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Abstract

An analogue of a spectral triple over SUq(2) is constructed for which the usual assumption
of bounded commutators with the Dirac operator fails. An analytic expression analogous to that
for the Hochschild class of the Chern character for spectral triples yields a non-trivial twisted
Hochschild 3-cocycle. The problems arising from the unbounded commutators are overcome by
defining a residue functional using projections to cut down the Hilbert space.

1 Introduction

This paper studies the homological dimension of the quantum group SUq(2) from the perspective of
Connes’ spectral triples. We use an analogue of a spectral triple to construct, by a residue formula,
a nontrivial Hochschild 3-cocycle. Thus we obtain finer dimension information than is provided by
the nontriviality of a K-homology class, which is sensitive only to dimension modulo 2.
The position of quantum groups within noncommutative geometry has been studied intensively over
the last 15 years. In particular, Chakraborty and Pal [ChP1] introduced a spectral triple for SUq(2),
and this construction was subsequently refined in [DLSSV] and generalised by Neshveyev and Tuset
in [NT2] to all compact Lie groups G. These spectral triples have analytic dimension dimG and
nontrivial K-homology class. However, when Connes computed the Chern character for Chakraborty
and Pal’s spectral triple [C1], he found that it had cohomological dimension 1 in the sense that the
degree dimSU(2) = 3 term in the local index formula is a Hochschild coboundary. Analogous results
for the spectral triple from [DLSSV] were obtained in [DLSSV2].
Contrasting these ‘dimension drop’ results, Hadfield and the first author [HK1, HK2] showed that
SUq(2) is a twisted Calabi-Yau algebra of dimension 3 whose twist is the inverse of the modular
automorphism for the Haar state on this compact quantum group, cf. Section 2. They also computed
a cocycle representing a generator of the nontrivial degree 3 Hochschild cohomology groups (which
we call the fundamental cocycle), and a dual degree 3 Hochschild cycle which we denote dvol.
The starting point of the present paper is the concept of a ‘modular’ spectral triple [CNNR]. These are
analogous to ordinary spectral triples except for the use of twisted traces. The examples considered
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in [CNNR] arise from KMS states of circle actions on C∗-algebras, and yield nontrivial KK-classes
with 1-dimensional Chern characters in twisted cyclic cohomology. In [KW] it was then shown that
they also can be used to obtain the fundamental cocycle of the standard Podleś quantum 2-sphere.
Motivated by this, our construction here extends the modular spectral triple on the Podleś sphere to
all of SUq(2). This extension is not a modular spectral triple, but as our main theorem shows, still
captures the homological dimension 3: we give a residue formula for a twisted Hochschild 3-cocycle
which is a nonzero multiple of the fundamental cocycle. We obtain this formula by analogy with
Connes’ formula for the Hochschild class of the Chern character of spectral triples, [C, Theorem 8,
IV.2.γ] and [BeF, CPRS1]. A natural next question that arises is whether our constructions provide
a representative of a nontrivial K-homological class.
The organisation of the paper is as follows. In Section 2 we recall the definitions of SUq(2), the
Haar state on SUq(2) and the associated GNS representation, and finally the modular theory of the
Haar state. In Section 3 we recall the homological constructions of [HK1, HK2], and prove some
elementary results we will need when we come to show that our residue cocycle does indeed recover
the class of the fundamental cocycle.
Section 4 contains all the key analytic results on meromorphic extensions of certain functions that
allow us to prove novel summability type results for operators whose eigenvalues have mixed poly-
nomial and exponential growth, see Lemma 4.2.
Section 5 constructs an analogue of a spectral triple (A,H,D) over the algebra A of polynomials in
the standard generators of the C∗-algebra SUq(2). The key requirement of bounded commutators
fails, and this ‘spectral triple’ fails to be finitely summable in the usual sense (however, it is θ-
summable). Using an ultraviolet cutoff we can recover finite summability of the operator D on a
subspace of H with respect to a suitable twisted trace. However, our representation of A does not
restrict to this subspace, and so we are prevented from obtaining a genuine spectral triple.
In Section 6 we define a residue functional τ . Heuristically, for an operator T ,

τ(T ) = Ress=3Trace(∆
−1QT (1 +D2)−s/2).

Here ∆ implements the modular automorphism of the Haar state, D is our Dirac operator and Q
is a suitable projection that implements the cutoff. The existence, first of the trace, and then the
residue, are both nontrivial matters.
The main properties of τ are described in Theorem 6.3, and in particular we show that the domain of
τ contains the products of commutators a0[D, a1][D, a2][D, a3] for ai ∈ A. In addition, τ is a twisted
trace on a suitable subalgebra of the domain containing these products. The main result, Theorem
6.5, proves that the map a0, . . . , a3 7→ τ(a0[D, a1][D, a2][D, a3]) is a twisted Hochschild 3-cocycle,
whose cohomology class is non-trivial and coincides with (a multiple of) the fundamental class.

Acknowledgements We would like to thank our colleagues Alan Carey, Victor Gayral, Jens Kaad,
Andrzej Sitarz and Joe Várilly for stimulating discussions on these topics. The second and third
authors were supported by the Australian Research Council. The first author was supported by the
EPSRC fellowship EP/E/043267/1 and partially by the Polish Government Grant N201 1770 33 and
the Marie Curie PIRSES-GA-2008-230836 network.

2 Background on SUq(2)

The notations and conventions of [KS] will be used throughout for consistency. We recall that
A := O(SUq(2)), for q ∈ (0, 1), is the unital Hopf ∗-algebra with generators a, b, c, d satisfying the
relations
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ab = qba, ac = qca, bd = qdb, cd = qdc, bc = cb

ad = 1 + qbc, da = 1 + q−1bc

and carrying the usual Hopf structure, as in e.g. [KS]. The involution is given by

a∗ = d, b∗ = −qc, c∗ = −q−1b, d∗ = a.

We choose to view A as being generated by a, b, c, d explicitly, rather than just a, b, in order to make
formulae more readable.

Proposition 2.1 ([KS, Proposition 4.4]). The set {anbmcr, bmcrds | m, r, s ∈ N0, n ∈ N} is a vector
space basis of A. These monomials will be referred to as the polynomial basis.

Recall that for each l ∈ 1
2N0, there is a unique (up to unitary equivalence) irreducible corepresentation

Vl of the coalgebra A of dimension 2l + 1, and that A is cosemisimple. That is, if we fix a vector
space basis in each of the Vl and denote by tli,j ∈ A the corresponding matrix coefficients, then we
have the following analogue of the Peter-Weyl theorem.

Theorem 2.2 ([KS, Theorem 4.13]). Let Il := {−l,−l + 1, . . . , l − 1, l}. Then the set {tli,j | l ∈
1
2N0, i, j ∈ Il} is a vector space basis of A.

This will be referred to as the Peter-Weyl basis. With a suitable choice of basis in V 1
2
, one has

a = t
1
2

− 1
2
,− 1

2

, b = t
1
2

− 1
2
, 1
2

, c = t
1
2
1
2
,− 1

2

, d = t
1
2
1
2
, 1
2

.

The expressions for the Peter-Weyl basis elements as linear combinations of the polynomial basis
elements can be found in [KS, Section 4.2.4].
The quantized universal enveloping algebra Uq(sl(2)) is a Hopf algebra which is generated by k, k−1, e, f
with relations

kk−1 = k−1k = 1, kek−1 = qe, kfk−1 = q−1f, [e, f ] =
k2 − k−2

q − q−1
.

Note that in [KS] this algebra is denoted by Ŭq(sl2) and U
ext
q (sl2). The algebra Uq(sl(2)) carries the

following Hopf structure

∆(k) = k ⊗ k, ∆(e) = e⊗ k + k−1 ⊗ e, ∆(f) = f ⊗ k + k−1 ⊗ f

S(k) = k−1, S(e) = −qe, S(f) = −q−1f

ε(k) = 1, ε(e) = ε(f) = 0.

Adding the following involution

k∗ = k, e∗ = f, f∗ = e

we obtain a Hopf ∗-algebra which we denote by Uq(su(2)).

3



Theorem 2.3 ([KS, Theorem 4.21]). There exists a unique dual pairing 〈·, ·〉 of the Hopf algebras
Uq(sl(2)) and A such that

〈k, a〉 = q−
1
2 , 〈k, d〉 = q

1
2 , 〈e, c〉 = 〈f, b〉 = 1

〈k, b〉 = 〈k, c〉 = 〈e, a〉 = 〈e, b〉 = 〈e, d〉 = 〈f, a〉 = 〈f, c〉 = 〈f, d〉 = 0.

This pairing is compatible with the ∗-structures on Uq(sl(2)) and A, [KS, Chapter 1].

The dual pairing between the Hopf algebras 〈·, ·〉 : Uq(sl(2)) ×A → C defines left and right actions
of Uq(sl(2)) on A. Using Sweedler notation (∆(x) =

∑

x(1) ⊗ x(2)) these actions are given by

g ⊲ x :=
∑

x(1)
〈

g, x(2)
〉

x ⊳ g :=
∑

x(2)
〈

g, x(1)
〉

, for all x ∈ A, g ∈ Uq(sl(2)).

The left and right actions make A a Uq(sl(2))-bimodule [KS, Proposition 1.16].
Our definition of the q-numbers is

[a]q :=
q−a − qa

q−1 − q
= Q(q−a − qa) for any a ∈ C,

where we abbreviated Q := (q−1 − q)−1 ∈ (0,∞). The following lemma recalls the explicit formulas
for the action of the generators on the Peter-Weyl basis.

Lemma 2.4. For all n ∈ Z,

kn ⊲ tli,j = qnjtli,j tli,j ⊳ k
n = qnitli,j

e ⊲ tli,j =
√

[

l + 1
2

]2

q
−
[

j + 1
2

]2

q
tli,j+1 f ⊲ tli,j =

√

[

l + 1
2

]2

q
−
[

j − 1
2

]2

q
tli,j−1.

Later we will use the notation

∂k := k ⊲ · , ∂e := e ⊲ · , ∂f := f ⊲ · ,
especially when we extend these operators fromA to suitable completions. Also observe that ∆(kn) =
kn⊗kn for all n ∈ Z, hence kn ⊲ · and ·⊳kn are algebra automorphisms on A. They are not ∗-algebra
automorphisms since for α ∈ A we have (k⊲α)∗ = k−1 ⊲α∗, (α⊳k)∗ = α∗ ⊳k−1. Finally, we introduce

∂H(tli,j) = jtli,j,

and we note that formally ∂k = q∂H .

2.1 The GNS representation for the Haar state

We denote by A := C∗(SUq(2)) the universal C∗-completion of the ∗-algebra A [KS, Section 4.3.4].
Let h be the Haar state of A whose values on basis elements are

h(aibjck) = h(dibjck) = δi,0δj,k(−1)k[k + 1]−1
q , h(tli,j) = δl0.

Let Hh denote the GNS space L2(A,h), where the inner product 〈x, y〉 = h(x∗y) is conjugate linear
in the first variable. The representation of A on Hh is is induced by left multiplication in A. The
set {tli,j | l ∈ 1

2N0, i, j ∈ Il} is an orthogonal basis for Hh with

〈

tli,j, t
l′

i′,j′

〉

= δl,l′δi,i′δj,j′q
−2i[2l + 1]−1

q .
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2.2 Modular Theory

Following Woronowicz, we call the automorphism

ϑ(α) := k−2 ⊲ α ⊳ k−2, α ∈ A

the modular automorphism of A. The action of ϑ on the generators of A and the Peter-Weyl basis
is given by

ϑ(a) = q2a, ϑ(b) = b, ϑ(c) = c, ϑ(d) = q−2d, ϑ(tlr,s) = q−2(r+s)tlr,s.

The modular automorphism is a (non ∗-) algebra automorphism; more precisely for any α ∈ A

ϑ(α)∗ = ϑ−1(α∗).

The Haar state is related to the modular automorphism by the following proposition.

Proposition 2.5 ([KS, Proposition 4.15]). For α, β ∈ A, we have h(αβ) = h(ϑ(β)α).

In fact, h extends to a KMS state on A for the strongly continuous one-parameter group ϑt, t ∈ R,
of ∗-automorphisms of A which is given on the generators by

ϑt(a) := q−2ita , ϑt(b) := b , ϑt(c) := c , ϑt(d) := q2itd .

We extend this to an action ϑ· : C × A → A by algebra (not ∗-) automorphisms that is defined on
generators by

ϑz(a) := q−2iza , ϑz(b) := b , ϑz(c) := c , ϑz(d) := q2izd ,

so that the modular automorphism ϑ is ϑi.
We can implement ϑt in the GNS representation on Hh. To do this, we define an unbounded linear
operator ∆F on A ⊂ Hh by

∆F (t
l
i,j) := q2i+2jtli,j

and call this the full modular operator. Then we have

ϑt(x)ξ = ∆it
Fx∆

−it
F ξ , for all x ∈ A and ξ ∈ Hh.

The subscript F denotes that this operator is associated to the full modular automorphism ϑ. In
addition, we define the left and the right modular operators on A ⊂ Hh by

∆L(t
l
i,j) := q2jtli,j, ∆R(t

l
i,j) := q2itli,j,

so ∆F = ∆L∆R = ∆R∆L. Just as ∆F implements the modular automorphism group, the left and
right modular operators implement one-parameter groups of automorphisms of A:

σL,t(t
l
r,s) = q2itstlr,s = ∆it

Lt
l
r,s∆

−it
L , σR,t(t

l
r,s) = q2itrtlr,s = ∆it

Rt
l
r,s∆

−it
R .
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As with the full action, the left and right actions are periodic and hence give rise to actions of T on
A. These may be extended to a complex action on the ∗-subalgebra A which we will denote σL,z
and σR,z. In particular, we obtain for z = i the algebra automorphisms

σL := k−2 ⊲ · σR := · ⊳ k−2 ϑ = σLσR = σRσL

σL(t
l
r,s) = q−2stlr,s σR(t

l
r,s) = q−2rtlr,s

ϑ(α)ξ = ∆−1
F α∆F ξ σL(α)ξ = ∆−1

L α∆Lξ σR(α)ξ = ∆−1
R α∆Rξ.

The fixed point algebra for the left action on A is isomorphic to the standard Podleś quantum 2–
sphere O(S2

q ). We will denote its C∗-completion by B. As the left action is periodic, we may define
a positive faithful expectation Φ: A→ B by

Φ(x) =
ln(q−2)

2π

∫ 2π/ ln(q−2)

0
σL,t(x)dt.

More generally, given n ∈ Z and x ∈ A we define

Φn(x) =
ln(q−2)

2π

∫ 2π/ ln(q−2)

0
t−nσL,t(x)dt.

Since σL,t is a strongly continuous action on A, the Φn are continuous maps on A. Observe that
Φ = Φ0 and

Φn(t
l
i,j) = δn,2jt

l
i,j

Hence the Φn can be extended to bounded operators on the GNS space Hh, and in fact the Φn are
projections onto the spectral subspaces of the left circle action. So we make explicit the decomposition
of A into the left spectral subspaces by defining

Bn := Φn(A) = {α ∈ A | σL,t(α) = q2intα} and Hn := L2(Bn, h)

where h is the Haar state (restricted to Bn). This leads to the following decomposition for the GNS
space

Hh =

∞
⊕

n=−∞

Hn.

The commutation relations for the projections Φn and the operators ∂k, ∂e and ∂f are found from
the definitions on the Peter-Weyl basis to be

∂kΦn = Φn∂k = q
n

2 Φn ∂HΦn = Φn∂H =
n

2
Φn ∆LΦn = Φn∆L = qnΦn

∂eΦn = Φn+2∂e ∂fΦn = Φn−2∂f .

The left actions of e and f are twisted derivations in the sense that for α, β ∈ A

∂e(αβ) = ∂e(α)∂k(β) + ∂−1
k (α)∂e(β)

∂f (αβ) = ∂f (α)∂k(β) + ∂−1
k (α)∂f (β) .
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More generally, given α ∈ A and ξ ∈ Hh

∂e(αξ) = ∂e(α)∆
1
2
Lξ + σ

1
2
L(α)∂e(ξ) ∂f (αξ) = ∂f (α)∆

1
2
Lξ + σ

1
2
L(α)∂f (ξ) (2.1)

= ∂e(α)∆
1
2
Lξ +∆

− 1
2

L α∆
1
2
L∂e(ξ) = ∂f (α)∆

1
2
Lξ +∆

− 1
2

L α∆
1
2
L∂f (ξ).

See e.g. [BHMS] and the references therein for background on the generalisation of this setting in
terms of Hopf-Galois extensions.

3 Twisted homology and cohomology

We recall that the algebra A is a ϑ−1-twisted Calabi-Yau algebra of dimension 3, see [HK2] and the
references therein for this result and some background. Since the centre of A consists only of the
scalar multiples of 1A, this means in particular that the cochain complex C• := HomC(A⊗C•+1,C),
with differential bϑ−1 : Cn → Cn+1 given by

(bϑ−1ϕ)(a0, . . . , an, an+1) =

n
∑

i=0

(−1)nϕ(a0, . . . , aiai+1, . . . , an+1)

+ (−1)n+1ϕ(ϑ−1(an+1)a0, a1, . . . , an),

is exact in degrees n > 3 and has third cohomology H3(C, bϑ−1) ≃ C. An explicit cocycle whose
cohomology class generates H3(C, bϑ−1) can be constructed using the following incarnation of the
cup product ` in Hochschild cohomology:

Lemma 3.1. Let σ0, . . . , σ3 be automorphisms of A,
∫

: A → C be a σ0 ◦ ϑ−1 ◦ σ−1
3 -twisted trace,

that is,
∫

αβ =

∫

σ0(ϑ
−1(σ−1

3 (β)))α,

and ∂i : A → A, i = 1, 2, 3, be σi−1-σi-twisted derivations, that is,

∂i(αβ) = σi−1(α)∂i(β) + ∂i(α)σi(β).

Then the functional defined via the cup product by
(∫

` ∂1 ` ∂2 ` ∂3

)

(a0, a1, a2, a3) :=

∫

σ0(a0)∂1(a1)∂2(a2)∂3(a3)

is a ϑ−1-twisted cocycle, bϑ−1(
∫

` ∂1 ` ∂2 ` ∂3) = 0.

Proof. This is a straightforward computation:
(

bϑ−1

∫

` ∂1 ` ∂2 ` ∂3

)

(a0, a1, a2, a3, a4)

=

∫

σ0(a0a1)∂1(a2)∂2(a3)∂3(a4)−
∫

σ0(a0)∂1(a1a2)∂2(a3)∂3(a4)

+

∫

σ0(a0)∂1(a1)∂2(a2a3)∂3(a4)−
∫

σ0(a0)∂1(a1)∂2(a2)∂3(a3a4)

+

∫

σ0(ϑ
−1(a4)a0)∂1(a1)∂2(a2)∂3(a3)

= −
∫

σ0(a0)∂1(a1)∂2(a2)∂3(a3)σ3(a4) +

∫

σ0(ϑ
−1(a4))σ0(a0)∂1(a1)∂2(a2)∂3(a3)

= 0.
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Less straightforward is that when applying the above result with

σ0 = σ1 = k−4 ⊲ · , σ2 = k−2 ⊲ · , σ3 = id,

∂1 = (k−4 ⊲ ·) ◦ ∂H , ∂2 = (k−3 ⊲ ·) ◦ ∂e, ∂3 = (k−1 ⊲ ·) ◦ ∂f
and a suitable twisted trace, one obtains a cohomologically nontrivial ϑ−1-twisted cocycle.

Lemma 3.2 ([HK2, Corollary 3.8]). Define a linear functional
∫

[1] : A → C by

∫

[1]
anbmcr := δn,0δm,0δr,0,

∫

[1]
bmcrds := δm,0δr,0δs,0.

Then
∫

[1] is a σ2L ◦ ϑ−1-twisted trace, and the cochain ϕ ∈ C3 given by

ϕ(a0, . . . , a3) =

∫

[1]

(

k−4 ⊲ (a0 ∂H(a1))
) (

k−3 ⊲ ∂e(a2)
) (

k−1 ⊲ ∂f (a3)
)

is a cocycle, bϑ−1ϕ = 0, whose cohomology class is nontrivial, bϑ−1ψ 6= ϕ for all ψ ∈ C2.

Later, we will also have to consider the cocycles that are obtained by using the (twisted) derivations
∂H , ∂e, ∂f in a different order. Explicitly, this is handled by the following result.

Lemma 3.3. In the situation of Lemma 3.1, define

∂̃3 = σ1 ◦ σ−1
2 ◦ ∂3, ∂̃2 := ∂2 ◦ σ−1

2 ◦ σ3, ∂̂2 := σ0 ◦ σ−1
1 ◦ ∂2, ∂̂1 := ∂1 ◦ σ−1

1 ◦ σ2.

Then we have
∫

` ∂1 ` ∂2 ` ∂3 +

∫

` ∂1 ` ∂̃3 ` ∂̃2 = bϑ−1ψ132,
∫

` ∂1 ` ∂2 ` ∂3 +

∫

` ∂̂2 ` ∂̂1 ` ∂3 = bϑ−1ψ213,

where

ψ132(a0, a1, a2) :=

∫

σ0(a0)∂1(a1)∂2(σ
−1
2 (∂3(a2))),

ψ213(a0, a1, a2) := −
∫

σ0(a0)∂1(σ
−1
1 (∂2(a1)))∂3(a2).

Proof. Straightforward computation.

Applying Lemma 3.3 repeatedly to the cocycle ϕ from Lemma 3.2 gives cohomologous cocycles.

Corollary 3.4. The cocycle ϕ from Lemma 3.2 is cohomologous to each of

ϕ132(a0, a1, a2, a3) := −q−2

∫

[1]

(

k−4 ⊲ (a0 ∂H(a1))
) (

k−3 ⊲ ∂f (a2)
) (

k−1 ⊲ ∂e(a3)
)

,

ϕ213(a0, a1, a2, a3) := −
∫

[1]

(

k−4 ⊲ a0
) (

k−3 ⊲ ∂e(a1)
) (

k−2 ⊲ ∂H(a2)
) (

k−1 ⊲ ∂f (a3)
)

,

8



ϕ312(a0, a1, a2, a3) := q−2

∫

[1]

(

k−4 ⊲ a0
) (

k−3 ⊲ ∂f (a1)
) (

k−2 ⊲ ∂H(a2)
) (

k−1 ⊲ ∂e(a3)
)

,

ϕ231(a0, a1, a2, a3) :=

∫

[1]

(

k−4 ⊲ a0
) (

k−3 ⊲ ∂e(a1)
) (

k−1 ⊲ ∂f (a2)
)

(∂H(a3))

and

ϕ321(a0, a1, a2, a3) := −q−2

∫

[1]

(

k−4 ⊲ a0
) (

k−3 ⊲ ∂f (a1)
) (

k−1 ⊲ ∂e(a2)
)

(∂H(a3)) .

Proof. To begin, one applies Lemma 3.3 to ϕ with

∂̃3 = (k−3 ⊲ ·)◦∂f , ∂̃2 = (k−3 ⊲ ·)◦∂e ◦ (k2 ⊲ ·), ∂̂2 = (k−3 ⊲ ·)◦∂e, ∂̂1 := (k−4 ⊲ ·)◦∂H (·)◦ (k2 ⊲ ·) .

The formulae for these derivations can be simplified by commuting ∂e and k ⊲ to obtain

∂̃3 = (k−3 ⊲ ·) ◦ ∂f , ∂̃2 = q−2(k−1 ⊲ ·) ◦ ∂e, ∂̂2 = (k−3 ⊲ ·) ◦ ∂e, ∂̂1 := (k−2 ⊲ ·) ◦ ∂H(·).

This gives ϕ132 and ϕ213. Then we can apply Lemma 3.3 again to ϕ213. Going from ϕ213 to ϕ312

is easy, since it only involves exchanging e and f . Next we obtain ϕ231 from ϕ213 by applying
Lemma 3.3 with

σ0 = k−4 ⊲ ·, σ1 = σ2 = k−2 ⊲ ·, σ3 = id,

∂1 = (k−3 ⊲ ·) ◦ ∂e, ∂2 = (k−2 ⊲ ·) ◦ ∂H , ∂3 = (k−1 ⊲ ·) ◦ ∂f
which gives

∂̃3 = σ1 ◦ σ−1
2 ◦ ∂3 = ∂3 = (k−1 ⊲ ·) ◦ ∂f ,

∂̃2 = ∂2 ◦ σ−1
2 ◦ σ3 = (k−2 ⊲ ·) ◦ ∂H ◦ (k2 ⊲ ·) = ∂H .

The last cocycle is obtained analogously from ϕ312.

A homologically nontrivial 3-cycle dvol in the (pre)dual chain complex C• := A⊗C•+1 (with differen-
tial dual to bϑ−1) has been computed in [HK1, HK2]:

dvol := d⊗ a⊗ b⊗ c− d⊗ a⊗ c⊗ b+ q d⊗ c⊗ a⊗ b

− q2 d⊗ c⊗ b⊗ a+ q2 d⊗ b⊗ c⊗ a− q d⊗ b⊗ a⊗ c

+ c⊗ b⊗ a⊗ d− c⊗ b⊗ d⊗ a+ q c⊗ d⊗ b⊗ a

− c⊗ d⊗ a⊗ b+ c⊗ a⊗ d⊗ b− q−1 c⊗ a⊗ b⊗ d

+ (q−1 − q) c⊗ b⊗ c⊗ b (3.1)

With this normalisation, we have ϕ(dvol) = 1.

4 Some meromorphic functions

In this section we demonstrate that certain functions have meromorphic continuations. These func-
tions arise in the residue formula for the Hochschild cocycle in the next two sections. We require the
following notation. For any l ∈ 1

2N0 and −(2l + 1) ≤ n ≤ (2l + 1) define

λl,n :=

√

√

√

√

(n

2

)2
+ qn

(

[

l +
1

2

]2

q

−
[n

2

]2

q

)

. (4.1)
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We also define the finite sets

Jl :=

{

{0, 2, . . . , 2l − 1} l ∈ (N0 +
1
2 )

{1, 3, . . . , 2l − 1} l ∈ N
.

Lemma 4.1. The formulas

z 7→ f1(z) :=

∞
∑

2l=1

l
∑

i=−l

∑

n∈Jl

q2l−2i

(1 + λ2l,n)
z/2

z 7→ f2(z) :=

∞
∑

2l=1

l
∑

i=−l

∑

n∈Jl

q2l−n

(1 + λ2l,n)
z/2

define holomorphic functions on Dom2, where we abbreviate

Domt := {z ∈ C | Re(z) > t}, t ∈ R.

Proof. We will show that the sums converge uniformly on compacta. To begin with, we take z = t ∈
(2,∞), and compute the summation over the i parameter for f1 and f2 giving

f1(t) =
∞
∑

2l=1

∑

n∈Jl

q2l[2l + 1]q

(1 + λ2l,n)
t/2
, f2(t) =

∞
∑

2l=1

∑

n∈Jl

(2l + 1)q2l−n

(1 + λ2l,n)
t/2

. (4.2)

For l ∈ 1
2N0 and n ∈ Jl we have the inequality

[

l +
1

2

]2

q

−
[n

2

]2

q
≥ [2l]q

with equality attained for n = 2l − 1. This inequality implies

1 + λ2l,n ≥ 1 +
(n

2

)2
+ qn[2l]q ≥ 1 +

(n

2

)2
+ qn−2l+1. (4.3)

Since the summands in Equation (4.2) are positive, we may invoke Tonelli’s theorem to rearrange
the order of summation

∞
∑

2l=1

∑

n∈Jl

→
∞
∑

n=0

∞
∑

l=(n+1)/2

.

Combining the elementary inequality q2l[2l + 1]q ≤ q−1Q with Equation (4.3) gives the inequalities

f1(t) ≤ q−1Q
∞
∑

n=0

∞
∑

l=n+1
2

1

(1 +
(

n
2

)2
+ qn−2l+1)t/2

, f2(t) ≤
∞
∑

n=0

∞
∑

l=n+1
2

(2l + 1)q2l−n

(1 +
(

n
2

)2
+ qn−2l+1)t/2

.

We reparameterise the sums defining f1 and f2 using y = 2l− 1− n with summation range y = 0 to
y = ∞. This yields

f1(t) ≤ q−1Q

∞
∑

n=0

∞
∑

y=0

1

(1 +
(

n
2

)2
+ q−y)t/2

, f2(t) ≤
∞
∑

n=0

∞
∑

y=0

(y + n+ 2)qy+1

(1 +
(

n
2

)2
+ q−y)t/2

. (4.4)
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Next we employ the inequality α2 + β2 ≥ αβ, valid for any positive real numbers α and β, to f1(t).
This yields

f1(t) ≤ q−1Q

∞
∑

n=0

∞
∑

y=0

qyt/4
(

1 +
(n

2

)2
)−t/4

<∞ for all t > 2.

For the function f2(t), we evaluate the sums over y on the right hand side to obtain, for some positive
constants C1 and C2,

f2(t) ≤
∞
∑

n=0

∞
∑

y=0

(y + n+ 2)qy+1

(

1 +
(

n
2

)2
)t/2

=

∞
∑

n=0

C1 + C2n
(

1 +
(

n
2

)2
)t/2

.

This last sum is finite for all t > 2, and bounded uniformly for t ≥ 2 + ǫ for any ǫ > 0. This
establishes that f1, f2 are finite for all Re(z) > 2, and the sums defining them converge uniformly on
vertical strips, and so on compacta. Finally, to show that f1, f2 are holomorphic in the half-plane
Re(z) > 2, we invoke the Weierstrass convergence theorem.

Lemma 4.2. For any positive reals x, y, r > 0, w ∈ N, and z ∈ Dom3, define

h(z) :=

∞
∑

n=1

∞
∑

m=w

erm

(x2n2 + y2erm)z/2

Then we have:

1. h is a holomorphic function on Dom3;

2. h has a meromorphic continuation to Dom2 with a simple pole at z = 3;

3. This continuation can be written as

h(z) =

√
π

2xyz−1

Γ(z−1
2 )

Γ(z2 )

e−rw(z−3)/2

1− e−r(z−3)/2
− 1

2yz
e−rw(z−2)/2

1− e−r(z−2)/2
+ err(z)

where err is a holomorphic function on Dom2 that satisfies

|err(z)| ≤ 1

2yRe(z)

e−rw(Re(z)−2)/2

1− e−r(Re(z)−2)/2
.

Proof. Until further notice, we take z real and positive. Later we will extend our results to complex
z as in Lemma 4.1. Inserting the Mellin transform of f(t) = e−(x2n2+y2erm)t gives

h(z) =

∞
∑

n=1

∞
∑

m=w

erm

Γ(z2)

∫ ∞

0
t
z

2
−1e−tx2n2

e−ty2ermdt.

For z real, all terms above are positive. Therefore we can apply Tonelli’s theorem to exchange the
order of integration with summation. Having done this, we consider the sum

∑∞
n=1 e

−tx2n2
. The

Poisson summation formula provides the identity

∞
∑

n=1

e−tx2n2
=

1

2

(

√

π

tx2

(

1 + 2

∞
∑

n=1

e−
n
2
π
2

tx2

)

− 1

)

.
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Substituting this identity into the expression for h(z) we find

h(z) =
1

2

∞
∑

m=w

erm

(y2erm)
z

2

(√
π

x

Γ(z−1
2 )

Γ(z2)
(y2erm)

1
2 − 1

)

+

√
π

x

∞
∑

n=1

∞
∑

m=w

erm

Γ(z2)

∫ ∞

0
t
z−1
2

−1e−
n
2
π
2

tx2 e−ty2ermdt.

To explore the convergence of the double sum we denote

gn(s) :=

∫ ∞

0
t
z−1
2

−1e−
n
2
π
2

tx2 e−tsdt.

Later we will set s = y2erm > 0, so we consider only positive, real s, making gn(s) a positive real
function. Using [OS, Section 26:14] to evaluate this Laplace transform gives

gn(s) = 2

(

nπ

x
√
s

)
z−1
2

K z−1
2

(

2nπ
√
s

x

)

where u 7→ Kν(u) is the modified Bessel function of the second kind. For u > 0 and real ν > 1/2,
uνKν(u) is positive, as both u

ν and Kν(u) are positive. Also, the derivative (referring again to [OS])
is given by

∂

∂u
(uνKν(u)) = −uνKν−1(u) ≤ 0 for all u ≥ 0.

Thus the function u 7→ uνKν(u) is positive and monotonically decreasing for all u > 0. Hence for all
ǫ > 0 we have the bound

ǫ
∞
∑

n=1

(ǫn)νKν(ǫn) ≤
∫ ∞

0
uνKν(u)du. (4.5)

Evaluating the integral (using [OS, Chapter 51]) yields

∞
∑

n=1

(ǫn)νKν(ǫn) ≤
1

ǫ
2ν−1Γ(12)Γ(ν + 1

2).

If we now set s = y2erm, we obtain the bound

∞
∑

n=1

∞
∑

m=w

erm

Γ(z2)

∫ ∞

0
t
z−1
2

−1e−
n
2
π
2

tx2 e−ty2ermdt ≤ 2

∞
∑

n=1

∞
∑

m=w

erm

Γ(z2 )

(

nπ

xyerm/2

)
z−1
2

K z−1
2

(

2nπyerm/2

x

)

.

Now estimating the sum over n on the right using Equation (4.5) gives us

2
∞
∑

n=1

(

nπ

x
√
s

)
z−1
2

K z−1
2

(

2nπ
√
s

x

)

= 2

(

1

2s

)
z−1
2

∞
∑

n=1

(

2nπ
√
s

x

)
z−1
2

K z−1
2

(

2nπ
√
s

x

)

≤ 2

(

1

2s

)
z−1
2 x

2π
√
s
2

z−1
2

−1Γ(z2 )Γ(
1
2)

=
xΓ(12 )Γ(

z
2 )

2π

1

sz/2
=
xΓ(12 )Γ(

z
2 )

2π

1

yzezrm/2
.
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Hence by summing the remaining geometric series in m we obtain the bound

∞
∑

n=1

∞
∑

m=w

erm

Γ(z2 )

∫ ∞

0
t
z−1
2

−1e−
n
2
π
2

tx2 e−ty2ermdt ≤ Γ
(

z
2

)

Γ(z2)

xΓ(12)

yz2π

∞
∑

m=w

erm

ermz/2

≤ xΓ(12)

yz2π

e−rw(z−2)/2

1− e−r(z−2)/2
.

Evaluating the remaining geometric series in h(z) as above, we arrive at

h(z) =

√
π

2xyz−1

Γ(z−1
2 )

Γ(z2)

e−rw(z−3)/2

1− e−r(z−3)/2
− 1

2yz
e−rw(z−2)/2

1− e−r(z−2)/2
+ err(z) (4.6)

where

err(z) :=

√
π

x

∞
∑

n=1

∞
∑

m=w

erm

Γ(z2 )

∫ ∞

0
t
z−1
2

−1e−
n
2
π
2

tx2 e−ty2ermdt,

err(z) ≤ 1

2yz
e−rw(z−2)/2

1− e−r(z−2)/2
.

Thus the sum defining the function err converges for all z > 2, and this convergence is uniform on
compact intervals. Now we observe that for z ∈ C we have |h(z)| ≤ h(|z|) and similarly |err(z)| ≤
err(|z|). Hence the sums defining h converge uniformly on closed vertical strips in the half-plane
Dom3, and so on compacta. Similarly the sums and integral defining err converge uniformly on
compact subsets of the half-plane Dom2.
Hence the Weierstrass convergence theorem implies that err is holomorphic on the half-plane Dom2

and that h is holomorphic on Dom3. Moreover the formula for h, Equation (4.6), provides a mero-
morphic continuation of h to the half-plane Dom2.

Lemma 4.3. The formula

f(z) :=

∞
∑

n=0

∞
∑

l=n+1
2

qn−2l

(1 + λ2l,n)
z/2

defines a holomorphic function on Dom3. Moreover f has a meromorphic continuation to Dom2, a
simple pole at z = 3 with residue 4qQ−2/ ln(q−1).

Proof. First we write

1 + λ2l,n = 1 + n2

4 + qn
(

[

l + 1
2

]2 −
[

n
2

]2
)

= 1
4n

2 +Q2q−1qn−2l + Cn,l

where Cn,l is uniformly bounded in n, l, and is given by

Cn,l = 1 +Q2qn(q2l+1 − 2)− qn
[

n
2

]2
, |Cn,l| ≤ 1 + 3Q2.

Now we reparametrise the summation by letting m = 2l − n, yielding

f(z) =

∞
∑

n=0

∞
∑

m=1

q−m

(14n
2 +Q2q−1q−m + Cn,m)z/2

13



where we understand Cn,m = Cn,l=(n+m)/2. The function

z 7→
∞
∑

m=1

q−m

(Q2q−1q−m + C0,m)z/2
=

∞
∑

m=1

qm( z
2
−1)

(Q2q−1 + qmC0,m)z/2

has summands with absolute value bounded byMqm( z
2
−1),M > 0 constant, and so by the Weierstrass

convergence theorem is holomorphic for Re(z) > 2. Hence for some holomorphic function holo on
Dom2 we have

f(z) =
∞
∑

n,m=1

q−m

(14n
2 +Q2q−1q−m +Cn,m)z/2

+ holo(z)

=
∞
∑

n,m=1

q−m

(14n
2 +Q2q−1q−m)z/2

(

1 +
Cn,m

1
4n

2 +Q2q−1q−m

)−z/2

+ holo(z). (4.7)

The strategy now is to perform a binomial expansion on

(

1 +
Cn,m

1
4n

2 +Q2q−1q−m

)−z/2

ending up with a new sum of functions
∑

n,m,kDn,m,k h(z + 2k) where h is as in Lemma 4.2. The
binomial expansion requires the inequality

Cn,m
1
4n

2 +Q2q−1q−m
< 1

which holds for sufficiently large m. Recall that |Cn,m| ≤ 1 + 3Q2 =: C uniformly in n, m, and so
we may choose p ∈ N such that

q−p > qQ−2C =⇒ |Cn,m|
1
4n

2 +Q2q−1q−m
< 1 ∀n ≥ 1, m ≥ p.

Now, for any fixed p, sums of the form

∞
∑

n=1

p−1
∑

m=1

q−m

(14n
2 +Q2q−1q−m + Cn,m)z/2

can immediately be seen to be holomorphic for Re(z) > 2 as the sum can be bounded by a constant
multiple of the Riemann zeta function. Hence for such a choice of p ∈ N and for some holomorphic
function holo on Dom2 we have

f(z) =
∞
∑

n=1

∞
∑

m=p

q−m

(14n
2 +Q2q−1q−m)z/2

(

1 +
Cn,m

1
4n

2 +Q2q−1q−m

)−z/2

+ holo(z).

Now we perform the binomial expansion, separating the resulting infinite sum
∑∞

k=0 into the k = 0
term and

∑∞
k=1. This gives

14



f(z) =

∞
∑

n=1

∞
∑

m=p

q−m

(14n
2 +Q2q−1q−m)z/2

+

∞
∑

k=1

(

− z
2
k

) ∞
∑

n=1

∞
∑

m=p

q−m(Cn,m)k

(14n
2 +Q2q−1q−m)

z+2k
2

+ holo(z)

= h(z) +

∞
∑

k=1

(

− z
2
k

) ∞
∑

n=1

∞
∑

m=p

q−m(Cn,m)k

(14n
2 +Q2q−1q−m)

z+2k
2

+ holo(z),

where h is as in Lemma 4.2, with x = 1/2, y = q−1/2Q, r = ln(q−1) and w = p. Our aim now is to
show that f−h is a holomorphic function on Dom2. We need to show that the remaining summation
converges to such a function. This remaining sum is bounded by

∣

∣

∣

∣

∣

∞
∑

k=1

(

− z
2
k

) ∞
∑

n=1

∞
∑

m=p

q−m(Cn,m)k

(14n
2 +Q2q−1q−m)

z+2k
2

∣

∣

∣

∣

∣

≤
∞
∑

k=1

∣

∣

∣

∣

(

− z
2
k

)∣

∣

∣

∣

Ck
∞
∑

n=1

∞
∑

m=p

q−m

(14n
2 +Q2q−1q−m)

Re(z)+2k
2

=

∞
∑

k=1

∣

∣

∣

∣

(

− z
2
k

)∣

∣

∣

∣

Ckh(Re(z) + 2k).

To estimate this sum of functions, we infer from Lemma 4.2 that there exists a positive function M
which is defined for Re(z) > 3 and such that

|h(z)| ≤M(z)
e−Re(z)rp/2

yRe(z)
=M(z)(q

1
2
(p+1)Q−1)Re(z).

Hence

∣

∣

∣

∣

∣

∞
∑

k=1

(

− z
2
k

) ∞
∑

n=1

∞
∑

m=p

q−m(Cn,m)k

(14n
2 +Q2q−1q−m)

z+2k
2

∣

∣

∣

∣

∣

≤
∞
∑

k=1

∣

∣

∣

∣

(

− z
2
k

)∣

∣

∣

∣

CkM(z + 2k)(q
1
2
(p+1)Q−1)Re(z)+2k.

Recall that p was chosen such that q−p > qQ−2C. Also the function z 7→M(z) is uniformly bounded
for Re(z) ≥ 4. Hence, for all z with Re(z) ≥ 2, the function k 7→ M(z + 2k) is uniformly bounded
in k, by M say. It thus follows that the sum

∞
∑

k=1

∣

∣

∣

∣

(

− z
2
k

)∣

∣

∣

∣

CkM(z + 2k)(q
1
2
(p+1)Q−1)Re(z)+2k ≤ M

∞
∑

k=1

∣

∣

∣

∣

(

− z
2
k

)∣

∣

∣

∣

(qp+1Q−2C)k

converges for Re(z) > 2, by comparing with the binomial expansion on the right hand side. The
convergence is again uniform on compacta, so invoking Weierstrass’ convergence theorem we conclude
that f(z) − h(z) is holomorphic for Re(z) > 2. Hence there exists a function holo which is defined
and holomorphic for Re(z) > 2 such that

f(z) =

√
π

(q−
1
2Q)z−1

Γ(z−1
2 )

Γ(z2 )

qp(z−3)/2

1− q(z−3)/2
+ holo(z)

So we see f(z) is holomorphic for Re(z) > 3, meromorphic for Re(z) > 2 and has a a simple pole at
z = 3 with residue 4qQ−2/ ln(q−1).
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5 An analogue of a spectral triple

We now introduce an analogue of a spectral triple over A. Let H := Hh ⊕Hh be the Hilbert space

given by two copies of the GNS space Hh = L2(A,h). We define a grading on H by Γ =

(

1 0
0 −1

)

.

For any operator ω on H we abbreviate

ω+ :=
1 + Γ

2
ω
1 + Γ

2
, ω− :=

1− Γ

2
ω
1− Γ

2
. (5.1)

The algebra A is represented on H by

α 7→
(

πh(α) 0
0 πh(α)

)

for α ∈ A. Here πh denotes the GNS representation by left multiplication on each copy of the
space. In the sequel we will omit the symbol πh. We now introduce some unbounded operators and
projections

∆̂R =

(

∆R 0
0 ∆R

)

∆̂L =

(

q−1∆L 0
0 q∆L

)

Ψn =

(

Φn+1 0
0 Φn−1

)

on A⊕A ⊂ H and use them to define (on the same domain)

D =
1

2

∞
∑

n=−∞

Ψn

(

n 0
0 −n

)

+ ∆̂
1
2
L

(

0 ∂e
∂f 0

)

.

We will see in the following lemma that the commutators [D, α] of D with algebra elements are not
necessarily bounded, yet unbounded in a very controlled manner. Even though (A,H,D) thus fails to
be a spectral triple, we will still be able to construct an analytic expression for a residue Hochschild
cocycle from the commutators.

Lemma 5.1. The triple (A,H,D) has the following properties:

1. The unbounded operator D is essentially self-adjoint.

2. The commutator [D, α] is given by S̃(α) + T̃ (α)∆̂L, where the linear maps S̃, T̃ : A → B(H)
are given by

S̃(α) = ∂H(α)Γ T̃ (α) =

(

0 q−
1
2∂e(σ

− 1
2

L (α))

q
1
2 ∂f (σ

− 1
2

L (α)) 0

)

.

Proof. First we recall from Section 4 the numbers

λl,n :=

√

√

√

√

(n

2

)2
+ qn

(

[

l +
1

2

]2

q

−
[n

2

]2

q

)

, (5.2)

where l ∈ 1
2N0 and −(2l+ 1) ≤ n ≤ (2l+ 1). Also recall Il := {−l,−l+ 1, . . . , l− 1, l}. Then the set
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{

(

0
tli,l

)

,

(

tli,−l

0

)

,

(

tli,j

C l
j,± tli,j−1

)

: l ∈ 1

2
N0, i ∈ Il, j ∈ Il\{−l}

}

,

where C l
j,± =

±λl,2j−1 − (j − 1
2 )

qj−
1
2

√

[

l + 1
2

]2

q
−
[

j − 1
2

]2

q

is an orthogonal basis for H comprised of eigenvectors of D. The corresponding eigenvalues are
−(l + 1

2 ),−(l + 1
2) and ±λl,2j−1 respectively. This spectral representation establishes that D is

essentially self-adjoint.
Next, the commutator of D with a homogeneous algebra element α = Φp(α), for some p ∈ Z,
is computed directly. It is sufficient to consider just this case, because A consists of finite linear
combinations of homogeneous elements (the generators are homogeneous). For such an element α
we have

[D, α] = 1

2

∞
∑

n=−∞

Ψnα

(

n 0
0 −n

)

+ ∆̂
1
2
L

(

0 ∂e
∂f 0

)

α

− 1

2

∞
∑

n=−∞

αΨn

(

n 0
0 −n

)

− α∆̂
1
2
L

(

0 ∂e
∂f 0

)

.

It follows from the definition of the projections Φn, now regarded as a linear operator on Hh, that
αΦn = Φn+pα for any n ∈ Z. Using this, together with the definition of the derivations ∂e and ∂f in
Equation 2.1, the commutator simplifies to

[D, α] = 1

2
α

∞
∑

n=−∞

Ψn

((

n+ p 0
0 −n− p

)

−
(

n 0
0 −n

))

+ ∆̂
1
2
L

(

0 (∂e(α)∆
1
2
L + σ

1
2
L(α)∂e)

(∂f (α)∆
1
2
L + σ

1
2
L(α)∂f ) 0

)

− α∆̂
1
2
L

(

0 ∂e
∂f 0

)

.

Since σ
1
2
L(α) = ∆̂

− 1
2

L α∆̂
1
2
L as operators on A⊕A ⊂ H, the last expression for the commutator simplifies

to

∆̂
1
2
L

(

0 σ
1
2
L(α)∂e

σ
1
2
L(α)∂f 0

)

= α∆̂
1
2
L

(

0 ∂e
∂f 0

)

,

and hence

[D, α] = p

2
α

(

1 0
0 −1

)

+ ∆̂
1
2
L

(

0 ∂e(α)∆
1
2
L

∂f (α)∆
1
2
L 0

)

= ∂H(α)Γ +

(

0 q−
1
2∂e(σ

− 1
2

L (α))

q
1
2 ∂f (σ

−
1
2

L (α)) 0

)

∆̂L.

17



6 The residue Hochschild cocycle

The main step in the definition of the residue Hochschild cocycle is the construction of a functional
that plays the role of an integral. In the situations considered in the literature thus far, [C, BeF,
GVF, CNNR, CPRS1, KW], functionals of the form

T 7→ τ(T (1 +D2)−z/2)

were used, where z ∈ C and τ is a faithful normal semifinite trace, or at worst a weight, on a von
Neumann algebra containing the algebra of interest. Often, the von Neumann algebra is just B(H),
and the functional τ is the operator trace.
In this example, we need to apply our functional to products of commutators [D, α] ∼ ∆̂L with
α ∈ A, so it has to be defined on an algebra of unbounded operators. We will deal with this using a
cutoff that is defined by the projections

Lk := L̃k ⊕ L̃k, L̃k(t
l
i,j) :=

{

tli,j l ≤ k

0 otherwise

and

P1 =
∞
∑

n=0

Ψn P2

(

tli,j
0

)

= (1− δj,−l)

(

tli,j
0

)

P2

(

0
tli,j

)

= (1− δj,l)

(

0
tli,j

)

.

Observe P2 is the projection onto

(

ker

(

0 ∂e
∂f 0

))⊥

, and that the projections Lk converge strongly

to the identity in B(H).
For s ∈ R

+ we now define a functional Υs on positive operators ω ∈ B(H) in the following way:

Υs(ω) := sup
k∈N

Tr

(

P1P2Lk(1 +D2)−s/4∆̂
− 1

2
F ω∆̂

− 1
2

F (1 +D2)−s/4P1P2Lk

)

, ∆̂F = ∆̂R∆̂L

where Tr is the operator trace on B(H). This expression continues to make sense for possibly
unbounded positive operators defined on and preserving the subspace A⊕A ⊂ H.

Lemma 6.1. For each s ∈ R+ the functional Υs is positive and normal on B(H)+. It is faithful and
semifinite on P1P2B(H)+P1P2.

Proof. We will compute the operator trace using the Peter-Weyl basis

{(

tli,j
0

)

,

(

0
tli,j

)}

for H.

The operators (1 +D2), ∆̂F , P1, P2 and Lk are all positive and diagonal in this basis. By using the
definition of the operator trace, the value of the operators ∆̂−1

F and (1 +D2)−s/4 on this basis, and
the symmetry property for self-adjoint operators, we compute Υs(ω) for ω ∈ B(H)+ (or even ω ≥ 0
and affiliated to B(H)) by
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Tr

(

P1P2Lk(1 +D2)−s/4∆̂
− 1

2
F ω∆̂

− 1
2

F (1 +D2)−s/4P1P2Lk

)

=

=
∞
∑

2l=0

l
∑

i=−l

l
∑

j=−l

q−2i−(2j−1)

(1 + λ2l,2j−1)
s/2

〈

P+
1 P

+
2 Lkt

l
i,j, ω

+P+
1 P

+
2 Lkt

l
i,j

〉

〈

tli,j, t
l
i,j

〉

+
∞
∑

2l=0

l
∑

i=−l

l
∑

j=−l

q−2i−(2j+1)

(1 + λ2l,2j+1)
s/2

〈

P−
1 P

−
2 Lkt

l
i,j, ω

−P−
1 P

−
2 Lkt

l
i,j

〉

〈

tli,j, t
l
i,j

〉 ,

where ω+ and ω− are as in Equation (5.1). Now,

P+
1 P

+
2 Lkt

l
i,j =

{

tli,j
1
2 ≤ j ≤ l, 1

2 ≤ l ≤ k

0 otherwise

P−
1 P

−
2 Lkt

l
i,j =

{

tli,j −1
2 ≤ j ≤ l − 1, 1

2 ≤ l ≤ k

0 otherwise.

So if we set n = 2j ± 1 and recall the sets

Jl :=

{

{0, 2, . . . , 2l − 1} l ∈ (N0 +
1
2)

{1, 3, . . . , 2l − 1} l ∈ N

we may express the trace as

Tr

(

P1P2Lk(1 +D2)−s/4∆̂
− 1

2
F ω∆̂

− 1
2

F (1 +D2)−s/4P1P2Lk

)

=

=

2k
∑

2l=1

l
∑

i=−l

∑

n∈Jl

q−2i−n

(1 + λ2l,n)
s/2









〈

tl
i,n+1

2

, ω+tl
i,n+1

2

〉

〈

tl
i,n+1

2

, tl
i,n+1

2

〉 +

〈

tl
i,n−1

2

, ω−tl
i,n−1

2

〉

〈

tl
i,n−1

2

, tl
i,n−1

2

〉









. (6.1)

This shows that Υs is a supremum of a sum of positive vector states and so automatically positive
and normal. To see that it is faithful on P1P2B(H)+P1P2 we observe that the operator trace is

faithful and that P1P2∆̂
−1/2
F (1 +D2)−s/4 is injective on P1P2H. The semifiniteness comes from the

fact that finite rank operators are in the domain of Υs.

We extend Υs to an unbounded positive normal linear functional on B(H) as usual. In fact, we
extend it also to unbounded operators ω defined on and preserving A⊕ A by decomposing LkωLk

for each k into a linear combination of positive bounded operators.
If for an operator ω (not necessarily bounded) the function s 7→ Υs(ω) has a meromorphic continu-
ation to Dom3−δ for some δ > 0, then we define

τ(ω) := Resz=3Υz(ω).
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Lemma 6.2. The functional τ is defined on the positive operator c∗c, and τ(c∗c) = 0. Indeed, for
all m ≥ 1,

τ

((

(c∗c)m 0
0 0

))

= τ

((

0 0
0 (c∗c)m

))

= 0.

Proof. The action of the operator c = c++c− may be described using the Clebsch-Gordan coefficients
(see for example [DLSSV], [KS]): we have

c+tli,j = cl+ij t
l+ 1

2

i+ 1
2
,j− 1

2

c−tli,j = cl−ij t
l− 1

2

i+ 1
2
,j− 1

2

,

where

cl+ij = q(i+j)/2 ([l + i+ 1]q[l − j + 1]q)
1/2

[2l + 1]q
, cl−ij = −q(i+j)/2 ([l − i]q[l + j]q)

1/2

[2l + 1]q
.

Using this description of c to compute the action of c∗c, we find

(c∗c)tli,j = qi+j−1

(

[l + i+ 1]q[l − j + 1]q
[2l + 1]q[2l + 2]q

+
[l − i]q[l + j]q
[2l]q[2l + 1]q

)

tli,j

− qi+j−1

(

([l + i+ 1]q[l − i+ 1]q[l + j + 1]q[l − j + 1]q)
1
2

[2l + 1]q[2l + 2]q
tl+1
i,j

+
([l + i]q[l − i]q[l + j]q[l − j]q)

1
2

[2l]q[2l + 1]q
tl−1
i,j

)

Let ǫk = Q(1− q2k), so that [k]q = q−kǫk. Then the above expression can be written as

(c∗c)tli,j = q2l
(

q2j
ǫl+i+1ǫl−j+1

ǫ2l+1ǫ2l+2
+ q2i

ǫl−iǫl+j

ǫ2lǫ2l+1

)

tli,j

− q2l+i+j

(

(ǫl+i+1ǫl−i+1ǫl+j+1ǫl−j+1)
1
2

ǫ2l+1ǫ2l+2
tl+1
i,j +

(ǫl+iǫl−iǫl+jǫl−j)
1
2

ǫ2lǫ2l+1
tl−1
i,j

)

.

Define the scalars C1(l, i, j) and C2(l, i, j) to be

C1(l, i, j) :=
ǫl+i+1ǫl−j+1

ǫ2l+1ǫ2l+2
C2(l, i, j) :=

ǫl−iǫl+j

ǫ2lǫ2l+1
.

The definition of ǫk implies that C1 and C2 are uniformly bounded for all l, i, j appearing in the
formula for Υz(c

∗c).
As in the proof of Lemma 6.1 we compute for z ∈ R

Tr

(

P1P2Lk(1 +D2)−z/4∆̂
− 1

2
F

(

c∗c 0
0 0

)

∆̂
− 1

2
F (1 +D2)−z/4P1P2Lk

)

=

2k
∑

2l=1

l
∑

i=−l

∑

n∈Jl

q−2i−n

(1 + λ2l,n)
z/2

(

q2l+n+1C1(l, i,
n+1
2 ) + q2l+2iC2(l, i,

n+1
2 )
)

,
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Tr

(

P1P2Lk(1 +D2)−z/4∆̂
−

1
2

F

(

0 0
0 c∗c

)

∆̂
−

1
2

F (1 +D2)−z/4P1P2Lk

)

=

2k
∑

2l=1

l
∑

i=−l

∑

n∈Jl

q−2i−n

(1 + λ2l,n)
z/2

(

q2l+n+1C1(l, i,
n−1
2 ) + q2l+2iC2(l, i,

n−1
2 )
)

.

The uniform boundedness of C1 and C2, together with Lemma 4.1, demonstrate that the limits as
k → ∞ of the two sums above exist for z > 2. Hence

z 7→ Υz

((

c∗c 0
0 0

))

, z 7→ Υz

((

0 0
0 c∗c

))

are well-defined functions for z > 2. Indeed the arguments of Lemma 4.1, together with the Weier-
strass convergence theorem, show that these functions extend to holomorphic functions on Dom2. In
particular, these functions are holomorphic at z = 3 and hence

τ

((

c∗c 0
0 0

))

= τ

((

0 0
0 c∗c

))

= 0.

By linearity it follows that τ(c∗c) = 0 also. Using the normality of c, for any operator X we have
the operator inequality

X∗(c∗c)mX ≤ ‖c∗c‖m−1X∗c∗cX,

and so for z > 2 real, we have Υz((c
∗c)m) ≤ ‖c‖2m−2Υz(c

∗c). Thus for z > 2, the sum defining
Υz((c

∗c)m) converges. Once more invoking the Weierstrass convergence theorem shows that z 7→
Υz((c

∗c)m) extends to a holomorphic function for Re(z) > 2. Similar estimates now show that

τ

((

(c∗c)m 0
0 0

))

= τ

((

0 0
0 (c∗c)m

))

= 0.

Theorem 6.3. Let α ∈ A and X,Y be any closed linear operators on Hh which are defined on and
preserve A. Then we have the following well-defined evaluations of τ :

1. τ

((

0 X
0 0

))

= τ

((

0 0
Y 0

))

= 0

2. τ(αΓ) = 0

3. τ

(

∆̂2
L

(

α 0
0 0

))

= τ

(

∆̂2
L

(

0 0
0 α

))

= R
∫

[1] α

where
∫

[1] : A → C is the functional defined in Lemma 3.2 and R = 4(q−1 − q)/ ln(q−1).

Proof. Throughout this proof we assume without loss of generality that any element of A is homo-
geneous with respect to both the left and right actions (that is σL(α) = qpα, σR(α) = qp

′

α for some
p, p′). This is because finite linear combinations of homogeneous elements span A (cf. Theorem 2.2).
Indeed, if α ∈ A is homogeneous of a non-zero degree for either the left or right action, then
〈tli,j, α tli,j〉 = 0 and so for any linear operator C that is diagonal in the Peter-Weyl basis, Υs(Cα) =
0 for all s ∈ R+. Hence, we need only consider those elements of A that are homogeneous of
degree zero for the left and right actions. A convenient spanning set for these algebra elements is
{1A, (c∗c)m : m ∈ N}.
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1. By definition Υs

((

0 X
0 0

))

= 0 for all s > 0, and similarly for

(

0 0
Y 0

)

.

2. Lemma 6.2 has established that for all m ≥ 1,

τ

((

(c∗c)m 0
0 0

))

= τ

((

0 0
0 (c∗c)m

))

= 0.

By linearity we can extend this to conclude that τ((c∗c)mΓ) = 0. Finally, for z large and real we
compute Υz(Γ) using the proof of Lemma 6.1. Now

Tr

(

P1P2Lk(1 +D2)−z/4∆̂
− 1

2
F Γ∆̂

− 1
2

F (1 +D2)−z/4P1P2Lk

)

=

2k
∑

2l=1

l
∑

i=−l

∑

n∈Jl

q−2i−n

(1 + λ2l,n)
z/2

−
2k
∑

2l=1

l
∑

i=−l

∑

n∈Jl

q−2i−n

(1 + λ2l,n)
z/2

,

and for each k the summands above are finite and hence subtract to give zero. Hence Υz(Γ) = 0 for
all z and so τ(Γ) = 0.
3. For z large and real, the evaluation of Υz as sums of positive real numbers (as in the proof of
Lemma 6.1) implies the numerical inequality

Υz(∆̂
2
L(c

∗c)m) ≤ Υz((c
∗c)m).

This is because the introduction of ∆̂2
L multiplies each summand by q2n ≤ 1 (cf. Equation (6.1)).

Lemma 6.2 demonstrates that Υz((c
∗c)m) extends to a function that is holomorphic in a neighbour-

hood of z = 3, and together with the Weierstrass convergence theorem the result follows.

Finally we analyse Υz

(

∆̂2
L

(

1 0
0 0

))

and Υz

(

∆̂2
L

(

0 0
0 1

))

. Again using the proof of Lemma

6.1 we find

Tr

(

P1P2Lk(1 +D2)−z/4∆̂
− 1

2
F ∆̂2

L

(

1 0
0 0

)

∆̂
− 1

2
F (1 +D2)−z/4P1P2Lk

)

= Tr

(

P1P2Lk(1 +D2)−z/4∆̂
− 1

2
F ∆̂2

L

(

0 0
0 1

)

∆̂
− 1

2
F (1 +D2)−z/4P1P2Lk

)

=

2k
∑

2l=1

l
∑

i=−l

∑

n∈Jl

q−2i+n

(1 + λ2l,n)
z/2

= Qq−1
2k
∑

2l=1

∑

n∈Jl

qn−2l

(1 + λ2l,n)
z/2

−Qq
2k
∑

2l=1

∑

n∈Jl

qn+2l

(1 + λ2l,n)
z/2

For z real, the sum
∑2k

2l=1

∑

n∈Jl
qn+2l/(1 + λ2l,n)

z/2 is bounded above by f2(z) from Lemma 4.1
for all k. By the Weierstrass convergence theorem we conclude that as k → ∞, this sum con-
verges to a function with a holomorphic extension about z = 3. Next, when considering the sum
∑2k

2l=1

∑

n∈Jl
qn−2l/(1 + λ2l,n)

z/2, observe by rearranging the order of summation

2k
∑

2l=1

∑

n∈Jl

→
2k
∑

n=0

k
∑

l=(n+1)/2

,
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that Lemma 4.3 proves that the sum has a limit as k → ∞ and the corresponding function of z extends
to a meromorphic function with a simple pole at z = 3. The residue at z = 3 is 4qQ−2/ ln(q−1) and
from the definition of τ we conclude that for R = 4(q−1 − q)/ ln(q−1),

τ

(

∆̂2
L

(

1 0
0 0

))

= τ

(

∆̂2
L

(

0 0
0 1

))

= R.

Finally, we compare the definition of R
∫

[1] in Lemma 3.2 to the evaluation of τ on A derived here
and observe that they agree on A.

Lemma 6.4. Given any matrix M ∈ M2(A) and any α ∈ A then τ(M∆̂2
Lα) = τ(ϑ−1(α)M∆̂2

L).

Proof. From Lemma 3.2, the linear functional
∫

[1] is a σ2L ◦ ϑ−1-twisted trace. That is, given any
α, β ∈ A

∫

[1]
αβ =

∫

[1]
σ2L(ϑ

−1(β))α.

Now we separate the matrix M = Md +Mo into diagonal and off-diagonal matrices respectively.
Then by Theorem 6.3, τ(Md∆̂

2
Lα) and τ(Mo∆̂

2
Lα) are both well-defined, so by linearity

τ(M∆̂2
Lα) = τ(Md∆̂

2
Lα) + τ(Mo∆̂

2
Lα) = τ(Md∆̂

2
Lα) + 0.

Since Md is diagonal, we may write

Md∆̂
2
L = ∆̂2

Lσ
2
L(Md)

where σL acts componentwise on the matrix. Using the value of τ(∆̂2
Lσ

2
L(Md)α) from Theorem 6.3,

we have

τ(M∆̂2
Lα) = τ(∆̂2

Lσ
2
L(Md)α) = R

∫

[1]
σ2L(M

+
d )α+R

∫

[1]
σ2L(M

−
d )α

= R

∫

[1]
σ2L(ϑ

−1(α))σ2L(M
+
d ) +R

∫

[1]
σ2L(ϑ

−1(α))σ2L(M
−
d ),

by the twisted trace property of
∫

[1]. Recombining these two terms yields

τ(∆̂2
Lσ

2
L(Md)α) = τ(∆̂2

Lσ
2
L(ϑ

−1(α))σ2L(Md)) = τ(ϑ−1(α)∆̂2
Lσ

2
L(Md)) = τ(ϑ−1(α)Md∆̂

2
L).

Now, τ(ϑ−1(α)Mo∆̂
2
L) is well defined and has value zero, so we can write

τ(M∆̂2
Lα) = τ(ϑ−1(α)Md∆̂

2
L) + τ(ϑ−1(α)Mo∆̂

2
L) = τ(ϑ−1(α)M∆̂2

L).

Theorem 6.5. Given any a0, . . . , a3 ∈ A, the map φres : a0, . . . , a3 7→ τ(a0[D, a1][D, a2][D, a3])
is a ϑ−1-twisted Hochschild 3-cocycle, whose cohomology class is non-trivial. The cocycle φres has
non-zero pairing with the ϑ−1-twisted 3-cycle dvol defined in (3.1), giving

〈φres, dvol〉 = 3R(q−1 + q) = 4!
q−1 + q

2

q−1 − q

ln(q−1)
.

The cocycle may be written as
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φres = q2R(ϕ+ ϕ213 + ϕ231) +R(ϕ132 + ϕ312 + ϕ321)

where ϕ and ϕijk are the cocycles described in Lemma 3.2 and Corollary 3.4.

Proof. First consider πD(a0, a1, a2, a3) = a0[D, a1][D, a2][D, a3] as an unbounded operator on A⊕A ⊂
H. Using the equality [D, α] = S̃(α) + T̃ (α)∆̂L, we see that πD(a0, a1, a2, a3) can be expanded into
8 terms. Recall that by Theorem 6.3 the functional τ vanishes on off-diagonal operators. Four of
the eight terms in the expansion of πD(a0, a1, a2, a3) are off-diagonal since, for all α ∈ A, S̃(α) is
diagonal and T̃ (α) is off-diagonal. Thus

τ
(

a0

(

T̃ (a1)∆̂LS̃(a2)S̃(a3) + S̃(a1)T̃ (a2)∆̂LS̃(a3)

+S̃(a1)S̃(a2)T̃ (a3)∆̂L + T̃ (a1)∆̂LT̃ (a2)∆̂LT̃ (a3)∆̂L

))

= 0.

Therefore, φres(a0, a1, a2, a3) reduces to

φres(a0, a1, a2, a3) = τ
(

a0

(

S̃(a1)S̃(a2)S̃(a3) + S̃(a1)T̃ (a2)∆̂LT̃ (a3)∆̂L

+T̃ (a1)∆̂LS̃(a2)T̃ (a3)∆̂L + T̃ (a1)∆̂LT̃ (a2)∆̂LS̃(a3)
))

. (6.2)

From Lemma 5.1 it follows that

a0S̃(a1)S̃(a2)S̃(a3) = a0∂H(a1)∂H(a2)∂H(a3)Γ

and recall that from Theorem 6.3, τ(αΓ) = 0 for all α ∈ A. Since a0∂H(a1)∂H(a2)∂H(a3) ∈ A we
have

τ(a0S̃(a1)S̃(a2)S̃(a3)) = 0.

We now move all the ∆̂L’s to the right in the remaining terms in Equation (6.2). For α ∈ A, we use
∆̂LS̃(α) = S̃(σ−1

L (α))∆̂L , and

∆̂LT̃ (α) =

(

0 q−1∆Lq
−

1
2 ∂e(σ

− 1
2

L (α))

q∆Lq
1
2∂f (σ

−
1
2

L (α)) 0

)

=

(

0 q−2q−
1
2σ−1

L (∂e(σ
− 1

2
L (α)))

q2q
1
2σ−1

L (∂f (σ
− 1

2
L (α))) 0

)

∆̂L

=

(

0 q−
1
2∂e(σ

− 3
2

L (α))

q
1
2 ∂f (σ

− 3
2

L (α)) 0

)

∆̂L

= T̃ (σ−1
L (α))∆̂L.

This yields

φres(a0, a1, a2, a3) = τ
(

a0

(

S̃(a1)T̃ (a2)T̃ (σ
−1
L (a3))

+T̃ (a1)S̃(σ
−1
L (a2))T̃ (σ

−1
L (a3)) + T̃ (a1)T̃ (σ

−1
L (a2))S̃(σ

−2
L (a3))

)

∆̂2
L

)

.
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In this form Theorem 6.3 tells us that φres is a well defined, multilinear functional on A⊗4. In order
to demonstrate that this cochain is indeed a twisted Hochschild cocycle, it remains only to show that
the boundary operator maps the cochain to zero. This result follows from the Leibniz property of
the commutators together with Lemma 6.4. Explicitly,

(bϑ
−1

3 φres)(a0, . . . , a4) = τ(a0a1[D, a2][D, a3][D, a4])− τ(a0[D, a1a2][D, a3][D, a4])
+ τ(a0[D, a1][D, a2a3][D, a4])− τ(a0[D, a1][D, a2][D, a3a4]) + τ(ϑ−1(a4)a0[D, a1][D, a2][D, a3])

= −τ(a0[D, a1][D, a2][D, a3]a4) + τ(ϑ−1(a4)a0[D, a1][D, a2][D, a3]) = 0,

where the last equality follows from Lemma 6.4. In order to identify φres, we use Lemma 5.1 to write,
for a0, . . . , a3 ∈ A,

a0

(

S̃(a1)T̃ (a2)T̃ (σ
−1
L (a3)) + T̃ (a1)S̃(σ

−1
L (a2))T̃ (σ

−1
L (a3))

+T̃ (a1)T̃ (σ
−1
L (a2))S̃(σ

−2
L (a3))

)

=

(

π1(a0, . . . , a3) 0
0 π2(a0, . . . , a3)

)

for some multi-linear maps π1, π2 : A⊗4 → A. Again using Lemma 5.1, we have

π1(a0, . . . , a3) = a0∂H(a1)∂e(σ
− 1

2
L (a2))∂f (σ

− 3
2

L (a3))− a0∂e(σ
− 1

2
L (a1))∂H(σ−1

L (a2))∂f (σ
− 3

2
L (a3))

+ a0∂e(σ
− 1

2
L (a1))∂f (σ

− 3
2

L (a2))∂H(σ−2
L (a3)), (6.3)

π2(a0, . . . , a3) = −a0∂H(a1)∂f (σ
− 1

2
L (a2))∂e(σ

− 3
2

L (a3)) + a0∂f (σ
− 1

2
L (a1))∂H(σ−1

L (a2))∂e(σ
− 3

2
L (a3))

− a0∂f (σ
−

1
2

L (a1))∂e(σ
−

3
2

L (a2))∂H (σ−2
L (a3)). (6.4)

Then by Theorem 6.3, and the σL invariance of
∫

[1], we have

φres(a0, a1, a2, a3) = R

∫

[1]
π1(a0, . . . , a3) +R

∫

[1]
π2(a0, . . . , a3). (6.5)

Comparing Equations (6.3), (6.4), (6.5) with the expressions for the cocycles identified in Lemma
3.2 and Corollary 3.4 we find

φres = q2R(ϕ+ ϕ213 + ϕ231) +R(ϕ132 + ϕ312 + ϕ321).

The evaluation of this cocycle on the cycle dvol (see Equation (3.1)) is a straightforward computation
using the explicit expressions obtained. The result is

〈φres, dvol〉 = 3R(q−1 + q).
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