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Abstract

We introduce a new sequential algorithm
for making robust predictions in the pres-
ence of changepoints. Unlike previous ap-
proaches, which focus on the problem of de-
tecting and locating changepoints, our al-
gorithm focuses on the problem of making
predictions even when such changes might
be present. We introduce nonstationary co-
variance functions to be used in Gaussian
process prediction that model such changes,
then proceed to demonstrate how to effec-
tively manage the hyperparameters associ-
ated with those covariance functions. By us-
ing Bayesian quadrature, we can integrate
out the hyperparameters, allowing us to cal-
culate the marginal predictive distribution.
Furthermore, if desired, the posterior distri-
bution over putative changepoint locations
can be calculated as a natural byproduct of
our prediction algorithm.

1. Introduction

We consider the problem of performing time-series pre-
diction in the face of abrupt changes to the properties
of the variable of interest. For example, a data stream
might undergo a sudden shift in its mean, variance, or
characteristic input scale; a periodic signal might have
a change in period, amplitude, or phase; or a signal
might undergo a change so drastic that its behavior
after a particular point in time is completely indepen-
dent of what happened before. A robust prediction
algorithm must be able to make accurate predictions
even under such unfavorable conditions.

The problem of detecting and locating abrupt changes
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in data sequences has been studied under the name
changepoint detection for decades. A large number
of methods have been proposed for this problem; see
(Basseville & Nikiforov, 1993; Brodsky & Darkhovsky,
1993; Csorgo & Horvath, 1997; Chen & Gupta, 2000)
and the references therein for more information. Rel-
atively few algorithms perform prediction simultane-
ously with changepoint detection, although sequential
Bayesian methods do exist for this problem (Chernoff
& Zacks, 1964; Adams & MacKay, 2007). However,
these methods, and most methods for changepoint de-
tection in general, make the assumption that the data
stream can be segmented into disjoint sequences, such
that in each segment the data represent i.i.d. observa-
tions from an associated probability distribution. The
problem of changepoints in dependent processes has
received less attention. Both Bayesian (Carlin et al.,
1992; Ray & Tsay, 2002) and non-Bayesian (Muller,
1992; Horváth & Kokoszka, 1997) solutions do exist,
although they focus on retrospective changepoint de-
tection alone; their simple dependent models are not
employed for the purposes of prediction. Sequential
and dependent changepoint detection has been per-
formed (Fearnhead & Liu, 2007) only for a limited set
of changepoint models.

We introduce a fully Bayesian framework for perform-
ing sequential time-series prediction in the presence of
drastic changes in the characteristics of the data. We
introduce classes of nonstationary covariance functions
to be used in Gaussian process inference for modelling
functions with changepoints. In this context, the po-
sition of a particular changepoint becomes a hyperpa-
rameter of the model. We proceed as usual; for making
predictions, the full marginal predictive distribution is
estimated. If the locations of changepoints in the data
is of interest, we estimate the full posterior distribution
of the related hyperparameters given the data. The re-
sult is a robust time-series prediction algorithm that
makes well-informed predictions even in the presence
of sudden changes in the data. If desired, the algo-
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rithm additionally performs changepoint detection as
a natural byproduct of the prediction process.

The remainder of this paper is arranged as follows. In
the next section, we briefly introduce Gaussian pro-
cesses and discuss the marginalization of hyperparam-
eters using Bayesian Monte Carlo numerical integra-
tion. A similar technique is presented to produce pos-
terior distributions and their means for any hyper-
parameters of interest. Next we introduce a class of
nonstationary covariance functions to model functions
with changepoints. In Section 5 we provide a brief ex-
pository example of our algorithm. Finally, we provide
results demonstrating the ability of our model to make
robust predictions and locate changepoints effectively.

2. Gaussian Process Prediction

Gaussian processes (GPs) offer a powerful method
to perform Bayesian inference about functions (Ras-
mussen & Williams, 2006). A GP is defined as a dis-
tribution over the functions X → R such that the dis-
tribution over the possible function values on any finite
set F ⊂ X is multivariate Gaussian. The prior distri-
bution over the values of a function y(x) are completely
specified by a mean vector µ and covariance matrix K

p(y | µ, K, I ) , N(y; µ,K)

,
1√

det 2πK
exp

(

−1

2
(y − µ)T K−1 (y − µ)

)

,

where I, the context, includes prior knowledge of both
the mean and covariance functions, which generate µ

and K respectively. The prior mean function is cho-
sen as appropriate for the problem at hand (often a
constant), and the covariance function is chosen to re-
flect any prior knowledge about the structure of the
function of interest, for example periodicity or differ-
entiability. A large number of covariance functions ex-
ists, and appropriate covariance functions can be con-
structed for a wide variety of problems (Rasmussen
& Williams, 2006). For this reason, GPs are ideally
suited for both linear and nonlinear time-series pre-
diction problems with complex behavior. We take y

to be a potentially dependent dynamic process, such
that X contains a time dimension. Note that our ap-
proach considers functions of continuous time; we have
no need to discretize our observations into time steps.

Our GP distribution is specified by various hyperpa-
rameters θe : e = 1, . . . , E, collectively denoted as
θ , {θe : e = 1, . . . , E}. θ includes the mean func-
tion µ, as well as parameters required by the covari-
ance function, input and output scales, amplitudes,
periods, etc. as needed.

Define Id as the conjunction of I and the observations
available to us within the window, (xd, yd). Taking
both Id and θ as given, we are able to analytically de-
rive our predictive equations for the vector of function
values y⋆ at inputs x⋆

p(y⋆|x⋆, θ, Id) = N
(

y⋆; mθ(y⋆|Id),Cθ(y⋆|Id)
)

, (1)

where we have:

mθ(y⋆|Id)

= µ
θ
(x⋆) + Kθ(x⋆, xd)Kθ(xd, xd)

−1(yd − µ
θ
(xd))

Cθ(y⋆|Id)

= Kθ(x⋆, x⋆) − Kθ(x⋆, xd)Kθ(xd, xd)
−1Kθ(xd, x⋆) .

We use the sequential formulation of a GP given by
(Osborne et al., 2008) to perform sequential predic-
tion using a moving window. After each new observa-
tion, we use rank-one updates to the covariance ma-
trix to efficiently update our predictions in light of
the new information received. We efficiently remove
the trailing edge of the window using a similar rank-
one “downdate.” The computational savings made by
these choices mean our algorithm can be feasibly run
on-line.

3. Marginalization

Of course, we can rarely be certain about θ a pri-
ori. For each hyperparameter we take an independent
Gaussian prior distribution (or if our hyperparameter
is restricted to the positive reals, we instead assign a
Gaussian distribution to its log) such that

p(θ | I ) ,

E
∏

e=1

N
(

θe; νe, λe
2
)

.

These hyperparameters must hence be marginalized as

p(y⋆|x⋆, Id)

=

∫

p(y⋆|x⋆, θ, Id) p(yd|xd, θ, I) p(θ|I) dθ
∫

p(yd|xd, θ, I) p(θ|I) dθ
.

Although these required integrals are non-analytic,
we can efficiently approximate them by use of
Bayesian Monte Carlo (Rasmussen & Ghahramani,
2003) (BMC) techniques. Following (Osborne et al.,
2008), we take a grid of hyperparameter samples {θs :
s = 1, . . . , S} , ⊠E

e=1Θe, where Θe is a column
vector of samples for the eth hyperparameter and ⊠

is the Cartesian product. We thus have a different
mean ms(y⋆|Id), covariance Cs(y⋆|Id) and likelihood
ls , p(yd|xd, θs, I) for each. BMC supplies these sam-
ples to a GP to perform inference about our integrand
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for other values of the hyperparameters. In particular,
we assign a Gaussian covariance function for this GP

K(θ, θ′) ,

E
∏

e=1

Ke

(

θe , θ′e
)

Ke

(

θe , θ′e
)

, N
(

θe ; θ′e, w
2
e

)

.

We define

Ne

(

θe , θ′e
)

, N

([

θe

θ′e

]

;

[

νe

νe

]

,

[

λ2
e+w2

e λ2
e

λ2
e λ2

e+w2
e

])

M ,

E
⊗

e=1

Ke

(

Θe, Θe

)−1
Ne

(

Θe, Θe

)

Ke

(

Θe, Θe

)−1

ρ ,
M lS

1T

S,1 M lS
,

where 1S,1 is a column vector containing only ones of

dimensions equal to l , {ls : s = 1, . . . , S}, and ⊗ is
the Kronecker product. Using these, BMC leads us to

p(y⋆|x⋆, Id) ≃
S

∑

s=1

ρs N
(

y⋆; ms(y⋆|Id),Cs(y⋆|Id)
)

.

(2)
BMC can also estimate the posterior distribution for
hyperparameter θf by marginalizing over all other hy-
perparameters θ−f

p(θf |Id) =

∫

p(yd|xd, θ, I) p(θ|I) dθ−f
∫

p(yd|xd, θ, I) p(θ|I) dθ
.

With the definitions

Ke,f

(

θf , Θe

)

,

{

N
(

θe; νe, λe
2
)

N
(

Θe; θe, w
2
e

)T

, e = f

N
(

Θe; νe, λ
2
e+w2

e

)T

, e 6= f

m
T

f (θf ) ,

E
⊗

e=1

Ke,f

(

θf , Θe

)

Ke

(

Θe, Θe

)−1
,

n
T ,

E
⊗

e=1

N
(

Θe; νe, λ
2
e+w2

e

)T

Ke

(

Θe, Θe

)−1
,

we arrive at

p(θf |Id) ≃
m

T

f (θf ) l

nT l
. (3)

Joint posteriors for sets of hyperparameters are also
readily obtained in a similar manner. Making the def-
initions

K̄e,f

(

Θe

)

,

{

λ2

e
Θ

T

e
+w2

e
νe

λ2
e
+w2

e

N
(

Θe; νe, λ
2
e+w2

e

)T

, e = f

N
(

Θe; νe, λ
2
e+w2

e

)T

, e 6= f

m̄
T

f ,

E
⊗

e=1

K̄e,f

(

Θe

)

Ke

(

Θe, Θe

)−1
,

the posterior mean is given by
∫

θf p(θf |Id) dθf ≃
m̄

T

f l

nT l
. (4)

4. Covariance Functions for Prediction

in the Presence of Changepoints

We now describe how to construct appropriate covari-
ance functions for functions that experience sudden
changes in their characteristics. This section is meant
to be expository; the covariance functions we describe
are intended as examples rather than an exhaustive
list of possibilities. To ease exposition, we assume the
input variable of interest x is entirely temporal. If
additional features are available, they may be readily
incorporated into the derived covariances (Rasmussen
& Williams, 2006).

We consider the family of isotropic stationary covari-
ance functions of the form

K(x1, x2; {λ, σ}) , λ2κ
(

|x1−x2|
σ

)

, (5)

where κ is an appropriately chosen function. The pa-
rameters λ and σ represent respectively the charac-
teristic output and input scales of the process. An
example isotropic covariance function is the squared
exponential covariance, given by

KSE(x1, x2; {λ, σ}) , λ2 exp

(

− 1

2

(

|x1−x2|
σ

)2
)

. (6)

Many other covariances of the form (5) exist to model
functions with a wide range of properties, including
the rational quadratic, exponential, and Matérn family
of covariance functions. Many choices for κ are also
available; for example, to model periodic functions,
we can use the covariance

KPE(x1, x2; {λ, σ}) , λ2 exp
(

− 1

2
sin2

(

π
|x1−x2|

σ

))

,

in which case the output scale λ serves as the ampli-
tude, and the input scale σ serves as the period.

We demonstrate how to construct appropriate covari-
ance functions for three types of changepoints: a sud-
den change in the input scale, a sudden change in the
output scale, and a drastic change rendering values
after the changepoint independent of the function val-
ues before. The last is the simplest, and we consider
it first.

4.1. A drastic change in covariance

Suppose a function of interest is well-behaved except
for a drastic change at the point xc, which separates
the function into two regions with associated covari-
ance functions K1(·, ·; θ1) before xc and K2(·, ·; θ2) af-
ter, where θ1 and θ2 represent the values of any hyper-
parameters associated with K1 and K2, respectively. If
the change is so drastic that the observations before xc
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Figure 1. Example covariance functions for the modelling
of data with changepoints.

are completely uninformative about the observations
after the changepoint; that is, if

p
(

y≥xc

| I<xc

)

= p
(

y≥xc

| I
)

,

where the subscripts indicate ranges of data segmented
by xc, then the appropriate covariance function is triv-
ial. This function can be modelled using the covariance
function KA defined by

KA(x1, x2; θA) ,











K1(x1, x2; θ1) (x1, x2 < xc)

K2(x1, x2; θ2) (x1, x2 ≥ xc)

0 otherwise.

(7)
The new set of hyperparameters θA , {θ1, θ2, xc}
contains knowledge about the original hyperparame-
ters of the covariance functions as well as the location
of the changepoint. This covariance function is easily
seen to be semi-positive definite and hence admissible.

Theorem 1. KA is a valid covariance function.

Proof. We show that any Gram matrix given by KA

is positive semidefinite. Consider an arbitrary set of
input points x in the domain of interest. By appropri-
ately ordering the points in x, we may write the Gram
matrix KA(x, x) as the block-diagonal matrix

[

K1(x<xc
, x<xc

; θ1) 0

0 K2(x≥xc
, x≥xc

; θ2)

]

;

the eigenvalues of KA(x, x) are therefore the eigenval-
ues of the blocks. Because both K1 and K2 are valid
covariance functions, their corresponding Gram matri-
ces are positive semidefinite, and therefore eigenvalues
of KA(x, x) are nonnegative.

4.2. A sudden change in input scale

Suppose a function of interest is well-behaved except
for a drastic change in the input scale σ at time xc,
which separates the function into two regions with dif-
ferent degrees of long-term dependence.

Let σ1 and σ2 represent the input scale of the func-
tion before and after the changepoint at xc, respec-
tively. Suppose we wish to model the function with an
isotropic covariance function K of the form (5) that
would be appropriate except for the change in input
scale. We may model the function using the covariance
function KB defined by

KB(x1, x2; {λ2, σ1, σ2, xc}) ,














K(x1, x2; {λ, σ1}) (x1, x2 < xc)

K(x1, x2; {λ, σ2}) (x1, x2 ≥ xc)

λ2κ
(

|xc−x′

1
|

σ1

+
|xc−x′

2
|

σ2

)

otherwise.

(8)

Theorem 2. KB is a valid covariance function.

Proof. Consider the map defined by

u(x; xc) ,

{

x
σ1

x < xc

xc

σ1

+ x−xc

σ2

x ≥ xc

. (9)

A simple check shows that KB(x1, x2; {λ, σ1, σ2, xc})
is equal to K(u(x1; xc), u(x2; xc); {λ, 1}), the original
covariance function with equivalent output scale and
unit input scale evaluated on the input points after
transformation by u. Because u is injective and K is
a valid covariance function, the result follows.

The function u in the proof above motivates the def-
inition of KB: by rescaling the input variable appro-
priately, the change in input scale is removed.

4.3. A sudden change in output scale

Suppose a function of interest is well-behaved except
for a drastic change in the output scale λ at time xc,
which separates the function into two regions.

Let y(x) represent the function of interest and let λ1

and λ2 represent the output scale of y(x) before and
after the changepoint at xc, respectively. Suppose we
wish to model the function with an isotropic covariance
function K of the form (5) that would be appropriate
except for the change in output scale. To derive the
appropriate covariance function, we model y(x) as the
product of a function with unit output scale, g(x), and
a piecewise-constant scaling function, a(x), defined by

a(x; xc) ,

{

λ1 x < xc

λ2 x ≥ xc

. (10)
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Given the model y(x) = a(x)g(x), the appropriate co-
variance function for y is immediate. We may use the
covariance function KC defined by

KC(x1, x2; {λ2
1, λ

2
2, σ, xc}) ,

a(x1; xc)a(x2; xc)K(x1, x2; {1, σ}) =










K(x1, x2; {λ1, σ}) (x1, x2 < xc)

K(x1, x2; {λ2, σ}) (x1, x2 ≥ xc)

K(x1, x2; {(λ1λ2)
1

2 , σ}) otherwise.

(11)

The form of KC follows from the properties of covari-
ance functions, see (Rasmussen & Williams, 2006) for
more details.

4.4. Discussion

The key feature of our approach is the treatment of
the location and characteristics of changepoints as co-
variance hyperparameters. As such, for the purposes
of prediction, we marginalize them using (2), effec-
tively averaging over models corresponding to a range
of changepoints compatible with the data. If desired,
the inferred nature of those changepoints can also be
directly monitored via (3) and (4).

The covariance functions above can be extended in
a number of ways. They can firstly be extended to
handle multiple changepoints. Here we need simply
to introduce additional hyperparameters for their lo-
cations and the values of the appropriate covariance
characteristics, such as input scales, within each seg-
ment. Note, however, that at any point in time our
model only needs to accommodate the volume of data
spanned by the window. In practice, allowing for one
or two changepoints is usually sufficient for the pur-
poses of prediction, given that the data prior to a
changepoint is typically weakly correlated with data
in the current regime of interest. Therefore we can cir-
cumvent the computationally onerous task of simulta-
neously marginalizing the hyperparameters associated
with the entire data stream.

Additionally, if multiple parameters undergo a change
at some point in time, an appropriate covariance func-
tion can be derived by combining the above results.
For example, a function that experiences a change in
both input scale and output scale could be readily
modeled by

KD(x1, x2; {λ1, λ2, σ1, σ2, xc}) ,

a(x1; xc)a(x2; xc)K(u(x1; xc), u(x2; xc); {1, 1}),
(12)

where u is as defined in (9) and a is as defined in (10).

Notice also that our framework allows for incorporat-
ing a possible change in mean, although this does not
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Figure 2. Prediction over a function that undergoes a
change in both input scale and output scale.

involve the covariance structure of the model. If the
mean function associated with the data is suspected
of possible changes, we may treat the mean as a hy-
perparameter of the model, and place appropriate hy-
perparameter samples corresponding to, for example,
the mean function before and after a putative change-
point. The different possible mean functions will then
be properly marginalized for prediction, and the like-
lihoods associated with the samples can give support
for the proposition of a changepoint having occurred
at a particular time.

5. Example

As an expository example, we consider a function that
undergoes a sudden change in both input scale and
output scale. The function y(x) is displayed in Figure
2; it undergoes a sudden change in input scale (becom-
ing smaller) and output scale (becoming larger) at the
point x = 0.5. We consider the problem of perform-
ing one-step lookahead prediction on y(x) using GP
models with a moving window of size 25.

The uppermost plot in Figure 2 shows the performance
of a standard GP prediction model with the squared
exponential covariance KSE (6), using hyperparame-
ters {λ, σ} selected by maximum likelihood estimation
on the data before the changepoint. The standard GP
prediction model has clear problems coping with the
changepoint; after the changepoint it makes predic-
tions that are very certain (that is, have small predic-
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tive variance) that are nonetheless very inaccurate.

The central plot shows the performance of a GP pre-
diction model using the changepoint covariance func-
tion KD (12). The predictions were calculated via
BMC hyperparameter marginalization using (2); three
samples each were chosen for the hyperparameters
{λ1, λ2, σ1, σ2}, and 25 samples were chosen for the
location of the changepoint. Our model easily copes
with the changed parameters of the process, contin-
uing to make accurate predictions immediately af-
ter the changepoint. Furthermore, by marginaliz-
ing the various hyperparameters associated with our
model, the uncertainty associated with our predictions
is conveyed honestly. The standard deviation becomes
roughly an order of magnitude larger after the change-
point due to the similar increase in the output scale.

The lowest plot shows the posterior distribution of the
distance to the last changepoint corresponding to the
predictions made by the changepoint GP predictor.
Each vertical “slice” of the figure at a particular point
shows the posterior probability distribution of the dis-
tance to the most recent changepoint at that point.
The changepoint at x = 0.5 is clearly seen in the pos-
terior distribution.

6. Results

6.1. Nile Data

We first consider a canonical changepoint dataset, the
minimum water levels of the Nile river during the pe-
riod AD 622–1284 (Whitcher et al., 2002). Several
authors have found evidence supporting a change in
input scale for this data around the year AD 722 (Ray
& Tsay, 2002). The conjectured reason for this change-
point is the construction in AD 715 of new device (a
“nilometer”) on the island of Roda, which affected the
nature and accuracy of the measurements.

We performed one-step lookahead prediction on this
dataset using the input scale changepoint covariance
KB (8), and a moving window of size 100. Seven sam-
ples each were used for the hyperparameters σ1 and
σ2, the input scales before and after a putative change-
point, and fifty samples were used for the location of
the changepoint xc.

The results can be seen in Figure 3. The upper plot
shows our predictions for the dataset, including the
mean and ±1 standard deviation error bars. The lower
plot shows the posterior distribution of the number
of years since the last changepoint. A changepoint
around AD 720–722 is clearly visible and agrees with
previous results. Several other changepoints are sug-

gested by the posterior distribution; these correspond
to locally “rough” patches of the data or very unpre-
dictable points, which suggest a possible constriction
in the input scale. Note that the algorithm’s confi-
dence in the location of a changepoint does not nec-
essarily correspond with its size; an identified change-
point may represent only a slight shift in input scale.

6.2. EEG Data

We consider EEG data from an epileptic subject
(Roberts, 2000). Prediction here is performed with
the aim of ultimately building models for EEG activ-
ity strong enough to forecast epileptic events. The
particular dataset plotted in Figure 4 represents two
channels each recorded at 64Hz with 12-bit resolution.
It depicts a single epileptic event of the classic “spike
and wave” type.

We use a variant of KA (7) in which the output scales
before and after a changepoint may differ. We use also
a covariance model (Osborne et al., 2008) that allows
us to express the correlation between channels, where
the single correlation hyperparameter is also allowed
to change at a changepoint. As such, we can model the
increased correlation and output scale evident during
periods of seizure.

A moving window of size 100 was used to perform the
one-step lookahead prediction. Five samples each were
used for the hyperparameters λ1 and λ2, the output
scales before and after a putative changepoint, five
samples each were used for the correlation coefficient
before and after a putative changepoint, and ten sam-
ples were used for the location of the changepoint xc.

The results can be seen in Figure 4. The upper plot
shows our predictions for the dataset, including the
mean prediction for each channel and ±1 standard de-
viation error bars. The lower plot shows the poste-
rior distribution of the number of seconds since the
last changepoint. Several changepoints can be seen in
the posterior, including the onset of seizure, as well as
changepoints corresponding to each of the individual
“spike and wave” events.

Additionally, we show the posterior distributions for
the output scale and correlation hyperparameters for
the data before and after a putative changepoint at
time t = 5.851 seconds, as estimated by the model at
time t = 6.125 seconds. Figure 5 shows the results.
The model clearly shows a smaller output scale before
the seizure event, and a larger one afterwards. An
increase in correlation is also evident, agreeing with
expectations about an epileptic event.
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Figure 3. Prediction for the Nile dataset using input scale changepoint covariance KB, and the corresponding posterior
distribution for time since changepoint.
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Figure 4. Prediction for the two-channel EEG data using a modified form of KA, and the corresponding posterior distri-
bution for time since changepoint.
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Figure 5. Posteriors and their means for hyperparameters
at t = 6.125 seconds into the EEG data set (see Figure 4).

7. Conclusion

We introduce a new sequential algorithm for perform-
ing Bayesian time-series prediction in the presence of
changepoints. After developing appropriate covariance
functions to model a variety of changepoints, we incor-
porate the covariance functions into a Gaussian pro-
cess framework. We use Bayesian Monte Carlo nu-
merical integration to estimate the marginal predictive
distribution as well as the posterior distribution of as-
sociated hyperparameters. By treating the location
of a changepoint as a hyperparameter, we may there-
fore compute the posterior distribution over putative
changepoint location as a natural byproduct of our
prediction algorithm. Tests on real datasets demon-
strate the efficacy of our algorithm.
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