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Abstract

Regression analysis plays a vital role in many areas of science. Almost all regression analyses rely on the method of least
squares for estimation of the parameters in the model. But this method is usually constructed under specific assumptions,
such as normality of the error distribution. When outliers are present in the data, this method of estimation, results in
parameter estimates that do not provide useful information for the majority of the data. Robust regression analyses have
been developed as an improvement to least square estimation in the presence of outliers. The main purpose of robust
regression analysis is to fit a model that represents the information of the majority of the data. Many researchers have
worked in this field and developed methods for these problems. The most commonly used robust estimators are Huber’s
M-estimator, Hampel estimator, Tukey’s bisquare estimator etc. In this paper, an attempt is made to review such type of
estimators and a simulation study of these estimators in regression models is carried out. R code has been written for the
purpose and illustrations are provided.
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1. Introduction

The theory of robustness developed by Huber and Hampel (1960) laid the foundation for finding practical solutions
too many problems, when statistical concepts were vague to serve the purpose. Robust regression analyses have been
developed as an improvement to least squares estimation in the presence of outliers and to provide us information about
what a valid observation is and whether this should be thrown. The primary purpose of robust regression analysis is
to fit a model which represents the information in the majority of the data. Robust regression is an important tool for
analyzing data that are contaminated with outliers. It can be used to detect outliers and to provide resistant results in the
presence of outliers. Many methods have been developed for these problems. Many researchers have worked in this field
and described the methods of robust estimators. The class of robust estimators includes M-, L- and R-estimators. The
M-estimators are most flexible ones, and they generalize straightforwardly to multiparameter problems, even though they
are not automatically scale invariant and have to be supplemented for practical applications by an auxiliary estimate of
scale any estimate. In this paper, an attempt has been made to make an elaborate study of the some of the M-estimators.
Section 2 deals with the descriptions of the M-estimators. The redescending M-estimators are presented in the section 3.
A simulation study of these estimators providing certain numerical illustrations by using R software is presented in the
last section.

2. M-estimator

The class of M-estimator was introduced by P.J.Huber in 1964; subsequently, such estimators have been discussed ex-
tensively by several authors, Andrews et al. (1972), Bunke and Bunke (1986), Hampel et al. (1986), Lecoutre and Tassi
(1987), Robusseeuw and Leroy (1987), Staudte and Sheather (1990), Rieder (1994), Jureckova and Sen (1996), Antoch et
al. (1998), Dodge and Jureckova (2000), Jureckova and Picek (2006) and others. M-estimator Tn is defined as a solution
of the minimization problem,

n∑
i=1

ρ(Xi, θ) := min, with respect to θ ∈ Θ

EPn
[ρ(X, θ)] = min, θ ∈ Θ (1)

where ρ(·, ·) is a properly chosen function. The class of M-estimator covers also the maximal likelihood estimator of
parameter θ in the parametric model P = {Pθ, θ ∈ Θ};if f (x, θ), is the density function of Pθ, then the MLE is a solution of
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the minimization
n∑

i=1

(−log f (Xi, θ)) = min, θ ∈ Θ

If ρ in (1) is differentiable in θ with a continuous derivative ψ(·, θ) = ∂
∂θ
ρ(·, θ) then, Tn is a root or roots of the equation

n∑
i=1

ψ(Xi, θ) = 0, θ ∈ Θ

hence
1
n

n∑
i=1

ψ(Xi,Tn) = EPn
[(X,Tn)] = 0 Tn ∈ Θ (2)

From (1) and (2) that the M-functional corresponding to Tn, is defined as a solution of the minimization∫
x

ρ(x,T (P))dP(x) = EP[ρ(X,T (P)] = min,T (P) ∈ Θ (3)

or as the solution of the equation ∫
x

ψ(x,T (P))dP(x) = EP[ψ(X,T (P)] = min,T (P) ∈ Θ (4)

The function T(P) is Fisher consistent, if the solutions of (3) and (4) are uniquely determined.

2.1 M-estimator of Location parameter

An important special case is the model with the shift parameter θ, where X1, X2, ..., Xn are independent observations with
the same distribution function F(x − θ), θ ∈ �; the distribution function F is generally unknown. M-estimator of location
parameter Tn is defined as a solution of the minimization

n∑
i=1

ρ(xi − θ) := min (5)

and if ρ(·) is differentiable with absolutely derivative ψ(·), then Tn solves the equation

n∑
i=1

ψ(xi − θ) = 0 (6)

The corresponding M-functional T(F) is Fisher consistent, provided the minimization∫
x

ρ(X − θ)dP(x) = min (7)

have a unique solution θ = 0, i.e., the solution of the equation is,∫
x

ψ(X − θ)dP(x) = 0. (8)

2.2 Asymptotic properties of M-estimator

A fairly simple and straightforward theory is possible if ψ(x, θ) is monotone in θ. Assume that ψ(x, θ) is measurable in x
and decreasing in θ, from strictly positive to strictly negative values. Put

T ∗
n = S up

⎧⎪⎪⎨⎪⎪⎩|t| n∑
i=1

ψ(xi; t) > 0

⎫⎪⎪⎬⎪⎪⎭ ,
T ∗∗

n = In f

⎧⎪⎪⎨⎪⎪⎩|t| n∑
i=1

ψ(xi; t) < 0

⎫⎪⎪⎬⎪⎪⎭ , (9)

Clearly,−∞ < T ∗
n ≤ T ∗∗

n < ∞, and any value Tn satisfying T ∗
n ≤ Tn ≤ T ∗∗

n can serve as our estimate. Note that{
T ∗

n < t
} ⊂ {∑

ψ(xi; t) ≤ 0
}
⊂ {

T ∗
n ≤ t

}
,
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{
T ∗∗

n < t
} ⊂ {∑

ψ(xi; t) < 0
}
⊂ {

T ∗∗
n ≤ t

}
. (10)

hence
P

{
T ∗

n < t
}
= P

{∑
ψ(xi; t) ≤ 0

}
,

P
{
T ∗∗

n < t
}
= P

{∑
ψ(xi; t) < 0

}
, (11)

at the continuity points t of the left-hand side. The distribution of the customary midpoint estimate 1/2(T ∗
n + T ∗∗

n ) is
somewhat difficult to work out, but the randomized estimate Tn, which selects one of T ∗

n or T ∗∗
n at random with equal

probability, has an explicitly expressible distribution function

P {Tn < t} = 1
2

P
{∑
ψ(xi; t) ≤ 0

}
+

1
2

P
{∑
ψ(xi; t) < 0

}
(12)

It follows that the exact distributions of T ∗
n , T ∗∗

n , and Tn can be calculated from the convolution powers of Gn = L(ψ(xi; t)).
Let,

λ(t) = λ(t, F) = EFψ(X, t). (13)

If λ exists and is finite for atleast one value of t, then it exists and is monotone for all t. Assume that there is a t0 such that
λ(t) > 0 for t < t0 and λ(t) < 0 for t > t0. Then both T ∗

n and T ∗∗
n converge in probability and almost surely to t0. Consider

the following conditions,

(C1) ψ(x, t) is measurable in x and monotone decreasing in t.

(C2) There is atleast one t0 for which λ(t0) = 0. Let Γ0 be the set of t-values for which λ(t) = 0.

(C3) λ is continuous in a neighborhood of Γ0.

(C4) σ(t)2 = EF[ψ(X, t)2] − λ(t, F)2 is finite, nonzero, and continuous in a neighborhood of Γ0. Put σ0 = σ(t0).

Under the above conditions
√

nλ(Tn) is a asymptotically normal N(0, σ2
0).

3. Redescending M-estimator

Redescending M-estimators are very popular Ψ-type M-Estimator which has Ψ functions that are non-decreasing near the
origin, but decreasing toward 0 far from the origin. TheirΨ functions can be chosen to redescend smoothly to zero, so that
they usually satisfy Ψ(x) = 0 for all x with |X| > k,where r is referred to as the minimum rejected point. When choosing a
redescending Ψ functions we must take care that it does not descend too steeply, which may have a very bad influence on
the denominator in the expression for the asymptotic variance∫

Ψ2dF

(
∫

(Ψ′
dF))2

where F is the mixture model distribution. This effect is particularly harmful when a large negative values of Ψ
′
(x)

combines with a large positive values ofΨ2(x), and there is a cluster of outliers near x. First we introduce Hampel’s
three-part M-estimator, it has Ψ functions which are odd functions and defined for any x by:

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x, 0 ≤ |x| ≤ a (central segment)

asign(x) a ≤ |x| ≤ b (high and low f lat segments)
a(k−|x|)

k−b
sign(x) b ≤ |x| ≤ k (end slopes)
0, k ≤ |x| (le f t and right tails)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ .
Tukey’s biweight or bisquare M-estimator have ψ functions for any positive k, which defined by

ψ(x) =
{

x[(1 − x/k)2]2 f or |x| ≤ k

0 f or |x| > k

}
.

Huber proposed function in 1964,that is

ψ(x) =
{

x, f or |x| ≤ k

ksignx, f or |x| > k

}
.

For regression analysis, some of the redecending M-estimators can attain the maximum breakdown point. Moreover,
some of them are the solutions of the problem of maximizing the efficiency under bounded influence function when the
regression coefficient and the scale parameter are estimated simultaneously. Hence redecending M-estimators satisfy
several outlier robustness properties.
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4. Simulation Results

This section presents the simulation results to check the performance of Huber M-estimator as compared to other well
known redescending M-estimators. The simulation study is carried out in three stages. First stage is the normal situation;
consider the following linear regression model

yi = β0 + β1xi + ui, i = 1, 2, ..., n.

in which ui ∼ N(0, 1) and the explanatory variables are generated as xi ∼ N(100, 2) using R software and then the values
of yi’s are evaluated for the specified values of β0 = 2 and β1 = 2. Then, values β0 and β1 are computed under various
methods of estimators by using R software. In the second stage, 10% of the yi observations are replaced by the values
generated from N(10,5), which are referred as outliers in y-direction. After that, as usual, computations performed to
estimate the values of β0 and β1. In the last stage, 20% of the xi observations are replaced by the values are generated
from N(10,5) which are also referred as outliers in x-direction with the same observations available in the second stage.
The estimated values of β0 and β1 in different stages are summarized in Table 1 for the value of n fixed as 50. The same
procedure is repeated for n=100 and n=500, and the results arrived by using R software, are presented in Table 2 and
3. From these tables it is clear that the results of the redescending M-estimator are very similar to that of ordinary least
square estimator in normal situation. The redecending estimators are not affected by the outliers in both second and third
situations while the ordinary least square estimator is affected in these situations.

5. Conclusion

The performance of robust estimators has been assessed in regression model. Estimators and results are obtained by using
R software. It is interesting to note that the class of M-estimators is found to yield essentially the same results as the
method of least square estimator in normal situation. When outliers are present in the data; least square estimator does
not provide useful information for the majority of the data but not in the case of robust estimators. That is, it is observed
that the M-estimators are not affected by outliers. The study establishes the fact that the performance of M-estimators are
almost same as the method of least squares in normal situations and also in the presence of outliers. Hence it is concluded
that the robust statistical procedures can be considered as modification of the classical procedures and such procedures
may not fail when there are small deviations from the assumed conditions.
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Table 1. Simulation Results of Regression with Intercept, for n=50

Estimators Normal Outliers in y Outliers in x
β0 β1 β0 β1 β0 β1

Least Square Estimator 2.07 1.98 -18.46 0.37 13.87 1.22
Huber M-estimator 2.00 1.99 1.99 1.96 2.02 1.97
Hampel M-estimator 2.07 1.98 2.03 1.93 2.09 1.95
Tukey’s M-estimator 2.04 2.00 2.01 1.96 2.06 1.98

Table 2. Simulation Results of Regression with Intercept, for n=100

Estimators Normal Outliers in y Outliers in x
β0 β1 β0 β1 β0 β1

Least Square Estimator 2.02 2.03 -4.52 0.26 10.58 1.43
Huber M-estimator 2.00 2.00 1.99 1.99 2.00 2.00
Hampel M-estimator 2.00 2.01 1.97 1.98 2.06 2.03
Tukey’s M-estimator 2.01 2.00 1.96 1.95 2.04 2.03

Table 3. Simulation Results of Regression with Intercept, for n=500

Estimators Normal Outliers in y Outliers in x
β0 β1 β0 β1 β0 β1

Least Square Estimator 2.01 2.02 -3.58 0.17 8.53 8.53
Huber M-estimator 2.00 2.03 2.00 2.01 2.02 2.05
Hampel M-estimator 1.96 2.00 1.97 1.98 1.98 1.99
Tukey’s M-estimator 1.97 1.99 1.95 1.97 1.95 1.95
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