tries to understand its world in terms of a map of discrete places and

paths. In the real world, there is a great deal of structure that is more appropriately described

with rules (e.g., \If I ip the switch, the light goes on.") than with a map of places and paths.

Likewise, the constructive-induction learning systems could bene�t by having a richer set of

feature generators. Figure 9.2 illustrates a hierarchy of learned features culminating in the local-

minimum features that were used by the critter as local state variables. For a robot with a rich,

structured sensory system such as a ring of distance sensors, I believe that the feature generators

used by the critter are more appropriate than arithmetical primitives and logical connectives. The

latter are very general but lead to a combinatoric explosion of features. Ideally, a learning agent

should have both powerful generators and general-purpose generators. Such a learning agent will

require a good set of heuristics for deciding when each generator is appropriate.

9.6 Discussion

9.6.1 Learning in spatial environments

The critter has learned a discrete abstract interface that transforms a continuous environment

into a discrete, �nite-state environment. This is in contrast to the NX robot whose learned sym-

bolic procedures corresponded to the primitives of the TOUR model. Since the TOUR model was

speci�cally designed to represent structure in spatial worlds, it produces a more concise representa-

tion than does the critter's discrete abstract interface. For example, a distinctive place at a corner

of a room is a single node in NX's topological map, whereas the same corner is represented as

four distinct states for the critter, one for each of four directions that the robot can face. Thus

a concise representation is sacri�ced for the sake of generality. Perhaps this is just as well | the

fact that a corner is represented as a single node is a reection of the robot programmer's bias.

From the critter's perspective, there may be no reason to view the corner as a single place. With

an additional level of abstraction, it may be possible to have it both ways | to represent a corner

as a single distinctive place at one level and four distinctive states at a lower level. The grouping

of four states into one may be justi�ed from the critter's perspective if, say, the e�ort required to

move from one of the states to any of the others is small compared to the e�ort required to move

from one corner to another. A hierarchical representation such as this is probably appropriate in

any case. For example, if the NX robot lived in a larger environment, it would be to its advantage
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process used to produce candidate local state variables.
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to use a hierarchical topological map instead of a single one-level map with thousands of nodes in

it.

9.6.2 Reinforcement learning

Reinforcement learning works very well for discrete state spaces with a small number of discrete

actions (e.g., Sutton, 1990). When applied to continuous environments, the robot's action space is

discretized (e.g., Barto et al., 1983; Lin, 1993). This dissertation presents an alternative approach

| to learn general-purpose behaviors for navigation. With a set of such behaviors, reinforcement-

learning techniques will be more e�ective. An in�nite space of motor control vectors has been

reduced to a small set of actions, and each action moves the robot through a much longer trajectory,

making it easier to achieve rewards that require motion through large-scale space.

In fact, with the right set of behaviors and a topological map, reinforcement learning may not

even be necessary. If a goal is associated with a node in the map, then planning can be used

to immediately produce a shortest path to the goal. This point is relevant to the de�nition of

Drescher's composite actions which are not trained but instead use a form of backward chaining.

9.7 Conclusions

9.7.1 Changes of representation

Each abstract interface that the critters learns provides a change of representation. At the

sensorimotor level, the group and image feature generators exploit structure reected in intersensor

correlations to produce the image feature which is radically di�erent from the raw sense vector.

The learned set of primitive actions produces a new representation of the robot's motor capabilities

that is grounded in sensory e�ects.

At the control level, behaviors and features are learned that are no longer purely egocentric.

Whereas the primitive actions are grounded in sensory e�ects averaged over time, the de�nitions of

the homing and path-following behaviors are grounded in the structure of the external environment

as reected by the current values of the local state variables.

At the procedural level, continuous state space is reduced to a one-dimensional space of states

and trajectories that can be represented as a �nite set of nodes and edges in a topological map.

9.7.2 Use of domain-independent knowledge

In the engineered solutions to the robot-mapping problem (Kuipers and Byun, Mataric, Ko-

rtenkamp et al.), speci�c knowledge of the robot's environment is used to de�ne the control laws.

Here, the critter uses domain-independent knowledge. The group and image generators are based

on techniques from multivariate analysis and are applicable to any sensory array that detects struc-

tured information from an almost-everywhere continuous environment. The control laws are based

on control-theoretic principles that make no assumptions about the details of the sensorimotor

apparatus, only that each controlled feature's temporal derivative can locally be approximated as

a linear function of the motor control signals. Moreover, this information need not be provided by

the robot designer { it is discovered when the static action model is learned.
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9.7.3 Summary

This dissertation has presented a method for learning a cognitive map of a continuous world

in the absence of domain-dependent knowledge of the critter's sensorimotor apparatus or of the

structure of its world. The learning methods are summarized below and in Figure 9.3. Chapter 4

showed how to use the group and image feature generators to learn a structural model of a sensory

apparatus. They exploit the fact that, in a well engineered array of sensors sampling an almost-

everywhere continuous property of the environment, the layout of the sensors may be reconstructed

based on intersensor similarities. Chapter 5 showed how to use this structural knowledge to �rst

de�ne motion detectors and then use them to characterize the capabilities of a motor apparatus

using a set of primitive actions, one for each of the robot's degrees of freedom. Chapter 6 showed

how to recognize local state variables | scalar features whose derivatives can be approximated by

context-dependent linear functions of the motor control signals. The e�ects of the primitive actions

on the local state variables are captured by the static action model. Chapter 7 showed how to use

the static action model to de�ne homing and open-loop path-following behaviors, how to learn a

dynamic action model to predict the e�ects of the primitive actions on the local state variables

while open-loop path-following behaviors execute, and how to use the dynamic action model to

de�ne robust, closed-loop path-following behaviors. Finally, Chapter 9 has shown how to use the

homing and path-following behaviors to de�ne a discrete abstract interface that allows the critter

to abstract its continuous world to a �nite-state world.

By using the �nite-state automaton as the target abstraction, the critter inherits a powerful set

of methods for inferring the structure of its world. In the process of developing this abstraction, this

work has produced methods for modeling a sensorimotor apparatus, for learning useful features,

and for characterizing the e�ects of actions on features in two ways: The static action model

captures �rst-order e�ects useful for de�ning homing behaviors and for deciding when an action

leaves a feature invariant. The dynamic action model captures second-order e�ects useful for error

correction in robust, path-following control laws.
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