Applied Cryptography and Computer Security

CSE 664 – Spring 2016

Aziz Mohaisen

University at Buffalo

Basic Information

- Applied cryptography and computer security
- Dr. Aziz Mohaisen (Davis Hall 323)
- Time: Tuesday and Thursday (11:00 12:20)
- OH: Tuesday and Thursday (9:30 10:30)
- Location (lecture): NSC 216
- TA: Hayreddin Ceker
- Prerequisites: CSE 565
 - discrete math, and computer networks.

Basic Information, cont.

- Instructor:
 - Prof. Aziz Mohaisen
 - Davis Hall, 323
 - E-mail: <u>mohaisen@buffalo.edu</u>
 - Phone: 716-665-1592 (no voice mail)
 - Office hours (9:30 10:30) before the lecture

Basic Information, cont.

- Textbook: no textbook is assigned
- Recommended readings:
 - Introduction to modern cryptography by Katz and Lindell, CRC, SE 2014
 - Handbook of applied cryptography by Menezes et al., CRC, FE 1996
 - Introduction to computer security by Goodrich and Tamassia, Pearson, FE 2010
 - 19 (or 24) deadly sins of software security: programming flaws and how to fix them. Michael Howard et al, McGraw-Hill (FE) SE 2005 (20xx?)

Basic Information, cont.

- This is a graduate course; stating the obvious
- Objectives of the course
 - Learning in-depth select topics in applied cryptography computer security (50% of time)
 - Learning (in lesser depth) a variety of security topics in computer, networks, and software systems, as well as online privacy.
- Attendance policy: the assumption is that everyone will attend most of the lectures.

Grading Policy

Project(s) 40%

Assignments 20% (x2)

Midterm 1 20% (take home)

Midterm 2 20% (in class, closed notes)

• $A \ge 90$, $B \ge 80$, $C \ge 70$, $D \ge 60$, F < 60.

 A, A-, B+, B, B-, C+, C, D, F and FX are graded according to http://grad.buffalo.edu/Academics/ Policies-Procedures/Grading-Procedures.html

Grading Policy: Projects

- A group of 3-4 students for each project
- Project topics are selected by students in coordination with the instructor
- Deliverables are: proposal, midterm report and final report. Options include:
 - Design a secure protocol
 - Break an existing protocol (security analysis)
 - Implementation a recent work
 - Highlighting new nontrivial and nonobvious findings
 - Data-driven approach to X (security analytics)

Grading Policy: Assignments

- Two assignments for the entire semester.
 - One week window for turning solutions in.
 - Intended to evaluate your understanding of inclass material and to get you to do some active readings/learning out of the class. Midterm prep.
 - Are to be done individually.
 - Academic conduct policies will be strongly enforced
 - Assignments to be typed in. Paper submission.
- Late submission policy:
 - 1h-24h: -25%, 25h-48h: -50%, >48h: -100%

Grading Policy: Midterm 1

- Covers the first half of the course
 - Examines your knowledge of the covered material on applied cryptography
 - May require some coding for solving some of the questions (simple coding)
 - Will be a take-home exam, and any indicators of misconduct will be strongly penalized.

Grading Policy: Midterm 2

- In class midterm. Closed notes exam.
 - Covers all the material covered in the class
 - Focuses more on the second half
 - Computer security, network security, software security, and online and data privacy.
 - Will be held during the last meeting of course

Syllabus

Part 1: Applied Cryptography (7 weeks)

Part 2: Applied Security (7 weeks)

Part 1

APPLIED CRYPTOGRAPHY

Syllabus

- Symmetric key cryptography (1 week)
 - Computational cryptography
 - Computational security
 - Pseudorandomness and associated notions
 - Security against CPA and CCA
- MACs/hash functions (1 week)
 - Message integrity
 - Encryption vs message authentication
 - CBC-MAC
 - Collision resistance and other notions
 - NMAC and HMAC

- Practical constructions and pseudorandom permutations (1 week)
 - Feistel networks
 - DES and its security
 - AES and its security
 - Introduction to crypto analysis
- Public key cryptography (1.5 weeks)
 - Number theory
 - Primes, factoring, and RSA
 - Groups and assumptions in groups
 - Cryptographic applications of number theory

- Public key encryption (1.5 weeks)
 - Definitions of security and notions
 - Hybrid encryption schemes
 - RSA, El Gamal
 - Trapdoor permutations
 - Other cryptosystems, Goldwasser-Micali, Rabin, Paillier, and ABE.
- Digital Signatures (1 week)
 - Notions and definitions
 - RSA, hash-and-sign
 - Lamport's and recent applications
 - DSS, Certifications, and PKI standards

Part 2

APPLIED SECURITY

- Transport security (1 week)
 - HTTPS and IPSEC
 - SSL and TLS
 - RPKI and BGPSEC
 - DNSSEC and DLV
- Network attacks and defenses (1 week)
 - Botnets, DDoS, reflectors
 - Offline and online attacks

- Application security (1 week)
 - Bugs, shellcodes
 - Viruses, worms, spyware
- Web security:
 - Cookies, tracking
 - XSS, SQL injection, defenses
 - Advanced threats: cyber warfare and APTs
- Privacy (2 weeks):
 - Tor, (anti)censorship, OTR,
 - GPG, social networks, and other advances.

Frequent Asked Questions

- 1. I did not take CSE 565. Can I take CSE 664?
- 2. I already took CSE 664. Can I sit in your class?
- 3. Time conflict. Can I register and not attend?
- 4. What are you going to teach?
- 5. Can I do my course project alone?
- 6. Not attending lectures going to affect my score?
- 7. If I do well, can you write me a recommendation?
- 8. Which book should I buy for this course?
- 9. I cannot attend the midterm. Can you make it up?
- 10. Can I use the project for a master's thesis?
- 11. How to compile a X code?
- 12. Which programming language should I use?
- 13. Should I do a Ph.D. on topic Y?

More questions?

- Ask now, or
 - Email me on mohaisen@buffalo.edu
 - Come to my office hours (9:30 10:30)
 - Call but no voice mail (I forgot my passwd)