
Arrays: In and Out and All About
Marge Scerbo, CHPDM/UMBC

Abstract

This tutorial will present the basics of array statements and
show easy examples of usage, leading to a final and more
complicated process made efficient through the use of this
statement. Arrays are SAS DATA step statements that allow
clever programmers to do a great deal of work with little
code. Iterative inputting of text and outputting of records are
two tasks which can utilize the power of arrays to their
fullest. Calculations of multiple values are also a simple task
for this statement.

Introduction

Some programmers actually like writing lines and lines of
simple code. As long as the project is completed and the
results are within the expected time frame, this is usually
acceptable. Other programmers hate to type and find any
method possible to write as little code as possible, but
similarly want to get the job done. In either case, code may
be easy or hard to review. A very long monotonous program
may be difficult to debug simply because of volume; fix one
mistake and another one is discovered. A very terse
program with complicated algorithms may also be difficult to
interpret in the future by either the original or subsequent
programmer.

SAS code allows programmers to write either way, long or
short, easy or complicated. It is easy to get to the same
result from different directions. Data step programming is
the core to SAS code. Within a data step it is possible to
accomplish many different tasks. This paper will add one
new technique, that of the array statement, to a
programmer’s tool belt.

This paper will cover only:
• One-dimensional arrays
• Explicit arrays - SAS Language guide recommends use

of explicit arrays rather than implicit arrays

Long Way Around – Example #1

The best way to show how arrays are useful is by
demonstrating two different methodologies. The first one will
use data step code without arrays and the second method
will include array processing.

Make the assumption that a data set has been received
from another group. Someone in that department decided
that all missing values should be set to 0 so that simple
assignment statements will not cause a warning if a missing
value was encountered. Unfortunately, these 0’s can cause
inaccurate results in other studies, so the process had to be
reversed.

Here is an example of a program that uses repetitive simple
statements to reset these fields to missing.

data nonarray1;
 set basefile;

If tot1 = 0 then tot1 = . ;
 If tot2 = 0 then tot2 = . ;

If tot3 = 0 then tot3 = . ;
If tot4 = 0 then tot4 = . ;
If tot5 = 0 then tot5 = . ;
If tot6 = 0 then tot6 = . ;
If tot7 = 0 then tot7 = . ;
If tot8 = 0 then tot8 = . ;
If tot9 = 0 then tot9 = . ;
If tot10 = 0 then tot10 = . ;
If tot11 = 0 then tot11 = . ;
If tot12 = 0 then tot12 = . ;
If tot13 = 0 then tot13 = . ;
if tot14 = 0 then tot14 = . ;

run;

This code is acceptable and readable, but imagine what this
code would look like if there were 400 different variables!

Basic Array Syntax

An array statement must ‘exist’ in a SAS data step. It does
not function within a Procedure. The basic format of an
array is:
Array array-name(number-of-elements) array-elements;

The pieces of the array puzzle include:
• An array-name identifies the group of variables in the

array.
• The number-of-elements shows the number of

elements in a one-dimensional array.
• The array-elements are the elements or fields that

make up the array.

The array-name cannot be the name of a SAS variable
used in that data step. In other words, it cannot be the name
of any variable in the data set(s) read in or output. Although
there will be no errors encountered if the array-name is the
name of a SAS function, it is dangerous to use a function-
name as the array-name. The results may not be valid.

The number-of-elements can be either a number or
numbers, a calculation, a numeric variable, or an asterisk ‘*’.
Again, the number-of-elements designates how many
elements exist in an array. If the number of elements is
unknown, using the asterisk, ‘*’, will allow SAS to count the
number of elements. This subscript is enclosed in
parentheses or brackets.

Arrays can be either numeric or character but not a
combination of types. If the array is character, the subscript
will be followed by a dollar sign ‘$’. The subscript and, if
needed, the dollar sign designating a character array can be
followed by a number that assigns the length of the
elements.

Array-elements are a list of the variable names. Again,
these must be all character or all numeric fields. These are
variables that will be referred to as array-name (subscript
number) during processing. If no array-elements are

named, SAS creates new variables that are named array-
name with the subscript number concatenated to the end.

Arrays themselves are not data in a SAS data set.

The array-name and all the array-elements must be valid
SAS names. In Version 6, this means that the name can be
between 1 and 8 characters long beginning with a letter (A-
Z) or an underscore (_). These names cannot contain a
blank or any special character except the underscore.
Finally, names cannot be SAS reserved words. Version 8
allows names to be between 1 and 32 characters in length
with all the other rules still enforced.

Shorter way around - Example #1

The first example is a perfect beginning to show the
implementation of an array statement. Remember, this
process is checking the values of variables tot1 through
tot14 and changing each value of 0 to a missing value:

data array1;
 set basefile;

 array tots(14) tot1-tot14;

do i = 1 to 14;
if tots(i) = 0 then tots(i) = . ;

end;
drop i;

run;

To further identify the array parts:
• the array-name is tots
• the number-of-elements is 14
• the array-elements are tot1 through tot14.

Note that the number of fields (tot1 through tot14) equals
the subscript (14). The do loop is executed 14 times and
the index-variable i is incremented from 1 to 14. This
causes the value of tot1, tot2, etc. to be checked to see if
each is equal to 0. Every time this condition is true, the
array-element value is reset to missing. Before exiting the
data step, the index-variable , i, is dropped, as it does not
need to be stored in the data set.

To step through the first increment of the do loop:
• the index-variable i is set to 1.
• tots(1) is resolved to the value of tot1
• the condition if tot1 = 0 is tested
• if this condition is true, then tot1 = .
• the end of the do loop is encountered and the process

begins again with the index-variable incremented to 2

If the situation were such that there were 400 elements
involved, creation of an array statement containing that
many fields would be no more difficult:

data arraybig1;
 set bigbasefile;

 array tots(400) tot1-tot400;

 do i = 1 to 400;
 if tots(i) = 0 then tots(i) = . ;
 end;
 drop i;

run;

Changing the array code to add or subtract array-elements
is easy and can make the SAS code more flexible than the
earlier, non-array, versions. Imagine adding 376 more if
statements!

Explicit vs Implicit arrays

Briefly, there are two types of arrays, explicit and implicit.
The major difference between these two array types is that
explicit arrays specify the number of elements in the array.
• Implicit arrays were used in earlier versions of SAS;

the elements of this array type are referenced by
evaluating the current value of the index variable
associated with the array.

• Explicit arrays are considered more powerful and are
much more straightforward. As stated in the
introduction of the paper, only explicit arrays will be
discussed here.

Long Way Around – Example #2

The last example involved variables with the same base
name, tot. It is very probable that some projects will require
manipulation of a list of fields with a variety of names.

In this next case, there is a need to recalculate a list of
charges to include a cost-of-living increment if the amount is
greater than 0. There are 7 fields, and the non-array code
would be:

data nonarray2
 set basefile2;

if basepay gt 0
 then basepay = basepay * 1.1345;
if copay gt 0 then
 copay = copay *1.1345;
if fedpay gt 0 then
 fedpay = fedpay *1.1345;
if insurepay gt 0 then
 insurepay = insurepay * 1.1345;
if deductible gt 0 then
 deductible = deductible * 1.1345;
if savepay gt 0 then
 savepay = savepay * 1.1345;
if pretaxpay gt 0 then
 pretaxpay = pretaxpay * 1.1345;

run;

Of course, this will work. If new fields are to be included,
then more lines need to be added, and so on.

Shorter way around - Example #2

The last example can be written in array code. In the
example below, charge(1) will equal basepay, charge(2) will
equal copay, and so on.

data array2;
 set basefile3;

 array charge(7) basepay copay fedpay insurepay
 deductible savepay pretaxpay;

 do i = 1 to 7;
 if charge(i) gt 0 then

 charge(i) = charge(i) * 1.1345;
 end;
 drop i;

run;

If new fields were added to this process, they would be
added to the list of array-elements and the subscript and
do loop counter will be changed.

A Short Character Example

So far, the examples have shown arrays used for numeric
fields, but arrays are equally useful in character
manipulation. Here is another example of non-array vs.
array code. The specification of this analysis includes:
• This hospital file contains 6 surgical procedures, any

number of which may be set to missing, a value of
blank.

• The outcome of the program is a count of how many
procedures are complete in each record.

• In each record, a new field will be created called
surgcnt that contains the number of valid values.

The non-array code could be written as:

data nonarray3;
set newproc;
surgcnt = 0;

 if procs1 ^= ' '
then surgcnt = surgcnt + 1;

 if procs2 ^= ' '
then surgcnt = surgcnt + 1;

 if procs3 ^= ' '
then surgcnt = surgcnt + 1;

 if procs4 ^= ' '
then surgcnt = surgcnt + 1;

 if procs5 ^= ' '
then surgcnt = surgcnt + 1;

 if procs6 ^= ' '
then surgcnt = surgcnt + 1;

run;

The array code can be demonstrated as:

data array3;
set newproc;

surgcnt = 0;
 array procs (6) $5 procs1-procs6;

 do i = 1 to 6;
 if procs(i) ^= ' ' then surgcnt = surgcnt + 1;
 end;
 drop i;

run;

Again, the code is similar to the numeric example. Since
there are only 6 procedures involved, there are no
spectacular differences between the non-array and array
examples. If more codes were added, the non-array code
would get longer and longer, and errors could easily
appear. It is quite easy to copy the line of code over and
over, but remember that the number attached to the
variable name must be changed, and it is simple to miss
one number or repeat a number.

An Even Better Example

Here is another example of non-array versus array code.
The specifications for this process include:
• This hospital file includes several repeating fields. Two

of these fields are billing codes (code1-code50) and
units of service (unit1-unit50).

• The output of this run is to count the number of regular
room and board days for each observation in the file.
This new field is called rbunits.

• Room and board billing codes are 150, 151, 152, 153,
and 160.

• The variables code1-code50 are character and unit1-
unit50 are numeric.

The non-array code is quite long. Note that this example
only contains 5 iterations of the process, not the full 50:

data nonarray3;
 set hospital;

rbunits = 0;
if code1 in('150','151','152','153','160') then do;
 rbunits = sum(rbunits, unit1);
if code2 in('150','151','152','153','160') then do;
 rbunits = sum(rbunits, unit2);
if code3 in('150','151','152','153','160') then do;
 rbunits = sum(rbunits, unit3);
if code4 in('150','151','152','153','160') then do;
 rbunits = sum(rbunits, unit4);
if code5 in('150','151','152','153','160') then do;
 rbunits = sum(rbunits, unit5);

*there would be 45 more of these if statements!
run;

The array code is much shorter (and is complete):

data array4;
 set hospital;

rbunits = 0;
array codes(50) $ code1-code50;

 array units(50) unit1-unit50;

do i = 1 to 50;
 if codes(i) in('150','151','152','153','160') then
 rbunits = sum(rbunits, units(i));
end;
drop i;

run;

As these examples get more complicated, the efficiency of
array programming becomes more evident!

Simple Input Example

Arrays can be useful during the creation of a data set.
There may be instances when the file layout contains fields
that would be read in the same order and with the same
specifications, except further along the line of data.

These examples will use input pointer control. A pointer-
control input statement will include an at sign ‘@’ followed
by the column specification, the variable name and the
informat of the field. This column specification can be a
number, a calculation, or a numeric variable.

In this example, the hospital file data layout defines that one
record may have up to 6 surgical procedures. (This file is
used in an earlier example.) Again, it would be possible to
write code to define each column, each variable, and each
format. A non-array code example of reading these surgical
procedures, which are character values 5 digits long, would
be:

data surgproc;
infile ‘hospital.dat’ lrecl = 568 missover;
input

@1 recipid $11.
@12 servdate mmddyy10.

èè @400 surgpr1 $5.
@405 surgpr2 $5.
@415 surgpr3 $5.
@415 surgpr4 $5.
@420 surgpr5 $5.
@425 surgpr6 $5. ;

run;

Note that this group of 6 procedures begins in ècolumn
400, and each procedure is 5-digits long.

The same code can be written with an array statement. As
this example begins, it is important to review an important
option in an input statement. If a line is being read and
processes need to occur in the middle of the process, a
trailing at sign ‘@’ will hold the line until released, either
programmatically or by reaching the end of the data step.

Before presenting the array code, note how this trailing at
sign ‘@’ is used in the example:

data medrecs.hospital;
 infile ‘hospital.dat’ lrecl = 5421 missover;

*trailing at sign will hold this line;
 èè input @19 clmstat $ 1. @;

*keep only records which were paid;
if clmstat eq ‘P’ then do;
 input @1 invnum $ 17.

 @18 acctcode $ 1.
 @20 clmtyp $ 1.
 @131 provnum $ 9.
 @140 category $ 2.
 … ;

end;
run;

On the line identified with the arrow è, note that only one
field is read. This field will designate the record as a paid
claim or not. The final database will contain only paid
claims, and the steps to accomplish this are:
• The claim status variable, clmstat, is read.
• The pointer remains on that record or line. This is

indicated by the at sign ‘@’ as the last character before
the semicolon.

• The status field is tested to see if the value equals ‘P’.
• If this condition is true, the rest of the record is read.
• If the condition is false, the processing will continue

until the bottom of the data step, at which point the
processing will begin again and a new record is read.

This background is important to understand the next piece
of code. The new code using an array to complete the task
above follows:

data surgproc;
infile ‘hospital.dat’ lrecl = 568 missover;

input
@1 recipid $11.
@12 servdate mmddyy10. @ ;

 array procs(6) $5 surgpr1-surgpr6;
cols = 400;
do i = 1 to 6;

 input @cols procs(i) $5. @;
 cols + 5;

end;
drop i;

run;

So, to parse the various pieces of code in this example:
• A character ($) array procs is built with 6 elements,

corresponding to the 6 surgical procedures.
• The array-elements are defined as variables surgpr1

through surgpr6.
• A portion of the record is read, including the fields

recipid and servdate. The pointer remains on this line
because of the trailing at sign.

• A new variable is created named cols with the initial
value of 400, the beginning column for the set of fields.

• A do loop increments 6 times. Each time it is
incremented, the pointer will be moved to the column

identified by the variable cols. The new variable
(surgpr1 through surgpr6) will be read.

• Although the pointer will be moved across the line
throughout the do loop, it will remain on the same
record because of the trailing at sign.

• At the end of each increment of the do loop, 5 (the
length of the procedure field) is added to the pointer
variable, cols.

• After the do loop has completed processing, the
index-variable, i, is dropped, since this field is not
needed in the output data set.

Simple Output Example

In preparing data for certain types of analysis, it is
sometimes best to reconfigure the fields to be searched,
assuming there are a group of variables in one record which
may contain similar data. In other words, when searching
for a set of values, at times it is easier to search down the
data set rather than across the records. So the process will
be to make a short fat data set a long thin one!

Take the example of the data set just created. In order to
search for a group of surgical procedures, it is possible to
recreate the data set as one long and narrow data set,
containing one procedure per record and what ever other
fields may be needed. Previous studies have shown that
there may be missing values in some of the procedure
fields; these values may be blank, ‘000’, ‘0000’, or ‘00000’.
It is also known that once a missing value has been
encountered, all succeeding procedures in that record will
be missing.

In this example, a program will be written which reviews
each of the 6 procedure fields. If a valid value is
encountered, a record containing that procedure, an
identifier, and a date will be output to a new data set. If a
missing value is encountered, the process should continue
to the next record, and so on.

Without using an array statement, the code might be written
as:

data surgproc (keep = idnum surgdate surgproc);
set basefile4;
length surgproc $6;

 if surgpr1 not in(‘ ’,’000’,’0000’,’00000’) then do;
 surgproc =surgpr1;
 output;

 if surgpr2 not in(‘ ’,’000’,’0000’,’00000’) then do;
 surgproc =surgpr2;
 output;
 if surgpr3 not in(‘ ’,’000’,’0000’,’00000’) then do;
 surgproc =surgpr3;
 output;
 if surgpr4 not in(‘ ’,’000’,’0000’,’00000’) then do;
 surgproc =surgpr4;
 output;
 if surgpr5 not in(‘ ’,’000’,’0000’,’00000’) then do;
 surgproc =surgpr5;
 output;

 if surgpr6 not in(‘ ’,’000’,’0000’,’00000’) then do;
 surgproc =surgpr6;
 output;
 end;
 end;
 end;

 end;
 end;
 end;
run;

Using an array the data step could be:

data surgproc (keep = idnum surgdate surgproc);
set basefile4;
length surgproc $6;
array surg(6) $ surgpr1-surgpr6;

do i = 1 to 6;
 if surg(i) not in(‘ ’,’000’,’0000’,’00000’) then do;
 surgproc =surg(i);
 output;
 end;
 else leave;
end;
drop i;

run;

The in operator will allow a list of values to be tested. In the
above case, the value of the surgical procedure should not
be in that list of missing values. If indeed a missing value is
encountered, the leave command causes the do loop to
end. *Thanks to Ron Cody for his introduction to the leave
statement.

Complicated Input Example

It is time to show the real power of arrays. This was in fact a
real life case. Data arrived which contained hospital data.
This type of file contains core information, including patient
and provider data, as well as detailed stay information.

Below is an example of a small portion of a file layout for
this hospital file. Notice the statement ‘occurs 50 times’. In
this example, one record may contain up to 50 revenue
codes and associated detail information:

- -FIELD LEVEL/NAME - - - -PICTURE START END LENGTH
 LINE-ITEM(1) OCCURS 50 TIMES
 FIRST-DATE-OF-SVC(1) 9(8) 2324 2331 8
 PROC-CODE(1) X(5) 2332 2336 5
 REVENUE-CODE(1) XXX 2337 2339 3
 MCARE-COVER(1) X 2340 2340 1
 UNITS-OF-SERVICE(1) 9(5) 2341 2345 5
 SUBMITTED-CHARGE(1) S9(5)V99 2346 2352 7
 ALLOWED-CHARGE(1) S9(7)V99 2353 2361 9

The original programmer was at a loss on how to write other
than the basic data step code and began coding each group
of fields separately. It was determined that there were 4
fields in each group that were needed for the studies
underway. These four fields are identified above as: first-
date-of-svc, revenue-code, units-of-service, allowed-charge.

An example of the non-array code to read 2 of the 50
groups is shown below:

data hospital;
 infile ‘hospital.dat’ lrecl = 5421 missover;
 input @1 invnum $17.
 @21 lastdos mmddyy10.

@31 billdate mmddyy10.
 @2324 detdos1 mmddyy10.

@2337 billcd1 $3.
@2341 units1 5.
@2353 detchg1 zd9.2
@2386 detdos2 mmddyy10.
@2399 billcd2 $3.
@2403 units2 5.
@2415 detchg2 zd9.2
…. ;

run;

Clearly repeating these fields 50 times is time consuming
and difficult to debug. There would be 200 lines to read in
these 4 variables 50 times!

To create efficient and readable code to input the hospital
data using the above ideas and some careful calculation
would lead to the following code:

data hospital;
 infile ‘hospital.dat’ lrecl = 5421 missover;
 input

@1 invnum $ 17.
@21 lastdos mmddyy10.
@31 billdate mmddyy10.
 …..
@; /*hold the pointer on this record*/

 *create 4 arrays to read in 4 fields 50 times;
 array dos (50) detdos1-detdos50;
 array billcode(50) $3 billcd1-billcd50;
 array units(50) units1-units50;
 array detchg(50) detchg1-detchg50;

 *always begin reading in column 2324;
 pntr = 2324;
 do i = 1 to 50;
 input

@pntr dos(i) mmddyy10. @;
pntr = pntr +13;

 input
@pntr billcode(i) $3. @;
pntr = pntr + 4;

 input
@pntr units(i) 5. @;
pntr = pntr + 12;

 input
@pntr detchg(i) zd9.2 @;
*skip the unwanted fields;
pntr = pntr + 33;

 end;
 *additional input statements to follow;
 drop i;
run;

These statements provide an efficient mechanism for
inputting a large number of fields. Again, there are other
ways to accomplish this!

In testing this code, first execute the do loop only two or
three times to create a small number of variables. Compare
this output with the results of code which actually reads
each field separately. Again, never assume code is correct
if there are no errors listed in the LOG!

Another Output Example

The following example uses a SAS date function and an
array to satisfy a request. Assume a data set contains 12
flags (jan99-dec99) that indicate whether or not a person
has been enrolled during that month. The fields are set to
either 1 (enrolled) or 0 (not enrolled).

The specifications of this study require that for each month
where the person has both been enrolled and received a
service, a record will be output to the analytic data set. An
intermediate data set has already been created that merged
the enrollment file to the service file. Below is code to
accomplish output of a new data set:

data serviced;
 set newfile;

 array enroll(12) jan99-dec99;
 mon = month(servdate);
 if enroll(mon) = 1 then output;
run;

This code creates an array containing each of the 12
monthly flags. Note that this code utilizing an array does not
include a do loop. Instead, a new variable, MON, is created
by using the month date function. This function reads a
SAS date and returns the number of the month. This new
variable is then used as the subscript of the array. For
example, in one observation:
• The service date (SERVDATE) is 9/12/1999.
• The month function will return the value 9.
• The program will resolve the if statement as:

if sep99 = 1
• If the person was enrolled in September 1999 (the

variable sep99 is set to 1), a new observation will be
output to the data set SERVICED.

What could have been a very complicated task was made
easy through the use of an array!

Conclusion

With a little practice and common sense, arrays can
become a standard tool in a programmer’s toolbelt. Follow
these tips:
• First, always have a SAS Language Guide available!
• In the process of learning how to use arrays, make

sure to test the program with non-array code. Print out
the Log and Output.

• Then rework the program to include array code and
compare these results with the non-array code.

After a while, it will become second nature to use arrays.
Once the learning curve is over, the usefulness will increase
and soon there will be multiple arrays and do loops within
do loops!

References

Leighton, Ralph, (1992), “Working with Arrays: Doing More
with Less Code”, in the Proceedings of the NorthEast SAS
Users Group Conference, 129-139

Contact Information

For more information contact:
Marge Scerbo
CHPDM/UMBC
1000 Hilltop Circle
Social Science Room 309
Baltimore, MD 21250
Phone: 410-455-6807
Fax: 410-455-6850
Email: scerbo@chpdm.umbc.edu

