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Abstract

We apply the monotone iterative technique to the second-order boundary value problems. We obtain a neces-
sary and sufficient condition and discuss the uniqueness, a iterative sequence and an error estimation for pseudo-
symmetric positive solutions. Moreover, an example is given to illustrate the applicability of our results.

Keywords: boundary value problems, pseudo-symmetric positive solutions, monotone iterative technique, neces-
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1. Introduction

Consider the pseudo-symmetric boundary value problem{
u′′(t) + f (t, u(t)) = 0, t ∈ (0, 1),
u(0) = 0, u(η) = u(1), (1.1)

where η ∈ (0, 1). For η ∈ (0, 1), a function u ∈ C[0, 1] is said to be pseudo-symmetric if u is symmetric over the
interval [η, 1]. That is, u(t) = u(1 + η − t), t ∈ [η, 1]. By a pseudo-symmetric positive solution of (1.1), we mean a
pseudo-symmetric function u ∈ C2[0, 1] such that u(t) > 0 for t ∈ (0, 1), and u(t) satisfies (1.1).

Recently, many authors have focused on the question of symmetric positive solutions for ordinary differential
equation boundary value problems, for example, see (Avery & Henderson, 2000; Çetin & Topal, 2012; Graef &
Kong, 2008; Hamal & Yoruk, 2010; Jiang, Liu & Wu, 2013; Luo & Luo, 2010; Luo & Luo, 2012; Lin & Zhao,
2013; Tersenov, 2014) and the references therein. In (Avery & Henderson, 2003), Avery and Henderson gave the
definition of pseudo-symmetric function. Since then, some papers have discussed the pseudo-symmetric question
and established sufficient conditions for the existence of pseudo-symmetric positive solutions, see (Feng, Zhang
& Ge, 2010; Guo, Han & Chen, 2010; Ji, 2008; Ma & Ge, 2007; Pang, 2009; Sun & Zhao, 2014 ). To the best
of the authors’ knowledge there is little known about necessary and sufficient conditions for second-order pseudo-
symmetric nonlinear boundary value problem. Motivated by the works mentioned above, we aim to establish a
necessary and sufficient condition for the existence of pseudo-symmetric positive solution of (1.1) by applying the
monotone iterative technique.

The organization of the paper is as follows. Section 2 contains some preliminary lemmas and the basic assumptions.
In Section 3, by applying the monotone iterative technique, we obtain a sufficient and necessary condition for the
existence of at least one pseudo-symmetric positive solution for problem (1.1), we also discuss the uniqueness, a
iterative sequence and an error estimation for the pseudo-symmetric positive solution to (1.1). In Section 4, an
example will be presented to illustrate the applicability of our results.

2. Preliminaries

By routine calculations we have the following result.
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Lemma 2.1. Let v ∈ C[0, 1], then the boundary value problem{
u′′(t) + v(t) = 0, t ∈ (0, 1),
u(0) = 0, u(η) = u(1)

has a unique solution

u(t) =


∫ t

0

∫ 1+η
2

s
v(r)drds, 0 ≤ t ≤ 1 + η

2
,∫ η

0

∫ 1+η
2

s
v(r)drds +

∫ 1

t

∫ s

1+η
2

v(r)drds,
1 + η

2
≤ t ≤ 1,

where η ∈ (0, 1).

Lemma 2.2. Assume that u(t) is a pseudo-symmetric positive solution of (1.1). Then there exist constants c1, c2
with 0 < c1 < 1 < c2 such that

c1ω(t) ≤ u(t) ≤ c2ω(t), t ∈ [0, 1]. (2.1)

Proof. To prove (2.1) holds, first note that u(t) > 0 and u′′(t) ≤ 0 for t ∈ (0, 1). From the pseudo-symmetry of u(t),

we have u( 1+η
2 ) = maxt∈[0,1] u(t). If t ∈ (0, 1+η

2 ), then u(t) ≥ 2u( 1+η
2 )

1+η t, and if t ∈ ( 1+η
2 , 1), then u(t) ≥ 2u( 1+η

2 )
1+η (1 + η − t).

Hence, for t ∈ (0, 1), u(t) ≥ 2u( 1+η
2 )

1+η ω(t). Thus, we take c1 with 0 < c1 < min{1, 2u( 1+η
2 )

1+η }. The proof of the other half
of (2.1) is similar, we have that u(t) ≤ u′(0)ω(t), thus, choosing c2 > max{1, u′(0)}. The proof is complete.

Throughout this paper, we assume the following conditions hold without further mention.

(H1) f : (0, 1) × [0,∞) → [0,∞) is continuous. For (t, u) ∈ (0, 1) × [0,∞), η ∈ (0, 1), f (t, u) is pseudo-symmetric
in t, i.e., f satisfies

f (1 + η − t, u) = f (t, u), t ∈ [η, 1].

(H2) For (t, u) ∈ (0, 1) × [0,∞), f (t, u) is nondecreasing in u and there exists a constant λ ∈ (0, 1) such that if
σ ∈ (0, 1], then

σλ f (t, u) ≤ f (t, σu). (2.2)

Example 2.1. Study the equation

f (t, u) = |2t − η − 1|u 1
4 , (t, u) ∈ (0, 1) × [0,∞).

It is easy to see that the function f satisfies assumptions (H1) and (H2). In fact, if σ ∈ (0, 1], there exists constant
λ with 1

4 ≤ λ < 1 such that f (t, σu) ≥ σλ f (t, u).

Remark 2.1. Expression (2.2) implies that if σ ∈ [1,∞), we have

f (t, σu) ≤ σλ f (t, u). (2.3)

For convenience, let
ω(t) = min{t, 1 + η − t}, t ∈ [0, 1], (2.4)

and E be the Banach space C2[0, 1], and define

P =
{

u ∈ E : u(0) = 0, u(t) > 0 for t ∈ (0, 1), u(t) = u(1 + η − t) for

t ∈ [η, 1] and there exist constants lu, Lu with 0 < lu < 1 < Lu

such that luω(t) ≤ u(t) ≤ Luω(t) for t ∈ [0, 1]
}
.

(2.5)

Remark 2.2. The set P is not a cone as it is not closed.
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3. Main Results

Theorem 3.1. Assume (H1) and (H2) hold. Then the boundary value problem (1.1) has at least one pseudo-
symmetric positive solution if and only if

0 <
∫ 1

0
f (t, ω(t))dt < ∞. (3.1)

Proof. Necessity. Suppose first that u(t) is a pseudo-symmetric positive solution of (1.1), we will show that (3.1)
holds.

Let c1 and c2 be given as in Lemma 2.2 for this u(t). By Lemma 2.2, u(t) satisfies (2.1). Hence, by (H2), Remark
(2.1) and (2.1), we have ∫ 1

0
f (t, ω(t))dt ≤

∫ 1

0
f (t, c−1

1 u(t))dt

≤ c−λ1

∫ 1

0
f (t, u(t))dt

= c−λ1 [u′(0) − u′(1)] < ∞

(3.2)

and ∫ 1

0
f (t, ω(t))dt ≥

∫ 1

0
f (t, c−1

2 u(t))dt

≥ c−λ2

∫ 1

0
f (t, u(t))dt

= c−λ2 [u′(0) − u′(1)] > 0.

(3.3)

Now, (3.1) follows from (3.2) and (3.3).

Sufficiency. Now assume that (3.1) holds, we will show that (1.1) has at least one pseudo-symmetric positive
solution.

Define the operator T : E → E by

Tu(t) =


∫ t

0

∫ 1+η
2

s
f (r, u(r))drds, 0 ≤ t ≤ 1 + η

2
,∫ η

0

∫ 1+η
2

s
f (r, u(r))drds +

∫ 1

t

∫ s

1+η
2

f (r, u(r))drds,
1 + η

2
≤ t ≤ 1.

(3.4)

It is clear that u is a solution of (1.1) if and only if u is a fixed point of T .

Claim 1. The operator T : P→ P is completely continuous and nondecreasing.

We first note that for u ∈ P we have Tu(0) = 0, Tu(t) > 0 for t ∈ (0, 1). We now prove that Tu is pseudo-symmetric
about η ∈ (0, 1).

In fact, for t ∈ [η, 1+η
2 ], then 1 + η − t ∈ [ 1+η

2 , 1]. From (H1), we have

Tu(1 + η − t) =

∫ η
0

∫ 1+η
2

s
f (r, u(r))drds +

∫ 1

1+η−t

∫ s

1+η
2

f (r, u(r))drds

=

∫ η
0

∫ 1+η
2

s
f (r, u(r))drds +

∫ t

η

∫ 1+η−s

1+η
2

f (r, u(r))drds

=

∫ η
0

∫ 1+η
2

s
f (r, u(r))drds +

∫ t

η

∫ 1+η
2

s
f (r, u(r))drds

=

∫ t

0

∫ 1+η
2

s
f (r, u(r))drds = Tu(t)
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and for t ∈ [ 1+η
2 , 1], we note that 1 + η − t ∈ [η, 1+η

2 ]. Thus,

Tu(1 + η − t) =

∫ 1+η−t

0

∫ 1+η
2

s
f (r, u(r))drds

=

∫ η
0

∫ 1+η
2

s
f (r, u(r))drds +

∫ 1+η−t

η

∫ 1+η
2

s
f (r, u(r))drds

=

∫ η
0

∫ 1+η
2

s
f (r, u(r))drds +

∫ 1

t

∫ 1+η
2

1+η−s
f (r, u(r))drds

=

∫ η
0

∫ 1+η
2

s
f (r, u(r))drds +

∫ 1

t

∫ s

1+η
2

f (r, u(r))drds = Tu(t).

For t ∈ [0, 1+η
2 ], we have ω(t) = min{t, 1 + η − t} = t, so for any u ∈ P, from (2.2), (2.3) and (3.1),

Tu(t) =

∫ t

0

∫ 1+η
2

s
f (r, u(r))drds

≤
∫ t

0

∫ 1

0
f (r, Luω(r))drds

≤ tLλu

∫ 1

0
f (r, ω(r))dr ≤ LTuω(t)

(3.5)

and for t ∈ [ 1+η
2 , 1], we have ω(t) = 1 + η − t,

Tu(t) =

∫ η
0

∫ 1+η
2

s
f (r, u(r))drds +

∫ 1

t

∫ s

1+η
2

f (r, u(r))drds

≤
∫ η

0

∫ 1

0
f (r, Luω(r))drds +

∫ 1

t

∫ 1

0
f (r, Luω(r))drds

≤ (1 + η − t)Lλu

∫ 1

0
f (r, ω(r))dr ≤ LTuω(t),

(3.6)

where LTu > max{1, Lλu
∫ 1

0 f (r, ω(r))dr}.

On the other hand, for t ∈ [0, 1+η
2 ], there exists constant ξ ∈ (0, 1+η

2 ) such that

Tu(t) =

∫ t

0

∫ 1+η
2

s
f (r, u(r))drds

≥
∫ t

0

∫ 1+η
2

ξ

f (r, u(r))drds

≥ t
∫ 1+η

2

ξ

f (r, luω(r))drds

≥ tlλu

∫ 1+η
2

ξ

f (r, ω(r))dr ≥ lTuω(t)

(3.7)

and for t ∈ [ 1+η
2 , 1], there exist constants ζ ∈ ( 1+η

2 , 1) such that

∫ 1

t

∫ s

1+η
2

f (r, u(r))drds ≥ (1 − t)
∫ ζ

1+η
2

f (r, u(r))dr,
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and M > 0 such that min{
∫ 1+η

2

η
f (r, ω(r))dr,

∫ ζ
1+η

2
f (r, ω(r))dr} > M. Thus,

Tu(t) =

∫ η
0

∫ 1+η
2

s
f (r, u(r))drds +

∫ 1

t

∫ s

1+η
2

f (r, u(r))drds

≥ η
∫ 1+η

2

η

f (r, luω(r))dr + (1 − t)
∫ ζ

1+η
2

f (r, luω(r))dr

≥ lλu
[
η

∫ 1+η
2

η

f (r, ω(r))dr + (1 − t)
∫ ζ

1+η
2

f (r, ω(r))dr
]

≥ lλu M(1 + η − t) ≥ lTuω(t),

(3.8)

where 0 < lTu < min{1, lλu
∫ 1+η

2

ξ
f (r, ω(r))dr, lλu M}.

Hence, it follows from (3.5)-(3.8) that there exist constants lTu and LTu with 0 < lTu < 1 < LTu such that

lTuω(t) ≤ Tu(t) ≤ LTuω(t) for t ∈ [0, 1].

Consequently, Tu ∈ P, and so T : P → P. A standard argument can be used to show that T is completely
continuous. From (H2), it is easy to see that T is nondecreasing for u. Hence, Claim 1 holds.

Claim 2. Let δ and γ be fixed numbers satisfying

0 < δ ≤ l1/(1−λ)Tω , γ ≥ L1/(1−λ)
Tω , (3.9)

and assume
u0 = δω(t), v0 = γω(t), (3.10)

un = Tun−1, vn = Tvn−1, n = 1, 2, . . . . (3.11)

Then,
u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0, (3.12)

and there exists u∗ ∈ P such that

un(t)→ u∗(t), vn(t)→ u∗(t), uni f ormly on [0, 1]. (3.13)

In fact, 0 < lTω < 1 < LTω since Tω(t) ∈ P. So, 0 < δ < 1 < γ. From (3.10), we have u0, v0 ∈ P and u0 ≤ v0.

On the other hand, for t ∈ [0, 1+η
2 ], from (2.2) and (2.3),

u1 = Tu0(t) =

∫ t

0

∫ 1+η
2

s
f (r, δω(r))drds

≥ δλ
∫ t

0

∫ 1+η
2

s
f (r, ω(r))drds

= δλTω(t) ≥ δλlTωω(t)
≥ δλδ1−λω(t) = u0

(3.14)

and

v1 = Tv0(t) =

∫ t

0

∫ 1+η
2

s
f (r, γω(r))drds

≤ γλTω(t) ≤ γλLTωω(t)
≤ γλγ1−λω(t) = v0.

(3.15)

For t ∈ [ 1+η
2 , 1],

u1 = Tu0(t) =

∫ η
0

∫ 1+η
2

s
f (r, δω(r))drds +

∫ 1

t

∫ s

1+η
2

f (r, δω(r))drds

≥ δλTω(t) ≥ δλlTωω(t)
≥ δλδ1−λω(t) = u0

(3.16)
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and

v1 = Tv0(t) =

∫ η
0

∫ 1+η
2

s
f (r, γω(r))drds +

∫ 1

t

∫ s

1+η
2

f (r, γω(r))drds

≤ γλTω(t) ≤ γλLTωω(t)
≤ γλγ1−λω(t) = v0.

(3.17)

From (3.14)-(3.17), we have that u1 ≥ u0 and v1 ≤ v0 for t ∈ [0, 1]. Since u0 ≤ v0 and T is nondecreasing, by
induction, (3.12) holds.

Let c0 =
δ
γ
, then 0 < c0 < 1. It follows from

T (cu) ≥ cλTu, if 0 < c < 1, u ∈ P

that for any natural number n

un = Tun−1 = T nu0 = T n(δω(t)) = T n(c0γω(t)) ≥ cλ
n

0 T n(γω(t)) = cλ
n

0 vn.

Thus, for each natural number n an p∗, we have

0 ≤ un+p∗ − un ≤ vn − un ≤ (1 − cλ
n

0 )vn ≤ (1 − cλ
n

0 )γω(t), (3.18)

which implies that there exists u∗ ∈ P such that (3.13) holds, and Claim 2 holds.

Let n → ∞ in (3.11), we obtain u∗(t) = Tu∗(t), which is a pseudo-symmetric positive solution of (1.1). The proof
of the theorem is now complete.

Theorem 3.2. Assume (H1), (H2) and (3.1) hold. Then

(i) (1.1) has a unique pseudo-symmetric positive solution u∗(t), and there exist constants l, L ∈ R with 0 < l < 1 < L
such that

lω(t) ≤ u∗(t) ≤ Lω(t), t ∈ [0, 1]. (3.19)

(ii) For any initial value x0 ∈ P, there exists a sequence xn(t) which uniformly converges to the unique pseudo-
symmetric positive solution u∗(t) for (1.1), and we have the error estimation

max
t∈[0,1]

|xn(t) − u∗(t)| = O(1 − kλ
n
), (3.20)

where k is a constant with 0 < k < 1 and determined by x0.

Proof. Let u0, v0, un, vn be defined in (3.10) and (3.11).

(i) It follows from Theorem 3.1 that (1.1) has at least one pseudo-symmetric positive solution u∗(t) ∈ P, which
implies that there exist constants l and L with 0 < l < 1 < L such that u∗(t) satisfies (3.19). Let v∗(t) be another
pseudo-symmetric positive solution of (1.1), then from Lemma 2.2 we have that there exist constants c1 and c2
with 0 < c1 < 1 < c2 such that

c1ω(t) ≤ v∗(t) ≤ c2ω(t) for t ∈ [0, 1]. (3.21)

Let δ defined in (3.9) small enough so that δ < c1 and γ defined in (3.9) large enough so that γ > c2. Then from
(3.10) and (3.21),

u0(t) ≤ v∗(t) ≤ v0(t).

Note that Tv∗ = v∗ and T is nondecreasing, we have

un(t) ≤ v∗(t) ≤ vn(t). (3.22)

Let n → ∞ in (3.22), from (3.13) we have that v∗ = u∗. Hence, the pseudo-symmetric positive solution to (1.1) is
unique.

(ii) From (i), we know that the pseudo-symmetric positive solution to (1.1) is unique. For any x0 ∈ P, there exist
constants lx0 and Lx0 with 0 < lx0 < 1 < Lx0 such that

lx0ω(t) ≤ x0(t) ≤ Lx0ω(t). (3.23)
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Like in (i), we can let δ and γ defined in (3.9) satisfy δ < lx0 and γ > Lx0 . Then from (3.10) and (3.23)

u0(t) ≤ x0(t) ≤ v0(t).

Let xn = T xn−1, then

xn(t) =


∫ t

0

∫ 1+η
2

s
f (r, xn−1(r))drds, 0 ≤ t ≤ 1 + η

2
,∫ η

0

∫ 1+η
2

s
f (r, xn−1(r))drds +

∫ 1

t

∫ s

1+η
2

f (r, xn−1(r))drds,
1 + η

2
≤ t ≤ 1,

(3.24)

where n = 1, 2, . . .. Note that T is nondecreasing and (3.11), we have

un(t) ≤ xn(t) ≤ vn(t). (3.25)

Let n → ∞ in (3.25), it follows from (3.13) that xn uniformly converges to the unique pseudo-symmetric positive
solution u∗ for (1.1). At the same time, (3.20) follows from (3.18) and (3.25). Thus, the proof of the theorem is
complete.

4. Example

Example 4.1. Study the boundary value problem{
−u′′(t) = tp(1 + η − t)puα(t), t ∈ (0, 1),
u(0) = 0, u(η) = u(1), (4.1)

where p ∈ R, 0 < α < 1, 0 < η < 1. Let

f (t, u) = tp(1 + η − t)puα, (t, u) ∈ (0, 1) × [0,∞).

Note that the function f satisfies that f (t, u) = f (1 + η − t, u) for t ∈ [η, 1], f (t, u) is nondecreasing in u and if
σ ∈ (0, 1], there exists constant λ with 0 < α ≤ λ < 1 such that f (t, σu) ≥ σλ f (t, u) for all (t, u) ∈ (0, 1) × [0,∞),
which coincide with the assumptions (H1) and (H2). Thus, from Theorem 3.1 and Theorem 3.2, we have the
following results.

Corollary 4.1. The boundary value problem (4.1) has at least one pseudo-symmetric positive solution if and only
if p > −α.

Corollary 4.2. Assume p > −α. Then

(i) (4.1) has a unique pseudo-symmetric positive solution u∗(t), and there exist constants l and L with 0 < l < 1 < L
such that

lω(t) ≤ u∗(t) ≤ Lω(t), t ∈ [0, 1].

(ii) For any initial value x0 ∈ P, there exists a sequence xn(t) which uniformly converges to the unique pseudo-
symmetric positive solution u∗(t) for (4.1), and we have the error estimation

max
t∈[0,1]

|xn(t) − u∗(t)| = O(1 − kλ
n
),

where k is a constant with 0 < k < 1 and determined by x0.
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Çetin, E., & Topal, F. S. (2012). Symmetric positive solutions of fourth order boundary value problems for an
increasing homeomorphism and homomorphism on time-scales. Computers and Mathematics with Applica-
tions, 63, 669-678.

155



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 4; 2014

Feng, M. Q., Zhang, X. M., & Ge, W. G. (2010). Exact number of pseudo-symmetric positive solutions for a
p-Laplacian three-point boundary value problems and their applications. Journal of Applied Mathematics
and Computing, 33, 437-448.

Graef, J. R., & Kong, L. J. (2008). Necessary and sufficient conditions for the existence of symmetric positive
solutions of multi-point boundary value problems. Nonlinear Analysis, 68, 1529-1552.

Guo, Y. P., Han, X. H., & Chen, Y. R. (2010). Positive pseudo-symmetric solutions for higher order differential
equation boundary value problems with sign changing nonlinearities. Communications in Nonlinear Science
and Numerical Simulation, 15, 3795-3804.

Hamal, N. A., & Yoruk, F. (2010). Symmetric positive solutions of fourth order integral BVP for an increas-
ing homeomorphism and homomorphism with sign-changing nonlinearity on time scales. Computers and
Mathematics with Applications, 59, 3603-3611.

Ji, D. H. (2008). Triple positive pseudo-symmetric solutions to a four-point boundary value problem with p-
Laplacian. Applied Mathematics Letters, 21, 268-274.

Jiang, J. Q., Liu, L. S., & Wu, Y. H. (2013). Symmetric positive solutions to singular system with multi-point
coupled boundary conditions. Applied Mathematics and Computation, 220, 536-548.

Luo, Y., & Luo, Z. G. (2010). Symmetric positive solutions for nonlinear boundary value problems with ϕ-
Laplacian operator. Applied Mathematics Letters, 23, 657-664.

Luo, Y., & Luo, Z. G. (2012). A necessary and sufficient condition for the existence of symmetric positive solutions
of higher-order boundary value problems. Applied Mathematics Letters, 25, 862-868.

Lin, X. L., & Zhao, Z. Q. (2013). Existence and uniqueness of symmetric positive solution of 2n-order nonlinear
singular boundary value problems. Applied Mathematics Letters, 26, 692-698.

Ma, D. X., & Ge, W. G. (2007). Existence and iteration of positive pseudo-symmetric solutions for a three-point
second-order p-Laplacian BVP. Applied Mathematics Letters, 20, 1244-1249.

Pang, H. H. (2009). Necessary and sufficient conditions for the existence of quasi-symmetric positive solutions of
singular boundary value problem. Nonlinear Analysis, 71, 654-665.

Sun, Y. P., & Zhao, M. (2014). Existence of positive pseudo-symmetric solution for second-order three-point
boundary value problems. Journal of Applied Mathematics and Computing. http://dx.doi.org/10.1007/s12190-
014-0770-9.

Tersenov, Ar. S. (2014). On sufficient conditions for the existence of radially symmetric solutions of the p-Laplace
equation. Nonlinear Analysis, 95, 362-373.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

156


