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ABSTRACT

We briefly describe a set of algorithms to detect and
visualize effects of disease and genetic factors on the
brain. Extreme variations in cortical anatomy, even among
normal subjects, complicate the detection and mapping of
systematic effects on brain structure in human
populations. We tackle this problem in two stages. First,
we develop a cortical pattern matching approach, based on
metrically covariant partial differential equations (PDEs),
to associate corresponding regions of cortex in an MRI
brain image database (N=102 scans). Second, these high-
dimensional deformation maps are used to transfer within-
subject cortical signals, including measures of gray matter
distribution, shape asymmetries, and degenerative  rates,
to a common anatomic template for statistical analysis.
We illustrate these techniques in two applications: (1)
mapping dynamic patterns of gray matter loss in
longitudinally scanned Alzheimer’s disease patients; and
(2) mapping genetic influences on brain structure. We
extend statistics used widely in behavioral genetics to
cortical manifolds. Specifically, we introduce methods
based on h-squared distributed random fields to map
hereditary influences on brain structure in human
populations.

1. INTRODUCTION

Computational brain atlases, which represent anatomy in a
standardized 3D coordinate system, show enormous
promise in detecting systematic patterns of brain structure
and function in human populations. These atlases are
empowered by recent algorithmic advances in
computational anatomy ([1]; see [2] for a recent review).
Combining concepts from differential geometry,
continuum mechanics, computer vision and shape
modeling, these methods can identify disease effects on
the brain, how these patterns progress dynamically over
time, and how drug treatment, age, gender, risk genes or
environmental influences modulate them. Population-
based atlases in particular [3] can synthesize multi-
modality brain imaging data from patients with

Alzheimer’s disease (AD) [4,5], schizophrenia [6], twins
[7], and developing children [8], often identifying key
patterns of development and disease that are not apparent
in an individual subject.

      Cortical anatomy is so complex and variable that it is
difficult to compare and integrate brain data in human
populations. To assist in pooling cortical data across
subjects, some methods first unfold a computational
model of the cortex to a spherical shape or 2D plane.
Features are then matched using a nonlinear flow in the
resulting 2D parameter space. This flow can be represented
by spherical harmonics [9,10], which are eigenfunctions of
the spherical Laplacian, or by solving an elastic or fluid
PDE that aligns sulcal/gyral landmarks [11,12] or
curvature maps [13]. We describe an approach, based on
covariant PDEs, which makes these flows invariant to the
way the cortical surfaces are parameterized. When the self-
adjoint differential operator governing the PDE is
discretized, fields of Christoffel symbols are derived from
the metric tensor of the surface domain and added as
correction terms. The matching fields are then independent
of the surface metrics, and can be used to associate signals
from corresponding cortical regions across subjects. We
show illustrative applications of the approach in
Alzheimer’s disease and genetics.        

2. METHODS

Imaging and Subject Populations. 3D MRI (SPGR) scans
were acquired longitudinally (interscan interval 2.6±0.3
yrs.) from 17 AD patients and 14 healthy control subjects
matched for age, sex, and handedness (final age: 71.3±1.8
yrs.). An additional 40 3D MRI scans were acquired from
20 pairs of healthy twins (10 identical or monozygotic
(MZ) pairs, 10 fraternal or dizygotic (DZ)) matched for
age (48.2±3.4 years), sex, and handedness. After affine
alignment of individual data to a group average size and
shape [4], gyral pattern and shape variations were encoded
using high-dimensional elastic deformation mappings (see
Figs. 1,2) driving each subject’s cortical anatomy into a
group average configuration.



Figure 1: Cortical Gridding. Cortical models are created
from each 3D MRI scan (a) by driving a tiled, spherical mesh
into the configuration of each subject’s cortex; one sphere
represents each hemisphere (b) [14]. 36 uniform speed
parametric 3D curves per hemisphere (c) are manually
identified representing all consistently appearing
gyral/sulcal landmarks. Each cortical hemisphere i i s
parameterized (d) with an invertible mapping Di:
(q,f)Æ(x,y,z), so sulcal curves and landmarks in the folded
brain surface can be reidentified in a spherical map (e). To
facilitate the discretization of PDEs on the surface, spherical
coordinates (e) are replaced by a flat square 2D multigrid
structure (of side p; (e)). In this data structure, no cuts are
introduced: connectivity information is retained between
boundary nodes that are adjacent on the 3D brain surface (e.g.
1 matches 1¢, 2 matches 2¢, etc.). Green arrows denote points
that are topographically adjacent. In this scheme, cortical
points with spherical coordinates (q,f) lying in the octant

[0,p/2]¥[0,p/2] (colored red, (e)), map to the 2D parameter

space location (q,f(p-2q)/p) (red triangle, (f)). Other
mappings are then determined by symmetry. To retain
relevant 3D information when flattening the cortex (g),
cortical surface point position vectors (x,y,z) in 3D
stereotaxic space are color-coded via a linear look-up table
using a unique RGB color triplet. This forms an image of the
parameter space in color image format (h).

Figure 2: Cortical Matching. A well-resolved average model
of the cerebral cortex (6) can be built for any group of
subjects. (1) shows a magnified region of the 2D cortical
parameter space for a particular subject, and its
corresponding color code (3). These are both warped (2,4) to
match an average set of sulcal curves in parameter space. If
the warped color images (4) are averaged pixel-by-pixel
across subjects, they can be decoded to produce a crisp
average model of the cortex (6). The internal alignment of
landmarks is necessary to avoid destructive cancellation of
features (5). This cancellation would also happen if images
were averaged together directly in stereotaxic space. Common
features are reinforced in the group average and appear in
their group mean anatomical locations. Cortical measures
such as gray matter density are then subsequently convected
along with these flows and plotted on the average cortex,
prior to statistical analysis (Fig. 3).

Cortical Matching. Cortical differences between any pair
of subjects were calculated as follows. A flow field is first
calculated that elastically warps each flat map (Fig. 2(1))
onto an average set of sulcal curves in parameter space
(Fig. 2(2)). On the sphere, the parameter shift function
u(r):W Æ W , is given by the solution F:rÆr-u(r) to a
curve-driven warp in the spherical parametric space
W=[0,2p)¥[0,p). For points r=(r,s) in the parameter space
(Fig. 1(d)), a system of simultaneous partial differential
equations is written for the flow field u(r):



L‡(u(r)) + F(r-u(r)) = 0, "rŒW, with u(r) = u0(r),
"rŒM0»M1. (1)

Here M0, M1 are sets of points and (sulcal or gyral) curves
where displacement vectors u(r)=u0(r) matching
corresponding anatomy across subjects are known. The
flow behavior is modeled using continuum-mechanical
equations. L can be any second order self-adjoint
differential operator; here we use the Cauchy-Navier
differential operator L = m—2+(l+m)—(—T•) with body
force F (cf. [15,16]). To create mappings that are
independent of the surface metrics (parameterizations), we
use L‡, the covariant form of the differential operator L.
L‡, all L’s partial derivatives are replaced with covariant
derivatives  with respect to the metric tensor of the surface
domain where calculations are performed. The covariant
derivative of a (contravariant) vector field, ui(x), is: ui

,k =
∂uj/∂xk + Gj

ik ui where the Christoffel symbols of the
second kind, Gj

ik, are computed from derivatives of the
metric tensor components gjk(x):

Gi
jk = (1/2) gil (∂glj/∂xk+∂glk/∂xj-∂gjk/∂xi). (2)

These correction terms are then used in the solution of
PDE, producing a family of 3D deformation maps, Ui(r)
matching each individual cortex in 3D to the average
cortex for a group. Here Ui is a 3D location on the ith
subject’s cortex, and r is the location it maps to, after
warping, in the cortical parameter space.

Mapping Gray Matter Deficits. All MRIs were RF-
corrected and segmented with a Gaussian mixture
classifier, producing binary maps of gray matter. Let gi,r(x)
be the ‘gray matter density’, i.e. the proportion of voxels
classified as gray matter falling within a sphere (center x,
radius r) in the ith subject’s scan. Then for a point at
parameter location r on the group average cortex (Fig.
2(6)), gi,r(Ui(r)) is the gray matter density at the
corresponding cortical point in subject i.

3. RESULTS

After averaging the aligned maps of gray matter density
across groups of patients with Alzheimer’s disease and
healthy controls, Fig. 3 reveals the spatial profile of gray
matter deficits in disease. By averaging the aligned maps,
and texturing them back onto a group average model of the
cortex, the average magnitude of gray matter loss was
computed for the Alzheimer’s disease population (Fig. 3;
(cf. [17]). Regions with up to 10-20% reduction in the
measure are demarcated from adjacent regions with little
detectable loss. The group effect size was measured by
attaching a field of t statistics, t(r), to the cortical
parameter space, and computing the area of the t field on
the group average cortex above a fixed threshold (p < 0.01,
uncorrected). In a multiple comparisons correction, the
significance of the overall effect was confirmed to be p <

0.01, by permuting the assignment of subjects to groups
1,000,000 times.

Genetic Effects. In a second application, the intraclass
correlation in gray matter distribution gi,r(x) was computed
for groups of identical and fraternal twins, after cortical
pattern matching (giving maps rMZ(q,f) and rDZ(q,f) in Fig.
4). In behavioral genetics, a feature is heritable if rMZ

significantly exceeds rDZ . An estimate of its heritability h2

can be defined as 2(rMZ-rDZ), with standard error:
S.E.2(h2)=4[((1-rMZ

2) 2/nMZ) + ((1-rDZ
2) 2/nDZ)].  In Fig. 4, we

computed a heritability map from the equation:

h2(q,f)=2(rMZ(q,f)-rDZ(q,f)).

Strong genetic influences on frontal brain structure were
visualized. These effects were confirmed by assessing the
significance of effect size of h2 by permutation (this
involved repeated generation of null realizations of an h2-
distributed random field; see Fig. 4; see details in [18]).

4. CONCLUSION

Algorithms to map disease-related and genetic effects on
the cortex can reveal key features of brain development and
degeneration. We described a cortical pattern matching
approach to assist in normalizing signals on the cortex.
We used this to map degenerative profiles in Alzheimer’s
disease, taking into account the wide variations in gyral
patterning. Finally, we developed a method to isolate
genetic effects on cortex. We extended statistics used
widely in behavioral genetics to a brain mapping
application. These maps will be key components of future
disease-specific and genetic brain atlases.  
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Figure 3: Mapping Gray Matter Deficits in Alzheimer’s Disease. Here cortical pattern matching was used to associate measures of
gray matter density from corresponding cortical regions, in 3D MRI scans (a) of 17 AD patients and 14 matched controls.
Temporal brain regions exhibit significant gray matter (GM) deficits in both brain hemispheres (red colors: (b),(c)). The
experiment was repeated based on an independent set of scans of all the same subjects acquired 2.5 years later. By this time the
patients’ MMSE cognitive test scores has deteriorated from a score of 17.7±6.2 to 12.9±8.2 (mean±SD). Notice how tissue losses
had intensified [(d),(e)] from 5-10% initially (f) to a 15% gray matter deficit (g) in frontal cortices.   

Figure 4. Mapping Genetic Influences on Brain Structure. Once gray matter maps are aligned across subjects, using cortical
pattern matching, intrapair individual differences can be compared for identical twins (MZ; left panels) who share all their genes,
and fraternal twins (DZ), who on average share half. The intraclass correlation in gray matter density is higher for MZ than DZ
twins. A plot of twice their difference (top right) shows high heritability values h2(q,f) in dorsolateral prefrontal cortex (DLPFC).
The significance of these genetic influences on brain structure was confirmed by thresholding the experimental significance map
p(h2(q,f)) and comparing its supra-threshold extent with simulated realizations of h2-distributed random fields (see [18]).    




