
Introduction to Shell Programming

• what is shell programming?
• about cygwin
• review of basic UNIXTM

• pipelines of commands
• about shell scripts
• some new commands
• variables
• parameters and shift
• command substitution
• cut
• if-then-else-fi
• for-in-do-done
• sed
• a final example
• gotchas
• exercises
• references

conducted by

Mike Kupferschmid

Scientific Programming Consultant

VCC 322, x6558, kupfem@rpi.edu



What is Shell Programming?

• putting UNIXTM commands in a file
• almost always special-purpose code
• often one-time code
• seldom used where speed is important
• often used to manipulate files



About cygwin

a good but not perfect emulation of unix
included in standard RPI laptop image
to download (long) go to www.cygwin.com

if you want real unix get Linux (site licensed)
it is possible to dual-boot Linux with Windows
ask at the Help Desk
watch for an ACM installfest

starting cygwin
start → All Programs → Cygwin → XTerm
opens unix window with command prompt
$

RCShome is a link to your RCS home directory

to print a file from cygwin
open the file with notepad filename
use the notepad print function

to cut and paste you need a 3-button mouse
cygwin names executables a.exe



Review of Basic UNIXTM

familiar commands often useful in shell scripts

cat concatenate files
cp copy a file
date print the date and time
grep scan for a string
head show first lines of a file
tail show last lines of a file
mv move or rename a file
rm -f remove files (silently)
wc count lines, words, characters

wc output format varies between systems

path names of files and directories
schedule relative
/home/37/jones/schedule absolute

wild cards in filenames
* matches zero or more characters
? matches exactly 1 character

redirection
> redirects std-out to a file
>> appends std-out to a file
< redirects std-in from a file



Pipelines of Commands

send std-out of one command to std-in of another

look e

shows spelling words that begin with e
look e | more

displays the words one page at a time

often use echo to feed a pipeline
echo "count me" | wc

prints 1 2 9

echo * | wc -w

counts files in current directory



About Shell Scripts

type shell program text in a file using an editor:

#! /bin/sh

# this is a comment

body of program

to continue a line append \
this is the rest of the continued line

exit 0

chmod +x scriptfile make the file executable
not needed in cygwin

scriptfile execute the program
sh -v scriptfile print input lines as read
sh -x scriptfile print commands as executed

shell programs often use temporary files in /tmp

and send unwanted outputs to /dev/null



Some New Commands
Useful in Shell Programs

basename extract file name from path name
cmp -s compare files (silently)
cut extract selected parts of a line
expr evaluate an expression
mail send email (not in cygwin)
sed -e stream editor
sleep suspend execution for given time
tr translate characters
true, false provide truth values
whoami print current username
head -1 read a line from the keyboard



Some Example Scripts

In the following examples, the text of the shell
script is shown on top, and the result of executing
it interactively is shown below. The text of each
example script is in a file available for
downloading, so that you can try the scripts
without having to type them in. The name of
each file is given in a comment in each script.

These examples show the scripts being executed
in the directory /home/mike/Classes/shell. When
you run a script in your own directory, some of
the names appearing in the output will be
different.



#!/bin/sh

# hi

echo "Hello, world!"

exit 0

unix[1] hi

Hello, world!

unix[2]



#!/bin/sh

# himike

name=Mike

echo "Hello, $name!"

exit 0

unix[3] himike

Hello, Mike!

unix[4]



#!/bin/sh

# rem

rm junk

echo "The return code from rm was $?"

exit 0

unix[5] touch junk

unix[6] rem

The return code from rm was 0

unix[7] rem

rm: junk: No such file or directory

The return code from rm was 2



#!/bin/sh

# quiet

rm junk 2> /dev/null

echo "The return code from rm was $?"

exit 0

unix[8] touch junk

unix[9] quiet

The return code from rm was 0

unix[10] quiet

The return code from rm was 2



#!/bin/sh

# pars

echo "There are $# parameters."

echo "The parameters are $@"

echo "The script name is $0"

echo "The first parameter is $1"

echo "The second parameter is $2"

exit 0

unix[11] pars apple orange

There are 2 parameters.

The parameters are apple orange

The script name is ./pars

The first parameter is apple

The second parameter is orange

unix[12]



#!/bin/sh

# shifter

echo $1

shift

echo $1

shift

echo $1

shift

echo $1

exit 0



unix[13] shifter one two three four five

one

two

three

four

unix[14] shifter one two three

one

two

three

unix[15] shifter one two

one

two

shift: shift count must be <= $#

unix[16]



#!/bin/sh

# sorter

rm -f /tmp/sorted

sort $1 > /tmp/sorted

cp /tmp/sorted $1

rm -f /tmp/sorted

exit 0



unix[17] more names

Jeff

Alan

Nancy

Yossl

Scott

Harriet

Chris

unix[18] sorter names

unix[19] more names

Alan

Chris

Harriet

Jeff

Nancy

Scott

Yossl

unix[20]



#!/bin/sh

# hiyou

name=‘whoami‘

echo "Hello, $name!"

exit 0

unix[21] hiyou

Hello, kupfem!

unix[22]



#!/bin/sh

# hiyou2

echo "Hello, ‘whoami‘!"

exit 0

unix[23] hiyou2

Hello, kupfem!

unix[24]



#!/bin/sh

# countem

echo "File \"$1\" contains \

exactly ‘wc $1 | cut -c6-7‘ lines."

exit 0

unix[25] countem text

File "text" contains exactly 21 lines.

unix[26]



cut
reads std-in, extracts selected fields, writes std-out

cut -c1,4,7 characters 1, 4, and 7
cut -c1-3,8 characters 1 thru 3, and 8
cut -c-5,10 characters 1 thru 5, and 10
cut -c3- characters 3 thru last

cut -f1,4,7 tab-separated fields 1, 4, and 7
cut -d" " -f1 blank-separated field 1

echo a.b.c | cut -d"." -f2 yields b



#!/bin/sh

# compile

if [ "$SRCDIR" = "" ]

then

echo "using default source directory"

SRCDIR=$HOME/src

else

echo "using source directory $SRCDIR"

fi

g77 $SRCDIR/$1

exit $?



unix[27] export SRCDIR=‘pwd‘

unix[28] compile hello.f

using source directory /home/mike/Classes/shell

unix[29] echo $?

0

unix[30] a.out

hello

unix[31] export SRCDIR=""

unix[32] compile hello.f

using default source directory

g77: /home/mike/src/hello.f:

No such file or directory

unix[33] echo $?

1

unix[34]



#!/bin/sh

# finder

grep $1 text > /dev/null

if [ $? -eq 0 ]

then

echo "found"

fi

exit 0

unix[35] finder ancient

found

unix[36] finder modern

unix[37]



#!/bin/sh

# compares

echo "true yields 0, false yields 1"

x="005"

[ "$x" = "005" ]

echo "Are strings 005 and 005 equal? $?"

[ "$x" = "5" ]

echo "Are strings 005 and 5 equal? $?"

[ $x -eq 005 ]

echo "Are integers 005 and 005 equal? $?"

[ $x -eq 5 ]

echo "Are integers 005 and 5 equal? $?"

exit 0



unix[38] compares

true yields 0, false yields 1

Are strings 005 and 005 equal? 0

Are strings 005 and 5 equal? 1

Are integers 005 and 005 equal? 0

Are integers 005 and 5 equal? 0

unix[39]



#!/bin/sh

# empty

if [ -s $1 ]

then

echo "The file $1 has contents."

exit 0

else

echo "The file $1 is absent or empty."

exit 1

fi

unix[40] empty text

The file text has contents.

unix[41] empty xxxx

The file xxxx is absent or empty.

unix[42] echo $?

1

unix[43]



#!/bin/sh

# adder

sum=0

for x in $@

do

sum=‘expr $sum + $x‘

done

echo "The sum is $sum."

exit 0

unix[44] adder 1 2 3 4 5

The sum is 15.

unix[45]



#!/bin/sh

# fixfor

for fyle in *.for

do

new=‘echo $fyle | sed -e"s/\.for$/\.f/"‘

mv $fyle $new

done

exit 0

unix[46] ls *.for

a.for b.for pgm.for xyz.w.for

unix[47] fixfor

unix[48] ls *.f

a.f b.f pgm.f xyz.w.f



#!/bin/sh

# suffix

for fyle in *.$1

do

new=‘echo $fyle | sed -e"s/\.$1$/\.$2/"‘

mv $fyle $new

done

exit 0

unix[49] ls *.f

a.f b.f pgm.f xyz.w.f

unix[50] suffix f for

unix[51] ls *.for

a.for b.for pgm.for xyz.w.for

unix[52]



sed
reads std-in, edits line(s), writes std-out

sed -e"s/old/new/" replace first old by new
sed -e"s/old/new/g" replace each old by new

old can be a regular expression
^ matches the beginning of the line
$ matches the end of the line
. matches any single character
.* matches zero or more characters

[tT] matches t or T
escape these and other special characters with \

unix[53] echo banana | sed -e"s/a$/\.x/"

banan.x

unix[54] more fruit

xapple

xpear

xplum

xcherry

unix[55] sed -e"s/^x/ /" < fruit

apple

pear

plum

cherry



A Final Example

#! /bin/sh

# list names of all files containing given words

if [ $# -eq 0 ]

then

echo "findtext word1 word2 word3 ..."

echo "lists names of files containing all given words"

exit 1

fi

for fyle in *

do

bad=0

for word in $*

do

grep $word $fyle > /dev/null 2> /dev/null

if [ $? -ne 0 ]

then

bad=1

break

fi

done

if [ $bad -eq 0 ]

then

echo $fyle

fi

done

exit 0



Gotchas

Never use test as the name of a variable or a
shell script file.

When using = as an assignment operator, do
not put blanks around it.

When using = as a comparison operator, you
must put blanks around it.

When using if [ ] put spaces around the
brackets (except after ] when it is the last
character on the line).



Exercises
some hints are given in the files

exer1, exer2, exer2.aix, and exer3.

1. Write a script that counts files. (a) First make it count the

files in the current directory. (b) Now modify your script to

accept a parameter that is the name of a directory, and count

the files in that directory. Try this version on the current

directory (.) and on the /afs/rpi.edu/campus/doc directory.

(c) Further modify your script so that if it is invoked without

a parameter it prints out an explanation of how to use it.

2. If the ls command is given the name of a single extant file

it merely prints that filename back out. (a) Write a script myls

that behaves like ls except that when a single filename

parameter is supplied it produces the output that ls -l would

give for the file. (b) Revise your script so that when a single

filename parameter is given the output produced is the

filename followed by the date and time of its most recent

change and then the size of the file in bytes.

3. A script isyes is required that sets its exit code to 0 if its

parameter is some variation of y or yes, and to 1 otherwise.

(a) Assume the only acceptable parameter values meaning

“yes” are y, yes, Y, and YES, and solve the problem using only

shell programming features we have discussed. (b) Simplify

and generalize your script by using tr a-z A-Z, which reads

from std-in, translates to upper case, and writes to std-out.

4. Write a script that adds up the sizes reported by ls for the

files in the current directory. The script should print out only

the total number of bytes used.



References

UNIXTM Shell Programming, Revised Edition, by
Stephen G. Kochan and Patrick H. Wood,
Hayden Books, 1990, ISBN 0-672-48448-X.

The UNIXTM Programming Environment, by Brian
W. Kernighan and Rob Pike, Prentice Hall, 1984,
ISBN 0-13-937681-X.

sed & awk, by Dale Dougherty, O’Reilly &
Associates, 1991, ISBN 0-937175-59-5.

Mastering Regular Expressions, by Jeffrey E. F.
Friedl, O’Reilly & Associates, 1997, ISBN
1-56592-257-3.


